Check for
Updates

SHOWAR: Right-Sizing And Efficient Scheduling of
Microservices

Ataollah Fatahi Baarzi
The Pennsylvania State University
ata@psu.edu

Abstract

Microservices architecture have been widely adopted in
designing distributed cloud applications where the applica-
tion is decoupled into multiple small components (i.e. “mi-
croservices”). One of the challenges in deploying microser-
vices is finding the optimal amount of resources (i.e. size) and
the number of instances (i.e. replicas) for each microservice
in order to maintain a good performance as well as prevent
resource wastage and under-utilization which is not cost-
effective. This paper presents SHOWAR, a framework that
configures the resources by determining the number of repli-
cas (horizontal scaling) and the amount of CPU and Memory
for each microservice (vertical scaling). For vertical scaling,
SHOWAR uses empirical variance in the historical resource
usage to find the optimal size and mitigate resource wastage.
For horizontal scaling, SHOWAR uses basic ideas from con-
trol theory along with kernel level performance metrics.
Additionally, once the size for each microservice is found,
SHOWAR bridges the gap between optimal resource alloca-
tion and scheduling by generating affinity rules (i.e. hints)
for the scheduler to further improve the performance. Our
experiments, using a variety of microservice applications
and real-world workloads, show that, compared to the state-
of-the-art autoscaling and scheduling systems, SHOWAR on
average improves the resource allocation by up to 22% while
improving the 99th percentile end-to-end user request la-
tency by 20%.

CCS Concepts: - Computer systems organization — Cloud

computing.
Keywords: autoscaling, microservices, cloud computing

ACM Reference Format:

Ataollah Fatahi Baarzi and George Kesidis. 2021. SHOWAR: Right-
Sizing And Efficient Scheduling of Microservices. In ACM Sympo-
sium on Cloud Computing (SoCC °21), November 1-4, 2021, Seattle,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SoCC 21, November 1-4, 2021, Seattle, WA, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8638-8/21/11...$15.00
https://doi.org/10.1145/3472883.3486999

427

George Kesidis
The Pennsylvania State University
gik2@psu.edu

WA, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3472883.3486999

1 Introduction

The microservices architecture is a recent and increasingly
popular paradigm for designing interactive and user-facing
services where hundreds of small and fine-grained compo-
nents (i.e. “microservices”) collectively work on serving end-
user requests in a distributed setting [1, 4, 10, 16, 35]. Break-
ing down an application into small microservices brings
several benefits. It allows different developer teams to inde-
pendently work on (possibly technologically) different mi-
croservices [61]. Also, each microservice can scale and oper-
ate independently depending on its own state and incoming
workload which results in better performance and reliability
of the application as a whole [63]. Finally, a microservices
architecture may facilitate debugging for performance and
correctness issues [54].

One of the important challenges in deploying microser-
vices is cluster resource allocation and scaling. To meet
some performance and reliability goals, before deploying
the microservices, the developers (application owners) have
to specify the size of each microservice in terms of compute
resources such as CPU and memory (i.e. “vertical sizing”),
as well as the number of instances (or “replicas") for each
microservice (i.e. “horizontal sizing”). However, the resource
needs of microservices will depend on potentially complex
demand processes, and may be difficult to predict a priori. On
the one hand, allocating more compute resources than what
is required for the microservices to operate normally leads
to low cluster resource utilization which is not cost effective
[51, 56]. On the other hand, allocating less resources than
what is needed for the microservices can lead to performance
degradation and service unavailability both of which can
result in revenue loss for the application owner [11].

In this paper, we present SHOWAR, a system designed for
both horizontal and vertical autoscaling of microservices
managed by Kubernetes [3], the state of the art container
orchestrator platform. For vertical autoscaling, SHOWAR em-
braces the variance in the historical resource usage to find
the optimal resource sizing of each microservice to maintain
a good performance while avoiding low resource utilization.
For horizontal autoscaling, SHO WAR uses metrics from Linux
kernel thread scheduler queues (in particular eBPF runq la-
tency) as its autoscaling signal to make more accurate and
meaningful autoscaling decisions. At its core, SHOWAR uses

https://doi.org/10.1145/3472883.3486999
https://doi.org/10.1145/3472883.3486999
https://doi.org/10.1145/3472883.3486999
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3472883.3486999&domain=pdf&date_stamp=2021-11-01

SoCC 21, November 1-4, 2021, Seattle, WA, USA

basic ideas from control theory to control the number of
replicas for each microservice based on signals from the
microservice’s run-time. In particular, we designed a propor-
tional-integral-derivative (PID) controller [43, 45] as a state-
ful autoscaler that uses the historical autoscaling actions and
current run-time measurements to make the next horizontal
autoscaling decisions and keep the microservice “stable" Ad-
ditionally, by taking into account the dependencies between
different microservices, SHOWAR prioritizes the dependee
microservices! to prevent unnecessary autoscaling actions
and low resource utilization.

In addition to its use of autoscalers to determine resources
for the microservices, SHOWAR aims to bridge optimal re-
source allocation and efficient scheduling of microservices.
That is, once the optimal size for a microservice is deter-
mined, SHOWAR assists the cluster scheduler to schedule mi-
croservice for better end-to-end performance. In particular,
to prevent resource contention and manage noisy-neighbor
effects on microservice performance, SHOWAR uses esti-
mated correlations of historical resource usage between dif-
ferent microservices to generate rules for the Kubernetes
scheduler. These rules may, e.g., suggest the scheduler to
co-locate (scheduling affinity) the microservices that have
negative correlation of a certain resource type, or otherwise
distribute them (scheduling anti-affinity).

We evaluate SHOWAR by deploying a variety of interactive
microservice applications on a cluster of virtual machines on
the Amazon Web Services (AWS) public cloud. We compare
the performance of SHOWAR against two state of the art
autoscaling systems: A moving window version of Google
Autopilot [57] and the default Kubernetes autoscalers [27].
Using real-world production workloads, our results show
that SHOWAR outperforms these baselines in terms of effi-
cient resource allocation and tail distribution of end-to-end
request latency. In particular, SHOWAR on average improves
the resource allocation by up to 22%, which can directly trans-
late to 22% in total savings of cluster-related costs, while im-
proving the 99th percentile end-to-end user request latency
by 20%.

In summary, we make the following contributions:

o Vertical and Horizontal Autoscaler Frameworks: We
present the design of framework for both vertical and
horizontal autoscalers for microservices that aim to
improve the resource allocation efficiency.

e Scheduling Affinity and Anti-Affinity Rules: We bridge
the gap between right sizing the microservices for re-
source efficiency and efficient microservices schedul-
ing by generating scheduling affinity and anti-affinity
rules to assist the scheduler for better microservices
placement and performance.

o Implementation and Evaluation: We implement the de-
signed frameworks and mechanisms creating a system

1i.e., microservices that others depend on

428

Ataollah Fatahi Baarzi and George Kesidis

called SHOWAR that works on top of the Kubernetes
container orchestrator platform. Using real-world pro-
duction workloads and real-world microservices we
demonstrate the efficiency of SHOWAR compared to
the state of the art baselines.

2 Background and Related Work
2.1 Background

In microservice architecture, the application service is broken-
down into different individual microservices that work to-
gether to process a request. Figure 1 shows the Social Net-
work application [38] as an example of microservices archi-
tecture. Each microservice is itself a containerized applica-
tion that communicates with the other microservices using

standard HTTP API requests or RPC calls. A user request ar-
rives at the front-end layer of the application, and depending

on the type of the request, it will span a subset of microser-
vices (from front-end tier, middle tier, and back-end tier) to

serve that request in the fashion of a directed acyclic graph

(DAG). As can be seen in Figure 1, the microservices form a

kind of dependency graph, moving from the front-end tier

to the back-end tier, where some of the microservices obvi-
ously depend on others. This dependency graph information

is used by SHOWAR to make better autoscaling decisions

(see subsection 3.2).

_Cache
L#J ﬁ/~>1 readPost X¥—>/ Jser | M hed)
[Mid-Tier | \ (readTimeline /=~~~ MongoDB

followUser ——

userinfo \:::‘ — |

r—
Memcached

d|

MongoDB

postStorage]il MongoDB

[Memcached |
writeTimeline f‘/> l

login

text

userTag
<
Figure 1. Social Network application as an example of mi-
croservices architecture

User Client

MongoDB
writeGraph]‘/\"{)
favorite index0 \\ MongoDB

index1

search

|ndexN

The increase in the popularity of microservices architec-
ture has led to many industrial standards including container
orchestrator tools for deploying microservices applications
[2, 3, 60]. In this work, we use Kubernetes (k8s) as our con-
tainer orchestration platform and build SHOWAR on top
of it. In k8s, each microservice consists of at least one Pod,
where each Pod consists of at least one application container,
where a Pod is the smallest entity that k8s schedules. For bet-
ter performance and availability, a microservice might have
multiple replicated instances which we call service replicas
or simply replicas herein. The size of each Pod in terms of
compute resources such as CPU and Memory, and the num-
ber of replicas of it, are initially set (e.g., by the application
owner, developer or user), and thereafter, the Kubernetes

SHOWAR: Right-Sizing And Efficient Scheduling of Microservices

autoscalers adjust the size of Pods. There are two types of
autoscalers: The Horizontal Autoscaler which determines the
number of replicas for each Pod, and the Vertical Autoscaler
which determines the Pods’ compute resources such as the
amount of CPU and Memory. The autoscalers base their
decisions on the historical resource usage of each Pod.

