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Abstract— Computing consumes a significant portion of en-
ergy in many robotics applications, especially the ones involving
energy-constrained robots. In addition, memory access accounts
for a significant portion of the computing energy. For mapping
a 3D environment, prior approaches reduce the map size
while incurring a large memory overhead used for storing
sensor measurements and temporary variables during compu-
tation. In this work, we present a memory-efficient algorithm,
named Single-Pass Gaussian Fitting (SPGF), that accurately
constructs a compact Gaussian Mixture Model (GMM) which
approximates measurements from a depthmap generated from
a depth camera. By incrementally constructing the GMM
one pixel at a time in a single pass through the depthmap,
SPGF achieves higher throughput and orders-of-magnitude
lower memory overhead than prior multi-pass approaches. By
processing the depthmap row-by-row, SPGF exploits intrinsic
properties of the camera to efficiently and accurately infer
surface geometries, which leads to higher precision than prior
approaches while maintaining the same compactness of the
GMM. Using a low-power ARM Cortex-A57 CPU on the
NVIDIA Jetson TX2 platform, SPGF operates at 32fps, requires
43KB of memory overhead, and consumes only 0.11J per frame
(depthmap). Thus, SPGF enables real-time mapping of large 3D
environments on energy-constrained robots.

I. INTRODUCTION

Energy-constrained microrobots [1]–[3] have limited bat-
tery capacity, which limits the total amount of energy
available for both actuation and computation. During com-
putation, the energy cost of memory access can be quite
significant. For instance, the energy cost of reading a 32-bit
value from memory is more than performing a 32-bit mul-
tiplication [4]. The energy consumption of memory access
increases with the size of memory and the distance of the
memory from the processor. For instance, a CPU accessing
data stored in a larger, off-chip memory such as DRAM
(GBs of storage) requires orders-of-magnitude higher energy
than smaller, on-chip (local) CPU caches (KBs to MBs of
storage) [4]. In addition, lower-level L0 and L1 caches (a
few KBs) require significantly lower energy to access than
a L2 cache (a few MBs) [4]. Thus, algorithms designed
for many robotics applications, especially the ones involving
energy-constrained robots, should reduce memory overhead
so that most data and variables used during computation can
be stored in and accessed from lower-level caches.

Achieving memory efficiency is even more crucial for al-
gorithms enabling 3D mapping on energy-constrained robots.
During map construction, the memory usage is not limited
to the storage of map itself, but also includes overheads for
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(a) H-EM [11] - RMSE: 13cm,
Memory overhead: 6MB, Through-
put: 0.0007fps, Energy: 2756J/frame.

(b) NDT [7] - RMSE: 15cm, Mem-
ory overhead: 3.5MB, Throughput:
6.31fps, Energy: 0.36J/frame.

(c) RG [10] - RMSE: 11cm, Mem-
ory overhead: 0.49MB, Throughput:
0.49fps, Energy: 4.25J/frame.

(d) SPGF (this work) - RMSE: 9cm,
Memory overhead: 43KB, Through-
put: 32fps, Energy: 0.11J/frame.

Fig. 1: Visualization of the GMMs (blue ellipsoids) con-
structed from a depthmap of a hallway from the TartanAir
Office dataset [16]. Compared with prior approaches (a, b,
c), SPGF (d) generates a more accurate GMM representation,
requires significantly less memory overhead, executes in real
time (i.e., >30fps), and consumes much less energy using an
ARM Cortex-A57 CPU on the NVIDIA Jetson TX2.

storing the sensor measurements and temporary variables.
Mapping algorithms with significant memory overhead not
only lead to higher energy consumption but also reduce the
already limited memory available for map storage.

Since popular mapping frameworks such as the occupancy
grid map [5] and OctoMap [6] are not sufficiently compact
for storage on energy-constrained robots, recent works [7]–
[11] focused on building compact maps comprised of Gaus-
sian Mixture Models (GMMs) generated using measure-
ments obtained from a depth camera, which enable pose
estimation [12], [13] and path planning [14], [15]. Since
a depth camera generates depthmaps (frames) containing
millions of measurements per second, constructing GMMs
that accurately approximate each depthmap in real time (i.e.,
30fps) is necessary. Recent works [7], [10], [11] only focused
on reducing the time complexity for constructing GMMs.
Since energy-constrained robots might use only a low-power
CPU (i.e., no GPU) for computation, these works not only are
unable to operate in real time on a CPU alone but also require
significant memory overhead from the multi-pass processing
of the depthmap or its intermediate representations.

GMMs are typically constructed using the computationally
demanding Expectation Maximization (EM) algorithm [17].
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To reduce time complexity, Eckart et al. [11] introduced the
Hierarchical EM (H-EM) that re-arranges computation using
a tree. However, the H-EM applies an optimization procedure
derived from the traditional EM to the entire depthmap at
each level of the tree, which is neither computationally nor
memory efficient (i.e., storing an entire depthmap and a
correspondence matrix in memory). Thus, a 140W NVIDIA
GTX660 GPU is required for real-time operation.

