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Abstract. Motivated by results about “untangling” closed curves on hyperbolic surfaces, Gupta
and Kapovich introduced the primitivity and simplicity index functions for finitely generated free
groups, dprim(g;FN ) and dsimp(g;FN ), where 1 6= g ∈ FN , and obtained some upper and lower
bounds for these functions. In this paper, we study the behavior of the sequence dprim(anbn;F (a, b))
as n→∞. Answering a question from [18], we prove that this sequence is unbounded and that for
ni = lcm(1, 2, . . . , i), we have |dprim(anibni ;F (a, b))− log(ni)| = o(log(ni)). By contrast, we show
that for all n ≥ 2, one has dsimp(anbn;F (a, b)) = 2. In addition to topological and group-theoretic
arguments, number-theoretic considerations, particularly the use of asymptotic properties of the
second Chebyshev function, turn out to play a key role in the proofs.

1. Introduction

In recent years the study of quantitative aspects of residual finiteness for various classes of finitely
generated groups has become an active theme in geometric group theory. See [1–12, 15, 16, 21, 22,
24,25]. The topic is closely related to topological and geometric results about “untangling” closed
curves on hyperbolic surfaces. A classic result of Scott in [29] from the 1980s showed that if Σ
is a closed hyperbolic surface with a hyperbolic metric ρ, and γ is an essential closed geodesic on

Σ, then γ lifts to a simple closed geodesic γ̂ in some finite cover Σ̂ of Σ. Scott’s proof exploits
subgroup separability of the fundamental group π1(Σ) of Σ, which is a stronger form of residual
finiteness. More recently, Patel [24] proved that in the context of Scott’s theorem, one can bound

the degree d of the cover Σ̂ of Σ from above by C`ρ(γ), where C = C(Σ, ρ) > 0 is some constant
independent of γ. One can then define the untangling degree degΣ,ρ(γ) as the smallest degree d of
a finite cover of Σ to which γ lifts or “untangles” as a closed geodesic. Using this quantity, one
then defines the “worst-case” function fΣ,ρ(L) as the maximum of degΣ,ρ(γ) where γ varies over
all essential closed geodesics of length ≤ L. (Here L needs to be assumed ≥ sys(Σ, ρ), the length
of the shortest essential closed geodesic on (Σ, ρ).) Patel’s result can now be restated as saying
that fΣ,ρ(L) ≤ CL for all L ≥ sys(Σ, ρ). Similar inequalities, for similarly defined quantities, hold
for more general types of finite type hyperbolic surfaces. Moreover, a simple closed curve on a
surface is a special case of a non-filling closed curve. Thus, stated again for a closed hyperbolic

surface (Σ, ρ), and an essential closed geodesic γ on Σ, one can define degfillΣ,ρ(γ) as the smallest

degree of a finite cover Σ̂ of Σ to which γ lifts as a non-filling curve in Σ̂. This notion leads to

a similarly defined worst-case function ffillΣ,ρ (L). By definition, one has degfillΣ,ρ(γ) ≤ degΣ,ρ(γ) and
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ffillΣ,ρ (L) ≤ ffillΣ,ρ (L). These quantities were formally introduced in [16], and we refer the reader there
for a more detailed discussion.

Motivated by the case of hyperbolic surfaces, Gupta and Kapovich [16] introduced similar notions
for finite rank free groups FN = F (A), where N ≥ 2 and A = {a1, . . . , aN}. For g ∈ FN , we denote
by |g|A and by ||g||A the freely reduced length and the cyclically reduced length of g with respect
to A accordingly.

Marshall Hall’s theorem in [17] easily implies that for every 1 6= g ∈ FN , there exists a subgroup
H ≤ FN of finite index such that g ∈ H and such that g is primitive in H, that is, g belongs to
some free basis of H. Moreover, the Stallings subgroup graphs proof in [30] of the Marshall Hall
Theorem implies that one can always find such an H with [FN : H] ≤ ||g||A. In a nonabelian free
group U , a primitive element is a special example of a “simple element.” Here an element 1 6= g ∈ U
is called simple if there exists a free product decomposition U = U1 ∗ U2 with U1 6= 1, U2 6= 1 such
that g ∈ U1. For 1 6= g ∈ FN one then defines the primitivity index dprim(g;FN ) as the smallest
index [FN : H] of a subgroup H ≤ FN such that g ∈ H and that g is primitive in H. Similarly,
for 1 6= g ∈ FN one defines the simplicity index dsimp(g;FN ) as the smallest index [FN : H] of
a subgroup H ≤ FN such that g ∈ H and that g is simple in H. Using these indices, [16] then
defined the corresponding worst-case functions, the primitivity index function fprim(n;FN ) and the
the simplicity index function fprim(n;FN ). We discuss some properties of these functions further
below. In particular, as shown in [16], for every 1 6= g ∈ FN = F (A), one has

dsimp(g;FN ) ≤ dprim(g;FN ) ≤ ||g||A ≤ |g|A.

In the appendix to [16], deploying a connection with the residual finiteness growth function for

FN , Bou-Rabee obtained a lower bound for fprim(n;FN ) that grows essentially as n1/4. Moreover,
he showed that modulo a conjecture of Babai in finite group theory, one gets a lower bound for
fprim(n;FN ) that is slightly sublinear in n. Gupta and Kapovich also obtained a lower bound of

C log(n)
log log(n) as n→∞ for dsimp(n, FN ).

These bounds rely on highly indirect non-constructive arguments. In practice, understanding
the properties of dprim(gn;FN ) for explicit sequences of elements gn ∈ FN with ||gn||A growing
linearly in n is quite hard, and in the examples that have been analyzed dprim(gn;FN ) is either
bounded above by a constant or has linear growth in n itself. In particular, there have been no
known examples of this type where dprim(gn;FN ) is an unbounded sequence that grows sublinearly.

