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Abstract—This paper presents time-domain measurement
data-based dynamic model parameter estimation for synchronous
generators and inverter-based resources (IBRs). While prediction
error method (PEM) is a well-known and popular method, it
requires a good initial guess of parameters which should be in
the domain of convergence. Recently, the system identification
community has made significant progress in improving the PEM
method by taking into consideration of the characteristics of the
low-rank data Hankel matrix. In turn, an estimation problem
can be formulated as a rank-constraint optimization problem,
and further a difference of convex programming (DCP) problem.
This paper adopted the data Hankel matrix fitting strategy and
developed the problem formulation for the parameter estimation
problems for synchronous generators and IBRs. These two
examples are presented and the results are satisfying.

Index Terms—Dynamical parameter identification, syn-
chronous generators, inverter-based resources.

I. INTRODUCTION

SYNCHRONOUS generators and inverter-based resources
(IBRs) are two major types of resources in power grids.

Specifically, IBRs’ control structures and parameters are pro-
prietary information. In the current practice of grid industry,
generic dynamic models with assumed model structures are
used for dynamic assessment, e.g., [1], [2]. How to configure
the model parameters using measurement data is of practical
importance. For synchronous generators, finding parameters
from experiment data has a long and rich history. IEEE
standard 115, has a section devoted to identifying various
reactances (synchronous, transient, and subtransient) and time
constants (open-circuit, short-circuit, transient, and subtran-
sient) through experiments [3]. Furthermore IEEE standard
115A provides a more accurate procedure to identify q-
axis quantities through standstill frequency response tests [4].
Those tests have to be conducted offline and are expensive.

The goal of this paper is to design a method to identify
model parameters based on time-domain measurement data
obtained during online operation. In general, estimating dy-
namic model parameter for a model with a known structure
is termed as gray-box model identification [5] and the most
popular method is the PEM method [6]. The PEM method
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directly uses the input-output time-domain data to identify the
parameters [6]. It essentially solves a nonlinear programming
problem. Convergence is an issue. In addition, a solution
of local optimum can result in a poor matching degree of
measured data and its estimation. Another well-known method,
Kalman filter, which has been applied for generator parameter
estimation in the literature, e.g., [7], [8], suffers the same
issues.

Recently, the system identification community has made sig-
nificant progress in improving the PEM method by taking into
consideration of the characteristics of the low-rank data Hankel
matrix. In turn, the estimation problem can be reformulated
as a rank-constraint optimization problem with a matrix as
the decision variable to fit the Hankel matrix formed from the
measurement data. This problem can be further formulated as
a DCP problem with the objective of minimizing the weighted
sum of the nuclear norm of the matrix decision variable and the
sum of its first n singular values (where n is the model order)
[9], [10]. This paper designs the Hankel matrix fitting-based
estimation formulation and solving algorithms for parameter
estimation of synchronous generators and IBRs.

For a synchronous generator represented by a second-order
dynamic model, this method can accurately estimate the damp-
ing coefficient, the machine inertia, and the synchronizing
torque coefficient. For an IBR represented by a fourth-order
model, this method is able to identify five parameters of the
inverter control model accurately.

This paper is organized as follows. Section II presents the
gray-box model identification problem formulation. Section
III applies the method to the two examples, and Section IV
concludes the paper.

II. HANKEL DATA MATRIX-BASED GRAY-BOX MODEL
IDENTIFICATION

We start from a nth-order continuous-time state-space
model expressed as follows. It has m input and p outputs.

x(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m

are the dynamical system matrix, the input matrix, the output
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matrix, and the feedthrough matrix, respectively. In many
engineering applications, discrete-time state-space models are
more often used. The discrete-time state-space model pre-
sented is as follows.

x[kT + T ] = Adx[kT ] +Bdu[kT ],

y[kT ] = Cdx[kT ] +Ddu[kT ],
(2)

where T is the sampling period and k is the sample number.
Many methods accurately convert a continuous-time state-
space form to a discrete-time state-space form [11, Chapter 2].
Among the numerical integration methods, Forward-Euler ap-
proximation is convenient in parameter identification because
it retains the system original structure. If Forward-Euler rule is
adopted, the matrices in continuous time domain and discrete
time domain are related as follows.

Ad = AT + I, Bd = BT, Cd = C, Dd = D, (3)

where I is the identity matrix. The conversion accuracy
increases with the sampling period, T , decreasing.

Assume that the feedthrough matrix D = 0 and the system
matrices are affine towards the parameter vector θ ∈ Rl.

A(θ) = A0 +
l∑

i=1

Aiθi, B(θ) = B0 +
l∑

i=1

Biθi,

C(θ) = C0 +
l∑

i=1

Ciθi,

(4)

Assume that impulse response data are available. The gray-
box model identification may utilize the low-rank property of
the data Hankel matrix formed by the impulse response data
and formulate a rank-constraint problem to be solved via DCP.