Deploying microservices requires the application owner to
specify the IT resource requirements, including CPU, mem-
ory and disk, for its Pod’s containers. Setting fixed values
for each resource requirement of an application may be
wasteful as the application’s usage pattern changes over
time. On the one hand, worst-case provisioning results in
underutilized compute resources (wasted from the applica-
tion owner’s point-of-view) which is not cost-effective. On
the other hand, under-provisioning the resources for the
application could lead to throttled CPU or, worse, out-of-
memory (OOM) errors which adversely affect end-to-end
workload performance and hence user experience. In such
situations, vertical autoscaling helps in finding the correct
resource requirements for the application as workload and
the usage patterns change over time, while meeting the appli-
cation owner’s service-level performance objectives (SLOs).
By dynamically achieving optimal resource allocations for
the application, an efficient vertical autoscaler a) minimizes
the resource usage slack (i.e., slack = limit - usage) caused
by over-provisioning and b) minimizes the number of OOM
errors and the amount of time that the CPU is throttled due
to under-provisioning.

Horizontal autoscaling refers to dynamically specifying
the number of replicas for each microservice. As the load for
a microservice increases, in order to prevent long backlogs in
its request queues, horizontal autoscaling would increase the
number of microservice replicas to maintain good respon-
siveness. In addition, in some situations, vertical autoscaling
cannot increase the size of a service replica beyond a thresh-
old. These thresholds can be the size of the largest virtual
machine in the cluster, or the size beyond which the mi-
croservice does not benefit due to the lack of parallelism in
the requests. Therefore, in such situations, one would use
horizontal autoscaling to increase the number of replicas for
the microservices.

In addition to CPU and Memory usage data, SHOWAR uses
the extended Berkeley Packet Filtering (eBPF) [6] metrics
data for its horizontal autoscaling decisions. eBPF is a recent
Linux kernel technology that enables running secure and
low-overhead programs at the kernel level to collect accurate
metrics from the kernel level events such as CPU scheduler
decision events, memory allocation events, and events of
packets in the kernel’s networking stack. It has been widely
used for microservice observability toward a wide range of
purposes such as performance improvements, profiling and
tracing, load balancing, network monitoring and security
[5, 7-9].

429

SoCC 21, November 1-4, 2021, Seattle, WA, USA

2.2 Related Work

Here, we give a brief overview of the state of the art related
work on autoscaling and resource management for microser-
vices which we build upon and use as our baselines.
Autoscaling Microservices. Autoscaling has been studied
in the context of public cloud resources [13-15, 50], includ-
ing different types of workloads [33, 46] and microservices
[27, 40, 57]. The autoscaling framework for microservices
which is widely used by practitioners in industry are those
of Kubernetes [27] and Google Autopilot autoscaler [57].

For vertical autoscaling, the Kubernetes vertical autoscaler
uses the historical resource usage of both CPU and Memory
and calculates the 90" percentile (P90) of the aggregated
resource usage across the replicas of each microservice for
the last (sliding) window of N (a system parameter) samples.
It then sets the resource (CPU and Memory) limits for the
microservice for the next time window to be P90x(1.15).
The extra 15% is used as a safety margin to avoid under-
provisioning resources for the microservice. Google Autopi-
lot’s vertical autoscaler takes the same approach with a slight
modification. In particular, for the Memory resource, instead
of the P90, it uses the maximum (max) Memory usage in
the last N samples as the limit for the next window time.
But for the CPU resource, it uses P95x1.15 (not P90) for the
next time window. In SHOWAR’s vertical autoscaler design,
instead of using high percentiles in this way, we use the
empirical variance in resource usage for improved resource
allocation to the microservices (see subsection 3.1).

For horizontal autoscaling, both Kubernetes and the Google
Autopilot take the same approach. The application devel-
oper/user sets a target CPU utilization T for each microser-
vice2. At any time ¢, for each microservice M, the number of
replicas Ry is calculated as follows:

_ Y, P95,
===
where P95, is the 95" percentile of the CPU usage of the
replica r for the microservice M in the last N samples. In
SHOWAR’s horizontal autoscaler design, we take a totally
different approach and instead of using CPU utilization as
an autoscaling metric, we use the CPU scheduler’s eBPF
metrics to design a more accurate and stateful autoscaler
(see subsection 3.2). As another alternative to the sliding
window approach, the Google Autopilot vertical autoscaler
also employs an ensemble of machine learning models for its
vertical autoscaler. The models try to optimize a cost function
of autoscaling actions (e.g. under- and over-provisioning)
and the model with the lowest cost is picked to perform a
vertical autoscaling action on each microservice.
Autoscaling to meet SLOs. Another line of prior work,
which is orthogonal to autoscalers such as SHOWAR, uti-
lizes autoscaling actions as a means to prevent service level

Ry , r € {M’s current replicas}

2Usually T* € [60%, 75%].

SoCC 21, November 1-4, 2021, Seattle, WA, USA

objective (SLO) violations due to microservice straggling
[37, 47, 55, 58, 62]. For example, FIRM [55] is a machine
learning (ML) based system for predicting and mitigating
the SLO violations in microservices. It first localizes the SLO
violation to determine which microservice in the dependency
graph is contributing to the SLO violation the most, then
using a pre-trained reinforcement learning (RL) agent, FIRM
performs proactive autoscaling actions on different resource
types (CPU, Memory, LLC etc.) to mitigate the SLO violation.
Sage [37] is a supervised ML based system designed to miti-
gate performance problems in microservices. In particular,
it models the dependencies between the microservices using
causal Bayesian networks to identify the root cause of SLO
violations and then performs autoscaling actions to mitigate
the SLO violation. The fundamental limitation of this line of
work is that they use pre-trained machine learning models
that cannot be easily adapted to the changes in the workload
(i.e. workload shift), and as a result they can take poorly
chosen actions. Though some of these works propose incre-
mental retraining, the cost and the time it takes to retrain the
models could be a hurdle towards adapting sufficiently quick
to the changes in the workload. In contrast, SHOWAR’s au-
toscaler controllers adapt quickly to the workload changes
since they use the recent resource usage statistics and work-
load changes as signals for their autoscaling actions.

3 SHOWAR Design

In designing SHOWAR we aim to bridge between vertical
pod autoscaling, horizontal pod autoscaling, and pod sched-
uling and placement for efficient resource usage and good
end-to-end performance. In the following, we describe the
design of each part and discuss how they work in tandem.

3.1 Vertical Autoscaler

The state of the art of vertical autoscaling systems, specifi-
cally Kubernetes vertical autoscaler (and similarly Google
Autopilot) [22, 57], take a conservative approach to set the
CPU and memory requirements for microservices. In partic-
ular, by monitoring the historical resource (both CPU and
Memory) usage in a past window of time (e.g. few minutes to
several days), and then setting the resource allocation for the
next window of time to be some percentile 7 of the usage and
a safety margin a: 77(1+) where typically 7 is between 90
and 99" percentile and « is between 0.10 and 0.2. While this
approach of taking a high percentile of the historical usage
and adding some safety margin to it addresses the under-
provisioning problem and minimizes the number of OOM
errors as well as the time that the CPU is throttled, it still
leaves the problem of underutilized and wasted resources
which is not cost-effective for the application owner.

In SHOWAR’s vertical autoscaler we take a simpler ap-
proach while addressing both resource under- and over-
provisioning and their implications. Particularly, SHOWAR uses
a standard “three-sigma" rule-of-thumb to set the resource

430

Ataollah Fatahi Baarzi and George Kesidis

allocations of the microservices. To that end, the usage sta-
tistics of each resource type (CPU or memory) from the last
window of duration W seconds (collected every second, see
section 4) are used to recursively compute the mean p and
its variance o? over that window. Then s = y + 30 is the
estimated amount of that specific resource type currently
needed by application. The amount s is evaluated every T
seconds where T < |W| and, if it has changed substantially
(say more than 15%) since last evaluation, then the allocation
is updated.

SHOWAR’s vertical autoscaler simply prevents both under-
and over-provisioning by taking the usage pattern’s variance.
Compared to the prior work (i.e. using 7(1 + «)) where a
fixed amount of resources is added to to its tail percentile
usage, when there is a high variance in the resource usage,
SHOWAR provisions the resource accordingly and hence
prevents under-provisioning and performance degradation.
In addition, when there is a low variance in the resource
usage, SHOWAR does not over-provision and hence prevents
over-provisioning and wasted resources.

To reiterate, while both u + 30 and 7(1 + «) have clear
statistical interpretation, the choice of using 3¢ gives a more
accurate view of the “spread” of the distribution about the
mean. In particular, if the variance is very small, then the
distribution is almost constant which is separately useful
information about the resource usage of the Pods. However,
in (1 +) method, when the variance is very small, the tail
percentiles do not convey useful information. Additionally,
the choice of the safety-margin hyperparameter ¢ may be
arbitrary which can result in poor resource utilization or
more OOMs if it is not specified properly.

