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Autonomous Navigation of AGVs in Unknown Cluttered
Environments: log-MPPI Control Strategy
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Abstract—Sampling-based model predictive control (MPC)
optimization methods, such as Model Predictive Path Integral
(MPPI), have recently shown promising results in various robotic
tasks. However, it might produce an infeasible trajectory when
the distributions of all sampled trajectories are concentrated
within high-cost even infeasible regions. In this study, we propose
a new method called log-MPPI equipped with a more effective
trajectory sampling distribution policy which significantly im-
proves the trajectory feasibility in terms of satisfying system
constraints. The key point is to draw the trajectory samples from
the normal log-normal (NLN) mixture distribution, rather than
from Gaussian distribution. Furthermore, this work presents a
method for collision-free navigation in unknown cluttered envi-
ronments by incorporating the 2D occupancy grid map into the
optimization problem of the sampling-based MPC algorithm. We
first validate the efficiency and robustness of our proposed control
strategy through extensive simulations of 2D autonomous navi-
gation in different types of cluttered environments as well as the
cartpole swing-up task. We further demonstrate, through real-
world experiments, the applicability of log-MPPI for performing
a 2D grid-based collision-free navigation in an unknown cluttered
environment, showing its superiority to be utilized with the local
costmap without adding additional complexity to the optimization
problem. A video demonstrating the real-world and simulation
results is available at https://youtu.be/_uGWQEFJSNO.

Index Terms—Autonomous vehicle navigation, sampling-based
MPC, MPPI, occupancy grid map path planning.

I. INTRODUCTION AND RELATED WORK

Designing a safe, reliable, and robust control methodology
for autonomous navigation of autonomous ground vehicles
(AGVs) in unknown cluttered environments (such as dense
forests, crowded offices, corridors, warehouses, etc.) has been
known as a great challenge. Such a navigation task requires
the AGV to navigate safely with full autonomy while avoiding
getting trapped in local minima and collision with static and
dynamic obstacles while moving towards the goal, as well as
respecting various system constraints. To this end, the robot
should be capable of perceiving its surrounding environment
and then reacting adequately. This subsequently results in a
complex optimization control problem that is difficult to be
solved in real-time [1].

One of the well-established and promising control strate-
gies for collision-free navigation is Model Predictive Control
(MPC) strategy, owing to its flexibility and ability to compute
good control policy in the presence of the hard and soft
constraints of the system to be controlled. It leverages a
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(a) Indoor validation-used environment

(b) 2D costmap visualization

Fig. 1: Snapshot of (a) our Jackal robot equipped with a Velodyne
VLP-16 LiDAR and located in an unknown cluttered environment
(G1,...,Gy4: desired poses), and (b) the corresponding 2D local
costmap that represents the surrounding obstacles, where purple and
cyan cells represent obstacles and their inflation, respectively; while
blue line is the planned trajectory by our log-MPPI control strategy.

receding horizon strategy to plan a sequence of optimal control
inputs over a prediction time-horizon; then, the first control
input in the sequence is applied to the system, while the
remaining control sequence is used for warm-starting the
optimization at the next time-step [2]. The existing MPC-based
schemes can be mainly categorized into gradient-based and
sampling-based trajectory optimization methods. The gradient-
based MPC methods have been successfully applied to real
robotic systems, obtaining smooth collision-free trajectories in
the presence of obstacles and other constraints [3]-[6]. How-
ever, the gradient-based frameworks are typically based on
strong assumptions: the cost function, and sometimes system
constraints, need to be differentiable in order to leverage the
gradient for computing the optimal solution. Unfortunately, in
practice, the optimization problem often involves non-convex
and non-differentiable objective function with discontinuous
collision avoidance constraints, and it can be computationally
difficult to be solved in real-time. To alleviate these issues,
for example, the non-differentiable system constraints can be
reformulated into smooth and differentiable ones as presented
in [7]. A promising alternative is the sampling-based optimiza-
tion methods such as Model Predictive Path Integral (MPPI)
control strategy [8] that (i) makes no assumptions or approx-
imations on the objective functions and system dynamics, (ii)
can be effectively applied on highly dynamic systems, and
(iii) benefits from the parallel nature of sampling and high
computational capacities of Graphics Processing Units (GPUs)
utilized for speeding up the optimization.

Recently, MPPI or sampling-based MPC has been suc-
cessfully applied to a wide variety of robotic applications,
starting from aggressive driving [9], [10] and autonomous
flight [1], [11] and ending with visual servoing [12] and
reactive manipulation [13], showing outstanding performance
in the presence of non-convex and discontinuous objectives,
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without adding any additional complexity to the optimization
problem. Despite the attractive characteristics of MPPI [14],
much like any sampling-based optimization method, it might
generate an infeasible control sequence (i.e., infeasible trajec-
tory) when the distributions of all sampled trajectories drawn
from the system dynamics are unfortunately surrounding some
infeasible region. This may inevitably lead to either violating
the system constraints or increasing the risk of being trapped
in local minima. For tasks such as collision-free navigation in
cluttered environments, it has been observed that the collisions
may not be avoided, as the intensive simulations demonstrated
in Section IV. To mitigate this problem, authors in [15] em-
ployed an iterative Linear Quadratic Gaussian (iLQG) control,
as an ancillary controller, on top of MPPI for tracking the
planned trajectory. Similarly, in [16], MPPI is augmented
with a nonlinear £, adaptive controller to compensate for
the model uncertainty. Lately, the covariance steering (CS)
principle is incorporated within the MPPI algorithm, aiming
to introduce adjustable trajectory sampling distributions [17].
However, the proposed solutions in [16] and [17] have not
been experimentally validated on real robotic systems.

