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Abstract
Adversarial training has become one of the most
effective methods for improving robustness of neu-
ral networks. However, it often suffers from poor
generalization on both clean and perturbed data.
Current robust training method always use a uni-
formed perturbation strength for every samples to
generate adversarial examples during model train-
ing for improving adversarial robustness. However,
we show it would lead worse training and gener-
alizaiton error and forcing the prediction to match
one-hot label. In this paper, therefore, we pro-
pose a new algorithm, named Customized Adver-
sarial Training (CAT), which adaptively customizes
the perturbation level and the corresponding la-
bel for each training sample in adversarial train-
ing. We first show theoretically the CAT scheme
improves the generalization. Also, through ex-
tensive experiments, we show that the proposed
algorithm achieves better clean and robust ac-
curacy than previous adversarial training meth-
ods. The full version of this paper is available at
https://arxiv.org/abs/2002.06789.

1 Introduction
Deep neural networks (DNNs) have proved their effective-
ness on a variety of domains and tasks. However, it has
been found that DNNs are highly vulnerable to adversarial
examples [Szegedy et al., 2014]. To enhance the robustness
of DNNs against adversarial examples, adversarial training
[Goodfellow et al., 2015; Madry et al., 2018] has become
one of the most effective and widely used methods. Given
a pre-defined perturbation tolerance, denoted as ε, adversar-
ial training aims to minimize the robust loss, defined as the
worst-case loss within ε-ball around each example, leading to
a min-max optimization problem. [Madry et al., 2018] shows
that applying a multi-step projected gradient descent (PGD)
attack to approximately solve the inner maximization leads to
a robust model, and several recent research has proposed var-
ious ways to improve adversarial training [Zhang et al., 2019;

Wang, 2019; Wang et al., 2019a; Balaji et al., 2019; Ding et
al., 2018].

However, standard adversarial training methods still have
a hypothetical and possibly problematic assumption: the per-
turbation tolerance ε is a large and fixed constant through-
out the training process, which ignores the fact that ev-
ery data point may have different intrinsic robustness. In-
tuitively, some examples are naturally closer to the deci-
sion boundary, and enforcing large margin on those ex-
amples will force the classifier to give up on those exam-
ples, leading to a distorted decision surface. This intuition
may explain the known issue of the undesirable robustness-
accuracy tradeoff in adversarial robustness [Su et al., 2018;
Tsipras et al., 2019]. Furthermore, with a different perturba-
tion tolerance, it is questionable whether we should still force
the model to learn to fit the one-hot label as in the original
adversarial training formulation. In the extreme case, if an
example is perturbed to the decision boundary, a good clas-
sifier yielding the binary class prediction probabilities should
output [0.5, 0.5] instead of [1, 0]. This aspect becomes cru-
cial when each example is associated with a different level of
perturbation. Although some recent papers have started to ad-
dress the uniform ε issue by treating correctly and incorrectly
classified examples differently [Ding et al., 2018] or assign-
ing non-uniform perturbation level [Balaji et al., 2019], none
of them have tried to incorporate customized training labels
in this process.

Motivated by these ideas, we propose a novel Customized
Adversarial Training (CAT) framework that can substantially
improve the performance of adversarial training. Throughout
the adversarial training process, our algorithm dynamically
finds a non-uniform and effective perturbation level and the
corresponding customized target label for each example. This
leads to better generalization performance and furthermore,
with a careful design on adaptive ε tuning, our algorithm has
only negligible computational overhead and runs as fast as
the original adversarial training algorithm. Furthermore, we
theoretically explain why the proposed method could lead to
improved generalization performance.

Our method significantly outperforms existing adversar-
ial training methods on the standard CIFAR-10 defense task.
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With Wide-ResNet structure on CIFAR-10, under 8/255 "∞
perturbation, our method achieves 73% robust accuracy under
PGD attack and 71% robust accuracy under Carlini and Wag-
ner (C&W) attack [Carlini and Wagner, 2017], while the cur-
rent best model only achieves 58.6% under PGD attack and
56.8% under C&W attack. Furthermore, our method only
degrades the clean accuracy from 95.93% (standard test ac-
curacy) to 93.48%, while other adversarial training methods
have clean accuracy below 91.34%.