3.2 Horizontal Autoscaler

While being widely used in production, the state of the art
of horizontal autoscaling systems [21, 57] suffer from a few
shortcomings in their design. First, they proportionally re-
act to the current autoscaling metric (i.e. CPU utilization)
measurement (compared to the target metric value, i.e. obser-
vation minus target), and as a result they increase or decrease
the number of service replicas to reach to the target metric
value in a single shot and in a stateless fashion. This be-
comes problematic and inefficient when there are bursts and
fluctuations in the load, which can result in extreme over-
provisioning (so not cost effective) or under-provisioning
(so performance degradation and poor quality of service),
cf. section 5. To address such problems, some autoscaling
systems introduce the notion of a cool-down period in which
no autoscaling actions are performed for a period of time
right after the most recent action®. While this can mitigate
the number of abrupt autoscaling actions, a transient spike
in the load can fool the autoscaling system to perform an
unnecessary autoscaling action while missing the required

3 Alternatively, one can add “hysteresis" to autoscaling rules to prevent
too-frequent control actions.

SHOWAR: Right-Sizing And Efficient Scheduling of Microservices

(a) Requests Rate Back-end (b) CPU Utilization

°]
2 1000 9 e
o °
§ 750 2
$ 500 - 3 60
> 9
& 250+ = X 20

0- T T
0 5 10

Time (minute)

=

T 1 1 1 1 1

02 4 6 8101214
Time (minute)

Front-end

CPU Utilization (%)

SoCC 21, November 1-4, 2021, Seattle, WA, USA

(d) Latency Increase

e

(c) Rung Latency Increasel

Microservices
Microservices
Latency Increase (%)

1
0 2 4 6 8101214
Time (minute)

Runq Latency Increase (%)

0 2 4 6 8101214
Time (minute)

Figure 2. Heatmap of latency propagation from back-end microservices to the front-end microservices when there is a change
in the workload. Lighter color denotes higher value (consult the individual color bars for exact value range). (a) Request arrival
rate. The arrival rate increases at t = 5m to make higher load on the application. (b) CPU utilization of each microservice from
back-end tier (top) to front-end (bottom) tier. As the load increases, the CPU utilization of microservices in all tires increases.
(c) The increase in rungq latency of each microservice. As the load increases, the runq latency increases over time from back-end
microservices to the front-end microservices. (d) The increase in request latency of each microservices. As the load increases,
the back-end microservices face higher increase in their latency and propagates to the front-end microservices over time.

autoscaling decision for the next time-window because of
the cool-down period.

Second, these systems usually do not take the request’s
dependency graph for its microservices into the account
and treat each microservice independently. Prior works have
shown that resource allocation and autoscaling for microser-
vices without considering correlations among dependent
microservices results in inefficient resource allocation and
does not necessarily help in coping with the load changes and
maintaining a good performance [39, 48, 55]. To illustrate,
we deployed the Social Network application to see how differ-
ent microservices react to changes in the load by monitoring
different performance metrics. As can be seen in Figure 2, as
the load increases at time ¢ = 5m (in Figure 2a), the back-end
microservices start experiencing high request 99" tail la-
tency (in Figure 2d) compared to normal operation. The high
tail latency then progressively propagates from the back-end
microservices to the middle tier and finally to the front-end
microservice as time passes. An efficient horizontal autoscal-
ing system would autoscale the back-end microservices first
to prevent high tail latency propagation and possibly avoid
unnecessary autoscaling for the front-end microservices.

Finally, previous approaches typically use CPU utilization
as a metric for autoscaling decisions by striving to maintain a
target CPU utilization across all the microservices. However,
it’s well-known that CPU utilization is not the most effective
metric for autoscaling and resource allocation [23, 34, 36, 41,
42, 49, 53]. As it can be seen in Figure 2b, as load increases,
the CPU utilization increases for almost all the microservices,
while the tail latency of front-end microservices does not
always increase as CPU utilization increases. That is, the
high CPU utilization does not always translate into high tail
latency increase as there are microservices that have high
CPU utilization but do not experience high tail latency. As a
result, the state of the art autoscaling systems would perform

431

unnecessary autoscaling actions for the microservices (front-
end microservices for example) as they are not contributing
to the request latency in a very significant way, cf. section 5.
In SHOWAR’s horizontal autoscaling design, we aim to
address the shortcomings that we mentioned above. We pro-
pose to use a basic framework of control theory to design a
stateful horizontal autoscaling system that maintains stabil-
ity while meeting performance requirements as expressed
by the metrics of SLOs.
The Autoscaling Controller. As mentioned above, react-
ing just proportionally to the observed autoscaling metric
error,

e = observation - target,

i.e., proportional control, is not enough and can result in
poor and inefficient autoscaling decisions and instability ow-
ing to abrupt changes in the number of replicas. To improve
this, we appeal to a more sophisticated controller: A pro-
portional-integral-derivative (PID) controller [44, 52] which
effects control based on a linear combination of three terms
at time t:

u(t) = kpe(t) + k]/

t—w

t

d
e(r)dr + kpae(t),

where, e.g., integration window can be set to w = t in partic-
ular, and kp, kj, and kp are the coeflicients for the propor-
tional (reacting to changes), integral (the memory for the
past state), and derivative (predicting the future state) terms
respectively [43, 45]. These parameters are further discussed
below.

Metric. As mentioned before, CPU utilization is not always
the most effective basis for horizontal autoscaling. We pro-
pose to use more meaningful and low-level CPU performance
metrics. In particular, we use eBPF Linux scheduler runqg la-
tency metric [24] which represents the time between when
a thread is runnable, and the time when it acquires the CPU
and is running. The longer the rungq latency, the higher CPU

SoCC 21, November 1-4, 2021, Seattle, WA, USA

contention among the threads and vice versa, therefore, as
shown by prior work [48], this metric is a suitable choice for
autoscaling purposes. In addition, from a control perspec-
tive, it is a metric that changes fast enough in response to
an autoscaling action (i.e changing the number of replicas),
as such stabilizes the system faster. Furthermore, this metric
captures both changes in the incoming load for the service as
well as the input signals (i.e., changing the number of repli-
cas) from the autoscaling system controller. Rung latency
is represented as a histogram of the latencies that threads
experience. As a target point for the autoscaling system con-
troller, we use, e.g., & = 95 percentile value of this histogram.
The controller performs the autoscaling actions so that such
target values for runq latency are met. To illustrate the effec-
tiveness of rungq latency, Figure 2c depicts the rung latency
increase in microservices. As it can be seen, the runq latency
shows a similar behavior to the request tail latency and it
progressively increases and propagates from the back-end
microservices to the front-end microservices. Unlike CPU
utilization, the high rungq latency is highly correlated with
the high request tail latency for each individual microservice
which shows that the runq latency can be used as a suitable
metric for horizontal autoscaling to prevent request latency
increase. Intuitively, the reason that rungq latency is superior
to CPU utilization is that it indicates how the application
threads are competing for CPU resources and hence the need
for more (or less) CPU resources [23].

Note that even though runq latency is a per thread metric,
it is still applicable to single-threaded applications. This is
because even in a single-threaded application, the thread
can be interrupted by the OS and hence an increase in its
runq latency. In addition, when the this metric is low for an
application, and horizontal autoscaler cannot be triggered,
the vertical autoscaler of SHOWAR can proceed and allocate
resources for the Pod or trigger the horizontal autoscaler
to scale the pod horizontally (see subsection 3.3 for more
details).

High-level application latency SLOs are business decisions
and generally may not directly translate to rungq latency. How-
ever, as shown in Figure 2, the lower runq latency results
in lower application latency and vice versa. As such, spec-
ifying a target value for the rung latency here can result
in meeting the target application latency SLOs. In current
SHOWAR’s design and deployment, the user (i.e. the appli-
cation owner) has to specify a target runq latency value as
part of SHOWAR’s configuration. Since runq latency is an
OS scheduler metric, the value for the target runq latency
should not be higher than a few orders of magnitude of CPU
scheduler time-quanta (where a quantum is configurable).
The Transfer Function The transfer function in our au-
toscaling case is simple and has the property that: If runq
latency exceeds the target value, then the autoscaling system
has to scale out and increase the number of replicas. Also, if
runq latency is below the target value, then the autoscaling

432

Ataollah Fatahi Baarzi and George Kesidis

system has to scale in and decrease the number of replicas.
The overall procedure is shown in Algorithm 1. To prevent
performing too many autoscaling actions in response to fast
changes as well as transient burstiness in the runq latency
metric, we set a configurable bound « percent (20% by de-
fault) around the target value as a buffer and no autoscaling
action is performed (i.e. NO-OP). The amount of increase or
decrease in case of autoscaling is a configurable f percent
(10% by default) of the number of current replicas of the
microservice or is 1 if f is less than 1%.