With the aim of mitigating the previous shortcomings and
improving the performance of MPPI, we propose a new
strategy, called log-MPPI control strategy, that provides more
flexible and efficient distributions of the sampled trajectories,
without the need for (i) integrating an ancillary controller
on top of MPPI [15], [16], or (ii) adding a feedback term
along with the injected artificial noise that requires the system
dynamics to be linearized and converts the original optimiza-
tion problem into a convex one [I7]. The key idea of log-
MPPI is that the trajectories (or, the control input updates)
are sampled from the product of normal and log-normal
distribution (namely, NLN mixture), instead of sampling from
only Gaussian distribution. With such a sampling strategy, a
small injected noise variance can be utilized so that violating
system constraints can be avoided; yet, we can still get
desirable sampled rollout trajectories that are well spread-out
for covering large state-space. In summary, the contributions
of this work can be summarized as follows:

1) We provide a new sampling strategy based on normal log-
normal mixture distribution. This new sampling method
provides more efficient trajectories than the vanilla MPPI
variants, ensuring a much better exploration of the state-
space of the given system and reducing the risk of getting
stuck in local minima, leading the robot to ultimately find
feasible trajectories that avoid collision, as revealed in
Section IV-B.

2) Then, we show through the cartpole swing-up task given
in Section IV-A the robustness of log-MPPI to run with
a significantly fewer number of trajectories, opening up a
new avenue for the sampling-based MPC algorithm to be
run on a standard CPU instead of a GPU. We thereafter
incorporate the 2D grid map, as a local costmap, into the
sampling-based MPC algorithm for performing collision-
free navigation in either static or dynamic unknown
cluttered environments, as depicted in Section IV-C.

3) Finally, in Section V, we experimentally demonstrate our
control strategy for a 2D grid-based navigation in an

unknown indoor cluttered environment shown in Fig. 1;
to the best of the authors’ knowledge, this is the first
attempt to experimentally achieve grid-based collision-
free navigation based on sampling-based MPC.

II. PRELIMINARIES

In this section, we define the optimal control problem to be
solved and provide a brief review of MPPI.

A. Constrained Control Problem

Consider a discrete-time system with state x; € R™, control
input u; € R™, and underlying dynamics xx11 = f (Xg, Vi)-
Let v = ug + dug ~ N(ug, Xy) where dug, ~ N(0,%,)
represents the injected disturbance with a zero-mean and co-
variance Y,. Let U = (ug,uy,...,uy_1) € R™*¥ denote
the control sequence over a finite time-horizon N, while
X = (x0,%1,...,Xn_1) € R™*¥ denotes the resulting state
trajectory. Let O™ (x;) and O° be the area occupied by the
robot and the obstacles, respectively. Our objective is to find
a control sequence U that generates a collision-free trajectory
which allows the robot to navigate from the initial state x; to
its desired state x; while minimizing a cost function J. This
optimization problem can be formulated by MPPI as:

min  J =E (xn +Z< q(xp) + ukRuk> (1a)
st. Xgp1=f (Xk,Vk) , (1b)
O™ (x1,) N O = (), h(xg,ux) <0, (lc)

Xg = X, U € U, x3, € X, (1d)

where ¢ (xn), ¢ (xx), and R € R™*™ denote the terminal
cost, state-dependent running cost, and positive definite control
weighting matrix, respectively. MPPI solves the problem by
minimizing the objective (1a) subject to system dynamics (1b)
and system constraints such as collision avoidance and control
constraints (1c).

B. Review of MPPI

Unlike the gradient-based MPC methods, MPPI does not
compute gradients to find the optimal solution; i.e., it is a
derivative-free trajectory optimization strategy. Moreover, it
makes no assumptions on the objective functions and system
dynamics; i.e., highly nonlinear and non-convex functions
can be easily employed. At each time-step, MPPI draws M
trajectories, in parallel, from the system dynamics using GPU
ensuring a real-time performance. These parallel trajectories
are then evaluated according to its expected cost. The cost-
to-go of each rollout 7 over a time-horizon N is given by

N-1
S(r)=o(xn)+ > dl
k=0

where ¢ (xg, ug, duy) refers to the instantaneous running cost
which consists of the sum of state-dependent running cost
q (xx) and quadratic control cost; it is defined as [8]

(G

2

Xp, U, OUy) 2

Gd= q(xx) + ouy, Réuk—kquduk—k uk TRui, 3)

——
State-dep.

Quadratic Control Cost
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where v € R* determines how aggressively the state-space is
explored. Afterwards, the control sequence is updated based
on a weighted average cost over all sampled trajectories. As

. . . N-1
described in [8], the optimal control sequence {uy} k—o can
be approximated as

oy exp (~(1/2)8 (rim) ) St
S exp (~(1/NS (7))

where S (71,.,,) € Rt is the cost-to-go of the m'™ trajectory
at k' step and A € R* is so-called the inverse temperature
which determines how selective the weighted average of the
trajectories is [10]. The control sequence is then smoothed
using a Savitzky-Galoy (SG) filter. Finally, the first control ug
in the sequence is applied to the system, while the remaining
control sequence of length NV — 1 is used for warm-starting
the optimization at the next time-step.

4)

Ug41 = Uy +

II1. log-MPPI CONTROL STRATEGY

Our goal is to design a new sampling and control approach, the
log-MPPI, to further improve the classic MPPI performance.
Here, we briefly describe the difference between MPPI and
log-MPPI: as previously discussed in Section II, MPPI does
not update the injected control noise variance X, and the
state-space exploration is carried out by adjusting v (see
Eq. (3)). However, if v is too large, MPPI produces control
inputs with significant chatter [8]. Similarly, as stated in [15],
a higher value of X, might result in violating the system
constraints and eventually state diverging. One solution could
be updating, at each iteration, the variance [13]. Instead, we
inject the log-normal along with normal distribution ensuring
much better state exploration with a low variance value which
well respects the system constraints and providing better
performance with a fewer number of samples.

