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ABSTRACT. Motivated by results about “untangling” closed curves on hyperbolic surfaces, Gupta
and Kapovich introduced the primitivity and simplicity index functions for finitely generated free
groups, dprim(g; Fn) and dsimp(g; Fn), where 1 # g € Fy, and obtained some upper and lower
bounds for these functions. In this paper, we study the behavior of the sequence dprim (a™0"; F(a, b))
as n — o0o. Answering a question from [18], we prove that this sequence is unbounded and that for

=lem(1,2,...,1), we have |dprim (a™0"*; F(a,b)) — log(n:)| = o(log(n;)). By contrast, we show
that for all n 2 2 one has dsimp(a”™b™; F(a,b)) = 2. In addition to topological and group-theoretic
arguments, number-theoretic considerations, particularly the use of asymptotic properties of the
second Chebyshev function, turn out to play a key role in the proofs.

1. INTRODUCTION

In recent years the study of quantitative aspects of residual finiteness for various classes of finitely
generated groups has become an active theme in geometric group theory. See [1-12,15,16,21,22,
24,25]. The topic is closely related to topological and geometric results about “untangling” closed
curves on hyperbolic surfaces. A classic result of Scott in [29] from the 1980s showed that if ¥
is a closed hyperbolic surface with a hyperbolic metric p, and - is an essential closed geodesic on
Y, then v lifts to a simple closed geodesic 7 in some finite cover Y of ¥. Scott’s proof exploits
subgroup separability of the fundamental group 7;(3) of ¥, which is a stronger form of residual
finiteness. More recently, Patel [24] proved that in the context of Scott’s theorem, one can bound
the degree d of the cover 3 of ¥ from above by Cl,(v), where C' = C(X, p) > 0 is some constant
independent of 7. One can then define the untangling degree degy, ,(7) as the smallest degree d of
a finite cover of ¥ to which ~ lifts or “untangles” as a closed geodesic. Using this quantity, one
then defines the “worst-case” function fx ,(L) as the maximum of degy, ,(y) where v varies over
all essential closed geodesics of length < L. (Here L needs to be assumed > sys(X, p), the length
of the shortest essential closed geodesic on (3, p).) Patel’s result can now be restated as saying
that fx ,(L) < CL for all L > sys(X, p). Similar inequalities, for similarly defined quantities, hold
for more general types of finite type hyperbolic surfaces. Moreover, a simple closed curve on a
surface is a special case of a non-filling closed curve. Thus, stated again for a closed hyperbolic

lel( )

surface (¥, p), and an essential closed geodesic v on 3, one can define deg as the smallest

degree of a finite cover S of ¥ to which ~ lifts as a non-filling curve in S3. This notion leads to
a similarly defined worst-case function ff Z”( L). By definition, one has deg/. Z”( ) < degy; ,(7) and
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féig(L) < fgiﬁ)l(L). These quantities were formally introduced in [16], and we refer the reader there
for a more detailed discussion.

Motivated by the case of hyperbolic surfaces, Gupta and Kapovich [16] introduced similar notions
for finite rank free groups Fy = F(A), where N > 2 and A = {ay,...,an}. For g € Fy, we denote
by |g|4 and by [|g||a the freely reduced length and the cyclically reduced length of g with respect
to A accordingly.

Marshall Hall’s theorem in [17] easily implies that for every 1 # g € Fy, there exists a subgroup
H < Fy of finite index such that g € H and such that g is primitive in H, that is, g belongs to
some free basis of H. Moreover, the Stallings subgroup graphs proof in [30] of the Marshall Hall
Theorem implies that one can always find such an H with [Fy : H| <||g||4a. In a nonabelian free
group U, a primitive element is a special example of a “simple element.” Here an element 1 # g € U
is called simple if there exists a free product decomposition U = Uy * Uy with Uy # 1,Us # 1 such
that g € Uy. For 1 # g € Fiy one then defines the primitivity index dpm-m(g;FN) as the smallest
index [Fy : H] of a subgroup H < Fy such that ¢ € H and that ¢ is primitive in H. Similarly,
for 1 #£ g € Fy one defines the simplicity index dsimp(g; Fy) as the smallest index [Fy : H] of
a subgroup H < Fy such that ¢ € H and that ¢ is simple in H. Using these indices, [16] then
defined the corresponding worst-case functions, the primitivity index function fprim(n; Fy) and the
the simplicity index function fprim(n; Fn). We discuss some properties of these functions further
below. In particular, as shown in [16], for every 1 # g € Fxy = F(A), one has

dsimp(g;FN) < dprim(g;FN) < HgHA < |Q|A-

In the appendix to [16], deploying a connection with the residual finiteness growth function for
Fn, Bou-Rabee obtained a lower bound for fy,im(n; Fiv) that grows essentially as nt/4, Moreover,
he showed that modulo a conjecture of Babai in finite group theory, one gets a lower bound for
fprim(n; F) that is slightly sublinear in n. Gupta and Kapovich also obtained a lower bound of

log(n)
c log log(n)

These bounds rely on highly indirect non-constructive arguments. In practice, understanding
the properties of dppim (gn; Fiv) for explicit sequences of elements g, € Fy with ||gn|la growing
linearly in n is quite hard, and in the examples that have been analyzed dpyim (gn; Fn) is either
bounded above by a constant or has linear growth in n itself. In particular, there have been no
known examples of this type where dpim (gn; Fiv) is an unbounded sequence that grows sublinearly.

as n — 00 for dgimp(n, Fy).