2 Background and Motivation
2.1 Preliminaries
Adversarial training can be formulated as a min-max opti-
mization problem. For a K-class classification problem, let
D = {(xi, yi)}i=1,...,n denote the set of training samples in
the dataset with xi ∈ Rd, yi ∈ {1, . . . ,K} := [K], we con-
sider a classfication model fθ(x) : Rd → [K] parameterized
by θ. We denote by hθ(x) : Rd → [0, 1]K as the prediction
output for each class, i.e., fθ(x) = argmaxi[hθ(x)]i.

Adversarial training can be formulated as:

min
θ

1

n

n∑

i=1

max
x′

i∈Bp(xi,ε)
"(fθ(x

′
i), yi), (1)

where Bp(xi, ε) denotes the "p-norm ball centered at xi with
radius ε. The inner maximization problem aims to find an
adversarial version of a given data point xi that achieves
the highest loss. In general, one can define Bp(xi, ε) based
on the threat model, but the "∞ ball is the most popu-
lar choice adopted by recent works [Madry et al., 2018;
Zhang et al., 2019; Wang, 2019; Ding et al., 2018; Wang
et al., 2019b], which we also use in this paper. For a deep
neural network model, the inner maximization does not have
a closed form solution, so adversarial training methods typ-
ically use a gradient-based iterative solver to approximately
solve the inner problem. The most commonly used choice
is the multi-step PGD [Madry et al., 2018] and C&W at-
tack [Carlini and Wagner, 2017].

2.2 Motivation
Intuitively, if adversarial training can always find a model
with close-to-zero robust error, one should always use a large
ε for training because it will automatically imply robustness
to any smaller ε. Unfortunately, in practice a uniformly large
ε is often harmful. In the following we empirically explain
this problem and use it to motivate our proposed algorithm.

We use a simple linear classification case to demonstrate
why a uniformly large ε is harmful. In Figure 1a, we gener-
ate a synthetic linearly separable dataset with the margin set
to be 1.75 for both classes, where the correct linear boundary
can be easily obtained by standard training. In Figure 1b, we
run adversarial training with ε = 1, and since this ε is smaller
than the margin, the algorithm can still obtain near-optimal
results. However, when we use a large ε = 4 for adversar-
ial training in Figure 1c, the resulting decision boundary be-
comes significantly worse. It is because adversarial training
cannot correctly fit all the samples with a margin up to 4, so
it will sacrifice some data samples, leading to distorted and

Testing ε Error Type Training ε
0.01 0.02 0.03

0.01 Train 99.96% 99.99% 99.16%
Test 69.79% 69.06% 66.04%

Table 1: The influence of different fixed ε values used in adversarial
training on the robust accuracy with ε = 0.01.

undesirable decision boundary. This motivates the following
two problems:

• We shouldn’t set the same large ε uniformly for all sam-
ples. Some samples are intrinsically closer to the deci-
sion boundary and they should use a smaller ε. With-
out doing this, adversarial training will give up on those
samples, which leads to worse training and generaliza-
tion error (see more discussions in Section 3.3 on the
generalization bounds).

• The adversarial training loss is trying to force the predic-
tion to match the one-hot label (e.g., [1, 0] in the binary
classification case) even after large perturbations. How-
ever, if a sample is perturbed, the prediction shouldn’t
remain one-hot. For instance, if a sample is perturbed to
the decision boundary of a binary classification problem,
the prediction of a perfect model should be [0.5, 0.5] in-
stead of [1, 0], which also makes adversarial training fail
to recover a good decision hyperplane.