A. Log-normal Distribution

In probability theory, a positive random variable X is log-
normally distributed, ie., X ~ LN (,u,az), if the natural
logarithm of X has a normal distribution with mean g and
variance o2, ie., In X ~ N(p,02). Thus, the probability
density function (pdf) of the random variable X is given by

1 (Inx — ,u)2>
T) = e —~—— M ) zeR"Y, (5
fete) = e (122 ®)
where the mean and variance of a LN (i, 02) distribution are
given by

E(X) = e +057%) and Var(X) = e+ (7" — 1).

(6)

In spite of the fact that both normal and log-normal distribu-
tions are unbounded distributions, the log-normal distribution
is asymmetric and positively skewed to the right, where the
range of values lies in an interval of [0,+4oo[. Therefore,
the pdf, fx(z), starts at zero and increases to its mode,
then decreases thereafter. The degree of skewness increases
as o increases, for a given u. Similarly, for the same o,
the pdf’s skewness increases as j increases. In addition, the
most attractive feature of such distribution compared to the
alternative default distributions (such as normal, gamma, and
Weibull distributions) is its capability of capturing a large

fx(x)
O N O

0 -0.3 0.0

—-0.1 0.0 0.1

0.3 0.6

x Yy z
(2) X ~N(0,0.002) (b)Y~ LN (1.023,0.048) (c) Z~NLN(0,0.017)

Fig. 2: Histogram and pdf of 2500 random samples generated from:
(a) normal, (b) log-normal, and (c) NLN mixture, with ptn, = finin =
0, pn = 1.023, 02 = 0.002, 07, = 0.048, and ¢2;,, = 0.017.

range with a long right-tail, making it convenient to model
large values and hence large uncertainties [18].

B. Normal Log-normal (NLN) Mixture

Broadly speaking, if X and Y are two independent random
variables, described by probability density functions fx (x)
and fy (y), then the probability density function of the product
Z = XY is given by

fz(z) = /:’O fx(x)fy(z/x)idx.

||

)

More specifically, suppose that X ~ N(up,02) and Y ~

LN (uln,afn). Then, the random variable 7 = XY ~
NLN (pnin,02,,) can be labelled as normal log-normal

(NLN) mixture, where its mean i, and variance U?LG are
given by [19]

tnin = E(XY) = E(X)E(Y) = p el #0-571n),

02, = Var(XY) = E(X*)E(Y?) — (EXY)?, 8)

2 2
— (:ugl + 0-7211) 6(2#l71+2‘71n) _ Mie(Qﬂln"'a'Ln).

Let us consider the case where p,, = 0, i.e., X ~ N(0,02),
which is commonly used in sampling-based MPC strategies.
Thus, the pdf of Z, given in (7), is defined as

1 e 22 (Inz — )%\ 1
= - — —dz, 9
fz QWUnUln/o exp( 20222 207, 2" ©)

which can be solved analytically [20]. It is noteworthy that
fz(z) = fz(—z), indicating a symmetric distribution around
0 as shown in Fig. 2(c). In addition, Z can be written as
a smooth function of two independent normal distributions,
ie, Z = XY = Xe", where W ~ N (un, 0?,). When oy,
becomes smaller, X places the mass around 0. This makes
the tail of Z lighter than the lognormal distribution. Fig. 2
illustrates different distributions with differing parameters.

C. log-MPPI Control Strategy

We develop our method on top of the MPPI in [8] for
integrating the NLN mixture sampling. Although the original
derivation of MPPI is based on the controlled dynamics driven
by Brownian motion noise, it can be approximately applied
to the NLN mixture, particularly for small o,,. We provide
a discussion on the effect of NLN mixture noise on the
dynamics in Appendix A. The major difference is that the
trajectories, drawn from the discrete-time dynamics system
Xi+1, are sampled from the NLN policy, rather than from
the Gaussian policy. Accordingly, the control input updates
Suy, is defined as duy, = duf - sul® ~ NLN(0,%,), where
sup ~ N(0,%,), oul® ~ LN (i, Zin)s SZu = 02, L,
Y= afLIm, Yin = antm, and I,,, denotes an m x m identity
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matrix. To ensure that Ju¥? is stochastically independent from
ouy, Eq. (6) is employed in order to compute i, and X,
considering 1t = 0 and 02 = o,, (namely, standard deviation
of du}). Similarly, Eq. (8) is utilized for computing /i, and

J?Lln, taking into account that i3, = 0 as p, = 0.
0.8 0.8
_04r o 04r
A 00 E 0.0

y
Yl

—0.4
-0.8

~0.4 Hog-MPPI)|
—ogb—T—
0 2 4 6 8

x [m]
(b) Suy, ~N LN (0,0.01715)
Fig. 3: Distribution of 2500 sampled trajectories generated by (a)
MPPI with §u;, ~ N(0,0.0021;) and (b) log-MPPI with duy, ~
NLN(0,0.01715), where the robot is assumed to be located at x =
[x,y, H]T =[0,0, O]T in ([m], [m], [deg]) with a commanded control
input u = [v,w]” = [1.5,0]7 in ([m/s], [rad/s]).

x [m]
(a) duy, ~ N(0,0.002I2)