A. Optimization problem formulation

The optimization problem aims to identify the model pa-
rameters by matching the measured impulse response with the
impulse response of the parametrized model. The system im-
pulse response measurements, also called Markov parameters,
are equivalent to Mi = Cd(Ad)iBd for i = 0, 1, . . . , R, where
R is the number of the total impulse samples.

The Markov parameters are aggregated in a block Hankel
matrix:

H∗
v,h =





M0 M1 · · · Mh−1

M1 M2 · · · Mh
...

...
. . .

...
Mv−1 Mv · · · Mv+h−2




, (5)

where the subscripts v and h represent the number of block
rows and columns, respectively. Each of them has to be
greater than or equal the system order, n. The outputs of the
parameterized system are also collected and formed in a block
Hankel matrix.

Solving the following optimization problem may lead to the
unknown parameters

min
θ

∥∥∥H∗
v,h −Hv,h(θ)

∥∥∥
2

F
s.t.
Hv,h(θ) =


Cd(θ)Bd(θ) · · · Cd(θ)A

h−1
d (θ)Bd(θ)

...
. . .

...
Cd(θ)A

v−1
d (θ)Bd(θ) · · · Cd(θ)A

v+h−2
d (θ)Bd(θ)



 .

(6)
This is a nonlinear programming problem and it is difficult

to find the global solution.

B. Rank-Constraint Reformulation

The matrix Hv,h(θ) is low-rank, and it can be factorized as
follows

Hv,h(θ) =





Cd(θ)
Cd(θ)Ad(θ)

...
Cd(θ)A

v−1
d (θ)





︸ ︷︷ ︸
Ov(θ)

×
[
Bd(θ) Ad(θ)Bd(θ) · · · Ah−1

d (θ)Bd(θ)
]

︸ ︷︷ ︸
Ch(θ)

,

(7)
where Ov(θ) and Ch(θ) are the extended observability and
controllability matrices, respectively. To differentiate between
the Hv,h(θ) original and low-rank structures, the low-rank
structure is denoted as X so that X = OC. Next, two variable
matrices are introduced to represent the shift property of Ov(θ)
and Ch(θ), respectively.

Ov(θ) =

[
Ov(p+ 1 : vp, :)
Cd(θ)Av

d(θ)

]
,

Ch(θ) =
[
Ch(:,m+ 1 : hm) Ah

d(θ)Bd(θ)
]
.

(8)

Ov(θ) and Ch(θ) respectively hold the relationship of
Ov(θ) = Ov(θ)Ad(θ) and Ch(θ) = Ad(θ)Ch(θ). The bilin-
earity of these variables can now be transformed into a rank
constraint. As a result, the following problem is formed in [9]:

min
θ,O,C,O,C,X,Ā

‖H∗
v,h −X‖2F

s.t. rank




X O O
C In Ad(θ)
C Ad(θ) Ā





︸ ︷︷ ︸
Z

= n,

O(1 : p, :) = Cd(θ),
O(1 : (v − 1)p, :) = O(p+ 1 : vp, :),
C(:, 1 : m) = Bd(θ),
C(:, 1 : (h− 1)m) = C(:,m+ 1 : hm),

(9)

where Ā = A2
d(θ). This rank-constraint problem will be solved

by DCP in the following subsection.



C. Difference of Convex Programming
The truncated nuclear norm method gives the ability to

replace the rank constraint in (9) by the following

‖Z‖∗−fn(Z) = 0, (10)

where ‖·‖∗ is the nuclear norm and fn(Z) =
∑n

i=1 σi(Z).
fn is the sum of the largest n singular values, σ. The nuclear
norm and fn(Z) are all convex in the minimization variables.
It can be solved by sequence iteration.

At every jth iteration, the Singular Value Decomposition
(SVD) is implemented on Z:

Zj =
[
U j
1 U j

2

] [ Sj
1

Sj
2

] [
V j,T
1

V j,T
2

]
, (11)

where U j
1 and V j,T

1 denote the n truncated left and right
singular matrices, respectively.

min
θ,O,C,O,C,X,Ā,Z

‖H∗
v,h −X‖2F+λ

(
‖Z‖∗− tr

(
U j,T
1 ZV j

1

))

s.t. Z =




X O O
C In Ad(θ)
C Ad(θ) Ā



 ,

O(1 : p, :) = Cd(θ),
O(1 : (v − 1)p, :) = O(p+ 1 : vp, :),
C(:, 1 : m) = Bd(θ),
C(:, 1 : (h− 1)m) = C(:,m+ 1 : hm),

(12)
where λ > 0 is a penalty parameter. (12) is a convex program-
ming problem. Also, at the start of the iteration process, the n
truncated left and right singular matrices are assumed as zero.

