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Abstract—For systems subject to unbalanced faults, analytical
model building for stability assessment is a challenging task.
This letter presents a straightforward modeling approach. A
generalized dynamic circuit representation is achieved by use
of the Laplacian transform variable s. We translate the voltage
and current relationship at the fault location into the relationship
of three subsystems. The final circuit model is an interconnected
sequence network with impedances in the Laplace domain. This
circuit can be directly converted from a steady-state sequence
network. This modeling procedure is illustrated by an example
case of an induction motor served by a grid through a series
compensated line. Electromagnetic transient simulation results
demonstrate that sub-synchronous oscillations can be mitigated
when a single-line to ground fault is applied at the motor
terminal. Stability analysis results based on the dynamic circuit
corroborate the simulation results. What’s more, the derived
circuit effortlessly reveals why unbalance can enhance stability.

Index Terms—Dynamic circuit representation, fault analysis,
stability analysis, unbalance

I. INTRODUCTION

TABILITY analysis considering a system with unbalanced
Stopology is a challenging task. For a balanced system, a

three-phase voltage can be converted to two constant voltage

sources in the dg frame at steady state. While for an unbal-
anced system, multiple coordinates are necessary to model the
positive-, negative-, and zero-sequence components as state-
space variables which are constant at steady state. Dynamic
phasor-based modeling, has been adopted by Stankovic to
study asymmetry faults in [1], for which tremendous efforts
are required to deal with calculus and frame conversion.

In this letter, we present a different approach to come
up with a dynamic circuit representation. The approach is
straightforward, yet leads to great insights. We use an example
case —an induction motor served by an unbalanced network
—to illustrate the method and the application of the circuit
representation. In the following, Section II presents the test
case and the simulation results. Section III presents the circuit
representation and frequency-domain analysis results. Section
IV concludes the letter.

II. THE EXAMPLE AND THE SIMULATION RESULTS

Fig. la presents a test bed of a 200 hp 460-V induction
motor (IM) connected to a series compensated network. The
motor speed is fixed at 0.70 pu. At ¢ = 1.5 s, the parallel
RL circuit is tripped leaving the motor radially connected
to the RFC circuit. This RFC circuit has 50% compensation
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Fig. 1: (a) An induction motor connected to a series compensated network is
subject to an SLG fault, (b) Simulation results. Before # = 1.5 s, the motor
is connected to both the RL and the RFC circuits. At # = 1.5 s, the parallel
RL circuit is tripped leaving the motor radially connected to the RFC circuit.
At ¢ = 2.1 s, phase a of the motor's terminal bus is connected to the ground.
Parameters in p.u.: the RFC circuit R = 0.02, Xz = 0.2, YC = 0.1.

IM: Rs = 0.01282, Lu = 0.05051, Rr = 0.00702, Lir = 0.05051,
Lm = 2.503.

level. At # = 2.1 s, phase a is connected to the ground to
emulate a single-line to ground (SLG) fault. Fig. 1b presents
the simulation results. It can be clearly seen that once the IM
is radially connected to the capacitor, 26-Hz oscillations in
the torque and 34-Hz oscillations in the stator currents become
undamped. This 26-Hz mode is due to the LC resonance. After
the phase a of the terminal bus connects to the ground, the
system quickly recovers stability. This example shows that
the unbalanced topology helps mitigate the subsynchronous
resonance (SSR).

Indeed, in the literature of SSR control, phase imbalance has



been pointed out to have positive impact [2] by Edris in 1993.
In a 2011 paper [3], the dynamic phasor modeling approach
was adopted for model derivation and finding eigenvalues
under unbalance. The paper points out that large levels of
phase imbalance can cause a significant movement in the
subsynchronous network modal frequencies.

We pose the following question. Can a more insightful
explanation be offered as why imbalance can improve damping
of the subsynchronous mode? This letter sets to fill the gap.

III. LAPLACE-DOMAIN CIRCUIT

For an induction machine, its dynamic circuit in s-domain
has been derived by the authors in [4], [5]. Such a circuit for
type-3 wind turbines has been used for SSR analysis in [4],
[5]. The dynamic circuit of an IM extends the steady-state
circuit of IM developed by Charles Steinmetz in 1900s by
replacing juo using s. Furthermore, the slip of the motor has
been found to have the following expression: slip =
(where cvm is the rotor speed).

In steady-state analysis, unbalanced fault conditions can be
efficiently dealt with by use of symmetric component theory
and sequence network interconnection technique. For example,
for an SFG fault, the three-phase fault current and the fault
bus voltage have the following characteristics: Va =0, A2 =
Ic — 0. In turn, the sequence domain voltages and currents
have the following relationship:

N+ +20=0, 71=1I)=1Io = -" (D)

Thus, the sequence networks can be interconnected in series.
The fault current in sequence can be found by circuit analysis
of the sequence network interconnection.

Can we expand such techniques for dynamic analysis?

A. Circuit |

In order to check the possibility, we examine the same SFG
fault using time-varying space vectors, instead of phasors at
the nominal frequency. The boundary conditions are expressed
in time domain as follows: va(z) =0, %(t) = ic(t) = 0.