Algorithm 1: Autoscaling Transfer Function

1 M : microservice;
2 PID: pid controller for M;
3 Ryr: Number of replicas for M;
4 a: PID’s action bound;
5 f: Replica change step coefficient;
¢ while True do
7 runqlatency = runq_sample_histogram(M);
8 observation = P95(runqlatency);
9 output = PID.output(observation);
if output > target * (1 + «/2) then
| Ryt = Ry + max(1, Ry *);
else if output < target = (1 — a/2) then
| Ry = Ry — max(1, Ry * f);
else
| NO-OP;
end

10
11
12
13
14
15

16

17 end

Tuning The Autoscaling Controller. Tuning the autoscal-
ing PID controller refers to determining the values for the
coefficients k [43, 44, 52]. Different values for the coeffi-
cients can affect the performance of the controller in terms
of speed (responsiveness), stability and accuracy. In partic-
ular, increasing kp leads to an increase in the speed of the
controller (to reach to a stable state), however high kp values
may correspond to instability which is a main problem of
prior works relying only on proportional autoscaling control,
e.g., [21, 57]. Increasing k; increases the speed of the con-
troller as well and may result in instability, but increasing k;
will lower the controller’s noise (variation and fluctuations)
and steady-state errors. Finally, increasing kp increases the
speed of the controller (to reach steady-state) as well as the
potential for instability while amplifying the controller’s
noise profoundly. As a result, given the effect of the coeffi-
cients values on the controller’s speed, stability and noise, a
workload-aware and adaptive tuning approach is required.
Instead of using traditional and standard PID tuning meth-
ods [43, 44], we propose to use the following adaptive method

4For most of the microservices at our evaluation scale, 10% of replicas had
p < 1, cf. section 5.

SHOWAR: Right-Sizing And Efficient Scheduling of Microservices

mainly to cope with the variations in the incoming workload
(i.e. workload shift). This is because failing to cope with the
workload changes can result in poor resource efficiency or
worse, service downtime due to insufficient resource alloca-
tions [11].

Initially, the controller starts with equal values for the

coefficients. Subsequently, the coefficients are adaptively
and incrementally self-tuned based on monitored workload
performance and controller state. In particular, if the current
metric value (especially rungq latency) is far from the target
metric value, kp and kj are increased in each iteration to
improve stability as well as the speed at which the target
metric value is reached. Also, if fluctuations in the metric
value are observed (referred as noise in the controller), kp is
decreased gradually to reduce the noise introduced by the
workload’s burstiness.
Autoscaling Approach. As explained above, a fundamental
problem with state of the art horizontal autoscaling systems
is that they can perform unnecessary autoscaling actions
that can result in poor resource utilization. To address this
problem, in SHOWAR’s horizontal autoscaling design we
take into the account two knobs: a) the sorted absolute val-
ues of the controllers’ output for each microservice (cf. the
“one for each design” case), and b) the (topologically sorted)
dependency graph among the microservices. We propose
two architectures for the horizontal autoscaling controller
system:

e One For All: In this design, a single controller is re-
sponsible for autoscaling all of the microservice types.
That is, at every autoscaling decision, all the microser-
vices are scaled (up or down) at once depending on
the average of current metric value observation across
all of the microservices. While this approach bene-
fits from the PID controller, it does not take into the
account the microservices dependency graph of the
microservices.

e One For Each: In this design, a controller is responsi-
ble for each microservice. Each controller monitors the
autoscaling metric (runq latency) of its corresponding
microservice and performs the autoscaling action for
that microservice (according to Algorithm 1), in a coor-
dinated fashion as follows. The absolute value of con-
trollers’ outputs are sorted and those with the highest
values (greatest scaling need) are prioritized. For equal
controllers’ outputs, we then take into the account
the dependency graph of microservices, and prioritize
the back-end services over the dependent front-end
services (after a topological sort of the graph). In our
benchmarks, we observe the back-end services typi-
cally are the ones with the highest controller’s output
values as well (see section 5). Motivated by the observa-
tions in Figure 2, once a microservice’s controller has
performed an autoscaling action, the controllers for

433

SoCC 21, November 1-4, 2021, Seattle, WA, USA

all of its dependent microservices are postponed until
the autoscaling is done (i.e. new replicas are added,
or some of the replicas are removed) and then the
dependent microservices’ controllers try to perform
autoscaling. This is because, in most of the cases, au-
toscaling the dependee microservice eliminates the
need for autoscaling the dependent microservices and
hence the latency increase propagation observed in
Figure 2.

3.3 Tandem Vertical and Horizontal Autoscalers

The recommended approach for deploying vertical and hori-
zontal autoscalers in state-of-the-art® platforms such as Ku-
bernetes [21, 22] is to only deploy one autoscalers at a time
to avoid interference from others. That is, in case of choos-
ing the vertical autoscaler, the developers would set a fixed
number for the number of replicas (instances) for each mi-
croservice and the vertical autoscaler will scale up or down
the size of Pods running the microservice. On the other hand,
if a horizontal autoscaler is chosen, the developers would, for
each microservice, set a fixed size (CPU and memory), and
the horizontal autoscaler will scale up or down the number
of replicas for each microservice.

SHOWAR benefits from both vertical and horizontal au-
toscaling by allowing deploying them in tandem. First, we
prioritize any vertical autoscaling decision over any hori-
zontal autoscaling decision. We do this because, in case of
memory autoscaling for example, if there is insufficient mem-
ory for the Pod, the application encounters an out of memory
(OOM) error and stops the execution regardless of its repli-
cas count, as such, the horizontal autoscaler cannot address
the problem. Therefore, before a horizontal autoscaling con-
troller acts, it first checks a shared channel to see if a vertical
autoscaling is in progress for that microservice and, if so, it
will not proceed. Similarly, before a vertical Pod autoscaler
acts, it sends a message over the shared channel notifying
the horizontal autoscaler and then performs its action.

Second, according to Google Cloud Platforms’ Kubernetes
best practices, due to lack of parallelism, it’s recommended
that for most of the workloads, no more than one core (i.e.
1000m core in kubernetes currency) is needed for each Pod
[20]. We use this recommendation and incorporate it into the
SHOWAR’s vertical autoscaler design. That is, if the vertical
autoscaler decision is to set more than one core for a Pod, it
signals the horizontal autoscaler through a shared channel
instead, and will not proceed with the vertical autoscaling
action.

These two mechanisms allow the vertical and horizontal
autoscalers to be deployed at the same time and work in
tandem for efficient resource allocation while maintaining
the target performance goals.

Google Autopilot allows deploying both vertical and horizontal autoscalers
at the same time.

SoCC 21, November 1-4, 2021, Seattle, WA, USA

3.4 (More) Efficient Scheduling

Again, the general aims of vertical and horizontal autoscal-
ing are twofold: a) efficient resource usage and allocation
while b) maintaining a good performance for the microser-
vices. However, in addition to autoscaling, another factor that
helps in efficient resource usage and meeting performance
goals for the microservices is scheduling and placement of
the microservice Pods on the nodes (VMs) in the cluster.
In particular, the scheduler would place as many Pods as
possible on a node to improve the resource usage once the
Pods are right-sized both vertically and horizontally by the
autoscalers. On the other hand, “tight" (efficient) placement
of the Pods into nodes can result in resource contention (due
to noisy neighbor effect) hence degrading the performance
of Pods as well the microservice as a whole.

To bridge the gap between scheduling and autoscaling, and
to improve the resource efficiency as well as the performance
of the microservices even further, SHOWAR provides “hints"
(or rules) for the Kubernetes scheduler’s by generating inter-
pod affinity and anti-affinity rules. An affinity of service
S for service Sy implies that the scheduler will always (or
preferably) try to schedule the Pods of service S; on the nodes
which Pods of service S, reside on. Similarly, an anti-affinity
of service S, for service S; implies that the scheduler will
never (or preferably not) do this.

In doing so, SHOWAR monitors and uses the historical (i.e.
last (configurable) window of time) CPU, memory, and net-
work (both out and in) usage of microservices and calculates
the Paerson correlation coefficient [32] between each pair of
microservices’ usage pattern: Given the distribution of CPU
(or memory or network I/0) usage of two microservice types
X and Y, the correlation coefficient p between X and Y is:

~ D(xyes 2(x = px)(y — py)
B 00y

PXY € [-1,1],

where px and oy are the (historical) sample mean and sam-
ple variance of X, respectively, each computed by standard
recursive means.

For two microservices S; and Sz, the higher positive cor-
relation in the usage pattern of a resource (say CPU or mem-
ory), the higher resource contention for that resource be-
tween them. Similarly, the lower the negative correlation,
the lower the contention between the two services for that
resource. This is the simple basis of SHOWAR’s affinity and
anti-affinity rules for the compute resources such as CPU,
memory, and network I/O.

Generating Affinity and Anti-Affinity Rules. Specifically,
the mechanism for generating affinity and anti-affinity rules
for the scheduler based on the correlation coefficient for each
resource type is as follow:

e CPU and Network: For any pair of microservices
Sy and S, if they have a strongly negative correla-
tion in their CPU and network I/O usage pattern (i.e.