III. CASE STUDIES

This section presents and discusses the implementation
of the gray-box algorithm on a single-machine infinite-bus
(SMIB) model and an analytical model of grid-integrated IBR.
For all the following case studies, the penalty parameter is set
to 0.001. The simulations are computed in MATLAB using
CVX toolbox [12].

A. Single-Machine Infinite-Bus (SMIB)
The system is shown in Fig. 1, and its state-space model is

as follows.
[

∆δ̇
∆ω̇

]
=

[
0 1

−Ksωo
2H − D

2H

]

︸ ︷︷ ︸
A

[
∆δ
∆ω

]
+

[
0
ωo
2H

]

︸ ︷︷ ︸
B

∆Tm,

(13)
where

Ks =
VTV∞ cos δ

Xeq
. (14)

∆δ and ∆ω are the deviations of the generator rotor angle
in rad and speed in rad/s, respectively. The system nominal
angular frequency is ωo = 2πf , where f is the system
frequency (60 Hz). ∆Tm is the mechanical torque, and D
is the damping coefficient that is set to 1. The machine
inertia H is 3.5 sec. The equivalent system reactance is

TABLE I: SMIB Parameters.

Parameter Actual Estimated
θ1 -0.4205 -0.4211
θ2 0.9965 0.9986
θ3 0.5380 0.5387

Xeq = X ′
d +XT +XL = 0.1033 pu. Ks is the synchronizing

torque coefficient, and it is computed at its equilibrium to be
0.7819. For more details please refer to [13].

Grid

P

jXT jXL
VT V∞

Fig. 1: Single-machine infinite-bus system.

1) Model Identification: The following parameterization
structure helps to detect D, H , and Ks.

[
∆δ̇
∆ω̇

]
=

[
0 1
θ1 θ2

]

︸ ︷︷ ︸
A

[
∆δ
∆ω

]
+

[
0
θ3

]

︸ ︷︷ ︸
B

∆Tm. (15)

The above system’s impulse response are shown in Fig. 2
(solid line) and are used for the identification process. The
sampling step T = 0.01 s. A Hankel data matrix is formed
using the measurement data with 10 row blocks and 90 column
blocks. After applying the algorithm, the global solution is
achieved in 9 iterations; the identified and actual parameters
match, as shown in Table I. Further, a user can inspect the
quality of the solution by comparing the measurement data
and its estimation, as shown in Fig. 2.

The iteration solution details are presented in Fig. 3. The
top figure demonstrates the behavior of the objective function
without the regularization term. The middle figure presents the
regularization term that approaches zero which indicates the
rank constraint is satisfied after 9 iterations. The bottom figure
presents each parameter along with iteration steps.

B. A Grid-integrated IBR
The reduced-order analytical model to represent a grid-

integrated IBR is from [14], which can offer an explanation on
the low-frequency oscillations observed in a real-world wind
power plant (WPP) in Texas [15]. In this case study, we adapt
the analytical model from [14] into a parameterized structure
and identify five parameters.

1) The Analytical Model: The analyzed system is a WPP
connected to a grid through a transformer and a transmission
shown Fig. 4. The grid is represented with constant voltage
magnitude and angle. The line is assumed to be purely
induction and the line reactance is notated as X . The point
of common coupling (PCC) represents the converter bus that
connects the WPP to the grid, where V , P , and Q are the
converter voltage magnitude, active power, and reactive power,
respectively.

The WPP is treated as a current source. The vector control
technique is implemented on the WPP with its d-axis aligned
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Fig. 4: A wind power plant is connected to the grid.

with the PCC voltage space vector. The WPP’s currents, id
and iq , can be controlled by two cascaded loops, namely,
outer and inner. The d-axis outer loop tracks the real power to
generate the d-axis current reference i∗d, and the q-axis outer
control loop tracks the PCC voltage to generate the q-axis
current reference i∗q . The inner current loops track the current
references by adjusting the converter output dq-voltages, Vtd

and Vtq .
The converter’s inner current control is simplified by a first-

order system with a time constant τ that takes the reference
currents as inputs. The outputs are the dq-axic currents: id and
iq .

Since the converter voltage is aligned with the PCC voltage,
hence vd = V and vq = 0. The system’s circuit relationship
can be expressed as follows in the dq-frame:

vd + jvq = (jX) (id + jiq) + V̄∞. (16)
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Fig. 5: The WPP linearized analytical model. The model parameter values
are τ = 0.05, X = 1, id = 0.955,Kp = 1,Ki = 1,Kpv = 1,Kiv =
10, isc = 1/X, Vd = 1, and V∞ = 1.