In the present paper, we produce the first example of a sequence of elements in F2 = F (a, b) that
exhibits such new behavior. The main family of words we consider in this paper is wn = anbn ∈
F2 = F (a, b) where n ≥ 1.

For this family, we obtain the following bounds from Theorem 3.2 and Theorem 3.6, respectively:

Theorem 1.1. There exists a constant C ≥ 0 such that the following hold:

(a) For all integers n ≥ 1, we have

dprim(anbn;F2) ≤ log(n) + C.

(b) For all integers i ≥ 1, put ni = lcm(1, 2, . . . , i). Then for all i ≥ 1, we have

dprim(anibni ;F2) ≥ log(ni)− o(log(ni)).

Theorem 1.1 directly implies the following:
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Corollary 1.2. Let C ≥ 0 be the constant provided by Theorem 1.1. For i = 1, 2, 3, . . . , put
ni = lcm(1, 2, 3, . . . , i).

Then for all i ≥ 1, we have

log(ni)− o(log(ni)) ≤ dprim(anibni ;F2) ≤ log(ni) + C.

Corollary 1.2 answers, in the negative, the question raised in [18] as to whether the sequence
dprim(anbn;F2), n ≥ 1 is bounded. Corollary 1.2 shows that for the sequence wni = anibni ∈ F (a, b)
as above with ||wni || = 2ni, we have

∣∣dprim(wni ;F2) − log(ni)
∣∣ = o(log(ni)). This result provides

the first explicit example of a sequence of cyclically reduced words whose length grows linearly
but whose primitivity index function is unbounded and sublinear. Moreover, in this situation
dprim(wni ;F2) is computed almost precisely, up to a relatively small additive error, which in earlier
known examples only happened in rather trivial cases.

By contrast, it turns out that the sequence dsimp(wn, F2) is bounded and in fact constant:

Theorem 1.3. For all integers n ≥ 2, we have

dsimp(a
nbn;F2) = 2.

Theorem 4.14 in [16] provides an algorithm for computing dprim(g) and dsimp(g) for 1 6= g ∈ FN .
However, that algorithm involves some costly enumeration procedures that make it non-practical.
Moreover, the main results of [16] suggest that precisely computing dprim(g) and dsimp(g) is difficult
even for ”random” elements in FN . Thus computing dprim(g) and dsimp(g) is generally difficult in
practice, except for some special algebraic circumstances. For example, with a bit of work one can
show directly that dprim(a3b3;F2) = 3. However, say, computing dprim(a5b5;F2) already appears
to be hard to do by hand. Obtaining more precise information about dprim(anbn;F2) than that
provided by Theorem 1.1 also appears to be a difficult but interesting task.

As noted above, most previous proofs, both for free groups and for surfaces, for lower bounds
of the index and degree functions of the type discussed in this paper involved rather indirect and
implicit arguments. The one exception was provided by a paper of Gaster [14] where he used an
explicit sequence of curves γn on Σ to prove that fΣ,ρ(L) ≥L→∞ c0L.

The proofs of the main results in this paper deploy a combination of topological, group-theoretic,
and number-theoretic methods. The connection with number theory comes from the following
fact, see Lemma 2.17 below, whose proof uses basic known properties of the second Chebyshev
function. Let n ≥ 3 be an integer and let d = d(n) ≥ 2 be the smallest positive integer such
that d - n. Then d(n) ≤ log(n) + C for some constant C. Moreover, if ni = lcm(1, . . . , i) then
d(ni) ≥ log(ni)− o(log(ni)).

For the proof of the upper bound in part (a) of Theorem 1.1 we construct an explicit subgroup
H of index d(n) in F (a, b) containing wn = anbn and verify that that wn is primitive in H.
(The subgroup H is the kernel of an epimorphism from F (a, b) onto the cyclic group Zd.) Hence,
dprim(wn;F2) ≤ d(n) ≤ log(n) + C.

The proof of the lower bound for dprim(wni) in part (b) of Theorem 1.1 is more involved. The
main algebraic trick is Lemma 3.5. It shows that if H is a subgroup of finite index in F2 = F (a, b)
and ak, bl are the smallest positive powers of a, b that belong to H then there exists a free basis
of H containing both ak and bl. We take d = d(ni) > 1 to be the smallest positive integer such
that d - ni and that H is a subgroup of F2 of index m < d containing wni . Then ak, bl chosen
as above satisfy k, l ≤ m < d < ni. The definition of d implies that k|ni, l|ni and therefore



4 ILYA KAPOVICH AND ZACHARY SIMON

wni = anibni = (ak)p(bl)q with p, q ≥ 2. Since ak, bl belong to a common free basis of H, a standard
Whitehead graph argument implies that wni is not primitive in H. Therefore, by definition of
dprim, we have dprim(wni) ≥ d(ni). Well-known number-theoretic facts about the second Chebyshev
function then imply that d(ni) ≥ log(ni)− o(log(ni)), and part (b) of Theorem 1.1 follows.

We also obtain (see Proposition 3.3 below) the following upper bound result for words anbt ∈ F2

where n, t ≥ 1 are arbitrary and not necessarily equal integers.

Theorem 1.4. Let n, t ≥ 1 and let d, d′ ≥ 2 be integers such that d - n and d′ - t, and that
d ≤ n, d′ ≤ t. Then

dsimp(a
nbt;F2) ≤ dprim(anbt;F2) ≤ d+ d′ − 2.

