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A Laplace-Domain Circuit Model for Fault and Stability 
Analysis Considering Unbalanced Topology

Zhixin Miao, Senior Member, IEEE, Lingling Fan, Fellow, IEEE

Abstract—For systems subject to unbalanced faults, analytical 
model building for stability assessment is a challenging task. 
This letter presents a straightforward modeling approach. A 
generalized dynamic circuit representation is achieved by use 
of the Laplacian transform variable s. We translate the voltage 
and current relationship at the fault location into the relationship 
of three subsystems. The final circuit model is an interconnected 
sequence network with impedances in the Laplace domain. This 
circuit can be directly converted from a steady-state sequence 
network. This modeling procedure is illustrated by an example 
case of an induction motor served by a grid through a series 
compensated line. Electromagnetic transient simulation results 
demonstrate that sub-synchronous oscillations can be mitigated 
when a single-line to ground fault is applied at the motor 
terminal. Stability analysis results based on the dynamic circuit 
corroborate the simulation results. What’s more, the derived 
circuit effortlessly reveals why unbalance can enhance stability.

Index Terms—Dynamic circuit representation, fault analysis, 
stability analysis, unbalance

I. INTRODUCTION

STABILITY analysis considering a system with unbalanced 
topology is a challenging task. For a balanced system, a 
three-phase voltage can be converted to two constant voltage 

sources in the dq frame at steady state. While for an unbal­
anced system, multiple coordinates are necessary to model the 
positive-, negative-, and zero-sequence components as state- 
space variables which are constant at steady state. Dynamic 
phasor-based modeling, has been adopted by Stankovic to 
study asymmetry faults in [1], for which tremendous efforts 
are required to deal with calculus and frame conversion.

In this letter, we present a different approach to come 
up with a dynamic circuit representation. The approach is 
straightforward, yet leads to great insights. We use an example 
case —an induction motor served by an unbalanced network 
—to illustrate the method and the application of the circuit 
representation. In the following, Section II presents the test 
case and the simulation results. Section III presents the circuit 
representation and frequency-domain analysis results. Section 
IV concludes the letter.

II. The example and the simulation results

Fig. la presents a test bed of a 200 hp 460-V induction 
motor (IM) connected to a series compensated network. The 
motor speed is fixed at 0.70 pu. At t = 1.5 s, the parallel 
RL circuit is tripped leaving the motor radially connected 
to the RFC circuit. This RFC circuit has 50% compensation
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Fig. 1: (a) An induction motor connected to a series compensated network is 
subject to an SLG fault, (b) Simulation results. Before t = 1.5 s, the motor 
is connected to both the RL and the RFC circuits. At t = 1.5 s, the parallel 
RL circuit is tripped leaving the motor radially connected to the RFC circuit. 
At t = 2.1 s, phase a of the motor's terminal bus is connected to the ground. 
Parameters in p.u.: the RFC circuit R = 0.02, Xl = 0.2, _YC = 0.1. 
IM: Rs = 0.01282, Lu = 0.05051, Rr = 0.00702, Llr = 0.05051, 
Lm = 2.503.

level. At t = 2.1 s, phase a is connected to the ground to 
emulate a single-line to ground (SLG) fault. Fig. lb presents 
the simulation results. It can be clearly seen that once the IM 
is radially connected to the capacitor, 26-Hz oscillations in 
the torque and 34-Hz oscillations in the stator currents become 
undamped. This 26-Hz mode is due to the LC resonance. After 
the phase a of the terminal bus connects to the ground, the 
system quickly recovers stability. This example shows that 
the unbalanced topology helps mitigate the subsynchronous 
resonance (SSR).

Indeed, in the literature of SSR control, phase imbalance has
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been pointed out to have positive impact [2] by Edris in 1993. 
In a 2011 paper [3], the dynamic phasor modeling approach 
was adopted for model derivation and finding eigenvalues 
under unbalance. The paper points out that large levels of 
phase imbalance can cause a significant movement in the 
sub synchronous network modal frequencies.

We pose the following question. Can a more insightful 
explanation be offered as why imbalance can improve damping 
of the sub synchronous mode? This letter sets to fill the gap.

III. Laplace-domain Circuit 

For an induction machine, its dynamic circuit in s-domain 
has been derived by the authors in [4], [5]. Such a circuit for 
type-3 wind turbines has been used for SSR analysis in [4], 
[5]. The dynamic circuit of an IM extends the steady-state 
circuit of IM developed by Charles Steinmetz in 1900s by 
replacing juo using s. Furthermore, the slip of the motor has 
been found to have the following expression: slip =
(where cvm is the rotor speed).

In steady-state analysis, unbalanced fault conditions can be 
efficiently dealt with by use of symmetric component theory 
and sequence network interconnection technique. For example, 
for an SFG fault, the three-phase fault current and the fault 
bus voltage have the following characteristics: Va = 0, h = 
Ic — 0. In turn, the sequence domain voltages and currents 
have the following relationship:

^1 + ^2 + ^0 = 0, I1=I2 = Io = -^. (1)

Thus, the sequence networks can be interconnected in series. 
The fault current in sequence can be found by circuit analysis 
of the sequence network interconnection.

Can we expand such techniques for dynamic analysis?

A. Circuit 1
In order to check the possibility, we examine the same SFG 

fault using time-varying space vectors, instead of phasors at 
the nominal frequency. The boundary conditions are expressed 
in time domain as follows: va(t) = 0, %(t) = ic(t) = 0.