Saarinen et al. [7] proposed the Normal Distance Trans-
form (NDT) that partitions the minimum bounding box
of the environment into voxels, and uses a Gaussian to
represent all measurements within each voxel. The minimum
bounding box depends on the geometries in the environment
which are often unknown a-priori. Thus, the authors’ NDT
implementation1 determines the minimum bounding box via
an additional pass through the entire depthmap stored in
memory, which increases memory overhead.

Recently, Dhawale et al. [10] proposed the Region Grow-
ing (RG) algorithm that starts by discretizing a depthmap
using grids. An intermediate GMM representation is con-
structed using pixels within each grid. Finally, this interme-
diate representation is refined at different fidelities by itera-
tively merging Gaussians in neighboring grids that represent
the same surface in the environment. However, the repeated
refinement and storage of such intermediate representation
greatly reduces the computational and memory efficiency.

In this work, we propose the Single-Pass Gaussian Fitting
(SPGF) algorithm that accurately constructs a GMM from
a depthmap in real time with orders-of-magnitude lower
memory overhead than prior approaches [7], [10], [11]. The
computational and memory efficiencies are enabled by the
incremental updates of GMM parameters one depth pixel
at a time without storing any previously visited pixels (i.e.,
in a single pass). By processing the depthmap row-by-
row, SPGF exploits the intrinsic properties of the camera
to efficiently infer surface geometries so that the accuracy
and compactness of the GMM are maintained. With similar
number of Gaussians, SPGF achieves superior accuracy than
prior multi-pass approaches. To our best knowledge, SPGF
is the first algorithm that constructs GMM at 32fps, requires
just 43KB of memory overhead, and consumes only 0.11J per
frame using a low-power ARM Cortex-A57 CPU, as shown
in Fig. 1. Thus, SPGF enables the real-time 3D mapping of
large environments on energy-constrained robots.

II. PROPOSED ALGORITHM

In this section, we describe the Single-Pass Gaussian
Fitting (SPGF) algorithm that constructs a GMM from the
scanlines (rows) of a depthmap so that surface geometries
can be inferred accurately and efficiently in a single pass.
As described in Alg. 1, SPGF executes the following two
procedures for each scanline:

1) Scanline Segmentation (Line 4): Partitions the pixels
from each scanline into segments that represent planar
surfaces with distinct orientations.

1https://github.com/OrebroUniversity/perception oru/tree/port-kinetic

Algorithm 1: Single-Pass Gaussian Fitting (SPGF)
Input: Depthmap D containing an array of scanlines

[L0, L1, . . . , LV –1]
Output: A set of Gaussians G

1 function constructGMM(D)
2 G← ∅, Gprev ← ∅
3 for ( v = 0; v < V ; v = v + 1 ) {
4 S ← segmentScanline(D[v])
5 if v = 0 then
6 Gprev ← S
7 else
8 Gprev, Gcomp ← fuseSegments(Gprev, S)
9 G← G ∪Gcomp

10 G← G ∪Gprev

11 return G

V

L0
L1
L2

LV-1

s0,0
s1,0
s2,0

s0,1 s0,2
s1,1 s1,2

s1,2

sV-1,0 sV-1,1

g1 g2

g3

gJ-2

g0

gJ-1

U

Depthmap

Fig. 2: Visualization of the notations used for describing the
SPGF algorithm.

2) Segment Fusion (Line 8): Fuses segments that rep-
resent the same surface across adjacent scanlines into
Gaussians.

Since Scanline Segmentation dominates the amount of
computations in SPGF and can concurrently execute along
multiple rows using multiple cores, the SPGF algorithm is
highly parallelizable. The rest of this section is organized as
follows. In Section II-A, we present preliminary concepts.
Then, we describe Scanline Segmentation in Section II-B,
and Segment Fusion in Section II-C.

A. Preliminaries

Let the depthmap generated by a depth camera have a
width U and height V . Each pixel within the depthmap has
a depth measurement denoted by d(u,v), where u and v are
the pixel coordinates. Using the pinhole camera model, the
depth measurement d(u,v) has an associated coordinate p =
[px, py, pz] in the ambient space R3 given by

p = Φ–1(u, v, d(u,v)), (1)

where Φ–1(·) is the inverse projection function defined using
the camera’s intrinsic parameters. Note that the x-axis is
defined along the width of the depthmap, and the z-axis is
perpendicular to the depthmap.