Note that the true asymptotics of fsimp(n;FN ) and of ffillΣ,ρ (L) remain a mystery. The results

of Gupta and Kapovich [16] provide only a fairly weak C log(n)
log log(n) lower bound for dsimp(n, FN ).

Gaster’s proof [14] of a linear lower bound for fΣ,ρ(L) uses a sequence of curves γn on Σ that are

non-filling, and thus have degfillΣ,ρ(γn) = 1. Therefore, his argument sheds no light on the behavior

of ffillΣ,ρ (L).

The results of the present paper indicate that using explicit sequences of group elements and
curves may provide a fruitful approach to better understanding the behavior of fsimp(n;FN ) and

fprim(n;FN ) for free groups and of ffillΣ (L) for surfaces.
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2. Preliminaries

2.1. Graphs. We will use the notations and terminology regarding graphs, A-graphs, folded A-
graphs, Stallings folds, etc., from [16,19,30], and we refer the reader for the details to those sources.
We briefly recall some of the relevant definitions here.

Definition 2.1. A graph Γ is a 1-dimensional cell-complex. The 0-cells of Γ are called vertices and
the set of vertices of a graph Γ is labeled as V Γ.

Taking open 1-cells, topological edges of Γ, these are homeomorphic to the open unit interval,
(0, 1), which is a 1-manifold having two orientations. An oriented edge is a topological edge endowed
with an orientation. For an oriented edge e, we denote by ē the same topological edge with the
opposite orientation. Note that for an oriented edge e of Γ, we always have e 6= ē and ¯̄e = e.

We denote by EΓ the set of oriented edges of a graph Γ.

Due to the fact that Γ is a cell-complex, every oriented edge is endowed with some orientation-
preserving map je : [0, 1] → Γ, which provides a homeomorphism between the open unit interval
(0, 1) and an edge e such that je(0), je(1) ∈ V Γ. And for any edge in the edge set, accordingly
denote je(0) and je(1) by o(e) and t(e), which correspond to initial and terminal vertices of e,
respectively.

For a vertex v ∈ V Γ, the degree degΓ(v) of v in Γ is the cardinality of the set {e ∈ EΓ|o(e) = v}.
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For all i, denote a sequence of edges (ei)
i=k
i=1, such that (ei) ∈ EΓ, as an edge-path p ∈ Γ where

o(ej) = t(ej−1) for all 2 ≤ j ≤ k. The length of the path p, |p|, is defined as the number of
edges in p. A reduced path is a path that has no subpaths with cancellations from an edge and its
inverse. Also, the set of reduced edge-paths from x to x, for some x ∈ V Γ, will be identified as the
fundamental group π1(Γ, x).

Definition 2.2 (A-graph). For an integer N ≥ 2, denote by FN = F (a1, . . . , aN ) the free group of
rank N with the free basis A = {a1, . . . , aN}.

An A-graph is a graph Γ together with the labelling map µ : EΓ→ A ∪A−1 such that for every
e ∈ EΓ, we have µ(ē) = (µ(e))−1.

An A-graph Γ is folded if there do not exist a vertex x ∈ V Γ and edges e1, e2 ∈ EΓ with
x = o(e1) = o(e2) such that e1 6= e2 and µ(e1) = µ(e2).

The N-rose RN is the wedge of N loop-edges labelled at vertex v0 consisting of edges a1, . . . , aN .
Thus, RN is a folded A-graph.

Note that there is a natural identification FN = F (A) = π1(RN , x0). If Γ is an A-graph, the
edge-labeling µ canonically defines a label-respecting map f : Γ → RN that sends all vertices of
Γ to v0. This map f is an immersion if and only if Γ is folded. Moreover, if Γ is folded, the
corresponding map f : Γ→ RN is a covering map if and only if the graph Γ is 2N -regular, and in
this case the degree of the covering is equal to #V Γ.

2.2. Primitive and Simple Words.

Definition 2.3. A nontrivial element w ∈ FN is called primitive in FN if w belongs to a free basis
of FN .

A nontrivial element w ∈ FN is called simple in FN if w belongs to a proper free factor of FN .

The primitivity index dprim(w) = dprim(w;FN ) of w ∈ FN is the smallest possible index for a
subgroup H ≤ FN containing w as a primitive word.

The simplicity index dsimp(w) = dsimp(w;FN ) of w ∈ FN is the smallest possible index for a
subgroup H ≤ FN containing w as a simple word [16].

Remark 2.4. If w ∈ FN is primitive, then w is also simple in FN . As discussed in the Introduction,
for every 1 6= g ∈ FN = F (A), one has [16]:

dsimp(g) ≤ dprim(g) < ||g||A ≤ |g|A <∞.

Note that the primitivity and simplicity of elements of FN are preserved under arbitrary auto-
morphisms of FN . Similarly, the definitions imply that for a nontrivial element of FN its primitivity
and simplicity indexes are preserved by automorphisms of FN as well.

Remark 2.5. Let FN = F (a1, a2, . . . , aN ). Let w ∈ F (a1, a2, . . . , aN ) be a freely reduced word
such that for some 1 ≤ i ≤ N the generator y±1

i appears in w exactly once. Then w is primitive in
FN .

Proposition 2.6. [16, Lemma 3.6] Let N ≥ 2. Then for all integers n ≥ 1 we have

fsimp(n;FN ) ≤ fprim(n;FN ) ≤ n.
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Figure 1. Whitehead Graph

We recall how simple and primitive words are related to Whitehead graphs due to work that
Stallings established [31] by generalizing results from Whitehead [32]. We refer the reader to [16,20]
for additional references and further background information on Whitehead graphs.