The space vector aggregates the three-phase variables to 
form a single variable. In addition, we bring into the picture 
the conjugate of the space vector and the zero-sequence 
component in time domain:

4^ = l (y«(i) + ^vb{t) + e-^Vcit)) , (2)

= l (va(t) + e~Wvb(t) + e^vc(t)J , (3)

vo (t) = 1 (va(t) + vb{t) + vc(t)) (4)

The above relationship leads to the expression of abc variables 
in terms of the space vector, its conjugate and the zero- 
sequence component:

%b(0 = %o(0 +

Vc(f) — ^0if) "F

u(f) + [%/%]* 
2

2

2

(5)

(6) 

(7)

Thus, the boundary condition leads to the following relation­
ship in both time domain and frequency domain.

0.5u + 0.5(u)*+uo = 0, (8)

0.5% = 0.5(%)* = i0 = ~ia- (9)

If the space vector v and % are viewed to be related 
with an impedance Z(s), then their conjugates (%/)* and (%)* 
are related with an impedance (Z(s*))*, based on the rule 
of Faplace transform. For an RFC circuit, both Z(s) and 
(Z(s*))* are the same: R+sL+l/(sC). However, if there is a 
complex coefficient, the two impedances are not the same. For 
example, the induction machine’s rotor equivalent resistance is 
expressed as s_Juj Rr, its expression for the conjugate should

can be interconnected at the faulted bus to have a series 
connection. Fig. 2 presents the interconnected circuit model.

Fig. 2: Circuit 1: The example system subject to an SLG fault.

B. Circuit 2
The circuit in Fig. 2 is viewed based on the space vectors 

and the conjugates. At unbalanced conditions, the space 
vector has both positive- and negative-sequence components. 
To be able to associate with the steady-state interconnected 
sequence network, we further derive the circuit for sequence 
components. The boundary conditions are re-examined. A 
space vector can be expressed as the sum of the positive- and 
negative-sequence components:

v(t) = Vi(t) + [y2(t)]* = V\{t)eiu,t + \v2{t)ejut}* (10)

where the subscript 1 and 2 notate positive- and negative- 
sequences, respectively. Hence the first boundary condition 
0.5%/ + 0.5(%/)* + vo = 0 is equivalent to

0.5(ui(f) + [i?2 (£)]*) + 0.5([%;i (t)]* + V2(t)) + vq (t) = 0,
=> %/l + V2 + v0 = 0. (11)

Another boundary condition 0.5% = 0.5(%)* = i0 = |%a is 
equivalent to

0.5% = 0.5(%)* = %o %i + [%2]* = [A]* +12 = 2%o, 
ii = i2 = io- (12)
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The relations in (11) and (12) hold in both time domain and 
frequency domain. Based on (11) and (12), the interconnected 
network is built and shown in Fig. 3. Note for v\ and i\, the 
impedance is the same as those for v and i. For v2 and i2, 
the impedance is the same as those for (v)* and (i)*. The 
advantage of the circuit in Fig. 3 is that it can be directly 
related to the steady-state sequence network. The balanced 
source voltage only appears in the positive-sequence network.

Fig. 3: Circuit 2: The example system subject to an SLG fault.

Remarks: (i) The circuit presented in Fig. 3 is a dynamic 
circuit with the unbalanced topology modeled. If we substitute 
s by ju where uj is the synchronous frequency, the resulting 
circuit is the same steady-state circuit for SLG faults, (ii) 
Indeed, for unbalanced systems that can be represented by 
a steady-state phasor/impedance-based sequence network, we 
may directly come up with the corresponding dynamic circuit 
by replacing juj using the Laplace transform variable s.

C. Stability Analysis
Compared to the steady-state sequence network which is 

mainly used for fault analysis, the dynamic circuit is capable 
of stability analysis. Below is a demonstration.

We ignore the shunt magnetizing branch sLm for simplicity 
since its impedance magnitude is one order greater than 
the rotor impedances in 20-40 Hz range. The total positive- 
sequence impedance of the IM is

ZvIMl = Rs H---------- :-----Rr T s(Lis T L[r). (13)

The total negative-sequence impedance is

^IM2 = Rs H---- ;—:-----Rr + s(L/s + L/r). (14)

For the balanced system, the loop gain is

r M _ ZlMl(s) _ Rs + Rr + s(Lis + Ltr) 
1[S> ZRLC(s) R + sL+±

For the SLG case, the loop gain is

(15)

Z\(s) T Z2(s)
%Lc(s)

(16)

where Z\(s) and Z2(s) are

^IMl^RLC^i(s) = = ^IM2^RLC
ZlMl + ^RLC ZiU2 + %LC

Fig. 4 presents the Bode diagrams of the two loop gains. 
It can be clearly seen that for the balanced system, at about 
34 Hz when the phase shifts from 180° to —180°, Li’s gain 
is at 0 dB, indicating instability. On the other hand, for the 
unbalanced system, the loop gain’s phase keeps in the range 
of 0 to 180 degree in the 0-80 Hz range. At -26 Hz when 
L2 s gain is 0 dB, the phase margin is about 30 degree. Hence, 
Bode diagram shows no stability issue for the SLG case.

Freq (Hz)

Fig. 4: Loop gains for stability check.

Remark: The dynamic circuit in Fig. 3 also reveals that 
unbalanced topology mitigates the effect of the equivalent rotor 
resistor sRr/(s - jujm), which is negative if the excitation 
frequency is less than 42 Hz (corresponding to 0.7 pu rotating 
speed). This leads to the improvement of SSR stability.

IV. Conclusion

In this letter, we demonstrate a concise procedure to con­
struct two dynamic circuits for unbalanced topology. The 
second circuit is a generalized circuit for unbalanced systems 
and the well-known steady-state sequence network is a special 
realization when it is evaluated at the nominal frequency. 
This research connects dynamic modeling and unbalanced 
treatment. It further shows that the steady-state sequence 
network can be directly converted to an s-domain dynamic 
circuit suitable for both fault analysis and stability analysis.
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