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Abstract

While much attention has been paid to data centers’ greenhouse gas emissions, less attention has been paid to autonomous
vehicles’ (AVs) potential emissions. In this work, we introduce a framework to probabilistically model the emissions from
computing onboard a global fleet of AVs and show that the emissions have the potential to make a non-negligible impact on
global emissions, comparable to that of all data centers today. Based on current trends, a widespread AV adoption scenario
where approximately 95% of all vehicles are autonomous requires computer power to be less than 1.2 kW for emissions from
computing on AVs to be less than emissions from all data centers in 2018 in 90% of modeled scenarios. Anticipating a future
scenario with high adoption of AVs, business-as-usual decarbonization, and workloads doubling every three years, hardware
efficiency must double every 1.1 years for emissions in 2050 to equal 2018 data center emissions. The rate of increase in
hardware efficiency needed in many scenarios to contain emissions is faster than the current rate. We discuss several avenues
of future research unique to AVs to further analyze and potentially reduce the carbon footprint of AVs.
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Abstract— While much attention has been paid to data cen-
ters’ greenhouse gas emissions, less attention has been paid to
autonomous vehicles’ (AVs) potential emissions. In this work, we
introduce a framework to probabilistically model the emissions
from computing onboard a global fleet of AVs and show that the
emissions have the potential to make a non-negligible impact on
global emissions, comparable to that of all data centers today.
Based on current trends, a widespread AV adoption scenario
where approximately 95% of all vehicles are autonomous
requires computer power to be less than 1.2 kW for emissions
from computing on AVs to be less than emissions from all data
centers in 2018 in 90% of modeled scenarios. Anticipating a
future scenario with high adoption of AVs, business-as-usual
decarbonization, and workloads doubling every three years,
hardware efficiency must double every 1.1 years for emissions in
2050 to equal 2018 data center emissions. The rate of increase
in hardware efficiency needed in many scenarios to contain
emissions is faster than the current rate; we discuss several
avenues of future research unique to AVs to further analyze
and potentially reduce the carbon footprint of AVs.

I. INTRODUCTION

There has been great interest in industry and academia
in characterizing the emissions from data centers [1], [2],
especially with respect to increased workloads expected from
deep neural networks (DNNs) [3]. In 2018, data centers
collectively consumed an estimated 205 TWh or 1% of the
world’s electricity [4] and contributed to about 0.3% of the
world’s emissions [1], with demand expected to grow [5].
However, less attention has been paid to the carbon footprint
of computing in the emerging field of autonomous vehicles
(AVs).

There is reason to expect the amount of computing will
be significant onboard Level 4 or Level 5 AVs, where a
human back-up driver is unnecessary [6]. For a global fleet
of AVs, the overall computing workload is comparable and
may even exceed current data centers’ workloads if AVs
are widely adopted. For example, Facebook runs trillions of
DNN inferences per day across its data centers [2]; an AV
that drives for an hour per day computing 10 DNN inferences
at 60 Hz on each of the inputs of 10 cameras would
make 21.6 million inferences per day, and one billion AVs
would make 21.6 quadrillion inferences per day! Due to the
computing capability onboard, AVs have even been referred
to as “data centers or supercomputers on wheels” [7]. While
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Fig. 1: Emissions from computing onboard AVs driving 1
hr/day. With one billion AVs, an avg. computer power of 0.84
kW yields emissions equal to emissions of all data centers.

previous works have explored the carbon impact of AVs due
to changes in driving strategies [8], [9], [10], this work is the
first to characterize the carbon emissions from the computers
onboard the AV itself.

The contributions of this paper are threefold. First, we in-
troduce an open-source framework to probabilistically model
emissions from computing onboard AVs1. Second, based on
our literature survey to estimate parameters in the model,
we find that emissions from computing onboard AVs have
the potential to be comparable to that of all data centers
today. We recommend targets for computer power and rate
of hardware energy efficiency improvement for various sce-
narios. Finally, we discuss several avenues of future research
unique to AVs to better characterize and reduce emissions
from computing onboard AVs.