To demonstrate the advantages of sampling from the NLN
distribution on the performance of the MPPI algorithm, here
we provide a concrete example. The basic idea is to use a small
variance (so that we can avoid violating system constraints);
yet, we can still get desirable sampled trajectories that are
well spread-out for covering large state-space. Specifically,
(1) we first draw random samples, namely, X = éu’,g, from
a normal distribution with p, = 0 and 02 = 0.002 (see
Fig. 2(a)); (ii) then, another set of random samples, namely,
Y = §ul®, are generated from the corresponding log-normal
distribution with 1, = 1.023 and o7, = 0.048, as illustrated
in Fig. 2(b); (iii) finally, the random variable Z = duy that
represents the product of those two independent variables is
generated from the NLN distribution with gy, = 0 and
02, =0.017. Now, let us draw M sampled trajectories from
dug ~ N(0,0.0021,), as depicted in Fig. 3(a), considering
the discrete-time kinematics model of the robot given in (11)
and control schemes parameters listed in Section IV-B1, where
M = 2500. In a similar way, Fig. 3(b) shows the sampled
trajectories from duy ~ NLN(0,0.017I,). It is interesting
to observe in Fig. 3 that the distributions of the sampled
trajectories generated by the log-MPPI algorithm are more
flexible and efficient than the ones generated by the classical
MPPI, resulting in (i) better exploration of the state-space, and
(ii) reducing the probability of getting trapped in local minima.

One might argue that injecting the same control variance
to the normal distribution can lead to similar results. Here,
we provide the advantages of the NLN distribution through
(1) an analysis from the dynamics perspective in Appendix A
where we show that even with the same variance, the proposed
scheme can be more efficient due to the random drift term in
dynamics, and (ii) the extensive simulation results carried out
in the next section which show a much better exploration with
more than 30% reduction in the injected noise variance X, '.

IV. SIMULATION-BASED EVALUATION

We evaluated and compared the two control strategies on

!Unlike in [17], the proposed method explores the environment and samples
trajectories more efficiently than MPPI for the same injected noise Xy.

a simulated cartpole system and a goal-oriented AGV au-
tonomous navigation task in 2D cluttered environments.

A. Cartpole Swing-up Task

To demonstrate the impact of drawing trajectories from the
NLN distribution policy, instead of Gaussian policy, on the
behavior of the sampling-based MPC algorithm and assess the
practical stability of our proposed control strategy, especially
with a significantly fewer number of trajectories, we applied
MPPI and log-MPPI on a simulated cartpole system.

1) Simulation Setup: The main objective is to swing up and
stabilize the cartpole for 12s. The cartpole dynamics model
are taken from [8] with assigning the same values to the
system variables, while the pole length [ is set to 1 m and
the instantaneous running cost function is formulated as:

q(x) = 1022 +103(1 + cos(0))? + 20% + 2%, (10)

where x and & are the horizontal position and velocity of
the cart, while 6 and 6 denote the angle and angular velocity
of the pole. For both control schemes, the simulations were
performed with a time prediction ¢, of 2s, a control frequency
of 50Hz (sequentially, N = 100), a 1000 sampled rollouts
at each time-step At, an exploration variance v of 1000,
an inverse temperature A of 0.07, and a control weighting

matrix R of %Z;i with ¥,, = 0.0225 for log-MPPI. The
Savitzky-Galoy (SG) convolutional filter, which is utilized
for smoothing the control sequence {uk}]k\:)l computed by
Eq. (4), is applied with a quintic polynomial function, i.e.,
ngg = 5, and a window length [, of 51.

2) Simulation Results: We tested the robustness of our
proposed algorithm by changing the noise variance X%,,, and
number of sampled trajectories M, as illustrated in Fig. 4. In
Figs. 4(a) and 4(b), the simulations are carried out considering
two different values of M (namely, M = 1000 and 5),
while keeping the injected noise variance the same, namely,
>u = 0.283. We can notice from Fig. 4(a) that our control
scheme achieves a slightly faster convergence; the cartpole
converges to the desired configuration (i.e., * = Om and
6 = mrad) within 3.9s compared to 4.8s when MPPI is
used. Figure 4(b) demonstrates that the impact of decreasing
M on the behavior of MPPI is appreciably higher than its
impact on log-MPPI, as the former produced control input
that ultimately leads to a higher transient overshoot of 6 and
higher positioning error (about 7.6 cm). On the other side, log-
MPPI still performs well with a very slightly positioning error,
without compromising its robustness level and convergence
rate, which opens up a new avenue for sampling-based MPC
algorithm to be run on a standard CPU instead of a GPU,
with a fewer number of samples. Furthermore, it is noteworthy
that MPPI can achieve similar or better performance of log-
MPPI by increasing X, at least 73%, as depicted in Fig. 4(c)>.
However, assigning higher values might result in violating
the system constraints if they are applied and added to the
optimization control problem of the MPPI algorithm.

2Empirically, we observed that the lower the R, the better the performance.
Accordingly, the behavior of MPPI will be slightly worse if R is assigned to
a high value as that in log-MPPI, which is R = 0.233.
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(a) MPPI vs log-MPPI for the same noise
variance Y, = 0.283, while M = 1000
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(b) MPPI vs log-MPPI for the same noise
variance X, = 0.283, while M =5
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(c) Performance of MPPI for higher values of
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Fig. 4: Performance comparison of MPPI and log-MPPI for the cart—pole swingup task, considering: (a) the same sampling variance, namely,
Yu = 0.283, while M = 1000, (b) the same sampling variance, i.e., ¥y = 0.283, while M = 5, (c) higher variances in the case of MPPI.

B. Autonomous Navigation in Cluttered Environments

With the aim of demonstrating the prospective advantages
of our proposed log-MPPI control strategy compared to the
classical MPPI, extensive simulations are conducted in goal-
oriented AGV autonomous navigation tasks in 2D cluttered
environments.

1) Simulation Setup: In this work, we consider the kine-
matics model of a differential wheeled robot. The kinematics
equations that govern the motion of the robot is expressed as

T cosf 0
j | =| sing 0 {“]@xznwm, (11)
0 0 1 w

where x = [z,,0]T € R3 represents the pose of the robot
expressed in the world frame, 6 is the rotation (or, heading)
angle, the control u = [v,w]’ € R? denote the linear and
angular velocities of the robot.