In the present paper, we produce the first example of a sequence of elements in F» = F(a,b) that
exhibits such new behavior. The main family of words we consider in this paper is w, = a™b"™ €
Fy = F(a,b) where n > 1.

For this family, we obtain the following bounds from Theorem 3.2 and Theorem 3.6, respectively:
Theorem 1.1. There exists a constant C' > 0 such that the following hold:
(a) For all integers n > 1, we have
dprim (a™0"; Fy) < log(n) + C.
(b) For all integers ¢ > 1, put n; = lem(1,2,...,4). Then for all i > 1, we have
dprim (a"1"; Fy) > log(n;) — o(log(n)).

Theorem 1.1 directly implies the following:
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Corollary 1.2. Let C > 0 be the constant provided by Theorem 1.1. For ¢ = 1,2,3,..., put
n; =lem(1,2,3,...,1).

Then for all ¢ > 1, we have
log(ni) — o(log(n;)) < dprim(a™0"; Fy) < log(n;) + C.

Corollary 1.2 answers, in the negative, the question raised in [18] as to whether the sequence
dprim (a™b"; F»),n > 1 is bounded. Corollary 1.2 shows that for the sequence wy,, = a™b" € F(a,b)
as above with ||wy,|| = 2n;, we have ’dprim(wni; Fy) — log(ni)’ = o(log(n;)). This result provides
the first explicit example of a sequence of cyclically reduced words whose length grows linearly
but whose primitivity index function is unbounded and sublinear. Moreover, in this situation
dprim(wn,; F2) is computed almost precisely, up to a relatively small additive error, which in earlier
known examples only happened in rather trivial cases.

By contrast, it turns out that the sequence dgjmy(wy, F2) is bounded and in fact constant:

Theorem 1.3. For all integers n > 2, we have
dsimp(a”™V"; Fp) = 2.

Theorem 4.14 in [16] provides an algorithm for computing dprim (g) and dgimp(g) for 1 # g € Fi.
However, that algorithm involves some costly enumeration procedures that make it non-practical.
Moreover, the main results of [16] suggest that precisely computing dprim(g) and dgimp(g) is difficult
even for "random” elements in Fi. Thus computing dpyim(g) and dsimp(g) is generally difficult in
practice, except for some special algebraic circumstances. For example, with a bit of work one can
show directly that dprim(a?’b?’;Fg) = 3. However, say, computing dprim(a5b5;F2) already appears
to be hard to do by hand. Obtaining more precise information about dpyim(a™b"; F») than that
provided by Theorem 1.1 also appears to be a difficult but interesting task.

As noted above, most previous proofs, both for free groups and for surfaces, for lower bounds
of the index and degree functions of the type discussed in this paper involved rather indirect and
implicit arguments. The one exception was provided by a paper of Gaster [14] where he used an
explicit sequence of curves v, on ¥ to prove that fx ,(L) > o0 coL.

The proofs of the main results in this paper deploy a combination of topological, group-theoretic,
and number-theoretic methods. The connection with number theory comes from the following
fact, see Lemma 2.17 below, whose proof uses basic known properties of the second Chebyshev
function. Let n > 3 be an integer and let d = d(n) > 2 be the smallest positive integer such
that d t n. Then d(n) < log(n) + C for some constant C. Moreover, if n, = lem(1,...,7) then
d(n;) > log(n;) — o(log(n;)).

For the proof of the upper bound in part (a) of Theorem 1.1 we construct an explicit subgroup
H of index d(n) in F(a,b) containing w, = a"b" and verify that that w, is primitive in H.
(The subgroup H is the kernel of an epimorphism from F(a,b) onto the cyclic group Z4.) Hence,
dprim (Wn; F) < d(n) <log(n)+ C.

The proof of the lower bound for dpyim (wy,) in part (b) of Theorem 1.1 is more involved. The
main algebraic trick is Lemma 3.5. It shows that if H is a subgroup of finite index in F» = F(a, b)
and aF, b are the smallest positive powers of a,b that belong to H then there exists a free basis
of H containing both a* and b'. We take d = d(n;) > 1 to be the smallest positive integer such
that d { n; and that H is a subgroup of F3 of index m < d containing wy,. Then a® b' chosen
as above satisfy k,l < m < d < n;. The definition of d implies that k|n;,[|n; and therefore
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wy, = a™b™ = (a®)P(b')9 with p,q > 2. Since a¥, b’ belong to a common free basis of H, a standard
Whitehead graph argument implies that w,, is not primitive in H. Therefore, by definition of
dprim, we have dprim (wp,) > d(n;). Well-known number-theoretic facts about the second Chebyshev
function then imply that d(n;) > log(n;) — o(log(n;)), and part (b) of Theorem 1.1 follows.

We also obtain (see Proposition 3.3 below) the following upper bound result for words a"b! € Fy
where n,t > 1 are arbitrary and not necessarily equal integers.