434

Ataollah Fatahi Baarzi and George Kesidis

Controller Node Worker Nodes

ity RuleE_> Scheduler ——
_Generator
i Vertical |:
;| Autoscaler |:
[P — —

—> Kubelet

AP| Server ——
Prometheus
Monitoring

{ (Horizontal |
i, Autoscaler |:

Pod

Time Series Database «—

Figure 3. SHOWAR Architecture Overview. The resource
usage logs as well as the eBPF metrics are collected using
their corresponding agents on each node and are aggregated
into the time series database. SHOWAR uses the collected
metrics to make autoscaling decisions as well as scheduling
affinity and anti-affinity rules by communicating with the
Kubernetes API server and its scheduler respectively.

ps,s, < —0.8) SHOWAR generates an affinity rule of S,
for S; for the scheduler. This is because CPU and net-
work bandwidth are resources that can be shared and
throttled, and, as such, even if the usage pattern of the
two service change and the negative correlation does
not hold, the microservices may be able to effectively
share such resources.

Memory: If any pair of microservices S; and S; have
a strongly positive correlation in their memory usage
pattern (e.g. ps,s, = 0.8) SHOWAR generates an anti-
affinity rule for S; and S, for the scheduler. This is
because when the memory usage pattern of two ser-
vices is strongly correlated, given the limited physical
memory bandwidth on the node, the microservices
can suffer from insufficient memory bandwidth.

Note that an anti-affinity rule has a symmetric property
that can completely prevent the scheduler from schedul-
ing two strongly memory correlated microservices. In other
words, if there is an anti-affinity rule of S; for Sy, unlike an
affinity rule, when scheduling Pods of microservice S;, the
scheduler not only checks the presence of Pods of microser-
vice S,, but also, when scheduling Pods of microservice S,
checks the presence of Pods of microservice S; to not co-
schedule/locate them on the same node (even though there is
no affinity rule set of service S;). As a result, to not make any
scheduling conflicts for the scheduler, SHOWAR generates at
most one affinity or anti-affinity rule for each microservice.
That is, each microservice participates in at most one affinity
or anti-affinity rule at any point in time.

4 SHOWAR Implementation

SHOWAR is implemented in GoLang as a cloud native pro-
gramming language and consists of a set of modules plugged
into the state of the art container orchestrator Kubernetes.
Figure 3 depicts a high-level overview of the architecture
and how SHOWAR is interacting with the kubernetes sched-
uler and its API server. SHOWAR is deployed as a service on

SHOWAR: Right-Sizing And Efficient Scheduling of Microservices

the controller node and interacts with the kubernetes API
server and its scheduler for autoscaling actions as well as
applying the generated affinity and anti-affinity rules for the
microservices.

Monitoring Agents. The monitoring and logging data are
the most essential part of any application deployment. The
monitoring data are used for observability, health check and
autoscaling. We use the state of the art monitoring and metric
collection tool Prometheus [25] to collect different metrics
from nodes and containers. Prometheus launches a monitor-
ing agent on each node in the cluster to collect the container
metrics such as CPU usage, Memory usage, Network band-
width usage, etc. The agents are configured to collect and
report the metrics every second (One second is the minimum
period that Prometheus agents can collect the metrics. To
obtain as many as data points possible, we collected data ev-
ery second.). Prometheus comes with a time series database
where the agents store the collected metric. In addition, a
query language is provided to query the time series database
which is used by the other modules to utilize the collected
metrics.

In addition to the Prometheus standard metric collection
agents, we have developed an eBPF program that is deployed
as monitoring agent on every node in the cluster to collect
the rung latency metric used by the horizontal autoscaler.
This metric is a histogram of latencies that the CPU threads in
each pod experience before acquiring the CPU. The program
collects a histogram of rung latencies every 1 second and
stores it in the Prometheus time series database.

The Vertical Autoscaler. The vertical autoscaler is a simple
loop that takes place every minute®. That is every minute, it
evaluates s, = i, +3+0, over a window of the previous 5 min-
utes for each resource type r (CPU and memory) and if the
value of s has changed by more than 15%, it updates the re-
source requirements of the service to be s. Another condition
that triggers the vertical autoscaler is when a microservice
reports an OOM error. Before applying the new resource re-
quirements of the microservice, the vertical autoscaler sends
a message over a shared channel to the horizontal autoscaler
to not proceed with any horizontal autoscaling action as
vertical autoscaling actions are prioritized over horizontal
autoscaling. The vertical autoscaler also does not proceed
with an autoscaling action for a microservice if the amount
of CPU for that microservice is more than one CPU core
(i.e. scpy > 1000m), in that case, it sends a message over an-
other shared channel to the horizontal autoscaler to trigger
a horizontal autoscaling action.

The Horizontal Autoscaler. As described in subsection 3.2,
at its core, the horizontal autoscaler is a PID controller that

The decision frequency is configurable. We chose a frequency of once per
minute since one minute is about the minimum amount of time over which
an ample amount of metrics data are available to well inform an autoscaling
decision.

435

SoCC 21, November 1-4, 2021, Seattle, WA, USA

aims to keep each microservice stable. That is, for a given tar-
get runq latency, it performs horizontal autoscaling actions
for that microservice such that it always has a runq latency
of the target value. The controllers make decision every 1
minute which the eBPF program collects 60 instances of the
metric histogram (1 every second). For each histogram, the
95th percentile is picked and the controller uses the average
of these 60 data points as its current observation (a.k.a mea-
surement) to perform its controlling action. Each horizontal
scaling action adds or removes at least 1 or a configurable
percentage (10% by default) of current number of replicas of
the microservice for scaling in and out respectively.
Recalling from section 3, the initial values for the PID
control parameters are taken to be kp = k; = kp = 1/3 (each
parameter constrained to be € [0, 10]). Incremental changes
to these parameters is 10% (we found experimentally that
10% gives very good performance). Fluctuations in the con-
troller’s output, which are a basis to make such changes,
is measured using the previous N = 10 samples. Also, the
“speed" of the controller is measured as the number of itera-
tions required to reach the interval [target(1 — a), target(1+
a)] for a = 10%.
The Affinity Rule Generator. SHOWAR’s affinity rule gen-
erator uses the CPU, memory, and network utilizations every
5 minutes which is a vector consisting of 300 data points
(each data point is the average over the microservice replicas)
to compute the correlation coefficient of different resource
types between every pair of microservices. Too eliminate the
weak or no correlation instances, any value in [—0.8, +0.8] is
dropped. The other strongly negative and strongly positive
correlated microservices are used to generate the affinity
and anti-affinity rules as explained in subsection 3.4. The
resource usage patterns can change as the workload changes
(also known as workload shift), so if a strongly negative or
positive correlation change by more than 20% (configurable)
in a subsequent 5 minutes window of time, SHOWAR revokes
the affinity (or anti-affinity) rule for that pair of microser-
vices.
SHOWAR’s overhead. Note that SHOWAR is built as a con-
troller for the Kubernetes which is highly pluggable for au-
toscalers and other types of controllers [30]. In addition,
SHOWAR uses the commonly used Kubernetes monitoring
agents (e.g. Prometheus [25]) and one custom eBPF metric
monitoring agent. As such, compared to the default Kuber-
netes autoscalers, SHOWAR does not introduce any addi-
tional overhead. Furthermore, the autoscalers are scheduled
on the controller node and do not share resources with the
application Pods which are scheduled on the worker nodes.

5 Evaluation
5.1 Experimental Setup

Applications. We evaluated SHOWAR using 3 interactive
microservice applications: a) Social Network from DeathStar-
Bench [38], an application consisting 36 microservices in

SoCC 21, November 1-4, 2021, Seattle, WA, USA

which users can follow others, compose posts, and read and
interact with others’ posts; b) Train-Ticket [64], an applica-
tion consisting 41 microservices which allows its users to
reserve online tickets and make payments; and c) Google
Cloud Platform’s Online Boutique [28], consisting of 10 mi-
croservices in which users can purchase online items through
their online cart and make payments. Through our experi-
mental evaluation, we observe that the results are consistent
across all 3 application benchmarks, therefore due to space
limits, we only report the results for the Social Network appli-
cation. We set the target value for runq latency to 15ms which
is 2.5x the Linux kernel sysctl_sched_latency[31] scheduler
parameter.

Cluster Setup. All of our evaluations are performed on
Amazon Web Services (AWS) Cloud in us-east-1 region. We
use m5.xlarge VM instances each with 4 vCPU, 16 GB of
memory and $0.192/hr price, running Ubuntu 18.04 LTS con-
figured for supporting running eBPF programs. Unless oth-
erwise mentioned, our cluster consists of 25 VM instances.

Workload and Load Generation. We use Wikipedia ac-
cess traces [59] as our primary workload. It’s a real-world
trace of users interacting with the Wikipedia website con-
sisting of traffic patterns including periods of Poisson arrival
times, short-term burstiness, and diurnal level-shifts. Since
the microservices that we are evaluating are user-facing ap-
plications, the workload has to reflect realistic user behavior.
As such, the Wikipedia access trace is a good fit for our
evaluation. We use locust [26] as our workload generator
in a distributed fashion. The locust clients reside on differ-
ent VM instances than the main cluster that is hosting the
application.

Baselines. We compare SHOWAR’s performance with
two main baselines: a) Kubernetes default autoscalers [27]
and b) Google Autopilot [57]. We implemented a version
of Google Autopilot moving-window vertical autoscaler as
described in [57] — its ML-based version is not used as it has
not yet been open-sourced and not enough information has
been disclosed to re-implement it.