Furthermore, we observe that even if adversarial training can
obtain close-to-zero training error with large ε (e.g., [Gao
et al., 2019] proves that this will happen for overparameter-
ized network with large-enough margin), a uniformly large ε
will lead to larger generalization gap. This could be partially
explained by the theoretical results provided by [Yin et al.,
2018], which shows that the adversarial Rademacher com-
plexity has a lower bound with an explicit dependence on the
perturbation tolerance. The empirical results in Table 1 also
illustrate this problem. When conducting adversarial training
with ε = 0.3 on CIFAR10 VGG-16, we found that the model
achieves close-to-zero robust training error on all ε ≤ 0.3, but
it suffers larger generalization gap compared to training with
smaller ε. This also demonstrates that a uniformly large ε is
harmful even when it achieves perfect training error.

3 CAT (Customized Adversarial Training)
In this section, we propose the Customized Adversarial Train-
ing (CAT) framework that improves adversarial training by
addressing the above-mentioned problems. First, our algo-
rithm has an auto-tuning method to customize the ε used for
each training example. Second, instead of forcing the model
to fit the original label, we customize the target label for each
example based on its own ε. In the following we will describe
these two components in more detail.

3.1 Auto-tuning Perturbation Strength for
Adversarial Training

The first component of our algorithm is an ε auto-tuning
method which adaptively assigns a suitable ε for each exam-
ple during the adversarial training procedure. Let εi be the
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(c) Adv-train with ε = 4
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(d) CAT with εmax = 4

Figure 1: Different training methods on a linearly separable binary classification dataset with 1.75 margin for both classes. Adversarial
training with small ε works fine, but for a large ε beyond the true margin, adversarial training would ruin the classifier’s classification
performance, while our proposed adaptive customized adversarial training method still keeps a good generalization performance.

perturbation level assigned to example i. Based on the in-
tuition mentioned in Section 2.2, we do not want to further
increase ε if we find the classifier does not have capacity to
robustly classify the example, which means we should set

εi = argmin
ε

{ max
x′

i∈Bp(xi,ε)
fθ(x

′
i) $= yi} (2)

and the adversarial training objective becomes

min
θ

1

n

n∑

i=1

max
x′

i∈Bp(xi,εi)
"(fθ(x

′
i), yi). (3)

Note that εi in (2) depends on θ, while θ in (3) also depends
on εi. We thus propose an alternative update scheme — con-
ducting one SGD update on θ, and then updating the εi in
the current batch. However, finding εi exactly requires brute-
force search for every possible value, which adds significant
computational overhead to adversarial training.

Therefore, we only conduct a simplified update rule on εi
as follows. Starting from an initial perturbation level of zero,
at each iteration we conduct adversarial attack (e.g., PGD at-
tack) with perturbation tolerance εi + η where η is a con-
stant. If the attack is successful, then we reset current εi to
0 to encourage model learning a more robust classifier to-
wards those examples. While if the attack is unsuccessful,
which means an attacker still cannot find an adversarial ex-
ample that satisfies maxx′

i∈Bp(xi,εi+η) fθ(x
′
i) $= yi, then we

increase εi = εi + η. The attack results will also be used to
update the model parameter θ, so this adaptive scheme does
not require any additional cost. In practice, we also have an
upper bound on the final perturbation to ensure that εi remains
bounded for each i.

3.2 Adaptive Label Uncertainty for Adversarial
Training

As mentioned in Section 2.2, the standard adversarial training
loss is trying to enforce a sample being classified as the orig-
inal one-hot label after ε perturbation. However, this may not
be ideal. In the extreme case, if a sample is perturbed to the
decision boundary, the prediction must be far away from one-
hot. This problem is more severe when using non-uniform εi,
since each different εi will introduce a different bias to the

loss, and that may be one of the reasons that purely adaptive
ε-scheduling does not work well (see our ablation study in
Section 5 and also the results reported in [Balaji et al., 2019]).