Theorem 1.4. Let n,t > 1 and let d,d’ > 2 be integers such that d ¥ n and d' 1 ¢, and that
d <n,d <t. Then

Asimp(a™b'; Fy) < dppign (a0 Fy) < d + d' — 2.
fézﬁ (L) remain a mystery. The results

log(n)
log log(n)
Gaster’s proof [14] of a linear lower bound for fs; ,(L) uses a sequence of curves v, on ¥ that are

Note that the true asymptotics of fsimp(n; Fy) and of

of Gupta and Kapovich [16] provide only a fairly weak C lower bound for dgjmp(n, Fn).

non-filling, and thus have degglpl(fyn) = 1. Therefore, his argument sheds no light on the behavior
i1l
of fiy(L)-
The results of the present paper indicate that using explicit sequences of group elements and
curves may provide a fruitful approach to better understanding the behavior of fgimp(n; Fiv) and

Jprim(n; Fiy) for free groups and of ém(L) for surfaces.
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2. PRELIMINARIES

2.1. Graphs. We will use the notations and terminology regarding graphs, A-graphs, folded A-
graphs, Stallings folds, etc., from [16,19,30], and we refer the reader for the details to those sources.
We briefly recall some of the relevant definitions here.

Definition 2.1. A graph I' is a 1-dimensional cell-complex. The 0-cells of I" are called vertices and
the set of vertices of a graph I is labeled as VT

Taking open 1-cells, topological edges of I', these are homeomorphic to the open unit interval,
(0,1), which is a 1-manifold having two orientations. An oriented edge is a topological edge endowed
with an orientation. For an oriented edge e, we denote by é the same topological edge with the
opposite orientation. Note that for an oriented edge e of I', we always have e # € and e = e.

We denote by ET the set of oriented edges of a graph I'.

Due to the fact that I' is a cell-complex, every oriented edge is endowed with some orientation-
preserving map j. : [0,1] — T', which provides a homeomorphism between the open unit interval
(0,1) and an edge e such that j.(0),j.(1) € VI'. And for any edge in the edge set, accordingly
denote j.(0) and j.(1) by o(e) and t(e), which correspond to initial and terminal vertices of e,
respectively.

For a vertex v € VT, the degree degp(v) of v in T is the cardinality of the set {e € ET'|o(e) = v}.
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For all i, denote a sequence of edges (e;)i=¥, such that (e;) € ET, as an edge-path p € I where
o(ej) = t(ej—1) for all 2 < j < k. The length of the path p, |p|, is defined as the number of
edges in p. A reduced path is a path that has no subpaths with cancellations from an edge and its
inverse. Also, the set of reduced edge-paths from x to z, for some x € VI', will be identified as the
fundamental group 71 (T, x).

Definition 2.2 (A-graph). For an integer N > 2, denote by F = F(a1,...,an) the free group of
rank N with the free basis A = {ay,...,an}.

An A-graph is a graph I' together with the labelling map p: ET — AU A~! such that for every
e € ET, we have u(e) = (u(e))~ L.

An A-graph I is folded if there do not exist a vertex x € VI' and edges ey, ez € ET with
x = o(e1) = o(ez) such that e; # eg and pu(e1) = p(e2).

The N-rose Ry is the wedge of N loop-edges labelled at vertex vy consisting of edges aq,...,an.
Thus, Ry is a folded A-graph.

Note that there is a natural identification Fy = F(A) = m(Rn, o). If I is an A-graph, the
edge-labeling p canonically defines a label-respecting map f : I' — Ry that sends all vertices of
I' to vg. This map f is an immersion if and only if I' is folded. Moreover, if I' is folded, the
corresponding map f : I' — Ry is a covering map if and only if the graph I is 2N-regular, and in
this case the degree of the covering is equal to #VT.

2.2. Primitive and Simple Words.
Definition 2.3. A nontrivial element w € Fy is called primitive in Fi if w belongs to a free basis
of F N-

A nontrivial element w € Fy is called simple in Fiy if w belongs to a proper free factor of Fy.

The primitivity index dprim(w) = dprim(w; Fy) of w € Fiy is the smallest possible index for a
subgroup H < Fjy containing w as a primitive word.

The simplicity index dgimp(w) = dgimp(w; Fy) of w € Fy is the smallest possible index for a
subgroup H < Fy containing w as a simple word [16].

Remark 2.4. If w € Fl is primitive, then w is also simple in Fy. As discussed in the Introduction,
for every 1 # g € Fiy = F((A), one has [16]:

dsimp(g) < dprim(Q) < HgHA < ’g’A < 0.

Note that the primitivity and simplicity of elements of Fly are preserved under arbitrary auto-
morphisms of Fiy. Similarly, the definitions imply that for a nontrivial element of Fiy its primitivity
and simplicity indexes are preserved by automorphisms of Fy as well.

Remark 2.5. Let Fy = F(aj,az,...,ay). Let w € F(ay,as,...,ay) be a freely reduced word

such that for some 1 < ¢ < N the generator yijEl appears in w exactly once. Then w is primitive in
Fy.