The depthmap is partitioned into a set of V scanlines
{L0, L1, . . . , LV –1}, as shown in Fig. 2. Scanline Seg-
mentation partitions each scanline into a set of segments
S = {sv,0, sv,1, . . . } such that each segment represents a
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Al g o rit h m 2: S c a nli n e S e g m e nt ati o n

I n p ut: A n arr a y of d e pt h pi x els al o n g a s c a nli n e L v

O ut p ut: A s et of li n e s e g m e nts S
1 f u n cti o n s e g m e nt S c a nli n e ( L v )
2 S ← ∅ , M ← ∅
3 f o r ( u = 0; u < U ; u = u + 1 ) {
4 d ← L v [u ]
5 p ← Φ – 1 ( u, v, d )
6 x t , zt ← a d a pti v e T hr es h ( d, a, b )
7 b m e r g e ← f al s e
8 f o r e a c h s ∈ M d o
9 if b m e r g e = f als e t h e n

1 0 if n u m Pi x els ( s ) < t fi t t h e n
1 1 if dist Z ( s, p ) < z t a n d

dist X ( s, p ) < x t t h e n
1 2 s ← a d d P oi nt( s , p )
1 3 b m e r g e ← t r u e
1 4 els e
1 5 s ← o c cl u d e d( s )

1 6 els e
1 7 if dist Li n e ( s, p ) < z t t h e n
1 8 s ← a d d P oi nt( s , p )
1 9 b m e r g e ← t r u e
2 0 els e
2 1 s ← o c cl u d e d( s )

2 2 els e
2 3 s ← o c cl u d e d( s )

2 4 if is O c cl u d e d( s ) a n d
n u m O c cl u d e d Pi x els ( s ) > t o c c t h e n

2 5 S ← S ∪ s , M ← M \ s

2 6 if b m e r g e = f als e t h e n
2 7 k ← cr e at e N e w S e g m e nt ( u, v, p )
2 8 M ← M ∪ k
2 9 if |M | > β t h e n
3 0 e ← e arli est S e g m e nt ( M )
3 1 S ← S ∪ e , M ← M \ e

3 2 S ← S ∪ M
3 3 r et u r n S

pl a n ar s urf a c e wit h a disti n ct ori e nt ati o n. T h e n, S e g m e nt
F usi o n m er g e s e g m e nts r e pr es e nti n g t h e s a m e s urf a c e a cr oss
a dj a c e nt s c a nli n es i nt o a s et of G a ussi a ns G = { g 0 , g1 , . . . }
w hi c h f or ms t h e fi n al G M M m o d el M d e fi n e d as:

M (p ) =

J – 1

i = 0

w i g i (p | µ i , Σ i ), ( 2)

w h er e w i is t h e mi xt ur e w ei g ht of t h e G a ussi a n g i wit h m e a n
µ i a n d c o v ari a n c e Σ i .

B. S c a nli n e S e g m e nt ati o n

As d es cri b e d i n Al g. 2, S c a nli n e S e g m e nt ati o n ( S S) gr o u ps
m e as ur e m e nts wit hi n t h e s c a nli n e i nt o s e g m e nts r e pr es e nti n g
disti n ct pl a n ar s urf a c es. T o a c hi e v e m e m or y ef fi ci e n c y, S S
c o m p ut es al o n g t h e s c a nli n e o n e pi x el at a ti m e i n a si n gl e
p ass s o t h at o nl y o n e d e pt h m e as ur e m e nt is st or e d i n m e m or y
at a n y ti m e. F or e a c h m e as ur e m e nt p st arti n g fr o m t h e l eft
of t h e s c a nli n e ( Li n e 3), S S n e e ds t o d e ci d e w h et h er p
c orr es p o n ds t o a n e w s urf a c e or a s e g m e nt s r e pr es e nti n g a

S c a nli n e L v

s v, 0 s v, 1 p

z

x

s v, 0

s v, 1

Δ z 1 < z t

Δ z 0 > z t

p

Fi g. 3: Dist a n c es { ∆ z 0 , ∆ z 1 } b et w e e n m e as ur e m e nt p a n d
e xtr a p ol at e d li n es fr o m pr e vi o us s e g m e nts { s v, 0 , sv, 1 } ar e
c o m p ut e d. Si n c e ∆ z 1 is l ess t h a n t h e a d a pti v e t hr es h ol d z t ,
m e as ur e m e nt p s h o ul d b e m er g e d wit h s v, 1 .

z

xC a m er a

Δ x > x t

Δ z > z t

Pl a n ar S urf a c e

S e g m e nt

( a) Usi n g l o w t hr es h ol ds (x t , zt )
l e a ds t o t h e o v er-s e g m e nt ati o n of
m e as ur e m e nts f or a s urf a c e f urt h er
a w a y fr o m t h e c a m er a.

z

xC a m er a

Δ x < x t

Δ z < z t

Pl a n ar S urf a c e

S e g m e nt

( b) Usi n g hi g h t hr es h ol ds (x t , zt )
l e a ds t o t h e u n d er-s e g m e nt ati o n of
m e as ur e m e nts f or a s urf a c e cl os er
t o t h e c a m er a.