Definition 2.7 (Whitehead graph). Let FN = F (x1, . . . , xN ) be the free group of finite rank N ≥ 2
and let w ∈ FN be a nontrivial cyclically reduced word. Let c be the first letter of w, so that the
word wc is freely reduced. We now define the Whitehead graph of w, denoted Γw, as a simple graph
with vertex set V Γw = {x±1

1 , . . . , x±1
N } and with the edge set defined as follows.

For x, y ∈ V Γw such that x−1 6= y, there exists an undirected edge {x−1, y} in Γw joining x−1

and y whenever xy or y−1x−1 occurs as a subword of wc.

Definition 2.8. A cut vertex in a graph Γw is a vertex x such that Γw − {x} is disconnected.

Note that if Γw has at least one edge and is disconnected, then Γw has a cut vertex, i.e., any
end-vertex of an edge of Γw is a cut vertex [16].

We will need the following important result of Stallings [31] about Whitehead graphs of simple
elements (this result was proved earlier by Whitehead [32] for primitive elements):

Proposition 2.9. If w ∈ FN is a simple and nontrivial cyclically reduced word, then Γw has a cut
vertex.

Corollary 2.10. Let FN = F (a1, . . . , aN ) be the free group of finite rank N ≥ 2. Let k1, . . . , kN ≥ 2

be arbitrary integers and let w = ak11 · · · a
kN
N ∈ FN . Then w is not simple (and in particular, not

primitive) in FN .

Proof. Let k1, . . . , kN ≥ 2 and let w = ak11 · · · a
kN
N ∈ FN = F (a1, . . . , aN ). Thus, w is a nontrivial

freely and cyclically reduced word. We now construct the Whitehead graph Γw as defined in
Definition 2.7.

The two-letter subwords cyclically occurring in w are precisely a2
i , where i = 1, . . . , N and aiai+1

where i = 1, . . . , N − 1, as well as the subword aNa1. Therefore, as in Figure 1, the edges in the
(simple) graph Γw are as follows:

For i = 1, . . . , N we have an edge {ai, a−1
i }. For i = 1, . . . , N − 1 we have an edge {a−1

i , ai+1},
and we also have an edge {a−1

N , a1}. Thus, we see that the graph Γw is a topological circle with

the vertex set {a±1
1 , . . . , a±1

N }. In particular, Γw has no cut-vertices. Hence, by Proposition 2.9, the
element w ∈ FN is not simple. �

We recall the following useful fact about primitivity in free groups, see [16, Proposition 4.5]:

Proposition 2.11. Let FN be a free group of finite rank N ≥ 2, let U ≤ FN be a free factor of
FN and let 1 6= g ∈ U . Then g is primitive in U if and only if g is primitive in FN .
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2.3. Second Chebyshev Function. Before proving our main results, we turn to a discussion on
the second Chebyshev function, ψ(m), where for an integer m ≥ 1 we have eψ(m) = lcm(1, 2, . . . ,m).
We will repeatedly deploy the asymptotics of ψ(m) to find primitivity and simplicity bounds in
our main results. Taking logarithms, one gets ψ(m) = log[lcm(1, 2, . . . ,m)]. Historically, there has
been a great deal of research on analyzing the growth rate of the second Chebyshev function, and
its properties are closely related to the prime-counting function and the Prime Number Theorem.

A well-known result concerning the second Chebyshev function comes from the work of Rosser
and Schoenfeld [26]:

Proposition 2.12. [26, Theorem 11]. Let R = 515
(
√

546−
√

322)2
≈ 17.51631 and

ε(m) =
√

log(m) exp[−
√

log(m)

R
].

Then for m ≥ 2 we have
[1− ε(m)]m < ψ(m),

and for m ≥ 1 we have
ψ(m) < [1 + ε(m)]m.

Proposition 2.13. [26, Theorem 12]. The quotient ψ(m)
m takes its maximum at m = 113, and for

m > 0,
ψ(m) < 1.03883m.

Also, for primes p, and positive integers k, one has [13]

ψ(m) =
∑
pk≤m

log(p).

For completeness, we prove the following well-known result in number theory that we will need
in this paper:

Corollary 2.14. For any ε > 0, there exists m0 = m0(ε) such that for all m ≥ m0, we have

|ψ(m)−m| < εm (1)

Proof. Proposition 2.12 implies that ψ(m) = m + o(m) as m → ∞. Therefore, |ψ(m) −m| < εm
for all sufficiently large m, so that (1) holds. �

Note that as in Corollary 2.14, the second Chebyshev function can be expressed as:

ψ(m) = m+ o(m),m→ +∞.

Convention 2.15. For an integer n ≥ 1, we denote by d(n) the smallest integer d ≥ 2 such that
d - n.

Lemma 2.16. If n ≥ 3, then 1 < d(n) < n.

Proof. Let n ≥ 3. We claim that n− 1 - n. Indeed suppose that (n− 1)|n. Then n = k(n− 1) for
k ≥ 2, and n ≥ 2(n − 1) = 2n − 2 implies that n ≤ 2, which is a contradiction. Thus, n − 1 - n,
and hence d(n) ≤ n− 1 < n, as required. �

To later determine bounds on the number of vertices of some graph, we need the following lemma:
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Lemma 2.17. There exist a constants C ′ ≥ 0, an integer n0 ≥ 3 and a function α(x) ≥ 0,
α(x) =x→∞ o(x) with the following properties.

Let n ≥ 2 be an integer and let d = d(n) ≥ 2 be the smallest integer that does not divide n. For
i = 1, 2, 3, . . . , put ni = lcm(1, 2, . . . , i); in this case we use d = d(ni).