Proposition 2.6. [16, Lemma 3.6] Let N > 2. Then for all integers n > 1 we have

fsimp(n;FN) < fprim(n; FN) <n.
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Ficure 1. Whitehead Graph

We recall how simple and primitive words are related to Whitehead graphs due to work that
Stallings established [31] by generalizing results from Whitehead [32]. We refer the reader to [16,20]
for additional references and further background information on Whitehead graphs.

Definition 2.7 (Whitehead graph). Let Fiy = F(x1,...,xy) be the free group of finite rank N > 2
and let w € Fy be a nontrivial cyclically reduced word. Let ¢ be the first letter of w, so that the
word we is freely reduced. We now define the Whitehead graph of w, denoted I'y,, as a simple graph
with vertex set VT, = {2F!,..., 235} and with the edge set defined as follows.

1

For x,y € VI'y, such that 2! # g, there exists an undirected edge {z~',y} in I'y, joining z~

and y whenever zy or y~'z~! occurs as a subword of we.

Definition 2.8. A cut vertex in a graph I'y, is a vertex z such that I'y, — {x} is disconnected.
Note that if 'y, has at least one edge and is disconnected, then I'y, has a cut vertex, i.e., any
end-vertex of an edge of I'y, is a cut vertex [16].

We will need the following important result of Stallings [31] about Whitehead graphs of simple
elements (this result was proved earlier by Whitehead [32] for primitive elements):

Proposition 2.9. If w € Fl is a simple and nontrivial cyclically reduced word, then I';, has a cut
vertex.

Corollary 2.10. Let Fiy = F(ay,...,an) be the free group of finite rank N > 2. Let k1, ..., ky > 2

be arbitrary integers and let w = alfl ‘e a?VN € Fy. Then w is not simple (and in particular, not
primitive) in Fy.
Proof. Let ki,...,kxy > 2 and let w = a’fl ~--a1fVN € Fy = F(ay,...,an). Thus, w is a nontrivial

freely and cyclically reduced word. We now construct the Whitehead graph I'y, as defined in
Definition 2.7.

The two-letter subwords cyclically occurring in w are precisely a?, where i = 1,..., N and a;a; 1
where i = 1,..., N — 1, as well as the subword aya;. Therefore, as in Figure 1, the edges in the
(simple) graph I',, are as follows:

For i = 1,..., N we have an edge {a;,a;'}. Fori =1,...,N — 1 we have an edge {a; ', a;11},
and we also have an edge {a]_vl, ai}. Thus, we see that the graph I'y, is a topological circle with
the vertex set {a{d, el aﬁl}. In particular, I'y, has no cut-vertices. Hence, by Proposition 2.9, the
element w € Fly is not simple. [l

We recall the following useful fact about primitivity in free groups, see [16, Proposition 4.5]:

Proposition 2.11. Let Fiy be a free group of finite rank N > 2, let U < Fiy be a free factor of
Fy and let 1 £ g € U. Then g is primitive in U if and only if g is primitive in Fl.
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2.3. Second Chebyshev Function. Before proving our main results, we turn to a discussion on
the second Chebyshev function, 1 (m), where for an integer m > 1 we have e¥(m) — lem(1,2,...,m).
We will repeatedly deploy the asymptotics of 1(m) to find primitivity and simplicity bounds in
our main results. Taking logarithms, one gets ¢(m) = log[lem(1,2,...,m)]. Historically, there has
been a great deal of research on analyzing the growth rate of the second Chebyshev function, and
its properties are closely related to the prime-counting function and the Prime Number Theorem.

A well-known result concerning the second Chebyshev function comes from the work of Rosser
and Schoenfeld [26]:

Proposition 2.12. [26, Theorem 11]. Let R = ﬁ ~ 17.51631 and

g(m) = /log(m) exp[— 1og](%m)]'

Then for m > 2 we have
[1—e(m)Im < ¢(m),
and for m > 1 we have
P(m) < [1 4 e(m)]m.
Proposition 2.13. [26, Theorem 12]. The quotient w takes its maximum at m = 113, and for
m > 0,
(m) < 1.03883m.

Also, for primes p, and positive integers k, one has [13]

b(m) = 3 log(p).

kgm

For completeness, we prove the following well-known result in number theory that we will need
in this paper:

Corollary 2.14. For any € > 0, there exists mg = mg(e) such that for all m > mg, we have

[(m) —m| <em (1)

Proof. Proposition 2.12 implies that ¢(m) = m 4 o(m) as m — oo. Therefore, [)(m) —m| < em
for all sufficiently large m, so that (1) holds. O

Note that as in Corollary 2.14, the second Chebyshev function can be expressed as:
P(m) =m+ o(m), m — +o0.

Convention 2.15. For an integer n > 1, we denote by d(n) the smallest integer d > 2 such that
d{n.

Lemma 2.16. If n > 3, then 1 < d(n) < n.

Proof. Let n > 3. We claim that n — 1 { n. Indeed suppose that (n — 1)|n. Then n = k(n — 1) for
k> 2,and n > 2(n — 1) = 2n — 2 implies that n < 2, which is a contradiction. Thus, n — 1 { n,
and hence d(n) <n — 1 < n, as required. O

To later determine bounds on the number of vertices of some graph, we need the following lemma:
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Lemma 2.17. There exist a constants C' > 0, an integer ng > 3 and a function a(z) > 0,
a(r) =z—00 0o(x) with the following properties.