5.2 Vertical Autoscaling

We first evaluate the effectiveness of SHOWAR’s vertical
autoscaler (horizontal autoscalers are disabled) in reducing
the relative memory slack. Our resource of interest here is
memory because an insufficient allocation of memory for
a service can result in out-of-memory errors which affect
service availability, but CPU can be throttled and keeps the
service available at the cost of degraded performance. We use
a one-hour long workload from the Wikipedia access trace
shown in Figure 4 for our evaluation. We log the memory
limit set by the vertical autoscaler for each microservice as
well as the microservice’s actual usage every 5 minutes to
calculate its memory usage slack (i.e., slack = limit - usage).
Figure 5a depicts the cumulative distribution function (CDF)
of relative memory usage slack (i.e. slack/limit) across all

436

Ataollah Fatahi Baarzi and George Kesidis

3200 A

3000 ~

2800

2600 A

2400 A

Requests/Second

2200 A

2000

1500 2000 2500 3000 3500
Time (second)

0 500 1000

Figure 4. A one-hour long workload from Wikipedia access
trace.

the microservices and their replicas in Social Network appli-
cation. As can be seen, by embracing the variance of past
resource usage (using three-sigma rule), SHOWAR’s verti-
cal autoscaler is able to improve the memory usage slack
compared to Autopilot’s and Kubernetes’ vertical autoscaler
which use max (maximum) and P90 X 1.15 (15% more than
the 90 percentile) of past usage respectively. In particu-
lar, for 95% of the service instances, the relative memory
usage slack is less than 46% compared to 63% and 66% for
Kubernetes and Autopilot respectively. This 20% savings in
memory usage slack can be utilized for scheduling more in-
stances of services or using less VM resources in the cluster
which will obviously reduce costs (see subsection 5.5). We
also observe that Kubernetes outperforms Autopilot as it
has a more aggressive approach in setting the limits (using
P95 X 1.15 of past usage compared to the max).

While low memory or CPU usage slack can result in effi-
cient and cost-effective resource allocation, it can however
result in higher rates of OOMs or throttled CPU and hence
degradation in service performance. Figure 5b shows the
number of OOMs over the course of the experiment. As
can be seen, while SHOWAR has comparable number of
OOMs compared to Kubernetes, their aggressive approaches
in memory scaling result in more OOMs compared to the
Autopilot. In Figure 5c we depict the average CPU throttling
(result of tight CPU slack) across the microservices during
the course of the experiment. When the CPU usage of a Pod
exceeds its allocated CPU resources, the container runtime
(using cgroups) throttles the CPU share of the Pod. As can
be seen, SHOWAR has a CPU throttling comparable to the
baselines, because of the high fluctuation (variance) in the
CPU usage of the microservices.

As can be seen in Figure 5, there is a natural trade-off
between resource efficiency (i.e. lower slack) and stability.
SHOWAR and Kubernetes result in better resource efficiency
while resulting in higher number of OOMs (and throttled

SHOWAR: Right-Sizing And Efficient Scheduling of Microservices SoCC ’21, November 1-4, 2021, Seattle, WA, USA

(a) CDF of Relative Memory Usage Slack (b) Out of Memory Errors (OOMs) . (c) Percentage of CPU throttle
1.00 1 — —— showar
x
< 3+ — k8
0.75 - 2 o s
" o b= autopilot
S 1 © S 2-
0.25 - k8s * 21 A W
autopilot o
0.00 T T T T T 0 T T T T T
0 20 40 60 80 100 Showar K8s Autopilot 0 10 20 30 40 50 60
Relative Memory Usage Slack (%) Time (minute)

Figure 5. Vertical Autoscaling: (a) CDF of relative memory usage slack. (b) Number of Out of Memory (OOM) Errors. (c)
Average CPU throttling across all the microservices.

CPU), while Autopilot results in higher slack and less num-
ber of OOMs. Depending on the objectives, one can tune o4 3 .
SHOWAR and Kubernetes to achieve higher stability at the —
cost of higher resource usage slack. For example, in SHOWAR, 08 ——
instead of the 30 term, one can use ko where k > 3 to allo- . 06 —+
cate more resources for individual Pods and mitigate OOMs 8
and CPU throttling. 0.4

showar (One-for-Each)
5.3 Horizontal Autoscaling 021 igzwar sl
Here, using the same workload from Figure 4 we evaluate the P aump”?t .

effectiveness of SHOWAR’s horizontal autoscaler (vertical 0 2 4 6 8 10 12 14 16
autoscalers are disabled) in determining the right number Humber of Replicas

of replicas for microservices. We compare both SHOWAR’s

One for Each and One for All designs with Autopilot and Ku- Figure 6. Horizontal Autoscaling: CDF of number of replicas
bernetes horizontal autoscalers. Recall from subsection 2.2 across microservices.

that both Autopilot and Kubernetes use the same approach
in horizontal autoscaling. We set the target CPU utilization

for Autopilot and Kubernetes to 65% as it is commonly rec- 1.01
ommended. 0.8
Figure 6 depicts the cumulative distribution function of 4 0.6
the number of replicas of microservices in Social Network o
application over the course of the experiment. We observe 0.4
that both SHOWAR’s horizontal autoscalers outperform the 0.2 — showar
Autopilot and Kubernetes horizontal autoscalers by allocat- 0.0 _'_ kg?
ing fewer replicas for the majority of microservices, which in "0 1000 2000 3000 4000 5000 6000 7000 8000 9000
turn can result in more efficient resource allocation and cost End to End User Request Latency (ms)

savings (see subsection 5.5). By having a tailored controller

for each microservice, SHOWAR's One for Each design also Figure 7. Affinity Rule Generator: CDF of user-experienced
outperforms its One for All. This is because in the One for end-to-end P99 latency in presence of SHOWAR affinity rule
All design, a single controller tries to scale the microser- generator for CPU, Memory, and Network I/O compared to
vices using a single target runq latency value and an aver- Kubernetes default scheduler.

aged runq latency measurement across all the microservices

which results in unnecessary scaling of microservices that

do not have, high rungq latency. In addition we observe that, To reiterate, the effectiveness of SHOWAR is due to a) a
as expected, Autopilot and Kubernetes have almost identi- stateful controller for the autoscaler and b) a better repre-
cal horizontal autoscaling decisions because they use the sentative metric (i.e. runq latency instead of CPU utilization)
same method for horizontal autoscaling using the same tar- for autoscaling decisions. The effect of being stateful and
get CPU utilization. The slight difference between the two having memory of the past autoscaling actions can be seen in
comes from the variations in CPU utilization measurements Figure 6 where SHOWAR allocates a smaller number of repli-
during the experiments. cas for the majority of the microservices as compared to the

437

SoCC 21, November 1-4, 2021, Seattle, WA, USA

(a) CDF of end-to-end request latency

(b) Overall Memory Allocation

Ataollah Fatahi Baarzi and George Kesidis

(c) Normalized Cluster Cost

1.0 1 o
© 4001 1.0 A $71.76 $76.22
< @
0.8 1 2 -
© % 0.84 $59.23
g 300 o
w 0.6 2 et
o < °]
(] > ’(H 0.6
5 200 =
041 E £ 0.4
—— showar = —— showar s
| — 100 1 =
0.2 — k8s] — k8s 0.2 1
autopilot 2 autopilot
0.0 T T T T 0 T T T T 0.0 - T
0 1000 2000 3000 4000 5000 0 5 10 15 20 Showar K8s Autopilot
End to End User Request Latency (ms) Time (hour) Cluster Cost Comparision

Figure 8. End-to-End Performance: (a) CDF of End-to-End Request Latency. (b) Total Cluster Memory Allocation. (c) Normalized

Cluster Cost

4000

3000 4

2000

Requests/Second

=

o

o

o
L

0 — T
0123456 7 8 9101112131415161718192021222324
Time (Hour)

Figure 9. A 24-hours long workload from Wikipedia access
trace.

baselines which are stateless, memoryless and reactive. More
specifically, 95% of microservices have less than 9 replicas us-
ing SHOWAR compared to 15 replicas using Kubernetes and
Autopilot. In addition, we see the effect of using more mean-
ingful and representative metric in autoscaling decisions for
individual microservices. In particular, during our evaluation,
we observed that both Kubernetes and Autopilot typically
set 16 replicas for nginx (a front-end microservice) primar-
ily because of its high CPU utilization. However, as seen in
Figure 2, a high CPU utilization does not always correspond
to highly improved microservice performance. In contrast,
SHOWAR sets only 10 replicas for this microservice. On the
other hand, for the User microservice that several other mi-
croservices depend on it, both Kubernetes and Autopilot
typically set only 3 replicas for it. In contrast, SHOWAR typi-
cally sets 6 replicas for this microservice.