Then:

(a) For all n ≥ n0, we have d ≤ log(n) + log(2) + 1.
(b) For all n ≥ 2, we have d ≤ log(n) + C ′.
(c) For all i ≥ 2, we have d ≥ log(ni)− α(log(ni)).

Proof. We first establish part (b). Let n ≥ 2 and let d ≥ 2 be the smallest integer such that d - n.
Then for i = 1, . . . , d−1, we have i|n, and hence lcm(1, 2, . . . , d−1)|n. Therefore, lcm(1, 2, . . . , d−
1) ≤ n. Denote m = d − 1 and let ε = 1

2 ∈ (0, 1). Thus, lcm(1, 2, . . . ,m) ≤ n. For the second
Chebyshev function ψ(m) = log[lcm(1, 2, . . . ,m)], Corollary 2.14 implies that there exists an integer
m0 ≥ 1 such that for all m ≥ m0, we have log[lcm(1, 2, . . . ,m)] ≥ m + log(1 − ε) = m − log(2).
Choose an integer n0 ≥ 1 such that m0 ≤ log(n0).

We proceed by breaking into two cases.

First, suppose that m = m(n) ≥ m0. Then

m− log(2) ≤ log[lcm(1, 2, . . . ,m)] ≤ log(n).

Hence, m ≤ log(n) + log(2). Since m = d− 1, it follows that d ≤ log(n) + log(2) + 1.

Suppose now that m = m(n) ≤ m0. Then d = m+ 1 ≤ m0 + 1.

That in both cases for all n ≥ 2, we have d ≤ log(n) + log(2) + 1 + m0. Thus, part (b) is
established with C ′ = log(2) + 1 +m0.

We now establish part (a). Assume now that n ≥ n0. If m = m(n) ≥ m0, then we have
d ≤ log(n) + log(2) + 1 by the argument above, as required. Thus, suppose that m < m0. Hence,
d = m+ 1 ≤ m0. Recall that n0 was chosen so that m0 ≤ log(n0). Thus, in this case

d ≤ m0 ≤ log(n0) ≤ log(n) ≤ log(n) + log(2) + 1.

Hence, the conclusion of part (a) is established, as required.

Now let i ≥ 2 and let ni = lcm(1, 2, . . . , i). Let d = d(ni) ≥ 2 be the smallest integer such that
d - ni. Since 1, 2, . . . , i|ni and ni = lcm(1, 2, . . . , i), it follows that d ≥ i+ 1.

Corollary 2.14 implies that log(ni) = log[lcm(1, 2, . . . , i)] = i + o(i). In particular, for all suffi-
ciently large i, we have

i

2
≤ log(ni) ≤ 2i.

Therefore, o(i) = o(log(ni)) and log(ni) = i+ o(log(ni)). Hence,

d ≥ i+ 1 ≥ i = log(ni)− o(log(ni)),

and part (c) holds, as required.

�
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3. Main Results

Let FN = F (a1, . . . , aN ) be the free group consisting of N ≥ 2 generators with the free basis
A = {a1, . . . , aN}. For the remainder of this section, one of the primary objects under investigation
will involve the free group F2 where N = 2. In this case, we denote A = {a, b} and F2 = F (a, b) =
F (A).

Let R2 be the 2-rose, that is an A-graph with a single vertex v0 and two positively oriented petal-
edges at v0 labelled a and b accordingly. Then there is a natural identification F (a, b) = π1(R2, v0),
and finite index subgroups of F (a, b) correspond to finite connected basepointed covers of R2.
That is, every subgroup H ≤ F (a, b) of finite index q is uniquely represented by a q-fold cover
f : (Γ, x0) → (R2, v0) where Γ is a finite connected folded 4-valent A-graph. In this case, we have
an isomorphism f# : π1(Γ, x0) → H ≤ π1(R2, v0) given by reading the labels of closed paths in Γ
at x0.

Recall that if Γ is a finite connected A-graph with a base-vertex x0 and T is a maximal subtree
of Γ then T defines a dual free basis ST of π1(Γ, x0) as follows. Let E′ be the set of those oriented
edges of Γ − T that are labeled by elements of A (rather than of A−1). For each e ∈ E′ put
βe = [x0, o(e)]T e[t(e), x0]T . Then ST = {βe|e ∈ E′}. Note that if Γ is folded then µ(ST ) is a free
basis of the subgroup H of F (A) represented by (Γ, x0); this basis is also referred to as dual to T .
See [19, Section 6] for more details.

The following lemma was suggested to us by the referee as for simplifying of our original, more
topological, argument for proving part (1) of Theorem 1.1.

Lemma 3.1. Let d ≥ 2 be an integer.

(1) There exists a subgroup H ≤ F2 with [F2 : H] = d such that H admits a free basis Y =
{y0, . . . , yd} where y0 = ad, yd = bd and yi = aibi for i = 1, . . . , d− 1.

(2) The subgroup H from part (1) is equal to the kernel of the homomorphism φ : F (a, b)→ Zd
given by φ(a) = [1]d and φ(b) = [−1]d.

Proof. Take two simplicial cycles of length d in the plane. Call one cycle ∆1 with edges labelled
by a flowing counterclockwise, and denote the other cycle by ∆2 with edges labelled by b flowing
clockwise. We then superimpose ∆2 on ∆1 by a Euclidean translation and identify their vertex
sets. This process results in a graph Γ as in Figure 2. Thus, Γ is a folded connected A-graph with
d vertices with the property that for every two vertices, v and v′, with an edge labelled by a from
v to v′, there is an edge labelled by b going from v′ to a in Γ. We still denote the (embedded)
images of the d-cycles ∆1 and ∆2 in Γ by ∆1 and ∆2. We mark one vertex x0 of Γ as a base-vertex,
which defines a basepointed immersion f : (Γ, x0) → (R2, v0). Note that Γ is 4-regular, so that f
is in fact a covering map of degree d = #V Γ. Thus, (Γ, x0) represents a subgroup H of index d in
F2 = F (a, b).