In the following, we propose an adaptive label smoothing
approach to reflect different perturbation tolerance on each
example. Szegedy [2016] introduced label smoothing that
converts one-hot label vectors into one-warm vectors repre-
senting low-confidence classification, in order to prevent the
model from making over-confident predictions. Specifically,
with a one-hot encoded label y, the smoothed version is

ỹ = (1− α)y + αu,

where α ∈ [0, 1] is the hyperparameter to control the smooth-
ing level. In the adaptive setting, we set α = cεi so that a
larger perturbation tolerance would receive a higher label un-
certainty and c is a hyperparameter. A common choice of
u is u = 1

K . However, this strict requirement tries to en-
force every other labels having the same probability, which
may not make sense in practice. On the other hand, as shown
Section 2.2, adversarial training is easy to overfit and gen-
erate a large generalization gap. To better address these is-
sues, we sample from a distribution instead. Specifically, we
use u = Dirichlet(β) where Dirichlet(·) refers to the Dirich-
let distribution and β ∈ RK is concentration hyperparamter.
With different perturbation tolerance, the adaptive version of
label smoothing is

ỹi = (1− cεi)yi + cεiDirichlet(β). (4)

The Final Objective Function. Combining the two afore-
mentioned techniques, our Customized Adversarial Training
(CAT) method attempts to minimize the following objective:

min
θ

1

n

n∑

i=1

max
x′

i∈Bp(xi,εi)
"(fθ(x

′
i), ỹi)

s.t. εi = argmin
ε

{ max
x′

i∈Bp(xi,ε)
fθ(x

′
i) $= yi},

(5)

where ỹi is defined in (4). As described in Section 3.1, we
approximately minimize this objective with an alternative up-
date scheme, which incurs almost no additional cost com-
pared to the original adversarial training algorithm. The de-
tailed algorithm is presented in Algorithm 1.
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Algorithm 1 CAT algorithm

Input: Training dataset (X,Y ), cross entropy loss or mix
loss ", scheduling parameter η, weighting factor c, pertur-
bation upperbound εmax

Initial every sample’s εi with 0
for epoch=1, . . . , N do
for i=1, . . . , B do
ỹi ← (1− cεi)yi + cεiDirichlet(β)
εi ← εi + η
δi ← 0
for j = 1 . . .m do
δi ← δi + α · sign(∇δ"(fθ(xi + δi), ỹi)
δi ← max(min(δi, εi),−εi)

end for
if fθ(xi + δi) $= yi then
εi ← 0

end if
εi ← min(εmax, εi)
ỹi ← (1− cεi)yi + cεiDirichlet(β)
θ ← θ − γθ∇θ"(fθ(xi + δi), ỹi)

end for
end for
return θ

Choice of Loss Function. In general, our framework can be
used with any loss function "(·). In the previous works, cross
entropy loss is commonly used for ". However, the model
trained by smoothing techniques tends to have a smaller logit
gap between true label and other labels. Therefore, in order
to encourage model to generate a larger logit gap, we pro-
pose a mixed loss to enhance the defense performance to-
wards C&W∞ attack. That is,

CE(fθ(x′
i), ỹi) + max{max

j $=y0

{[Z(x′
i)]j − [Z(x′

i)]y0},−κ},

where Z(x) ∈ RK is the final (logit) layer output, and
[Z(x)]i is the prediction score for the i-th class and y0 is the
original label. The parameter κ encourages the adversary to
find higher confident adversarial examples in training.

3.3 Theoretical Analysis
To better understand how our scheme improves generaliza-
tion, we now provide some theoretical analysis. Recall we
denote by hθ(x) : Rd → [0, 1]K as the prediction probabil-
ity for the K classes. We define the bilateral margin that our
paper is essentially maximizing over as follows.
Definition 1 (Bilateral margin). We define the bilateral per-
turbed network output by Hθ(x, δi, δo):

Hθ(x, δ
i, δo) := hθ

(
x+ δi‖x‖

)
+
∥∥x+ δi‖x‖

∥∥ · δo.

The bilateral margin is now defined as the minimum norm of
(δi, δo) required to cause the classifier to make false predic-
tions:

mF (x, y) := min
δi,δo

√
‖δi‖2 + ‖δo‖2

s.t. max
y′

Hθ(x, δ
i, δo)y′ $= y.