The parameters of both control strategies were set as fol-
lows: t, = 551 (i.e., N = 250), M = 2500, v = 1200,
and R = A\X,, 2. However, for MPPI, the inverse tempera-
ture A and the control noise variance ¥, = Diag (02,02)
(herein, ¥,, = X,,) are set to 0.572 and Diag (0.023,0.028),
respectively, while in the case of log-MPPI they are set to
much lower values, namely, 0.169 and Diag (0.017,0.019),
respectively. In fact, those two hyperparameters were chosen
based on the intensive simulations carried out in Tests #1 and
#2 in Table I. It can be noticed that 3, in the case of log-
MPPI, is basically computed from a normal distribution with
a variance of ¥,, = Diag(0.002,0.0022). For the SG filter
parameters, we set ngg and ls, to 3 and 51, respectively. The
real-time execution of MPPI and log-MPPI is carried out on
an NVIDIA GeForce GTX 1660 Ti laptop GPU, where all
algorithms were written in Python and were implemented on
a differential wheeled robot, namely, ClearPath Jackal robot,
integrated with the Robot Operating System (ROS) framework.

Within this work, trajectories are sampled on a GPU using
the discrete-time kinematics model given in Eq. (11), where
the state-dependent cost function of the 2D navigation task is

simply formulated as
q(X) = (state (X) + Qobs (X)7 (12)

where gsae(X) = (x — x7)TQ(x — xy) is a quadratic cost

function utilized for enforcing the robot current state x to reach
its desired state xy, and @@ = Diag(5,5,2) Vvges < 1lm/s,
otherwise @ = Diag(2.5,2.5,2). qobs(X) = 107 Cerasn heavily
penalizes trajectories that collide with obstacles, where Clysn
is a Boolean variable that indicates the collision with obstacles.

2) Simulation Scenarios: We considered four various sce-
narios for evaluating the performance of the proposed control
framework in cluttered environments. In Scenario #I, the
intensive simulations (namely, N7 = 100 tasks) are carried
out by taking into account different values of A and X, with
the aim of (i) choosing the best sets of hyperparameters that
respect the control constraints, then (ii) assessing the perfor-
mance in the following scenarios. We choose A € [0.01, 10]
and ¥, € [0.0004,0.16], while a cluttered environment,
with obstacles placed 2m away, has been used for assessing
the performance. In the last three scenarios, we randomly
generated three different types of forests, each type has 50
forests, i.e., N = 50 tasks, and each forest represents a
50m x 50m cluttered environment. In the first type (i.e.,
Scenario #2), the obstacles were, on average, 1.5m apart
(namely, d%% = 1.5m), whilst in the second (Scenario #3)
and third (Scenario #4), they placed 2m and 3m away,
respectively. For the first three scenarios, the maximum desired
velocity vges of the robot is set to 1.5 m/s, while in the latter it
is allowed for the robot to navigate with its maximum velocity
which is 2m/s.

3) Performance Metrics: To achieve a fair performance
comparison of the two control schemes: (i) first, in all
simulations, the robot has to reach the same desired pose,
namely, x; = [50,50,0]7, from the predefined initial pose
xo = [0,0,0]” (in [m], [m], [deg]); (ii) second, we define a
set of metrics so as to assess the overall performance such as
the number of successful tasks S, success rate Sg, average
robot trajectory length [,y to reach xy from X, number of
successful tasks with a shorter route (i.e., robot trajectory)
towards the goal N ., and average traveling speed v,,. The
task is considered to be successful if the robot successfully
reaches the desired goal without colliding with obstacles. Note
that l,y, MV,,,,, and v,, are only computed for successful tasks
St that are successfully completed by both control schemes.

4) Simulation Results: The general performance of our pro-
posed control schemes are summarized in Table I, considering
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TABLE I: Overall performance of the two control schemes, where
the gray cells represent better results.

[Test]| Scheme [Nr[Sr Sk [%]][ly [m] Nig)| va [m/s] |

Scenario #1: vees = 1.5m/s & d® =2m

#1 MPPI |100| 48 48 -
#2 || log-MPPI |100| 61 61 - -
#1 MPPI | 60 | 21 35 — —
#2 ||log-MPPI| 60 | 43| 71.7 — —

Scenario #2: v = 1.5m/s & d%, = 1.5m

#3 MPPI | 50 | 42 84 76.52 (9/40) | 1.27 £0.18
#4 || log-MPPI | 50 | 48 96 75.19 (31/40)| 1.34 £0.12
Scenario #3: vges = 1.5m/s & d%5, = 2m

#5 MPPI | 50 |46 | 92% | 76.19 (13/46) | 1.324+0.14
#6 || log-MPPI| 50 | 50| 100 | 75.29 (33/46)| 1.33 £0.11
Scenario #4: vees = 2m/s & d%5, = 3m
#7 MPPI 50 | 50 100 | 72.17 (21/50) | 1.82 £ 0.039
#8 || log-MPPI| 50 | 50| 100 | 72.09 (29/50)| 1.84 + 0.037

the four scenarios defined previously and controllers’ parame-
ters given in Section IV-B1. It is worthy to notice in Scenario
#1 (i.e., Tests #1 and #2), where different values of A and >
are considered, that log-MPPI significantly outperforms MPPI
as its success rate Sg is noticeably higher than that in MPPI,
especially for the first 60 tasks (i.e., N7 = 60) where lower
values are assigned to X, (see Tests #1 and #2)°. In practice,
this clearly indicates that log-MPPI is largely compatible
with a wide range of acceptable parameters values, reducing
the time taken for fine-tuning those parameters that play an
important role in determining the behavior of sampling-based
MPC scheme. For Scenario #2 (i.e., Tests #3 and #4), where
d% = 1.5m, it can be clearly noticed that our method
experimentally exhibits better performance not only due to its
higher success rate (Sg = 96%), but also due to the fact that:
(1) la is lightly shorter (roughly, 1.33 m shorter than that for
MPPI), (ii) NV,,,, is quite higher (totally, 31 tasks compared to
9 for MPPI), and (iii) v,y is slightly better and closer to vges
with a very low standard deviation. Similarly, in the remaining
tests with high values of d°® . log-MPPI performs well with a
high capability of successfully complete all given tasks while
avoiding obstacles; thanks to the NLN distribution policy that
provides more flexible and efficient trajectories, we ensure a
much better exploration of the state-space of the given system
with more than 30% reduction in the injected noise variance
and reduce the risk of getting stuck in local minima when
MPPI is employed.