II. MODELING COMPUTING EMISSIONS

Generating the electricity needed to run the computers
onboard a global fleet of AVs introduces a source of car-
bon emissions. The carbon dioxide equivalent (CO2e) tons

1https://github.com/mit-lean/carbon-computing-avs

https://github.com/mit-lean/carbon-computing-avs


emitted per year from computing onboard a fleet of N AVs
is given by

G = αNPQI, (1)

where G is the CO2e tons emitted per year from computing,
P is the average computer power for each AV, Q is the
average hours per day driven by each AV, I is the average
carbon intensity of the electricity used by the AVs or the
grams of CO2e emitted to produce 1 kWh of electricity, and
α = 3.65×10−7 is a constant that captures unit conversions.
Note, Eq. 1 only considers the operational carbon emissions
from the computer, and does not include operational carbon
emissions from running sensors, embodied carbon emissions
from manufacturing computers and sensors, or carbon emis-
sions from prototyping algorithms and training DNNs. If
each variable in Eq. 1 is known, we can directly calculate the
carbon emissions from computing onboard AVs. Consider a
hypothetical case where AVs operate on average for 1 hour
each day running an autonomy stack that consumes 2.5 kW
and drawing power from a grid with the 2020 global average
carbon intensity [F3]2. We consider the following constant
baselines for emissions:

1) 0.14 Gt CO2e, or all GHG emissions from data centers
in 2018 [4], [11],

2) 0.52 Gt CO2e, or 1% of all GHG emissions (not
including land use change) in 2019 [12],

and find it would take 335 million AVs for AV computing
emissions to equal 2018 data center emissions and 1.25
billion AVs for AV computing emissions to equal 1% of
2019 emissions.

Next, we sweep over the computing power for the auton-
omy stack and plot the emissions from computing onboard
AVs in Fig. 1. With one billion AVs, less than the number
of cars today [A1], the computer power must be less than
0.84 kW to have computing onboard AVs contribute less
emissions than data centers. The variables in Eq. 1 are not
exactly known, and there is large uncertainty with respect to
future trends. We now probabilistically model each variable
in Eq. 1 based on current trends (summarized in Table I)
and model different scenarios based on future trends (sum-
marized in Table II).

A. Number of AVs (N)

1) Current trends: There were an estimated 1.2 billion
vehicles on the road in 2015 [A1]. Meanwhile, in 2019, there
were 1,400 AVs approved for testing in the US [A2]; clearly,
we are not at a point where AVs dominate the market. We
model N ∼ Binomial(1.2×109, pn) for a range of adoption
rates pn.

2) Future trends: Car ownership per capita is expected
to increase, with projections ranging from 1.8 to 3 billion
vehicles in 2050 [G1, G2]. Projections based on aggressive
cost reduction and high customer satisfaction can yield AVs
capturing up to 95% of the market share by 2050 [G3]. We
model two scenarios for N2025−2050 assuming a 12 year

2In this section, the alphanumeric references point to references in Table I
and II.
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Fig. 2: TOPS (INT8) per Watt vs. production date for current
and announced AV hardware [H3, H4, H5, H6, H7, H8, H9,
H10, H11]. The trend shows a doubling time of 2.8 years
for AV hardware energy efficiency.

lifespan for AVs, a projected 2.2% increase in vehicle sales
each year [G1] with vehicle sales returning to 2019 sales by
2025 [G4], and an approximation of a high adoption projec-
tion [G3] or medium adoption projection where AVs capture
95% of the market share by 2050 or 2075 respectively.

B. Computer Power (P)

1) Current trends: The average computer power con-
sumed by each AV depends on the workload of the autonomy
stack and the hardware energy efficiency of the computer.
The autonomy workload consists of perception, localization,
planning, and control [C13]. This workload is challenging
to model since solving Level 4 or Level 5 autonomy is still
an active area of research [C1, C2] and is proprietary for
industry. For perception tasks such as object tracking and
semantic segmentation, DNNs are the leading approach in
computer vision [C13, C14]. For other sensors and tasks
such as planning, there is ongoing debate on whether these
components will remain DNN-based, non-DNN based, or a
hybrid version of both [C13]. Since recreating an entire state-
of-the-art autonomy stack is beyond the scope of this paper,
we choose to model only the DNN portion workload which
likely plays a substantial role in the autonomy stack.