Let n > 2 be an integer and let d = d(n) > 2 be the smallest integer that does not divide n. For
i=1,2,3,..., put n; =lem(1,2,...,4); in this case we use d = d(n;).

Then:
(a) For all n > ng, we have d < log(n) 4 log(2) + 1.

a
(b) For all n > 2, we have d < log(n) + C".
(c) For all i > 2, we have d > log(n;) — a(log(n;)).

Proof. We first establish part (b). Let n > 2 and let d > 2 be the smallest integer such that d { n.
Then for i = 1,...,d—1, we have i|n, and hence lem(1,2,...,d—1)|n. Therefore, lem(1,2,...,d—
1) < n. Denote m = d—1 and let ¢ = £ € (0,1). Thus, lem(1,2,...,m) < n. For the second
Chebyshev function ¥ (m) = log[lem(1,2,...,m)], Corollary 2.14 implies that there exists an integer
mo > 1 such that for all m > myg, we have log[lem(1,2,...,m)] > m + log(l — €) = m — log(2).
Choose an integer ng > 1 such that mg < log(ny).

We proceed by breaking into two cases.

First, suppose that m = m(n) > mgy. Then
m — log(2) <log[lem(1,2,...,m)] <log(n).
Hence, m < log(n) + log(2). Since m = d — 1, it follows that d <log(n) + log(2) + 1.

Suppose now that m = m(n) < mgy. Then d=m +1 < mg + 1.

That in both cases for all n > 2, we have d < log(n) + log(2) + 1 + mo. Thus, part (b) is
established with C" = log(2) + 1 + my.

We now establish part (a). Assume now that n > ng. If m = m(n) > myp, then we have
d <log(n) +log(2) + 1 by the argument above, as required. Thus, suppose that m < mg. Hence,
d =m+ 1 < mg. Recall that ng was chosen so that my < log(ng). Thus, in this case

d < mg < log(ng) <log(n) <log(n)+log(2) + 1.

Hence, the conclusion of part (a) is established, as required.

Now let @ > 2 and let n; = lem(1,2,...,4). Let d = d(n;) > 2 be the smallest integer such that
dtn;. Since 1,2,...,in; and n; = lem(1,2,...,1), it follows that d > i + 1.

Corollary 2.14 implies that log(n;) = log[lem(1,2,...,i)] = i 4+ o(). In particular, for all suffi-
ciently large ¢, we have

< log(n;) < 2i.
Therefore, o(i) = o(log(n;)) and log(n;) = i + o(log(n;)). Hence,
d>i+12>i=1log(n;) — o(log(ni)),

and part (c) holds, as required.
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3. MAIN RESULTS

Let Fy = F(ai,...,an) be the free group consisting of N > 2 generators with the free basis
A ={ai,...,an}. For the remainder of this section, one of the primary objects under investigation
will involve the free group F where N = 2. In this case, we denote A = {a,b} and F; = F(a,b) =
F(A).

Let Ry be the 2-rose, that is an A-graph with a single vertex vy and two positively oriented petal-
edges at vy labelled a and b accordingly. Then there is a natural identification F'(a,b) = 71 (R, vp),
and finite index subgroups of F(a,b) correspond to finite connected basepointed covers of Ra.
That is, every subgroup H < F'(a,b) of finite index ¢ is uniquely represented by a ¢-fold cover
f: (T, z0) — (Ra,vg) where I is a finite connected folded 4-valent A-graph. In this case, we have
an isomorphism fy : (I, 29) = H < m1(R2,v0) given by reading the labels of closed paths in T’
at xg.

Recall that if I is a finite connected A-graph with a base-vertex zy and T is a maximal subtree
of T then T defines a dual free basis St of 71 (T, z¢) as follows. Let E’ be the set of those oriented
edges of ' — T that are labeled by elements of A (rather than of A~'). For each e € E’ put
Be = [z0,0(e)|relt(e), zo]r. Then Sy = {Bc|e € E'}. Note that if T" is folded then pu(Sr) is a free
basis of the subgroup H of F'(A) represented by (I', zp); this basis is also referred to as dual to T.
See [19, Section 6] for more details.

The following lemma was suggested to us by the referee as for simplifying of our original, more
topological, argument for proving part (1) of Theorem 1.1.

Lemma 3.1. Let d > 2 be an integer.

(1) There exists a subgroup H < Fp with [F5 : H] = d such that H admits a free basis Y =
{0, --.,yq} where yo = a?, yg = b% and y; = a'b’ for i = 1,...,d — 1.

(2) The subgroup H from part (1) is equal to the kernel of the homomorphism ¢ : F'(a,b) — Zg4
given by ¢(a) = [1]q and ¢(b) = [—1]a.