In Fig. 5, we show an example of the robot trajectories
generated by MPPI and log-MPPI in a cluttered environment,
where d°® = 2m, i.e., Scenario #3. We can clearly ob-
serve that although both control schemes achieve successfully
collision-free navigation through the cluttered environment
with an average traveling speed v,y of 1.33 m/s which respects
the control constraints as the robot linear velocity v < vges =
1.5m/s as shown in Figs. 5(b) and 5(c), log-MPPI provides
a shorter route towards the goal as shown in Fig. 5(a). More
precisely, the length of the robot trajectory [ in the case of log-

3The motive behind considering the first 60 tasks (namely, Tests #1 and #2)
is that we empirically observed that assigning higher values to ¥, increases
the possibility of violating the control constraints.
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(a) Robot trajectories generated by MPPI and (c) Linear velocity
log-MPPI; red dots represent random obstacles (log-MPPI)

Fig. 5: Behavior of MPPI and log-MPPI in a 50 m x 50 m cluttered
environment, where obstacles were 2m apart.

MPPI is 77.8 m compared to 79.92m for the classical MPPI.
C. Autonomous Navigation in Unknown Environments

In Section IV-B, where autonomous navigation in cluttered
environments is performed, it is assumed that the costmap
that represents the environment is priorly known, limiting the
applicability of the control schemes as unknown or partially
observed environments are the most dominant in robotics
applications [!]. To this end, a 2D costmap created by the
costmap_2d ROS package is utilized for storing information
about the robot’s surrounding obstacles [21] (see Fig. 6(b)).
It employs the sensor data acquired from the environment to
build a 2D or 3D occupancy grid of the data, where each cell
of the occupancy is typically expressed as occupied, free, or
unknown; in our case, a 2D occupancy grid map is sufficient
for 2D robot navigation. Thereafter, this occupancy grid is
utilized as a local costmap to be fed directly into the sampling-
based MPC algorithm, for achieving collision-free navigation
in either static or dynamic unknown environments.

(a) ‘Gazebo forest-like environment

(b) Rviz costmap visualization

Fig. 6: Snapshot of (a) our Jackal robot located in a forest-like
environment, and (b) the corresponding 2D local costmap.

1) Simulation Setup: We considered the same simulation
setup previously described in Section IV-B1, where the col-
lision indicator function g¢obs(x), given in (12), is herein
computed based on the local costmap (i.e., 2D grid map)
built by the robot on-board sensor; in this work, the Clearpath
Jackal robot is endowed with a Velodyne VLP-16 LiDAR
sensor. The size of the robot-centered 2D grid map is set to
240 cell x 240 cell with a resolution (grid size) of 0.05 m/cell.

2) Simulation Scenarios: For the benchmark, two types of
50m x 50m forest-like maps in Gazebo environment are
utilized, as depicted in Fig. 6(a). The first type (namely,
Forest #1) contains tree shaped obstacles with a density of
0.1 trees/ m?, while the latter (i.e., Forest #2) with a density
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of 0.2trees/m>. In the case of Forest #I, vges is set to
2m/s, while it is reduced to 1.5m/s in the case of Forest
#2. Another scenario (namely, Corridor #I) is considered
in which the robot navigates along a 6m X 20m corridor,
with vges = 1.5m/s, in the presence of 8 pedestrians, each
pedestrian holding a maximum velocity of vief = 0.3 m/s.

3) Performance Metrics: Here, we conduct a comparison
between the two control schemes in the aspect of the number
of collisions N, average trajectory length [,,, average
execution time per iteration ¢ypp; of the control algorithm. The
desired poses (in ([m], [m], [deg])) are defined as follows:
Gy =1[0,0,0]7,Gy = [20,20,45]7,G3 = [-18,2,0]7,G4 =
[20,—21,90]7, then G5 = [20,20,0]7. For the sake of
simplicity, for Forest #2, the robot navigates autonomously
from G to only G3, then stops.

4) Simulation Results: Table II summarizes the perfor-
mance statistics of the two proposed control strategies in Forest
#1 and Forest #2, considering 10 trials for each. As anticipated,
the obtained results demonstrate that log-MPPI has a more
flexible and efficient trajectories sampling distribution policy,
resulting in (i) reducing the probability of getting stuck in
a local minima (e.g., in Forest #2, Ncasn = 1 compared
to Nesh = 7 when MPPI is used), and (ii) improving the
quality of the generated trajectory as [,, is appreciably shorter,
especially in Forest #2. Furthermore, we can emphasize that
both control schemes guarantee a real-time performance (as
tmppi < 20 ms), showing the superiority of the sampling-based
MPC algorithm to be deployed with 2D grid maps without
adding any additional complexity to the optimization problem.

For a 2D grid-based navigation in the dynamic environment
(namely, Corridor #1), the simulation results demonstrate that
the autonomous vehicle successfully avoids moving agents, as
shown in the supplementary video. However, we empirically
noticed that the more the deployed agents, the noisier the 2D
costmap, increasing the risk of being trapped in local minima.