Fi g. 4: U n d esir a bl e r es ults f or usi n g fi x e d t hr es h ol ds ( x t , zt )
t h at ar e t o o l o w ( a) or t o o hi g h ( b). A d a pti v e t hr es h ol ds
( d e fi n e d i n E q n. ( 3)) t h at i n cr e as e wit h t h e d e pt h of e a c h
m e as ur e m e nt ar e us e d t o a v oi d u n d er a n d o v er s e g m e nt ati o n.

pr e vi o usl y o bs er v e d s urf a c es t o t h e l eft of p (s e e Fi g. 3). If p
c orr es p o n ds t o s e g m e nt s , p ar a m et ers of s ( m e a n, c o v ari a n c e,
w ei g ht) c a n b e i n cr e m e nt all y u p d at e d wit h p as i n [ 7].

D u e t o si n gl e- p ass pr o c essi n g, S S c a n n ot r es ol v e i n-
a c c ur at e m e as ur e m e nt-t o-s e g m e nt c orr es p o n d e n c es w hi c h
ar e t y pi c all y r e d u c e d wit h a d diti o n al p ass es t hr o u g h t h e
d e pt h m a p i n pri or w or ks [ 1 0], [ 1 1]. T h es e i n a c c ur at e c or-
r es p o n d e n c es ar e c a us e d b y u nr eli a bl e esti m at es of t h e
s e g m e nt’s p ar a m et ers w h e n s u c h s e g m e nt is i niti ali z e d wit h
a f e w n ois y m e as ur e m e nts ( i. e., l ess t h a n a t hr es h ol d tfit ).
B y t h e pi n h ol e c a m er a m o d el, s c a nli n e m e as ur e m e nts of
t h e s a m e pl a n ar s urf a c e f or m a li n e s e g m e nt i n t h e a m bi e nt
s p a c e. T h us, S S e x pl oits t his pr o p ert y t o ef fi ci e ntl y r e d u c e
i n a c c ur at e c orr es p o n d e n c es f or t w o c as es: t h e n u m b er of
m e as ur e m e nts i n s is 1) l ess t h a n tfit , a n d 2) e q u als t o or
gr e at er t h a n tfit . Si n c e t h e y c o or di n at es f or m e as ur e m e nts
wit hi n t h e s a m e s c a nli n e d o n ot v ar y si g ni fi c a ntl y, S S is
e x e c ut e d f or t h e pr oj e cti o n of t h e s c a nli n e o n t h e x z pl a n e.

C as e 1 ( Li n es 1 1 t o 1 5): If t h e li n e s e g m e nt s is i niti ali z e d
wit h l ess t h a n tfit m e as ur e m e nts, t h e p ar a m et ers of t h e li n e
c a n n ot b e r eli a bl y esti m at e d. I nst e a d of e xtr a p ol ati n g t h e
li n e t o w ar ds p , t h e m e as ur e m e nt p c orr es p o n ds t o s if t h e
dist a n c es ( ∆ x , ∆ z ) b et w e e n p a n d t h e cl os est m e as ur e m e nt
i n s ar e l ess t h a n c ert ai n t hr es h ol ds ( x t a n d z t i n Li n e 1 1).
I n pri or w or k [ 1 0], t h es e t hr es h ol ds (x t , z t ) ar e fi x e d h y p er-
p ar a m et ers, w hi c h c o ul d r e d u c e t h e c o m p a ct n ess ( d u e t o
o v er-s e g m e nt ati o n) or a c c ur a c y ( d u e t o u n d er-s e g m e nt ati o n)
of t h e G M M (s e e Fi g. 4 f or a n e x a m pl e). B e c a us e e a c h

8 0 0 5
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o i nt

o u ni o n

g 0

g 2
g 3

g 1

s

L v -2

L v -1

L v

s v -1

Fi g. 5: C o m p ut ati o n of t h e i nt ers e cti o n t o u ni o n r ati o ( r =
o i n t/ o u ni o n ) b et w e e n t h e n u m b er of pi x els i n s e g m e nt s a n d
s e g m e nt s v – 1 ( c o nt ai n e d wit hi n G a ussi a n g 2 ).

s e g m e nt r e pr es e nts a li n e, S S is a bl e t o c o m p ut e d esir a bl e
t hr es h ol ds t h at a d a pt t o t h e d e pt h of t h e m e as ur e m e nt p , i. e.,

x t =
d 2

f b
, zt = a x t , ( 3)

w h er e a a n d b ar e r es p e cti v el y t h e sl o p e a n d z -i nt er c e pt of
t h e li n e f or m e d fr o m t h e i nt ers e cti o n of t h e pl a n ar s urf a c e
a n d t h e x z - pl a n e, d is t h e v al u e of t h e d e pt h pi x el f or
m e as ur e m e nt p , a n d f is t h e f o c al l e n gt h of t h e c a m er a.
T h e p ar a m et ers a a n d b ar e s et t o pr e d et er mi n e d v al u es i n
Ta bl e II t o a c c o m m o d at e a v ari et y of s urf a c e ori e nt ati o ns.