The PCC voltage phase angle, δ, leads the grid voltage’s
phase angle to ensure the real power flows from the inverter
to the grid. The above phasor-based equation can be further
decomposed into two equations in real domain.

vd = −Xiq + V∞ cos δ,

vq = 0 = +Xid − V∞ sin δ.
(17)

Note that
V∞ cos δ =

√
V 2
∞ − (V∞ sin δ)2, (18)

can be plugged in equation (17), which leads to the following

vd = −Xiq +
√
V 2
∞ − (Xid)

2. (19)

The linearization of (19) gives the following:

∆V = ∆vd = −X∆iq −
X√(

V∞
Xid

)2

− 1

︸ ︷︷ ︸
c

∆id. (20)

The active power feeding the grid from the PCC, and its
linearized expression is:

P = V id,

∆P = id∆V + V∆id.
(21)

The block diagram is shown in Fig. 5.
2) The Analytical Model State-Space: We derive the state-

space form of the analytical model to make it compatible
with the identification algorithm. The dynamical state of each
integrator is indicated in Fig. 5. The state-space form is as
follows.




ẋ1

ẋ2

ẋ3

ẋ4



 =





0 0 −Ki (Vd − c id) KiXid
0 0 −Kiv c −Kiv X
1
τ 0 −Kp(Vd−cid)+1

τ
KpXid

τ

0 1
τ −Kpvc

τ −KpvX+1
τ





︸ ︷︷ ︸
A





x1

x2

x3

x4





+





Ki 0
0 −Kiv
Kp

τ 0

0 −Kpv

τ





︸ ︷︷ ︸
B

[
∆P ∗

∆V ∗

]
.

(22)



From the above derivation, (x1 + Kp(∆P ∗ − ∆P )) and
(x2 +Kpv(∆V −∆V ∗) are the current orders ∆i∗d and ∆i∗q .
x3 and x4 are ∆id and ∆iq , respectively.

3) Model Identification: In this case study, we aim to find
five parameters: the time constant, τ , and the controller gains,
Kp, Ki, Kpv , and Kiv , from impulse responses. The operating
condition is assumed as known. Hence, vd, c, id, X are all
known. We parameterize the system as follows:

A(θ) =





0 0 2.07θ2 0.955θ2
0 0 −3.22θ3 −θ3
θ1 0 2.07θ4 − θ1 0.955θ4
0 θ1 −3.22θ5 −(θ5 + θ1)



 ,

B(θ) =





θ2 0
0 −θ3
θ4 0
0 −θ5



 .

(23)

where

θ1 =
1

τ
, θ2 = Ki, θ3 = Kiv

θ4 =
Kp

τ
, θ5 =

Kpv

τ

Assume that all the four states can be measured. We
employ the impulse response that is shown in Fig. 6 for the
identification process with the sampling time T = 0.03 s.
Total 100 data points are used. The number of block rows
and columns are respectively v = 10 and h = 90. Compared
with the SMIB, this case has a complicated structure and more
unknown variables; thus, the global solution is obtained in 82
iterations. Table II shows the identified and actual parameters.
It can be seen that the algorithm can recover the accurate
parameters.

The iteration details are presented in Fig. 7. The upper
subplot shows the total objective function that approaches
zero as the solution is found. The bottom subplot presents
the parameters over iterations.

TABLE II: Wind Power Plant Analytical Model Parameters.

Parameter Actual Estimated
θ1 20 20.0160
θ2 1 0.9953
θ3 10 10.0565
θ4 20 19.6396
θ5 20 19.9090

Remark: For both examples, we have demonstrated excel-
lent performance of the proposed method in recovering dy-
namic model parameters. As the first step, we use a benchmark
model’s impulse response to recover the parameters of the
benchmark model. For future research, we will use measure-
ment data from complicated models to estimate parameters of
simplified models.

Remark: A tricky part in DCP problem solving is that
the penalty parameter requires trial and error. For the current
two examples, the penalty parameter is set as 0.001. We
have also found that convergence can be achieved quickly for
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Fig. 6: WPPs impulse data.
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Fig. 7: WPPs iteration solution.

the first example while it takes many more steps to achieve
convergence. Further investigation is necessary.

IV. CONCLUSION

Gray-box model identification is a challenging task since the
formulated optimization problems are nonlinear programming
problems. Advancements have been made in this area by
exploring the low-rank characteristics of the data Hankel
matrix and adopting convex programming techniques. This
paper adapts the most recent research results of gray-box
model identification into synchronous generator parameter
identification and IBR parameter identification. Two case
studies are used to demonstrate the problem formulation and
solving for parameter identification. The results are satisfying
for the benchmarked models.
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