TABLE II: Performance comparisons of MPPI and log-MPPI.

Fig. 7: Planned trajectory by log-MPPI using the 2D costmap
previously described in Fig. 1(b) (left to right) at t = 8s (G1 — Go2),
t= 208(G2 — G3), t= 31S(G3 — G4), and t = 47S(G4 — GQ)

2) Validation Environment: A 7m X 5.5m indoor clut-
tered environment with random boxes as obstacles is uti-
lized for experimental validation, as depicted in Fig. 1(a),
where obstacles were, on average, 1.3m apart. Herein, the
desired poses (in ([m], [m], [deg])) are given as follows:
Gy = [0,0,07,Gy = [7,5.1,45]7,G3 = [5.5,1.5,0]7,G4 =
[0,3,45]T, G, then G (see Fig. 1(a)).

3) Experimental Results: The performance statistics for
three trials in our indoor environment is summarized in
Table III. We can clearly observe, for all trials, that both con-
trol schemes provide real-time collision-free navigation, since
Nerash = 0 and Zyppi < 20ms, in the cluttered environment
with an average traveling speed v,, of 0.56 m/s, regardless of
the limited perception range. In addition, the quality of the
generated trajectories by log-MPPI is considerably better than
that generated by MPPI, as l,, is noticeably shorter especially
considering the scale of the environment and the density of
random obstacles in it. Figure 7 shows a snapshot of the
collision-free and predicted optimal trajectories generated by
log-MPPI at different time instants while the robot navigates to
the desired poses. More details about the experimental results
are included in this video: https://youtu.be/bLrQWYLgocw.

TABLE III: Performance statistics of the two control strategies.

Scheme Ncrash lav [m] Vay [m/s] tmppi [ms]
MPPI 0 40.25+£0.13 | 0.55£0.13 | 11.43 £0.24
log-MPPI 0 38.95+0.17 | 0.57+0.14 | 11.18 £0.08

Indicat Forest #1 Forest #2
nacdton\ T MPPT | log-MPPI | _MPPI | log-MPPI

Ncrash 2 0 7 1

lo [m] |[158.71 £ 1.54{157.91 £ 0.54/76.12 + 3.31| 72.64 =+ 0.80

tmppi [ms]|| 13.72 & 1.34] 13.98 £ 0.68 [13.70 % 4.26] 13.47 + 1.46

V. REAL-WORLD DEMONSTRATION

We experimentally demonstrate the applicability of the pro-
posed control strategies for achieving a 2D grid-based
collision-free navigation in an unknown indoor cluttered envi-
ronment.

1) Experimental Setup: The simulation setup formerly de-
scribed in Sections IV-B1 and IV-Cl1 is also employed for the
experimental validation. However, as the indoor environment
size is tiny compared to that used for the simulation scenarios,
we set Uges = 0.75m/s and t, = 8s, while the 2D grid
map size is decreased to half of its nominal value (i.e.,
120 cell x 120cell) to ensure a real-time implementation of
the control strategies. Our experimental platform is a fully
autonomous Clearpath Jackal robot equipped with a 16-beam
Velodyne LiDAR sensor utilized for (i) generating the local
costmap, and (ii) estimating the robot’s pose using LOAM [22].

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed an extension to the classical MPPI
algorithm (namely, log-MPPI) in which the control input
updates duy, are sampled from the normal log-normal (NLN)
mixture distribution, rather than from Gaussian distribution.
We also presented a sampling-based MPC framework for
collision-free navigation in either static or dynamic unknown
cluttered environments, by directly integrating the occupancy
grid as a local costmap into the sampling-based MPC al-
gorithm. We empirically demonstrated that the trajectory
samples generated by log-MPPI are more flexible and efficient
than the ones generated by MPPI, with a more than 30%
reduction in the injected noise variance X»,, when MPPI
is employed. This subsequently results in exploring much
better the state-space of the controlled system and reducing
the risk of getting stuck in local minima. We demonstrated
in real-world environment the possibility of feeding directly
the local costmap into the optimal control problem without
adding any additional complexity to the control problem, as
well as ensuring a real-time performance of the proposed
control strategy. In the future, we plan to implement our
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control scheme on standard CPUs rather than GPUs, aiming to
reduce the computational burden. Furthermore, we will explore
methods for vanishing the possibility of getting stuck in local
minima and studying the theoretical stability of sampling-
based MPC.

ACKNOWLEDGEMENT

The authors would like to thank Grady Williams, Ziyi Wang,
and Evangelos Theodorou for the fruitful discussions for
improving the work.

REFERENCES

[1] I. S. Mohamed, G. Allibert, and P. Martinet, “Model predictive path inte-
gral control framework for partially observable navigation: A quadrotor
case study,” in 16th Int. Conf. on Control, Automation, Robotics and
Vision (ICARCV), Shenzhen, China, Dec. 2020, pp. 196-203.

[2] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica,
vol. 36, no. 6, pp. 789-814, 2000.

[3] M. Gaertner, M. Bjelonic, F. Farshidian, and M. Hutter, “Collision-free

MPC for legged robots in static and dynamic scenes,” in IEEE Int. Conf.

on Robotics and Automation (ICRA), 2021, pp. 8266-8272.

B. Lindqvist, S. S. Mansouri, A.-a. Agha-mohammadi, and G. Niko-

lakopoulos, “Nonlinear MPC for collision avoidance and control of

UAVs with dynamic obstacles,” IEEE robotics and automation letters,

vol. 5, no. 4, pp. 6001-6008, 2020.

[5] B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, “Model predictive
contouring control for collision avoidance in unstructured dynamic
environments,” IEEE Robotics and Automation Letters, vol. 4, no. 4,
pp. 44594466, 2019.