C as e 2 ( Li n es 1 7 t o 2 1): If t h e li n e s e g m e nt s c o nt ai ns at
l e ast tfit m e as ur e m e nts, t h e p ar a m et ers of t h e li n e ar e r eli a bl y
esti m at e d f or e xtr a p ol ati o n. T h us, as s h o w n i n Fi g. 3, t h e
m e as ur e m e nt p c orr es p o n ds wit h s if p is s uf fi ci e ntl y cl os e
t o t h e e xtr a p ol at e d li n e al o n g t h e z dir e cti o n ( Li n es 1 7).
Pr o c essi n g al o n g a s c a nli n e als o all o ws S S t o si g ni fi c a ntl y
r e d u c e t h e a m o u nt of c o m p ut ati o n d uri n g p ar a m et er esti m a-
ti o n. Si n c e e a c h s e g m e nt s r e pr es e nts a li n e, t h e dir e cti o n
v e ct or of s us e d f or e xtr a p ol ati o n c a n b e i n cr e m e nt all y
u p d at e d wit h n e w m e as ur e m e nts wit h o ut r e- c o m p uti n g fr o m
t h e ei g e n- d e c o m p ositi o n of t h e c o v ari a n c e m atri x of s ( us e d
i n a pri or a p pr o a c h [ 1 0]), w hi c h r es ults i n a 4 × hi g h er
t hr o u g h p ut f or S P G F o n t h e A R M C ort e x- A 5 7 C P U.

Ef fi ci e nt e xtr a p ol ati o n of li n e s e g m e nts als o all o ws S S t o
a d dr ess t h e o v er-s e g m e nt ati o n of s urf a c es c a us e d b y o bj e ct
o c cl usi o ns (i g n or e d i n pri or w or ks t o e n h a n c e t hr o u g h p ut).
T h e s urf a c e of a l ar g e o bj e ct ( e. g. , a w all) c a n b e o c cl u d e d
b y t h e s urf a c e of a s m all er o bj e ct ( e. g. , a c h air) t h at is
cl os er t o t h e c a m er a. T h us, t h e s e g m e nt t h at r e pr es e nts t h e
o c cl u d e d s urf a c e will e n c o u nt er a t e m p or ar y dis c o nti n uit y
al o n g t h e s c a nli n e, w hi c h c a us es o v er-s e g m e nt ati o n. T o
a v oi d s u c h dis c o nti n uit y, w e s el e ct u p t o β = 4 cl os est
s e g m e nts (r e pr es e nt e d b y a s et M i n Al g. 2) as c a n di d at es
f or d et er mi ni n g t h e c orr es p o n d e n c e of e a c h m e as ur e m e nt
p . A s e g m e nt s r e pr es e nti n g a pr e vi o usl y o bs er v e d s urf a c e
is tr a nsf err e d fr o m M t o t h e o ut p ut s et S if s d o es n ot
c orr es p o n d t o to c c c o ns e c uti v e n e w m e as ur e m e nts ( Li n es 2 4
a n d 2 5).

C. S e g m e nt F usi o n

As d es cri b e d i n Al g. 3, S e g m e nt F usi o n ( S F) f us es e a c h
li n e s e g m e nt s ∈ S (fr o m s c a nli n e L v ) wit h a G a ussi a n
g m a x ∈ G p r e v (fr o m pri or s c a nli n es) if s c orr es p o n ds t o ( i. e.,
li es o n) t h e s a m e pl a n e r e pr es e nt e d b y g m a x . T h us, v erif yi n g
s e g m e nt-t o- G a ussi a n c orr es p o n d e n c es d o mi n at es t h e a m o u nt
of c o m p ut ati o ns i n S F. B y i n cr e m e nt all y c o nstr u cti n g e a c h

Al g o rit h m 3: S e g m e nt F usi o n

I n p ut: A s et of li n e s e g m e nts S a n d i n c o m pl et e G a ussi a ns
G p r e v fr o m pr e vi o us s c a nli n es

O ut p ut: A s et of i n c o m pl et e G a ussi a ns G i n c o m p a n d
c o m pl et e d G a ussi a ns G c o m p

1 f u n cti o n f us e S e g m e nts( G p r e v , S)
2 G c o m p ← ∅ , G i n c o m p ← ∅
3 f o r e a c h s ∈ S d o
4 g m a x ← m a xI nt ers e cti o n T o U ni o n ( s, G p r e v )
5 if c osi n e A n gl e ( g m a x , s) > t c o s a n d

dist Pl a n e ( g m a x , s) < n mi n t h e n
6 g m a x ← a d d S e g m e nt ( g m a x , s)
7 els e
8 G i n c o m p ← G i n c o m p ∪ s