Proof. Take two simplicial cycles of length d in the plane. Call one cycle A; with edges labelled
by a flowing counterclockwise, and denote the other cycle by As with edges labelled by b flowing
clockwise. We then superimpose Ay on A; by a Euclidean translation and identify their vertex
sets. This process results in a graph I' as in Figure 2. Thus, I' is a folded connected A-graph with
d vertices with the property that for every two vertices, v and v’, with an edge labelled by a from
v to v/, there is an edge labelled by b going from v’ to a in I'. We still denote the (embedded)
images of the d-cycles A; and A, in I" by A and As. We mark one vertex xg of I' as a base-vertex,
which defines a basepointed immersion f : (I',z9) — (R2,v0). Note that I' is 4-regular, so that f
is in fact a covering map of degree d = #VT'. Thus, (I',z¢) represents a subgroup H of index d in
FQ = F(a, b)

For i =0,1,...,d — 1, we denote by z; the vertex of the d-cycle A; labelled by a? at distance i
from xy along A; in the direction of the flow of A;. That is, x; is the endpoint of the path in I’
labelled by a’.

Consider a maximal tree T in I" consisting of the cycle Ay with the last edge removed. For the
dual basis St of m1(T', ) the corresponding basis Z = u(St) of H is 29, 21, . . ., zq where zg = a?,
zi =aba= D for i =1,2,...,d — 1, and 24 = ba (4=,
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Note that y; = z;z;_1... 2021 = a'ba= Vg 1pq=(=2)  qb = a'b' for i = 1,...,d—1. Replacing
Z1y.-.,2d—1 BY Y1, .. .,Yq4—1 in Z corresponds to a sequence of Nielsen transformations and therefore
Y' = 20,91,...,Yd-1,2q is a free basis of H. Note now that zgys_1 = ba~(d=Dgd—1pd=1 — pd
Replacing the element zg in Y’ by zgy4—1 = b® is a Nielsen transformation which produces a free
basis Y = {yo,91,...,yq} of H with yo = a?, yq = b, and y; = a’b’ for i = 1,...,d — 1, and part
(1) of the lemma is established.

Now consider a surjective homomorphism ¢ : F'(a,b) — Zg given by ¢(a) = [1]q and ¢(b) = [—1]4.
Then ¢(a?) = ¢(b%) = ¢(a’b’) = [0]4, where i = 1,...,d — 1. Therefore, by part (1) of the lemma,
H < ker(¢). Since both H and ker(¢) have index d in F'(a,b), it follows that H = ker(¢), and part
(2) of the lemma is verified. (]

We are now ready to state and prove the first of our main results: an upper bound for dpyir, (wy,).

Theorem 3.2. There exists a constant C’ > 0 such that for all integers n > 1,
dyrim (a™"; F3) < log(n) + C'.

Proof. Let n > 1 and consider the word wy, = a™b" € F; = F(a,b).

Let d = d(n) > 2 be the smallest integer that does not divide n. Lemma 2.16 implies that
2 <d < n. Also, by Lemma 2.17, we have d < log(n) + C’. Express n as n = kd + r where k > 1
and 0 < r < d is the remainder.

Let H be the subgroup of index d in F; provided by Lemma 3.1 with the free basis ¥ =
{y0,y1,-..,ya}, where yo = a?, yg = b% and y; = a’V’ fori =1,...,d — 1.
Note that

wy, = a™b" = (a®)*a"b" (b)* = yky,yh € H.

The element w,, = ylgyrys in primitive in H = F(Y’) because the generator y, of H occurs exactly
once in w,. Hence,
dprim(wn; F2) <d< IOg(n) + Cl7
as claimed.

O

Proposition 3.3. Let n,t > 1 and let d,d’ > 2 be integers such that d { n and d’ { ¢, and that
d<n,d <t. Then
dsimp(a"bt; F) < dprim(a”bt; R)<d+d —2.

Proof. Let n,t > 1 and consider the word wy,; = a™b' € F, = F(a,b). Recall that d,d’" > 2 are
integers such that d tn, d’ 1t and that d < n,d <t.

Since d{n and d’ tt, we then have 2 <d <n, 2 <d <t.

First, divide n with remainder by d, and ¢t with remainder by d’. Thus, express n and ¢ as
n==kd+rand t = k'd + 1" where k,k¥’ > 0and 0 <r < d, 0 <1’ < d, respectively. Note that
since 2 < d < n and 2 < d' < t, we actually have k, k' > 1.

Let A be the simplicial cycle of length d given from the A-graph structure by labeling it as an
a’-cycle. Similarly, let Ay be the simplicial cycle of length d’ endowed with the A-graph structure
by labeling it as a bd/—cycle. We pick a base-vertex zg on A; and a base-vertex zy on Ay. On the
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F/

Tnt = pnet pn ~> a’
0; ~> bt [

)klyQ

= j(tnt) = 2" (y201
FIGURE 3. 7T1(F//,330) = F(x,yl,yg) = 7T1(F/,.’L'0) = 7T1<F,.%'0)

graph Ay, let z, be a vertex such that the arc along Ay from xzg labelled by a” ends at x,. Let
zqg— be the vertex of As such that the arc along Ay starting at zg_,» and labelled by b ends at
Z0-

Next, identify z¢ with zg, and z, with zg_,». Denote the resulting graph by I'/; see Figure 3. In
the graph I, we still denote the image of the vertex xg (and zg) by zp, and we denote the image
of the vertex x, by x,.