5.4 The Effect of Affinity and Anti-Affinity Rules

Here, we evaluate the effect of Pod affinity and anti-affinity
rules generated by SHOWAR using the correlation of CPU,
memory, and network I/O usage between different microser-
vices. We use the workload from Figure 4 and disable both
vertical and horizontal autoscalers to see how our the gener-
ated affinity and anti-affinity rules can affect the Kubernetes’

438

scheduler decisions on microservices and its effect on the
latencies of users’ requests compared to a situation where
the scheduler does not use any affinity and anti-affinity rules.
Due to space limits, we don’t show the correlation data be-
tween the different microservices over the course of the
experiments. Figure 7 depicts the CDF of the end to end user
request’s latencies. As it can be seen, by providing schedul-
ing hints (using affinity and anti-affinity) for the scheduler,
SHOWAR is able to improve the P99th latency that the users
experience. In particular, using the affinity and anti-affinity
rules generated by SHOWAR, the P99th of request latency
is 6600 milliseconds compared to 9000 milliseconds using
Kubernetes default scheduling decisions.

5.5 End-to-End performance

While we evaluated each component of SHOWAR individ-
ually in the past three subsections, here we enable all the
three components to work in tandem and perform an end-
to-end evaluation. We use a 24-hour long workload from the
Wikipedia access trace shown in Figure 9 and hence each ex-
periment lasts for 24 hours to capture all the patterns in the
(real-world) workload. To fit the workload, we increased the
size of our cluster to 30 VM instances. Our results show that
SHOWAR improves the resource allocation and utilization
while maintaining a comparable performance compared to
the baselines.

Figure 8a depicts the CDF of the end to end request latency
experienced by the user during the 24 hours of the experi-
ment. As it can be seen, the end to end performance using
SHOWAR is comparable to the baselines and using its affinity
and anti-affinity rule generator as well as its dependency-
aware horizontal autoscaling, SHOWAR is able to improve
the P99th latency by more than 20% compared to the Autopi-
lot and Kubernetes. Both Autopilot and Kubernetes show
similar performance in P99th latency, however, because of
allocating more memory for the replicas, Autopilot generally
outperforms the Kubernetes at lower tails.

SHOWAR: Right-Sizing And Efficient Scheduling of Microservices

Figure 8b shows the total memory allocation (i.e. sum
of memory limits set for the microservices replicas) in the
cluster during the course of the experiments. Compared
to the baselines, SHOWAR allocates less memory for the
microservices replicas on average. In particular, on average,
SHOWAR allocated 205 GB, while Autopilot and Kubernetes
allocated 264 GB and 249 GB respectively. As it was seen
in subsection 3.1 and subsection 3.2, it is mainly because
SHOWAR’s vertical autoscaler achieves lower memory usage
slack and also its horizontal autoscaler sets a lower number
of replicas for the microservices. As such, the total memory
allocation using SHOWAR is less than the baselines.

Finally, in Figure 8c we show the normalized cluster cost
for each experiment. We normalize the average memory al-
location to the memory size of one virtual machine in the
cluster (i.e. 16 GB for m5.xlarge instances) and multiply it by
the cost of one virtual machine (i.e. $0.192/hour) in 24 hours.
This is because, usually the VM’s price on public clouds is
a linear function of memory size [17]. As it can be seen,
compared to the Autopilot and Kubernetes, SHOWAR im-
proves the total cluster cost by 22% and 17% respectively. The
improvements come from the fact that SHOWAR’s vertical
and horizontal autoscalers allocate less amount of compute
resources at a comparable performance compared to the
baselines.

6 Limitations and Future Work

Generally, we designed SHOWAR to be computationally
light weight and adaptable, in contrast with “black box"
approaches that use machine learning that need training and
fail to cope with workload shift, e.g., [39, 55, 57].

Nevertheless, a major limitation of SHOWAR currently
is that it is reactive to the resource usages of the microser-
vices. As a result, a proper avenue to explore is to equip
SHOWAR with near-term workload and resource usage pre-
diction, e.g., [18]. Combined with it’s current design, predict-
ing the near future workload can improve the SHOWAR ’s
resource allocation and prevent performance degradation
due to inadequate autoscaling actions.

Another limitation that current SHOWAR’s design has
is that it only focuses on microservices autoscaling and as-
sumes a fixed-sized cluster. It’s important to address scenar-
ios where the total amount of resources that the application
autoscaler requests is more than the total available cluster
resources. While cluster autoscaling is orthogonal to applica-
tion autoscaling, they need to work together to achieve both
overall efficiency in resource allocation and the application’s
performance requirements. As such, a communication and
coordination between the two autoscalers is required to add
more resources to the cluster. In future work, we plan to im-
prove SHOWAR’s autoscalers to work with existing cluster
autoscalers [12].

SHOWAR is designed as an autoscaler for Kubernetes. As
such, it can be used for autoscaling the workloads that are

439

SoCC 21, November 1-4, 2021, Seattle, WA, USA

supported by Kubernetes such as user-facing microservices
and long-running batch jobs. However, while Kubernetes
supports short-running jobs such as serverless functions
[29], autoscalers such as SHOWAR may not be usable for this
type of workload. One reason is that vertical autoscaling is
not applicable because the size of containers for serverless
functions are predefined. SHOWAR’s horizontal autoscaler
may face additional complexity, e.g., keeping track of the
number of “dormant" serverless functions (which can be
warm started) and the time until each of them “expires"
(and so would require a cold start delay). We leave explor-
ing control-theoretic approaches for horizontal scaling of
serverless functions to future work.

Finally, we plan to improve the SHOWAR’s affinity and
anti-affinity rule generators. Currently we determine affin-
ity pairwise between microservices using simple empirical
resource-utilization correlation coefficients. We can in the
future explore, for example, the impact on affinities of other
statistics such as cross-correlations between different types
of resources, and explore different types of scheduling mech-
anisms that can exploit such “raw" statistical information
directly toward more efficient resource utilization [19].

7 Conclusion

In summary, we propose SHOWAR a framework consisting
of a vertical autoscaler, a horizontal autoscaler and a schedul-
ing affinity rule generator for the microservices. SHOWAR’s
vertical autoscaler embraces the empirical variance in the
historical resource usage to find the optimal size and reduce
the resource usage slack (the difference between allocated
resource and actual resource usage). For horizontal scaling
SHOWAR uses ideas from control theory along with kernel
level performance metrics (i.e. eBPF rungq latency) to perform
accurate horizontal scaling actions. In particular uses pro-
portional-integral-derivative controller (PID controller) as a
stateful controller to control the number of replicas for each
microservices. The vertical and horizontal autoscalers in
SHOWAR work in tandem to improve the resource utilization
while maintaining a good performance. Additionally, once
the size for each microservices is found, SHOWAR bridges
the gap between optimal resource allocation and scheduling
by generating affinity hints for the task scheduler to further
improve performance. Our empirical experiments using a va-
riety of microservice applications and real-world workloads
show that, compared to state of the art autoscaling systems,
on average SHOWAR improves the resource allocation by up
to 22% (and hence saving in costs) while improving the 99th
percentile end-to-end user request latency by 20%.

Acknowledgments

We thank Mohammad Shahrad for his valuable feedback
on this work. We also thank the anonymous reviewers and
our shepherd, Jana Giceva, for helping us improve the paper.
This work was supported in part by NSF CCF grant 2028929
and NSF CNS grant 2122155.

SoCC 21, November 1-4, 2021, Seattle, WA, USA

References

[1] April, 01, 2021. Adopting microservices at Netflix.
https://www.nginx.com/blog/microservices-at-netflix-architectural-
best-practices/.

[2] April, 02, 2021. Docker Swarm.
https://docs.docker.com/engine/swarm/.

[3] April, 02, 2021. Kubernetes. https://kubernetes.io/.

[4] April, 05, 2021. Microsoft ~ Microservices Ar-
chitecture Guide. https://docs.microsoft.com/en-
us/azure/architecture/guide/architecture-styles/microservices.

[5] April, 07, 2021. bpftrace. https://bpftrace.org/.

[6] April, 07, 2021. eBPF. https://ebpf.io/.

[7] April, 07, 2021. Facebook Katran.
https://github.com/facebookincubator/katran.

[8] April, 07, 2021. The Cilium Project. https://cilium.io/.

[9] April, 07, 2021. The Falco Project. https://falco.org/.

[10] April, 10, 2021. Adapt or Die: A microservices story at Google, Decem-
ber. https://www.slideshare.net/apigee/adapt-or-die-a-microservices-
story-at-google.

[11] April, 12, 2021. Google Cloud Services Outage Due to Insufficient
Resource Quotas. https:/status.cloud.google.com/incident/zall/20013.

[12] April, 12, 2021 Kubernetes Cluster Autoscaler.
https://github.com/kubernetes/autoscaler/tree/master/cluster-
autoscaler.

[13] April, 14, 2021. Autoscaling in Amazon Web Sevices Cloud.
https://aws.amazon.com/autoscaling/.

[14] April, 14, 2021. Autoscaling in Google Cloud Platform.
https://cloud.google.com/compute/docs/load-balancing-and-
autoscaling.

[15] April, 14, 2021. Autoscaling in Microsoft Azure Cloud.
https://azure.microsoft.com/en-us/features/autoscale/.

[16] April, 21, 2021. Microservices Architecture on Google App Engine.
https://cloud.google.com/appengine/docs/standard/python/microservices-
on-app-engine.