For i = 0, 1, . . . , d− 1, we denote by xi the vertex of the d-cycle ∆1 labelled by ad at distance i
from x0 along ∆1 in the direction of the flow of ∆1. That is, xi is the endpoint of the path in Γ
labelled by ai.

Consider a maximal tree T in Γ consisting of the cycle ∆1 with the last edge removed. For the
dual basis ST of π1(Γ, x0) the corresponding basis Z = µ(ST ) of H is z0, z1, . . . , zd where z0 = ad,

zi = aiba−(i−1) for i = 1, 2, . . . , d− 1, and zd = ba−(d−1).
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Note that yi = zizi−1 . . . z2z1 = aiba−(i−1)ai−1ba−(i−2) . . . ab = aibi for i = 1, . . . , d−1. Replacing
z1, . . . , zd−1 by y1, . . . , yd−1 in Z corresponds to a sequence of Nielsen transformations and therefore
Y ′ = z0, y1, . . . , yd−1, zd is a free basis of H. Note now that zdyd−1 = ba−(d−1)ad−1bd−1 = bd.
Replacing the element zd in Y ′ by zdyd−1 = bd is a Nielsen transformation which produces a free
basis Y = {y0, y1, . . . , yd} of H with y0 = ad, yd = bd, and yi = aibi for i = 1, . . . , d − 1, and part
(1) of the lemma is established.

Now consider a surjective homomorphism φ : F (a, b)→ Zd given by φ(a) = [1]d and φ(b) = [−1]d.
Then φ(ad) = φ(bd) = φ(aibi) = [0]d, where i = 1, . . . , d − 1. Therefore, by part (1) of the lemma,
H ≤ ker(φ). Since both H and ker(φ) have index d in F (a, b), it follows that H = ker(φ), and part
(2) of the lemma is verified. �

We are now ready to state and prove the first of our main results: an upper bound for dprim(wn).

Theorem 3.2. There exists a constant C ′ ≥ 0 such that for all integers n ≥ 1,

dprim(anbn;F2) ≤ log(n) + C ′.

Proof. Let n ≥ 1 and consider the word wn = anbn ∈ F2 = F (a, b).

Let d = d(n) ≥ 2 be the smallest integer that does not divide n. Lemma 2.16 implies that
2 ≤ d < n. Also, by Lemma 2.17, we have d ≤ log(n) + C ′. Express n as n = kd + r where k ≥ 1
and 0 < r < d is the remainder.

Let H be the subgroup of index d in F2 provided by Lemma 3.1 with the free basis Y =
{y0, y1, . . . , yd}, where y0 = ad, yd = bd and yi = aibi for i = 1, . . . , d− 1.

Note that

wn = anbn = (ad)karbr(bd)k = yk0yry
k
d ∈ H.

The element wn = yk0yry
k
d in primitive in H = F (Y ) because the generator yr of H occurs exactly

once in wn. Hence,
dprim(wn;F2) ≤ d ≤ log(n) + C ′,

as claimed.

�

Proposition 3.3. Let n, t ≥ 1 and let d, d′ ≥ 2 be integers such that d - n and d′ - t, and that
d ≤ n, d′ ≤ t. Then

dsimp(a
nbt;F2) ≤ dprim(anbt;F2) ≤ d+ d′ − 2.

Proof. Let n, t ≥ 1 and consider the word wn,t = anbt ∈ F2 = F (a, b). Recall that d, d′ ≥ 2 are
integers such that d - n, d′ - t and that d ≤ n, d′ ≤ t.

Since d - n and d′ - t, we then have 2 ≤ d < n, 2 ≤ d′ < t.

First, divide n with remainder by d, and t with remainder by d′. Thus, express n and t as
n = kd + r and t = k′d′ + r′ where k, k′ ≥ 0 and 0 < r < d, 0 < r′ < d′, respectively. Note that
since 2 ≤ d < n and 2 ≤ d′ < t, we actually have k, k′ ≥ 1.

Let ∆1 be the simplicial cycle of length d given from the A-graph structure by labeling it as an
ad-cycle. Similarly, let ∆2 be the simplicial cycle of length d′ endowed with the A-graph structure
by labeling it as a bd

′
-cycle. We pick a base-vertex x0 on ∆1 and a base-vertex z0 on ∆2. On the
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Figure 3. π1(Γ′′, x0) = F (x, y1, y2) ∼= π1(Γ′, x0) ∼= π1(Γ, x0)

graph ∆1, let xr be a vertex such that the arc along ∆1 from x0 labelled by ar ends at xr. Let
zd′−r′ be the vertex of ∆2 such that the arc along ∆2 starting at zd′−r′ and labelled by br

′
ends at

z0.

Next, identify x0 with z0, and xr with zd′−r′ . Denote the resulting graph by Γ′; see Figure 3. In
the graph Γ′, we still denote the image of the vertex x0 (and z0) by x0, and we denote the image
of the vertex xr by xr.

Thus, Γ′ is a connected folded A-graph with #V Γ′ = d+ d′ − 2.
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By a standard Marshall Hall Theorem proof argument, see [19, Lemma 8.10], there exists a finite
connected folded A-graph Γ such that V Γ = V Γ′ and such that Γ is a finite cover of R2 of degree
equal to #V Γ = #V Γ′ = d + d′ − 2. Let H ≤ F2 = F (a, b) be the subgroup of index d + d′ − 2
corresponding to the cover (Γ, x0)→ (R2, v0).