The space vector aggregates the three-phase variables to
form a single variable. In addition, we bring into the picture
the conjugate of the space vector and the zero-sequence
component in time domain:

4N = 7 (y«(i) + Svbft) + e-~NVeir)),  (2)
= 7 (va(t) + e~Wvb(t) + e™ve)J, (3)
vo(t) = 1 (va(t) + vb{t) +ve(t) “4)

The above relationship leads to the expression of abc variables
in terms of the space vector, its conjugate and the zero-
sequence component:

u(f) + [%/%]*
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Thus, the boundary condition leads to the following relation-
ship in both time domain and frequency domain.

0.5u + 0.5(u)*+uo =0, (8)
0.5% = 0.5(%)* = 10 = ~ia- 9)

If the space vector v and % are viewed to be related
with an impedance Z(s), then their conjugates (%/)* and (%)*
are related with an impedance (Z(s*))* based on the rule
of Faplace transform. For an RFC circuit, both Z(s) and
(Z(s*))* are the same: R+sL+1/(sC). However, if there is a
complex coefficient, the two impedances are not the same. For
example, the induction machine’s rotor equivalent resistance is
expressed as s_Jij R, its expression for the conjugate should
be ——R.

With the zero-sequence circuit available, the three
can be interconnected at the faulted bus to have a series
connection. Fig. 2 presents the interconnected circuit model.

Fig. 2: Circuit I: The example system subject to an SLG fault.

B. Circuit 2

The circuit in Fig. 2 is viewed based on the space vectors
and the conjugates. At unbalanced conditions, the space
vector has both positive- and negative-sequence components.
To be able to associate with the steady-state interconnected
sequence network, we further derive the circuit for sequence
components. The boundary conditions are re-examined. A
space vector can be expressed as the sum of the positive- and

negative-sequence components:
v(t) = Vi(t) + [20)1* = M{t)eiut + \V2{t)ejut}* (10)

where the subscript | and 2 notate positive- and negative-
sequences, respectively. Hence the first boundary condition
0.5%/ + 0.5(%/)* +vo = 0 is equivalent to

0.5(ui(f) + [i2(£)1*) + 0.5(1%:;i ()]* + V2(1)) + ro (1) = 0,
(n

|%a is

== Yl + 2 ++vo = 0.

Another boundary condition 0.5% = 0.5%)* = il =
equivalent to

0.5% = 0.5(%)* = %

ii =12 = io-

Ui 4+ (W2 = [A]* 412 = Do,
(12)



The relations in (11) and (12) hold in both time domain and
frequency domain. Based on (11) and (12), the interconnected
network is built and shown in Fig. 3. Note for v and 7\, the
impedance is the same as those for v and i. For v} and 72,
the impedance is the same as those for (v)* and (i)* The
advantage of the circuit in Fig. 3 is that it can be directly
related to the steady-state sequence network. The balanced
source voltage only appears in the positive-sequence network.

Fig. 3: Circuit 2: The example system subject to an SLG fault.

Remarks: (i) The circuit presented in Fig. 3 is a dynamic
circuit with the unbalanced topology modeled. If we substitute
s by ju where U/ is the synchronous frequency, the resulting
circuit is the same steady-state circuit for SLG faults, (ii)
Indeed, for unbalanced systems that can be represented by
a steady-state phasor/impedance-based sequence network, we
may directly come up with the corresponding dynamic circuit
by replacing juj using the Laplace transform variable s.

C. Stability Analysis

Compared to the steady-state sequence network which is
mainly used for fault analysis, the dynamic circuit is capable
of stability analysis. Below is a demonstration.

We ignore the shunt magnetizing branch sLZm for simplicity
since its impedance magnitude is one order greater than
the rotor impedances in 20-40 Hz range. The total positive-
sequence impedance of the IM is

ZvIMl = Rs Hoeeeev ——--Rr T s(Lis T L[r). (13)
The total negative-sequence impedance is
NMM2 = Rs - ——Rr + s(L/s + L/r). (14)
For the balanced system, the loop gain is
r M ZIMI(s) Rs + Rr + s(Lis + Ltr)
I[$>  ZRLC(s) R+ sl -+ (15)
For the SLG case, the loop gain is
Z\(s) T Z2(s) (16)

%Lc(s)

where Z\(s) and Z2(s) are

N N AN N
nigsy = "IMI'RLC _ "IM2"RLC

zivi + "RLC ziu2 + %LC

Fig. 4 presents the Bode diagrams of the two loop gains.
It can be clearly seen that for the balanced system, at about
34 Hz when the phase shifts from 180° to —180°, Li’s gain
is at 0 dB, indicating instability. On the other hand, for the
unbalanced system, the loop gain’s phase keeps in the range
of 0 to 180 degree in the 0-80 Hz range. At -26 Hz when
L2 s gain is 0 dB, the phase margin is about 30 degree. Hence,
Bode diagram shows no stability issue for the SLG case.
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Fig. 4: Loop gains for stability check.

Remark: The dynamic circuit in Fig. 3 also reveals that
unbalanced topology mitigates the effect of the equivalent rotor
resistor sRr/(s — jujm), which is negative if the excitation
frequency is less than 42 Hz (corresponding to 0.7 pu rotating
speed). This leads to the improvement of SSR stability.

IV. CconcLusiON

In this letter, we demonstrate a concise procedure to con-
struct two dynamic circuits for unbalanced topology. The
second circuit is a generalized circuit for unbalanced systems
and the well-known steady-state sequence network is a special
realization when it is evaluated at the nominal frequency.
This research connects dynamic modeling and unbalanced
treatment. It further shows that the steady-state sequence
network can be directly converted to an s-domain dynamic
circuit suitable for both fault analysis and stability analysis.
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