[6] M. A. Abbas, R. Milman, and J. M. Eklund, “Obstacle avoidance in real
time with nonlinear model predictive control of autonomous vehicles,”
Canadian journal of electrical and computer engineering, vol. 40, no. 1,
pp. 12-22, 2017.

[71 X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision
avoidance,” IEEE Transactions on Control Systems Technology, vol. 29,
no. 3, pp. 972-983, 2020.

[8] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive
path integral control: From theory to parallel computation,” Journal of
Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344-357, 2017.

[9] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” in IEEE
Int. Conf. on Robotics and Automation (ICRA), 2016, pp. 1433-1440.

, “Information-theoretic model predictive control: Theory and appli-

cations to autonomous driving,” IEEE Transactions on Robotics, vol. 34,

no. 6, pp. 1603-1622, 2018.

H. Lu, Q. Zong, S. Lai, B. Tian, and L. Xie, “Real-time perception-

limited motion planning using sampling-based MPC,” IEEE Transac-

tions on Industrial Electronics, 2022.

I. S. Mohamed, G. Allibert, and P. Martinet, “Sampling-based MPC for

constrained vision based control,” in IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems (IROS), 2021, pp. 3753-3758.

M. Bhardwaj, B. Sundaralingam, A. Mousavian, N. D. Ratliff, D. Fox,

F. Ramos, and B. Boots, “STORM: an integrated framework for fast

joint-space model-predictive control for reactive manipulation,” in Con-

ference on Robot Learning. PMLR, 2022, pp. 750-759.

I. S. Mohamed, “MPPI-VS: Sampling-based model predictive control

strategy for constrained image-based and position-based visual servo-

ing,” arXiv preprint arXiv:2104.04925, 2021.

G. Williams, B. Goldfain, P. Drews, K. Saigol, J. M. Rehg, and E. A.

Theodorou, “Robust sampling based model predictive control with

sparse objective information,” in Robotics: Science and Systems, 2018.

J. Pravitra, K. A. Ackerman, C. Cao, N. Hovakimyan, and E. A.

Theodorou, “L1-adaptive MPPI architecture for robust and agile control

of multirotors,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), 2020, pp. 7661-7666.

J. Yin, Z. Zhang, E. Theodorou, and P. Tsiotras, “Improving model

predictive path integral using covariance steering,” arXiv preprint

arXiv:2109.12147, 2021.

N. L. Johnson, S. Kotz, and N. Balakrishnan, “Lognormal distributions,”

in Continuous univariate distributions, volume 2. John wiley & sons,

1995, vol. 289.

[4

=

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19] V. K. Rohatgi and A. M. E. Saleh, An introduction to probability and
statistics, 3rd ed., D. J. Balding, N. A. Cressie, G. M. Fitzmaurice, G. H.
Givens, H. Goldstein, G. Molenberghs, D. W. Scott, A. F. Smith, R. S.
Tsay, and S. Weisberg, Eds. John Wiley & Sons, 2015.

P. K. Clark, “A subordinated stochastic process model with finite vari-
ance for speculative prices,” Econometrica: journal of the Econometric
Society, pp. 135-155, 1973.

E. Marder-Eppstein, D. V. Lu!!, and D. Hershberger. Costmap_2d
package. [Online]. Available: http://wiki.ros.org/costmap_2d

J. Zhang and S. Singh, “LOAM: Lidar odometry and mapping in real-
time.” in Robotics: Science and Systems, vol. 2, no. 9. Berkeley, CA,
2014, pp. 1-9.

[20]

[21]

[22]

APPENDIX A
ANALYSIS OF THE NEW SAMPLING STRATEGY ON MPPI

In this appendix, we provide a brief interpretation for the tra-
jectory rollout behavior using the proposed sampling method.
Let us examine the effect on the dynamics due to the change
of noise. The original dynamics of MPPI reads (i.e., Eq. (53)
in [15], ignored constant)

dﬁCt :.f(mta t) dt+G(mta t)u(mta t) dt+G(wta t) dB(t)v (13)

where B(t) is Brownian motion.

In the discrete version, if € in the sampling is replaced by
Z = €Y = ee", where W is an independent Gaussian vector
of €, we may consider this randomness as a new disturbance
to the original dynamics. Although it is difficult to obtain an
exact dynamics corresponding to the proposed method, we
may use the following approximation. Assume that the original
dB(t) is replaced by d (B(t)etnt+omBi(t)) where By (t) is
a standard Brownian motion, independent of B(¢). To simplify
notation, denote 1, + 07, B1(t) by Wi, and £ £ 102, + .
By Ito’s formula, we can get the following computation for
d (B(t)e"®):

eV aB(t) + B(t)de"® 4 d[B(t), eV V)]
— VOB +B(1) (olnewl(t)dBl(t)+neW1(t)dt). (14)
Thus, the sampling dynamics can be viewed as a modified one
dxy = f(a,t) dt + G, t)u(ay, t) dt
+ Gla, 1) d (BH)e™ )
= flae,t) dt + Gz, t) (u(mt, t) + nB(t)er(t)) dt
+ Gla, 1) (VOB () + 0, BV VaBi (1)) . (15)

We have two observations. First, the drift term (the
term with dt) is modified to f(x,t) + G(x, t)u(x:,t) +
kG (x,t)B(t)eW1®), This can be thought of a random drift
term, compared to the deterministic counterpart in the original
dynamics. But the mean of the drift term remains the same
with the original one. Since the drift term can be viewed as the
“trend" of the path for each sample path, the proposed scheme
has more diverse “trends" of the trajectories than the original
one. The new sampled trajectories turn to spread out much
more than that in the original dynamics, indicating that this
scheme can explore more spaces than the original one. This
leads to a more efficient sampling scheme than the normal
distribution, even with the similar variance. Second, the noise
term can be much more flexible to tune the variance of the
sampling trajectories as it contains more parameters.
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