Thus, I' is a connected folded A-graph with #VI' =d+d — 2.
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By a standard Marshall Hall Theorem proof argument, see [19, Lemma 8.10], there exists a finite
connected folded A-graph I' such that VI' = VI” and such that T is a finite cover of Ry of degree
equal to #VT = #VI" =d+d — 2. Let H < F, = F(a,b) be the subgroup of index d + d' — 2
corresponding to the cover (I', xg) — (Ra,vp)-

Let py, be the path in I starting at x¢ and labelled by a™. Since n = kd + r, the path p, ends at
the vertex z,. Now let 6; be the path in I'/ starting at x, and labelled by b’. Since t = k'd’ + 1/, the
construction of I implies that 6; ends at zg. Thus, the path v,,; = p,6; in I has label w,,; = a™b"
and begins and ends at xg.

Consider the subarc g of p, from xg to x,, labelled by a”. The arc § is shown in the blue in
Figure 3.

Notice that T'= f3 is a subtree of I'V. Let I'” be the graph obtained from IV by collapsing the arc
B to a point, where the image of the vertex zy in I'” will still be called zg. Then the image of p,, in
I is a loop x at zg, the image of #; from b-edges, red and green, consists of two topological loops
at xg, denoted y; and ys, respectively.

Let j : IY — T be the map given by collapsing 8. Thus, j is a homotopy equivalence and
g+ mi(I, 20) — m (I, zo) is an isomorphism. Then w1 (I, z0) = F(z,y1,y2) = m (I, z0), and
S ={z,y1,y2} is a free basis of m (I, z9).

For the 100p ¢ = puf; at xo in TV labelled by a*¥*7b*' ¢+ the collapsing map j produces a
closed path

n=3(m) = 2 (ya291)" 2 € F(a,y1,92) = m(I”, o).
Now consider an automorphism ¢ of the free group F'(x,y1,y2) defined by
o {z = z,y = Yy vy )
Then ¢(z) = x and ¢(y2y1) = ynglyl = g1 imply that
o(n) = o(@* (ya1)" y2) = ¥y} .

The freely reduced word () is primitive in F(z,y1,y2) since the letter y2il occurs precisely once
in this word. Then since ¢ was an automorphism of F(x,y1,y2), it follows that n € F(x,y1,y2) is
primitive too. Thus, 7, is primitive in 7 (I”, zo) since

7T1(F”7 330) = F(:L" Y1, y?) = ﬂl(F”7 330) = m (Flv ZL‘(]) = 771(1—‘7 ':UO)‘
Since I" is a subgraph of I, it follows that -, ; is primitive in 71 (', 29) as well. Since the covering
map I' — Ry induces an isomorphism 7 (', z9) = H sending vy, ; to wy, ¢, we conclude that wy, s € H

is primitive in H as well. Since, as noted above, [Fy : H| = #VT = #VI' = d+d'—2, the definition
of the primitivity index now implies that

dsimp(wmt; FQ) < dprim(wn,t; FZ) <d+ d — 27
as required. 0

Corollary 3.4. Let C' > 0 and ng > 3 be the constants from Lemma 2.17. Then we have the
following;:

(a) For all n,t > ng, dsimp(a™b’; Fa) < dprim (a"b!; Fp) < log(n) + log(t) + 2log(2).
(b) For all n,t > 3, dsimp(a™b'; F2) < dppim (a™b'; Fy) < log(n) + log(t) + 2C”" — 2.
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Proof. Let n,t > 3 be integers. Put d = d(n) and d' = d(t). Thus, d,d > 2 are the smallest
integers not dividing n and ¢ accordingly.

By Lemma 2.16, we have 1 <d <nand 1 <d < t.

By Lemma 2.17, we have d < log(n) + C’" and d' < log(t) + C’. Hence, Proposition 3.3 implies
that
dsimp(a"b'; Fy) < dprim (a”b'; Fy) < d +d' — 2 < log(n) + log(t) + 2C" — 2,
and part (b) holds, as required.

Suppose further that n,t > ng. Then by Lemma 2.17, we have d < log(n) + log(2) + 1 and
d' < log(t) + log(2) + 1. Hence, by Proposition 3.3, we have

dsimp(a”bt; F) < dpm-m(a”bt; ) <d+d -2 <log(n) + log(t) + 2log(2),
and part (a) of the corollary holds, as required. O

The following lemma, suggested to us by the referee, provides a tool for estimating from below
dprim (a™0™; Fy) in part (b) of Theorem 1.1 that is simpler than our original approach.

Lemma 3.5. Let H < F5 be a subgroup of finite index p > 1. Let 1 < k < p,1 <1 < p be smallest

positive integers such that o € H and b* € H. Then there exists a free basis Y for H such that
E pl

a® b ey.

Proof. Let (I',zp) be the Stallings subgroup graph representing H, that is, a p-fold cover of the
2-rose Ry corresponding to H. Let 7, be the closed path at zq in T labelled by a*, and let v, be the
closed path the closed path at zo in I' labelled by b*. The minimality of choices of k and [ implies
that both v, and ~; are simple closed circuits in T'.

There are two cases two consider.
Case 1. The paths v, and -, share no vertices in common except for xg.