9 f o r e a c h g ∈ G p r e v d o
1 0 if n ot U p d at e d ( g ) t h e n
1 1 G c o m p ← G c o m p ∪ g
1 2 els e
1 3 G i n c o m p ← G i n c o m p ∪ g

1 4 r et u r n G i n c o m p , G c o m p

g m a x g 1

s

z

x

y

( a) Crit eri a 1: T h e dir e cti o n v e ct or
of t h e s e g m e nt s s h o ul d b e p ar all el
wit h t h e dir e cti o n v e ct or of s v – 1 i n
t h e G a ussi a n g m a x .

g m a x g 1

s

z

x

y

n

( b) Crit eri a 2: T h e m e a n of t h e
s e g m e nt s s h o ul d b e s uf fi ci e ntl y
cl os e t o t h e pl a n e r e pr es e nt e d b y t h e
G a ussi a n g m a x .

Fi g. 6: T w o crit eri a f or v erif yi n g if a s e g m e nt s c orr es p o n ds
t o a pl a n ar G a ussi a n g m a x .

G a ussi a n usi n g li n e s e g m e nts, S F e x pl oits g e o m etri c pr o p er-
ti es wit hi n e a c h G a ussi a n s o t h at e a c h s e g m e nt-t o- G a ussi a n
c orr es p o n d e n c e is v eri fi e d m or e ef fi ci e ntl y t h a n t h e g e n eri c
G a ussi a n-t o- G a ussi a n c orr es p o n d e n c es fr o m [ 1 0].

T o r e d u c e t h e a m o u nt c orr es p o n d e n c e v eri fi c ati o n f or e a c h
s e g m e nt s ∈ S , S F e x pl oits t h e pr o p ert y of t h e d e pt h m a p t o
ef fi ci e ntl y s el e ct t h e b est c a n di d at e g m a x ∈ G p r e v t h at c o ul d
c orr es p o n d t o s . N ot e t h at e v er y G a ussi a n i n t h e s et G p r e v

c o nt ai ns a s e g m e nt s v – 1 fr o m t h e pr e vi o us s c a nli n e L v – 1 . I n
t h e d e pt h m a p, m e as ur e m e nts of t h e s a m e s urf a c e a p p e ars i n
t h e s a m e pi x el r e gi o n. T h us, i n Li n e 4, t h e b est c a n di d at e
g m a x is c h os e n t o o bt ai n t h e l ar g est i nt ers e cti o n t o u ni o n
r ati o b et w e e n pi x els of s e g m e nts s v – 1 a n d s (s e e Fi g. 5).

O n c e g m a x is c h os e n, w e v erif y if s e g m e nt s c orr es p o n ds
t o t h e s a m e pl a n e r e pr es e nt e d b y g m a x . T his v eri fi c ati o n is
c o m pl et e d usi n g t w o crit eri a i n Li n e 5. Firstl y, s e g m e nt s
s h o ul d b e s uf fi ci e ntl y p ar all el t o s e g m e nt s v – 1 i n g m a x (s e e
Fi g. 6( a)). Si n c e b ot h s a n d s v – 1 ar e li n e s e g m e nts, t h eir
p ar all elis m is ef fi ci e ntl y v eri fi e d usi n g a d ot pr o d u ct of t h eir
dir e cti o n v e ct ors. S e c o n dl y, t h e m e a n of t h e s e g m e nt s s h o ul d
b e s uf fi ci e ntl y cl os e t o t h e pl a n e r e pr es e nt e d b y g m a x , w hi c h
r e q uir es t h e n or m al v e ct or t y pi c all y c o m p ut e d usi n g ei g e n-
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decomposition of the covariance matrix of gmax [10]. By
constructing each Gaussian using line segments, SF easily
obtains two planar vectors in gmax to efficiently compute its
normal vector via a cross product. As shown in Fig. 6(b),
one vector is derived using a line segment in gmax. The
other vector is derived using the means of all segments in
gmax. If eigen-decomposition were computed instead of cross
product, the throughput of the SPGF algorithm would be
reduced by around 10% on the ARM Cortex-A57 CPU.

If the segment s corresponds with gmax, parameters of s
(i.e., mean, covariance, and weight) are fused with those from
gmax using the technique in [7] (Line 6). Otherwise, segment
s represents a newly observed surface and is appended to
Gincomp (Line 8) which is the input to SF for the next
scanline. If a Gaussian in Gprev does not correspond with any
segment in S, such Gaussian is appended to Gcomp (Line 11)
which belongs to the final GMM G in Line 9 of Alg. 1.

III. RESULTS

In this section, we compare the accuracy, throughput,
memory overhead and energy consumption of the Single-
Pass Gaussian Fitting (SPGF) algorithm against the following
state-of-the-art algorithms: Hierarchical EM (H-EM) [11],
Normal Distance Transform (NDT) [7] and Region Growing
(RG) [10]. To emulate an energy-constrained setting, we
obtained our results using only the ARM Cortex-A57 CPU on
the NVIDIA Jetson TX2 platform. All algorithms were tested
using both synthetic (TartanAir [16]) and real-world (TUM
RGB-D [18]) datasets to emulate diverse environments and
sensor properties (see Table I).