Let ρn be the path in Γ′ starting at x0 and labelled by an. Since n = kd+ r, the path ρn ends at
the vertex xr. Now let θt be the path in Γ′ starting at xr and labelled by bt. Since t = k′d′+ r′, the
construction of Γ′ implies that θt ends at x0. Thus, the path γn,t = ρnθt in Γ′ has label wn,t = anbt

and begins and ends at x0.

Consider the subarc β of ρn from x0 to xr, labelled by ar. The arc β is shown in the blue in
Figure 3.

Notice that T = β is a subtree of Γ′. Let Γ′′ be the graph obtained from Γ′ by collapsing the arc
β to a point, where the image of the vertex x0 in Γ′′ will still be called x0. Then the image of ρn in
Γ′ is a loop x at x0, the image of θt from b-edges, red and green, consists of two topological loops
at x0, denoted y1 and y2, respectively.

Let j : Γ′ → Γ′′ be the map given by collapsing β. Thus, j is a homotopy equivalence and
j# : π1(Γ′, x0) → π1(Γ′′, x0) is an isomorphism. Then π1(Γ′′, x0) = F (x, y1, y2) ∼= π1(Γ′′, x0), and
S = {x, y1, y2} is a free basis of π1(Γ′′, x0).

For the loop γn,t = ρnθt at x0 in Γ′ labelled by akd+rbk
′d′+r′ , the collapsing map j produces a

closed path

η = j(γn,t) = xk(y2y1)k
′
y2 ∈ F (x, y1, y2) = π1(Γ′′, x0).

Now consider an automorphism ϕ of the free group F (x, y1, y2) defined by

ϕ : {x 7→ x, y1 7→ y−1
2 y1, y2 7→ y2}.

Then ϕ(x) = x and ϕ(y2y1) = y2y
−1
2 y1 = y1 imply that

ϕ(η) = ϕ(xk(y2y1)k
′
y2) = xkyk

′
1 y2.

The freely reduced word ϕ(η) is primitive in F (x, y1, y2) since the letter y±1
2 occurs precisely once

in this word. Then since ϕ was an automorphism of F (x, y1, y2), it follows that η ∈ F (x, y1, y2) is
primitive too. Thus, γn,t is primitive in π1(Γ′, x0) since

π1(Γ′′, x0) = F (x, y1, y2) ∼= π1(Γ′′, x0) ∼= π1(Γ′, x0) ∼= π1(Γ, x0).

Since Γ′ is a subgraph of Γ, it follows that γn,t is primitive in π1(Γ, x0) as well. Since the covering
map Γ→ R2 induces an isomorphism π1(Γ, x0) ∼= H sending γn,t to wn,t, we conclude that wn,t ∈ H
is primitive in H as well. Since, as noted above, [F2 : H] = #V Γ = #V Γ′ = d+d′−2, the definition
of the primitivity index now implies that

dsimp(wn,t;F2) ≤ dprim(wn,t;F2) ≤ d+ d′ − 2,

as required. �

Corollary 3.4. Let C ′ ≥ 0 and n0 ≥ 3 be the constants from Lemma 2.17. Then we have the
following:

(a) For all n, t ≥ n0, dsimp(a
nbt;F2) ≤ dprim(anbt;F2) ≤ log(n) + log(t) + 2 log(2).

(b) For all n, t ≥ 3, dsimp(a
nbt;F2) ≤ dprim(anbt;F2) ≤ log(n) + log(t) + 2C ′ − 2.
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Proof. Let n, t ≥ 3 be integers. Put d = d(n) and d′ = d(t). Thus, d, d′ ≥ 2 are the smallest
integers not dividing n and t accordingly.

By Lemma 2.16, we have 1 < d < n and 1 < d′ < t.

By Lemma 2.17, we have d ≤ log(n) + C ′ and d′ ≤ log(t) + C ′. Hence, Proposition 3.3 implies
that

dsimp(a
nbt;F2) ≤ dprim(anbt;F2) ≤ d+ d′ − 2 ≤ log(n) + log(t) + 2C ′ − 2,

and part (b) holds, as required.

Suppose further that n, t ≥ n0. Then by Lemma 2.17, we have d ≤ log(n) + log(2) + 1 and
d′ ≤ log(t) + log(2) + 1. Hence, by Proposition 3.3, we have

dsimp(a
nbt;F2) ≤ dprim(anbt;F2) ≤ d+ d′ − 2 ≤ log(n) + log(t) + 2 log(2),

and part (a) of the corollary holds, as required. �

The following lemma, suggested to us by the referee, provides a tool for estimating from below
dprim(anibni ;F2) in part (b) of Theorem 1.1 that is simpler than our original approach.

Lemma 3.5. Let H ≤ F2 be a subgroup of finite index p ≥ 1. Let 1 ≤ k ≤ p, 1 ≤ l ≤ p be smallest
positive integers such that ak ∈ H and bl ∈ H. Then there exists a free basis Y for H such that
ak, bl ∈ Y .

Proof. Let (Γ, x0) be the Stallings subgroup graph representing H, that is, a p-fold cover of the
2-rose R2 corresponding to H. Let γa be the closed path at x0 in Γ labelled by ak, and let γb be the
closed path the closed path at x0 in Γ labelled by bl. The minimality of choices of k and l implies
that both γa and γb are simple closed circuits in Γ.

There are two cases two consider.

Case 1. The paths γa and γb share no vertices in common except for x0.