[17] April, 22, 2021. AWS EC2 On-demand Pricing.
https://aws.amazon.com/ec2/pricing/on-demand;/.

[18] April, 22, 2021. Netflix’s Predictive Auto Scaling Engine.
https://netflixtechblog.com/scryer-netflixs-predictive-auto-scaling-
engine-a3{8{c922270.

[19] April, 25, 2021. Scheduling Extensions in Kubernetes.
https://github.com/akanso/extending-kube-scheduler.

[20] Feb. 16, 2021. GCP kubernetes best practices.
https://cloud.google.com/blog/products/containers-
kubernetes/kubernetes-best-practices-resource-requests-and-limits.

[21] Feb. 16, 2021. Kubernetes horizontal pod autoscaler.
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-
autoscale/.

[22] Feb. 16, 2021. Kubernetes vertical pod autoscaler.
https://github.com/kubernetes/autoscaler/tree/master/vertical-
pod-autoscaler.

[23] Feb. 18, 2021. CPU Utilization is Wrong.
http://www.brendangregg.com/blog/2017-05-09/cpu-utilization-
is-wrong.html.

[24] Feb. 28, 2021. eBP runq latency metric.
http://www.brendangregg.com/blog/2016-10-08/linux-bcc-
runqlat.html.

[25] Feb. 28, 2021. Prometheus Monitoring Tool. https://prometheus.io/.

[26] March, 20, 2021. Locust workload generator. https://locust.io/.

[27] March, 22, 2021. Kubernetes Autoscalers.
https://github.com/kubernetes/autoscaler.

[28] March, 28, 2021. Google Cloud Platform’s Demo Microservice.
https://github.com/GoogleCloudPlatform/microservices-demo.

[29] September, 15, 2021. Kubeless. https://kubeless.io/.

440

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]
[44]

[45]

[46]

[47]

(48]

[49]

Ataollah Fatahi Baarzi and George Kesidis

September, 15, 2021. Kubernetes Controller Pattern.
https://kubernetes.io/docs/concepts/architecture/controller/.
September, 15, 2021. Linux Kernel Scheduler sysctl_sched_latency.
https://elixir.bootlin.com/linux/v4.6/source/kernel/sched/fair.c#L50.
September, 22, 2021. Pearson correlation coefficient.
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient.
Ataollah Fatahi Baarzi, Timothy Zhu, and Bhuvan Urgaonkar. 2019.
BurScale: Using burstable instances for cost-effective autoscaling in
the public cloud. In Proceedings of the ACM Symposium on Cloud Com-
puting. 126-138.

Luiz André Barroso and Urs Holzle. 2009. The datacenter as a computer:
An introduction to the design of warehouse-scale machines. Synthesis
lectures on computer architecture 4, 1 (2009), 1-108.

Brendan Burns. 2018. Designing Distributed Systems: Patterns and
Paradigms for Scalable, Reliable Services. " O’Reilly Media, Inc."
Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun.
ACM (2013).

Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delim-
itrou. 2021. Sage: Practical & Scalable ML-Driven Performance Debug-
ging in Microservices. (2021).

Yu Gan, Yangi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, et al. 2019. An open-source benchmark suite for microservices
and their hardware-software implications for cloud & edge systems.
In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
3-18.

Yu Gan, Yanqi Zhang, Kelvin Hu, Yuan He, Meghna Pancholi, Dailun
Cheng, and Christina Delimitrou. 2019. Seer: Leveraging Big Data
to Navigate the Complexity of Performance Debugging in Cloud Mi-
croservices. In Proceedings of the Twenty Fourth International Confer-
ence on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS) (Providence, RI).

Alim Ul Gias, Giuliano Casale, and Murray Woodside. 2019. ATOM:
Model-driven autoscaling for microservices. In 2019 IEEE 39th Inter-
national Conference on Distributed Computing Systems (ICDCS). IEEE,
1994-2004.

Manuel Gotin, Felix Loésch, Robert Heinrich, and Ralf Reussner.
2018. Investigating performance metrics for scaling microservices
in cloudiot-environments. In Proceedings of the 2018 ACM/SPEC Inter-
national Conference on Performance Engineering. 157-167.

Mor Harchol-Balter. 2013. Performance modeling and design of computer
systems: queueing theory in action. Cambridge University Press.

J.A. Hellerstein et al. 2004. Feedback Control for Computing Systems.
IEEE Press / Wiley.

P.K.Janert. Oct. 2013. Feedback Control for Computer Systems. O’Reilly.
Philipp K Janert. 2013. Feedback control for computer systems: intro-
ducing control theory to enterprise programmers. " O’Reilly Media,
Inc!".

Vasiliki Kalavri, John Liagouris, Moritz Hoffmann, Desislava Dim-
itrova, Matthew Forshaw, and Timothy Roscoe. 2018. Three steps is
all you need: fast, accurate, automatic scaling decisions for distributed
streaming dataflows. In 13th {USENIX} Symposium on Operating Sys-
tems Design and Implementation ({OSDI} 18). 783-798.

Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju, Jeongseob
Ahn, Jason Mars, and Lingjia Tang. 2019. Grandslam: Guaranteeing
slas for jobs in microservices execution frameworks. In Proceedings of
the Fourteenth EuroSys Conference 2019. 1-16.

J. Levin and T. A. Benson. [n.d.]. ViperProbe: Rethinking Microservice
Observability with eBPF. In 2020 IEEE 9th International Conference on
Cloud Networking (CloudNet).

David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. 2015. Heracles: Improving resource
efficiency at scale. In Proceedings of the 42nd Annual International

SHOWAR: Right-Sizing And Efficient Scheduling of Microservices

[50]

(51]

(52]

(53]

(54]

(55]

(56]

(57]

Symposium on Computer Architecture.

Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. 2014.
A review of auto-scaling techniques for elastic applications in cloud
environments. Journal of grid computing 12, 4 (2014), 559-592.
Chengzhi Lu, Kejiang Ye, Guoyao Xu, Cheng-Zhong Xu, and Tongxin
Bai. 2017. Imbalance in the cloud: An analysis on alibaba cluster trace.
In 2017 IEEE International Conference on Big Data (Big Data). IEEE,
2884-2892.

C. MacCarthaig. Sept. 1, 2019. PID Loops and the Art of Keeping
Systems Stable. https://www.youtube.com/watch?v=3AxSwCC714s.
Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013.
Sparrow: distributed, low latency scheduling. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles.
Austin Parker, Daniel Spoonhower, Jonathan Mace, Ben Sigelman, and
Rebecca Isaacs. 2020. Distributed tracing in practice: Instrumenting,
analyzing, and debugging microservices. O’Reilly Media.

Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk,
and Ravishankar K. Iyer. 2020. FIRM: An Intelligent Fine-grained Re-
source Management Framework for SLO-Oriented Microservices. In
14th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 20). USENIX Association.

Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and
Michael A Kozuch. 2012. Heterogeneity and dynamicity of clouds at
scale: Google trace analysis. In Proceedings of the third ACM symposium
on cloud computing. 1-13.

K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kusmierek,
P. Nowak, B. Strack, P. Witusowski, S. Hand, and J. Wilkes. April 2020.

441

[58]

[59]

[60]

[61]

[62]

[63]

[64]

SoCC 21, November 1-4, 2021, Seattle, WA, USA

Autopilot: Workload autoscaling at Google. In Proc. ACM EuroSys.
Akshitha Sriraman, Abhishek Dhanotia, and Thomas F Wenisch. 2019.
Softsku: Optimizing server architectures for microservice diversity at
scale. In Proceedings of the 46th International Symposium on Computer
Architecture. 513-526.

Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. 2009.
Wikipedia Workload Analysis for Decentralized Hosting. Elsevier
Computer Networks 53, 11 (2009), 1830-1845.

Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. 2015. Large-scale cluster man-
agement at Google with Borg. In Proceedings of the Tenth European
Conference on Computer Systems. 1-17.

Eberhard Wolff. 2016. Microservices: flexible software architecture.
Addison-Wesley Professional.

Yangi Zhang, Weizhe Hua, Zhuangzhuang Zhou, Edward Suh, and
Christina Delimitrou. 2021. Sinan: ML-Based and QoS-Aware Resource
Management for Cloud Microservices. (2021).

Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu,
Rui Gu, Beng Chin Ooi, and Junfeng Yang. 2018. Overload control for
scaling wechat microservices. In Proceedings of the ACM Symposium
on Cloud Computing. 149-161.

Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and
Dan Ding. 2018. Fault analysis and debugging of microservice sys-
tems: Industrial survey, benchmark system, and empirical study. IEEE
Transactions on Software Engineering (2018).

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 SHOWAR Design
	3.1 Vertical Autoscaler
	3.2 Horizontal Autoscaler
	3.3 Tandem Vertical and Horizontal Autoscalers
	3.4 (More) Efficient Scheduling

	4 SHOWAR Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Vertical Autoscaling
	5.3 Horizontal Autoscaling
	5.4 The Effect of Affinity and Anti-Affinity Rules
	5.5 End-to-End performance

	6 Limitations and Future Work
	7 Conclusion
	Acknowledgments
	References