In this case the subgraph I of " spanned by 4,7 is a wedge of two circles, labelled by a* and
bl. It is obvious that v,,7s is a free basis of 71(I',zg). We can extend this free basis to a free
basis of w1 (I, zg) since I is a connected subgraph of I' and 71 (I, x¢) is a free factor of 7 (T, z0).
Therefore, the conclusion of of the lemma holds in this case.

Case 2. The paths 7, and v, have at least one other vertex in common apart from zg.

Let xg,z1,29,...,2m,m = xo be all the vertices of v, in the order they occur along ;. Denote by
a® the label of the segment of 7, from x¢ to x;, and denote by b the label of the segment of
from x;_1 to x;, where i = 1,..., m. By our construction we have t; > 0 and s;_1 # s; but we are

not guaranteed that s;_1 < s;.

Choose a maximal subtree T of I which contains the initial segment of 7, labeled by a*~!. Let
Z be the free basis of H dual to this maximal tree. The last edge of ~, labeled by a shows that
20 = ak e Z.

The arc of 7, from g to x1 produces the element z; = bl1a™%! € Z. The arc of 7, from z1 to
x9 produces the element zo = a*'b'2a7%2 € Z. The arc of 7; from x5 to w3 produces the element
23 = a®b3a=% € Z. Thus, for i = 2,...,m — 1 we get an element z; = a*-'b*a~% € Z. Finally,
the arc from x,, to =g in -y, produces the element z,, = a*»bf™ € Z. Then

Y= 2122...2m = b1a"S a1 b 2a"%2a%2b a7 . a®m1blia T m gt mblm = phitttm —
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Replacing z,, by y = z129...2m = b' in Z is a Nielsen transformation which produces a free
basis Y of H that contains both a* and V!, as required.

O

We now proceed by finding a lower bound in the following theorem:

Theorem 3.6. For all integers ¢ > 3, if n; = lem(1,2,...,1), we have:

dprim (a"10"; Fy) > d(n;) > log(n;) — o(log(n;)).
Proof. Let wy, = a™b™ where ¢ > 3. Put d; = d(n;). Let H < F, be a subgroup of finite index
such that w,, € H and that [Fy : Hl = m < d;. Let 1 <k <m,1 <[ < m be smallest positive
integers such that o € H and ! € H. By Lemma 3.5 there exists a free basis Y for H such that
y1 = a® and yo = b belong to Y. Since k,I < m < d(n;), we have k|n; and I|n;. Recall also
that by Lemma 2.16 1 < d(n;) < n;. Hence, n = pk = ¢l with p,q > 2. Then in the basis Y we

have wy, = yyd. Since p,q > 2, the element yJ'yd is not primitive in F(yi,y2) by Corollary 2.10.
Therefore, w,, = y}y4 is not primitive in H = F(Y) by Proposition 2.11.

The definition of the the primitivity index now implies that dpyim (wn,; F'(a,b)) > d(n;). Finally,
Lemma 2.17 implies that d(n;) > log(n;) — o(log(n;)).

O
Now that we have established upper and lower bounds, Theorem 3.2 and Theorem 3.6 together

imply the following corollary:

Corollary 3.7. There exists a constant C > 0 such that for all integers ¢ > 1, if n; =
lem(1,2,...,1), then

log(n;) — o(log(ni)) < dprim (a"™0"; Fp) < log(n;) + C.
Theorem 3.8. For all integers n > 2, we have

dsimp(a”™b"; Fy) = 2.

Proof. Let n > 2. Consider the word w,, = a"b"™ € F» = F(a,b). In order to prove the result, we
will break into two cases:

Case 1 (n is odd):

Put d = d = 2. Since n > 2 is odd, we have n > 3 and d < n. Thus, since d t n, Proposition 3.3
implies that dgipmp(a™b™; F) <d+d —2=2.

Case 2 (n is even):

Thus, n = 2k for an integer k£ > 1.

For d = 2 let H be the subgroup of index 2 in F» = F(a,b), provided by Lemma 3.1, with the
free basis Y = {yo, %1, 72} where yo = a2, y1 = ab, and y = b%.

We have

wn = " = () (0A) = yhyh € L
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The element w,, = y’éyé‘ is simple in H since w, does not involve the generator y; and thus w,
belongs to a proper free factor F'(yo,y2) of H = F(Y'). Hence, dppim (wy; F2) < 2.

Finally, Corollary 2.10 implies that for n > 2 the element w,, = a™b™ is not simple in F'(a,b), so
that dgimp(a™b™; Fy) # 1. Hence, for every n > 2, dgimp(a”™b™; F) = 2, as required. O
Remark 3.9. One can alternatively argue in Case 1 in the above proof by relying on Lemma 3.1
instead of Proposition 3.3. Indeed, take d = 2, and let H be the subgroup of index 2 in Fy = F(a,b)
provided by Lemma 3.1 with the free basis Y = {yo,y1,y2} where yo = a2, y1 = ab, and yy = b°.
Then n = 2k + 1 for k > 1 and w,, = a™b" = (a®)*ab(b?)* = yky1y5 € H is primitive in H because
it involves the generator y; exactly once. Hence, dgjmp(wn; F2) < dppim (wy; F2) < 2.
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