We select a multitask DNN architecture with a shared
encoder and separate decoders for each task based on its
popularity in academia and industry [C3, C4]. We use
EfficientNet-B0 as the encoder [C5] and DeepLabV3 heads
as the decoders [C6]. We consider the number of tasks T
to be the number of decoders on the autoencoder and the
number of cameras C to be the number of times we run the
autoencoder. We measure the power Pmeas(T ) and latency
Lmeas(T ) of the autoencoder at various values of T for
1344 × 1344 resolution inputs, a resolution close to that
found in AV benchmarks [C15, C16]. Based on the desired
throughput F of the full autonomy stack, we model multiple
computers needed to achieve the desired throughput. Finally,
we scale the hardware energy efficiency by multiplying by



η, the ratio of the tera operations per second (TOPS) per
Watt of the measured hardware and the TOPS per Watt of
the target hardware, as seen in

Ptarget = Pmeas(T )Lmeas(T )ηFC. (2)

While TOPS per Watt is known to not be a holistic mea-
sure [D1], we use it as an approximation since it is expensive
and difficult to get access to state-of-the-art AV hardware
and hardware not yet in production. We measure Pmeas and
Lmeas on an Nvidia RTX 2080 Ti and scale the hardware
energy efficiency for the Nvidia DRIVE Orin system to be
the target platform, such that η = 0.344 [D2, D3]. When we
substitute Eq. 2 for P in Eq. 1, we obtain

G = αNPmeas(T )Lmeas(T )ηFCQI. (3)

We model C, T , and F with Poisson distributions parame-
terized by λC , λT , λF and consider workloads that capture
the number of cameras in commercial AV sensor suites [C7,
C8, C9, C10, C11] where λC ∈ {8, 12, 16}, the number of
tasks used in some works in academia and industry [C3,
C12] where λT ∈ {10, 50, 100}, and the throughput based
on human vision [B1] and industry [B2, B3] where λF ∈
{30, 60}.

2) Future trends: There is uncertainty around how au-
tonomy workloads will change over time since Level 4 or
5 autonomy remains unsolved. If there is a paradigm shift
due to a breakthrough technology, DNNs may not make
up the majority of the autonomy workload. However, given
significant investment in DNNs from industry and academia
[I6, I7, H10, C14] and difficulty predicting breakthrough
technologies, we assume DNNs will likely remain a large
component of the autonomy workload.

In general, DNNs have gotten larger over time in domains
such as NLP and recommendations [I1]. An exponential
scaling of DNN parameters may be required for a linear
gain in accuracy [3]; for such a safety-critical system, a
slightly more accurate DNN may be preferable even if it is
much larger. Moreover, higher resolution cameras processed
at higher frame rates allow AVs to see farther and drive
faster [I2, I3], and there likely will need to be uncer-
tainty estimation and redundancy built into the hardware
and algorithms [I4, I8]. On the other hand, the growth of
workload size may be slowed down due to methods such
as pruning and network architecture search [13] if they
can maintain metrics important for safety (e.g., accuracy,
robustness, uncertainty quality) while decreasing latency. We
model the workload increasing by multiplying Lmeas by
a factor a and we sweep over values for a2025−2050 with
doubling times equal to 3, 5, and 10 years.

To model how η will change over time, we model the rate
of increase in TOPS per Watt of AV hardware. Based on
historical patterns until 2009, Koomey’s law states that TOPS
per Watt doubles on average every 1.6 years [H1]. However,
the slowdown of Dennard scaling and Moore’s law has made
keeping up with this rate of improvement challenging [H2].
We plot the natural log of the reported TOPS per Watt
for current and announced AV hardware platforms and their

production dates in Fig. 2. We fit a linear model to find the
average doubling rate of TOPS per Watt for AV hardware
to be 2.8 years. We model η2025−2050 at various rates of
hardware energy efficiency doubling including at the current
pace.