A. Accuracy of Representation

We are interested in how accurate GMMs generated from
SPGF and existing approaches can model the measurements
from a depthmap. For fairness, we chose the parameters
such that the average number of Gaussians per depthmap
generated across all algorithms is similar. For H-EM, we
created a GMM tree with 4 levels and 4 Gaussians per
node. For NDT, we chose a grid size of 2.0m and 0.5m
for TartanAir Office and TUM Room dataset, respectively.
For RG, we altered the threshold λ parameters based on
the sensor properties and obtained all other parameters from
[10]. The parameters used in SPGF are presented in Table II.

We reconstructed the original point cloud from each
depthmap by randomly sampling the corresponding GMM.
The Root Mean Squared Error (RMSE) associated with the
precision of such reconstruction was calculated from each
point in the reconstructed point cloud to the closest point
in the original point cloud. The RMSE associated with the
recall of such reconstruction was calculated in the opposite
direction. A GMM with low precision error and high recall

TABLE I: Properties of the datasets used for evaluation.
Dataset TartanAir [16] TUM RGB-D [18]

Environment Office Freiburg1 Room
Dimensions 37.23m× 30.04m× 6.32m 11.30m× 11.94m× 3.41m

Depth Range 0.37m→ 20.00m 0.47m→ 9.04m
Depthmap Resolution 640× 480 640× 480

Number of Depthmaps 1395 1311

error means that each Gaussian models its corresponding
surface accurately, but not all surfaces from the original point
cloud are modeled.

From Table III, SPGF achieves higher precision than prior
approaches even though SPGF processes the depthmap in
a single pass. Furthermore, SPGF adjusts the number of
Gaussians in the GMM solely based on the complexity of
environment so that the precision of the GMM representation
is maintained for each depthmap (i.e., lower standard devi-
ation for precision RMSE). On the other hand, the number
of Gaussians produced by other approaches is constrained
by properties that increase throughput at the expense of
precision, such as the number of nodes in the tree (H-EM),
voxelization (NDT), and image-plane discretization (RG).

To eliminate the modeling of spurious measurements in
SPGF, we pruned away Gaussians containing less than 200
measurements. Since small surfaces that are further away
from the camera contain fewer measurements, SPGF occa-
sionally treats these measurements as spurious which leads to
a slightly larger recall error for the synthetic TartanAir Office
dataset that contains measurements up to 20m. However, the
recall error of SPGF is comparable with prior works in the
TUM Room dataset where the range of the Kinect sensor is
lower (up to 9m). A visualization of the GMMs generated
from SPGF and prior approaches is shown in Fig. 1.

B. Throughput

Table III summarizes the throughput of the SPGF and
prior approaches which were implemented and optimized
similarly in C++. The throughputs for all algorithms are
higher for the TUM Room dataset due to the presence of
invalid measurements which were ignored during computa-
tion. Due to computationally efficient scanline processing,
SPGF achieves superior throughput compared with prior
multi-pass approaches. Using just one CPU core, the SPGF
operates at 8fps for TartanAir Office dataset and 12fps for
the TUM Room dataset, which are at least 32% faster than
prior approaches. Using all four cores, SPGF is effectively

TABLE II: Parameters used in the SPGF algorithm.
Dataset nmin β a b tfit tocc tcos

TartanAir Office 0.05 4 6 1.43 16 10 0.5
TUM Room 0.08 4 6 0.42 16 10 0.5

TABLE III: Performance of SPGF vs. existing algorithms
evaluated on the ARM Cortex-A57 CPU. The number of
CPU cores is indicated in brackets.

Algorithm Precision
RMSE (m)

Recall
RMSE (m)

Number of
Gaussians

Throughput
(fps)

TartanAir Office

H-EM (1C) 0.13± 0.08 0.03± 0.04 50± 6 0.0007± 0.0002
NDT (1C) 0.15± 0.04 0.03± 0.01 65± 42 6.31± 0.13
RG (1C) 0.11± 0.04 0.03± 0.02 59± 23 0.49± 0.02

SPGF (1C)
0.09± 0.01 0.06± 0.05 59± 34

8.33± 0.11
SPGF (4C) 32.31± 1.03

TUM RGB-D Room

H-EM (1C) 0.035± 0.014 0.008± 0.007 52± 5 0.0008± 0.0002
NDT (1C) 0.045± 0.008 0.009± 0.002 47± 26 8.37± 0.71
RG (1C) 0.043± 0.013 0.008± 0.003 52± 15 0.63± 0.04

SPGF (1C)
0.033± 0.004 0.012± 0.014 45± 16

11.57± 0.75
SPGF (4C) 44.08± 3.43
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parallelized and executes in real time at 32fps and 44fps on
the TartanAir Office and TUM Room datasets, respectively.
Multi-core implementations of prior works are not publicly
available. Even if these works can be parallelized, their
throughputs are expected to be 4× higher, which are still
much lower than the multi-core implementation of SPGF.