In this case the subgraph Γ′ of Γ spanned by γa, γb is a wedge of two circles, labelled by ak and
bl. It is obvious that γa, γb is a free basis of π1(Γ, x0). We can extend this free basis to a free
basis of π1(Γ′, x0) since Γ′ is a connected subgraph of Γ and π1(Γ′, x0) is a free factor of π1(Γ, x0).
Therefore, the conclusion of of the lemma holds in this case.

Case 2. The paths γa and γb have at least one other vertex in common apart from x0.

Let x0, x1, x2, . . . , xm = x0 be all the vertices of γa in the order they occur along γb. Denote by
asi the label of the segment of γa from x0 to xi, and denote by bti the label of the segment of γb
from xi−1 to xi, where i = 1, . . . ,m. By our construction we have ti > 0 and si−1 6= si but we are
not guaranteed that si−1 < si.

Choose a maximal subtree T of Γ which contains the initial segment of γa labeled by ak−1. Let
Z be the free basis of H dual to this maximal tree. The last edge of γa labeled by a shows that
z0 = ak ∈ Z.

The arc of γb from x0 to x1 produces the element z1 = bt1a−s1 ∈ Z. The arc of γb from x1 to
x2 produces the element z2 = as1bt2a−s2 ∈ Z. The arc of γb from x2 to x3 produces the element
z3 = as2bt3a−s3 ∈ Z. Thus, for i = 2, . . . ,m − 1 we get an element zi = asi−1btia−si ∈ Z. Finally,
the arc from xm to x0 in γb produces the element zm = asmbtm ∈ Z. Then

y = z1z2 . . . zm = bt1a−s1as1bt2a−s2as2bt3a−s3 . . . asm−1btia−smasmbtm = bt1+···+tm = bl.
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Replacing zm by y = z1z2 . . . zm = bl in Z is a Nielsen transformation which produces a free
basis Y of H that contains both ak and bl, as required.

�

We now proceed by finding a lower bound in the following theorem:

Theorem 3.6. For all integers i ≥ 3, if ni = lcm(1, 2, . . . , i), we have:

dprim(anibni ;F2) ≥ d(ni) ≥ log(ni)− o(log(ni)).

Proof. Let wni = anibni where i ≥ 3. Put di = d(ni). Let H ≤ F2 be a subgroup of finite index
such that wni ∈ H and that [F2 : H] = m < di. Let 1 ≤ k ≤ m, 1 ≤ l ≤ m be smallest positive
integers such that ak ∈ H and bl ∈ H. By Lemma 3.5 there exists a free basis Y for H such that
y1 = ak and y2 = bl belong to Y . Since k, l ≤ m < d(ni), we have k|ni and l|ni. Recall also
that by Lemma 2.16 1 < d(ni) < ni. Hence, n = pk = ql with p, q ≥ 2. Then in the basis Y we
have wni = yp1y

q
2. Since p, q ≥ 2, the element yp1y

q
2 is not primitive in F (y1, y2) by Corollary 2.10.

Therefore, wni = yp1y
q
2 is not primitive in H = F (Y ) by Proposition 2.11.

The definition of the the primitivity index now implies that dprim(wni ;F (a, b)) ≥ d(ni). Finally,
Lemma 2.17 implies that d(ni) ≥ log(ni)− o(log(ni)).

�

Now that we have established upper and lower bounds, Theorem 3.2 and Theorem 3.6 together
imply the following corollary:

Corollary 3.7. There exists a constant C ≥ 0 such that for all integers i ≥ 1, if ni =
lcm(1, 2, . . . , i), then

log(ni)− o(log(ni)) ≤ dprim(anibni ;F2) ≤ log(ni) + C.

Theorem 3.8. For all integers n ≥ 2, we have

dsimp(a
nbn;F2) = 2.

Proof. Let n ≥ 2. Consider the word wn = anbn ∈ F2 = F (a, b). In order to prove the result, we
will break into two cases:

Case 1 (n is odd):

Put d = d′ = 2. Since n ≥ 2 is odd, we have n ≥ 3 and d < n. Thus, since d - n, Proposition 3.3
implies that dsimp(a

nbn;F2) ≤ d+ d′ − 2 = 2.

Case 2 (n is even):

Thus, n = 2k for an integer k ≥ 1.

For d = 2 let H be the subgroup of index 2 in F2 = F (a, b), provided by Lemma 3.1, with the
free basis Y = {y0, y1, y2} where y0 = a2, y1 = ab, and y2 = b2.

We have

wn = anbn = (a2)k(b2)k = yk0y
k
2 ∈ H.
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The element wn = yk0y
k
2 is simple in H since wn does not involve the generator y1 and thus wn

belongs to a proper free factor F (y0, y2) of H = F (Y ). Hence, dprim(wn;F2) ≤ 2.

Finally, Corollary 2.10 implies that for n ≥ 2 the element wn = anbn is not simple in F (a, b), so
that dsimp(a

nbn;F2) 6= 1. Hence, for every n ≥ 2, dsimp(a
nbn;F2) = 2, as required. �

Remark 3.9. One can alternatively argue in Case 1 in the above proof by relying on Lemma 3.1
instead of Proposition 3.3. Indeed, take d = 2, and let H be the subgroup of index 2 in F2 = F (a, b)
provided by Lemma 3.1 with the free basis Y = {y0, y1, y2} where y0 = a2, y1 = ab, and y2 = b2.
Then n = 2k + 1 for k ≥ 1 and wn = anbn = (a2)kab(b2)k = yk0y1y

k
2 ∈ H is primitive in H because

it involves the generator y1 exactly once. Hence, dsimp(wn;F2) ≤ dprim(wn;F2) ≤ 2.
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