C. Average Time Driven (Q)

1) Current trends: American vehicles were driven on
average 0.79 hours per day according the 2017 National
Household Travel Survey (NHTS) [E1]. There is uncertainty
in how driving behavior may change in response to the
widespread adoption of AVs. Projections for changes range
from -35% to 40% [E2] due to an increase in driving due to
multitasking [E3] and expansion of the transportation user-
base to individuals who currently face limited mobility, or a
decrease in driving due to increased car-sharing [E2, E4, E5].
We represent the range of -40% to 40% as a 95% confidence
interval to obtain Q ∼ N (0.79, 0.03).

2) Future trends: We model a scenario where the average
hours driven by AVs increases by 14% due to expansion of
driving to under-served populations [J1] and stays constant
over time such that Q2025−2050 = 0.90.

D. Carbon Intensity (I)

1) Current trends: Generating electricity to power the
computers onboard the AVs generates carbon emissions,
whether generated from gasoline for gasoline-powered ve-
hicles or generated by the mix of energy sources that power
the electric grid used to charge electric vehicles. We use
the global average carbon intensity of electricity generation
to capture the average carbon intensity across all AVs.
Due to changes in economic activity due to the COVID-
19 pandemic, we use the average global carbon intensity
estimate for 2019, select a variance that captures differences
in carbon intensity estimates between years [F4], and set
I ∼ N (471, 25).

2) Future trends: We model four different scenarios for
carbon intensity I2025−2050 using different annual decar-
bonization rates from 471 g CO2e/kWh: 1) 1.5% (business
as usual, 2019 rate), 2) 2.5% (2020), 3) 8.1% (consistent
with 2 degrees of warming), 4) 12.9% (consistent with 1.5
degrees of warming) [K1].

III. RESULTS

In this section, we present results from applying the
carbon emissions framework using the parameters discussed
in Section II. We first look at modeling emissions based on
current trends and varying the adoption rate of AVs. We
use a Monte Carlo simulation with one million samples to
estimate the distribution of emissions G, seen in Fig. 3a for
the workload with mean 8 cameras and 10 tasks at 60 Hz.
The expected value of the distribution is approximately twice
2018 data center emissions when adoption rate pn is 0.95;
in 90% of the scenarios, emissions were greater than 88%
of 2018 data center emissions. In Fig. 3b, we set pn = 0.95
and vary the average number of cameras and tasks; the larger
workloads lead to surpassing 2018 data center emissions and
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Fig. 3: The top row shows probability distributions for emissions G, illustrating high probability of significant emissions as
adoption rate increases and workload size increases if there is not a corresponding increase in hardware energy efficiency;
the bottom row shows the probability density of computer power P given emissions reach baselines. The dotted lines show
p∗, where 90% of scenarios have power less than p∗.

1% of 2019 emissions with high probability. We also estimate
the probability distribution of the computer power P given
emissions G is equal to the baselines, as seen in Fig. 3c
and Fig. 3d. The computer power must be less than 1.2 kW
in order for the emissions to be less than 2018 data center
emissions for 90% of the simulated scenarios at pn = 0.95.

Next, we compute the emissions over time in various
scenarios with future trends. In Fig. 4, assuming a business-
as-usual decarbonization rate and the workload doubling
every three years, we sweep over various values for the half-
life of η, or equivalently, the doubling time of the hardware
energy efficiency, for the high adoption scenario (Fig. 4a) and
medium adoption scenario (Fig. 4b). Maintaining the current
average rate of hardware energy efficiency increase of 2.8
years in both scenarios leads to large emissions by 2050. In
order to keep the emissions from computing onboard AVs
in 2050 under 2018 data center emissions or under 1% of
2019 total emissions in the high adoption scenario, hardware
energy efficiency must double faster than 1.1 years or 1.4
years respectively.

Next, we assume hardware energy efficiency doubles every
2.8 years and the high adoption scenario. In Fig. 4c, assum-
ing a business-as-usual decarbonization rate, we sweep over
the doubling time of the workload. We see a slower rate
of increase of the workload yields lower emissions. Finally,

in Fig. 4d, assuming the workload doubles every 3 years,
we sweep over different decarbonization rates. An aggressive
decarbonization rate lowers emissions, but even that scenario
cannot keep AV computing emissions below that of 2018
data center emissions. A business-as-usual decarbonization
rate yields high emissions in this scenario.