C. Memory Overhead

In Fig. 7, we compare the maximum memory overhead for
storing the input (i.e., depth pixels) and temporary variables
(only used during computation) in SPGF against prior works.
Across all works, pixels in each depthmap are stored as
float32 and most other variables are stored as float64.

Since Scanline Segmentation in SPGF processes each row
of the depthmap one pixel at a time in a single pass, SPGF
only requires one depth pixel in memory (4B for one core) at
any time, which is at least 98% lower than prior approaches.
In particular, H-EM and NDT require the storage of all
valid measurements from entire depthmap (up to 3.5MB) in
memory due to the multi-pass optimization procedure (in H-
EM) or the determination of minimum bounding box for the
environment (in NDT). RG requires the storage of a subset
of depthmap pixels (0.25KB) for initializing the Gaussians.

The amount of temporary variables in SPGF (up to
13KB for one core) is dictated by the maximum number
of segments generated by Scanline Segmentation across all
scanlines, which is at least 97% lower than H-EM and RG. In
particular, the amount of temporary variables in H-EM (up to
2.3MB) is dictated by the pixel-to-Gaussian correspondence
matrix used for optimizing GMM parameters. The amount
of temporary variables for RG (up to 0.48MB) is dominated
by a large intermediate representation of the depthmap used
to refine the GMM parameters. The amount of temporary
variables in NDT (up to 11KB) is slightly lower than
SPGF and is dominated by a voxel-based data structure that
partitions the minimum bounding box of the environment.

Since Scanline Segmentation for each row of depthmap
can be executed independently on a CPU core, the memory
overhead associated with input and temporary variables for
our multi-core SPGF implementation scales with the number
of cores. From Fig. 7, SPGF implemented with four cores
requires up to 43KB of total memory overhead which is only
2.4× higher than the maximum size of the output GMM (up
to 18KB). In contrast, the single-core implementation for
each prior work requires a total memory overhead that is
33× to 959× higher than the maximum size of the GMM.

D. Energy Consumption

Table IV summarizes the average energy consumption per
frame (depthmap) for SPGF and prior approaches. Across all
algorithms, the energy consumption of the DRAM is compa-
rable to that of the CPU, which underscores the importance
of minimizing memory overhead in addition to computation.
Since SPGF is more computationally efficient, its single core
implementation consumes at least 16% less CPU energy
compared with prior approaches. From Fig. 7, the total
memory overhead of SPGF’s single core implementation
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(a) TartanAir Office dataset [16]
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Fig. 7: Maximum memory usage for the input depth pixels,
temporary variables and output Gaussian parameters during
the execution of SPGF and existing algorithms. The number
of cores used in each algorithm is also annotated.

is at most 13KB which is less than the size of L1 data
cache (32KB per core [19]) in the ARM Cortex-A57 CPU.
Thus, SPGF seeks to reduce the amount of DRAM accesses.
In fact, SPGF’s single core implementation requires least
27% less DRAM energy than those from prior approaches.
SPGF’s multi-core implementation is more energy efficient
as the power consumption of CPU and DRAM is amortized
across four CPU cores. Using four cores, the total energy
consumption of SPGF is only 0.11J/frame, which is at least
69% less than prior approaches across both datasets.

IV. CONCLUSION

In this work, we proposed the Single-Pass Gaussian Fitting
(SPGF) algorithm that processes the depthmap row-by-row
to construct a GMM while using only 43KB of memory. Due
to its computational and memory efficiencies, the SPGF op-
erates at 32fps on a low-power ARM CPU and consumes at
least 69% less energy compared with prior approaches. Thus,
SPGF finally enables large-scale 3D mapping for energy-
constrained robots in real time. The superior performance
of SPGF demonstrates the importance of memory-efficient
algorithms for enabling autonomy on these robots.

TABLE IV: Average energy consumption per frame for
SPGF vs. existing algorithms evaluated using the ARM
Cortex-A57 CPU on the NVIDIA Jetson TX2 platform.

Algorithm TartanAir Office TUM RGB-D Room
CPU DRAM Total CPU DRAM Total

H-EM (1C) 1529J 1227J 2756J 1402J 1125J 2527J
NDT (1C) 0.18J 0.18J 0.36J 0.14J 0.13J 0.27J
RG (1C) 2.36J 1.89J 4.25J 1.81J 1.45J 3.26J

SPGF (1C) 0.15J 0.13J 0.28J 0.11J 0.09J 0.20J
SPGF (4C) 0.07J 0.04J 0.11J 0.05J 0.03J 0.08J
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