IV. FUTURE WORK: REDUCING THE FOOTPRINT
Business-as-usual trends alone are not enough to contain

the operational carbon emissions from computing onboard
AVs in various scenarios presented in Section III. We high-
light several future research directions unique to AVs to
help better characterize and potentially decrease the carbon
footprint from computing onboard AVs.

1) Characterize emissions from sensing: Unlike data
center servers, AVs also must sense their environment, and
the power consumption of the sensors can be non-negligible
for sensors such as LiDAR. Characterizing emissions for
current and future trends in sensor suites will help capture
the complete operational carbon footprint of AVs.

2) Characterize embodied vs. operational carbon: With
the current average lifespan of a car ranging from 10 to 20
years [G1], AVs will likely have much longer lifespans than
that of data center servers and mobile devices. An analysis of
the embodied carbon emissions from manufacturing the com-
puters and sensors onboard AVs would not only help cap-
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ture the total carbon footprint, but also enable comparisons
between operational carbon and embodied carbon over the
lifespan of an AV. For example, it was found that operational
carbon dominates the carbon footprint of mobile devices at
device lifespans over 4 years [14]; characterization of AV
embodied carbon will shed light on whether operational car-
bon likewise dominates AVs’ total carbon footprint over its
longer lifespan. In addition, understanding embodied carbon
can suggest the impact of usage patterns such as car-sharing.
For example, one billion privately-owned AVs driving one
hour per day results in the same amount of operational
carbon emissions as 100 million shared AVs driving 10 hours
per day. However, the second case would result in lower
embodied carbon emissions since fewer components need to
be manufactured.

3) Explore trade-off between hardware specialization and
generalization: Unlike data center servers, the computers
onboard AVs handle constant workloads that are known
ahead of time, presenting an opportunity for hardware spe-
cialization. The design of accelerators specific for autonomy
tasks can deliver large reductions in energy consumption and
help maintain a high rate of increase in hardware energy effi-
ciency despite the slowdown of Dennard scaling and Moore’s
law [15] for both DNN and non-DNN workloads [13], [16],
[17]. However, since AVs will have longer lifespans [G1],
hardware will still need to maintain some ability to generalize
to future workloads.

4) Explore algorithmic efficiency improvements without
sacrificing safety: AV workloads are safety-critical and can-
not tolerate a decrease in performance in metrics relevant to
human safety (e.g., accuracy, latency, robustness, uncertainty
quality). While waiting to run a workload until renewable
energy is available in a data center or running a smaller DNN
with lower accuracy on a mobile device may be viable strate-
gies for those domains, they do not transfer directly to AVs
due to safety concerns. Research into algorithmic changes
such as compact DNN architectures [13] and efficient non-
DNN algorithms that modify the algorithm to reduce the
computing energy needed [18], [19] are worth exploring
to understand the design space for algorithmic efficiency
improvements without sacrificing safety. Moreover, Jevon’s
paradox may manifest when it comes to safety [20]; for
example, pruning a DNN so it has half the original latency
may result in AV autonomy stacks running it twice as often
to increase safety.

5) Encourage an industry standard to release computer
power for autonomy stack on AV hardware: Much of
the difficulty in assessing the carbon impact of computing
onboard AVs is due to a lack of visibility of the workloads
and hardware efficiency of current AV companies’ autonomy
stacks. Ideally, industry would release a set of holistic met-
rics in order to conduct fair comparisons between different
designs [D1]. However, due to concerns about intellectual
property, we encourage industry to at least release computer



power since that enables the community to assess the carbon
impact of the autonomy stack while keeping the system
details proprietary.

V. CONCLUSION

In this paper, we highlight the potential for significant
emissions from computing onboard AVs, comparable to all
data centers today. Our framework to estimate emissions is
adaptable as the community gains more information or for
industry to use based on internal numbers. We hope this work
encourages research in several exciting directions unique to
AVs that can help better characterize and hopefully, reduce
the carbon footprint of computing onboard AVs.
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TABLE II: Modeling future trends for variables to compute carbon emissions of computing onboard AVs
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