(6)

This margin captures both the relative perturbation on the
input layer δi and the soft-max output δo.
Theorem 2. Suppose the parameter space Θ we optimize
over has covering number that scales as logN‖·‖op(η,Θ) ≤
)C2/η2* for some complexity C. Then with probability 1 − δ
over the draw of the training data, any classifer fθ, θ ∈ Θ
which achieves training error zero satisfies:

E[fθ(x) = y] ! C log2 n√
n

√√√√ 1

n

n∑

i=1

1

mF (xi, yi)
+ ζ,

where ζ is of small order O
(
1
n log(1/δ)

)
.

We defer the proof to the Appendix, which is adapted from
Theorem 2.1 of [Wei and Ma, 2019]. We observe the pop-
ulation risk is bounded by two key factors, the average of

1
mF (xi,yi)

and C, the covering number of the parameter space.
On one side, the average of 1

mF (xi,yi)
is dominated by the

samples with the smallest margin. Therefore when we do
adversarial training, it is important that we not only achieve
higher overall accuracy, but also make sure the samples closer
to the decision boundary have large enough margin. This
can not be achieved by simply using constant and large ε
that will maintain a large margin for most samples but sac-
rifice the accuracy of a small portion of data. On the other
hand, the covering number of the network’s parameter space
can be roughly captured by a bound of product of all lay-
ers’ weight norms. We hypothesize that with more flexibility
in choosing ε, our algorithm will converge faster than using
larger constant ε and will have more implicit regularization
effect. To testify this hypothesis, we roughly measure the
model complexity C by the product of the weight norms of
different models. In comparison to our model, when training
with constant ε = 0.01, 0.02 and 0.03, it respectively yields
C as large as 2.54, 3.53 and 1.39 times of that of our model,
which means our model indeed has more implicit regulariza-
tion effect among others.

4 Related Work
Adversarial Training. To enhance the adversarial robust-
ness of a neural network model, a natural idea is to iteratively
generate adversarial examples, add them back to the train-
ing data, and retrain the model. For example, [Goodfellow
et al., 2015] use adversarial examples generated by FGSM to
augment the data, and [Kurakin et al., 2017] propose to use
a multiple-step FGSM to further improve the performance.
[Madry et al., 2018] show that adversarial training can be
formulated as a min-max optimization problem, and propose
to use PGD attack (similar to multi-step FGSM) to find ad-
versarial examples for each batch. After that, many defense
algorithms are based on a similar min-max framework. How-
ever, each of them uses slightly different loss functions.

We see that except for natural training which directly min-
imizes the cross entropy loss (denoted as CE), all train-
ing techniques involve the use of the min-max framework.
TRADES and MMA use the unperturbed data’s cross entropy
loss as an additional regularization term to achieve a better
trade-off between clean and robust error.
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Similar to our method, both MMA and IAAT have sample-
wise adaptive ε during training. They also utilize the adaptive
ε to find the largest possible εi for every sample xi. However,
they do not consider the adaptive label technique mentioned
in Section 3.2. As a result, they can only achieve better clean
accuracy while the improvements in robust accuracy are lim-
ited. Our CAT algorithm (CAT with CE loss) is more gen-
eral than IAAT and MMA. CAT reduce to IAAT when we set
c = 0 in adaptive label smoothing. Moreover, MMA could
be treated as a special case of CAT when we use a line search
scheme to find the εi and c = 0. Also, in Section 5, we will
show the importance of the adaptive label uncertainty step in
CAT. Recently, a concurrent work [Stutz et al., 2019] com-
bines label smoothing with adversarial training. However, in
the adversarial training process, they still use the same ε for
all the examples, which is quite different from our instance-
wise auto-tuning ε. Since their model jointly performs detec-
tion (dropping low confident examples) and prediction, the
results and formulation are not directly comparable to other
adversarial training methods.

5 Performance Evaluation
In this section, we conduct extensive experiments to show that
CAT achieves a strong result on both clean and robust accu-
racy. We include the following methods into our comparison:

• Customized Adversarial Training (CAT): Our proposed
method.

• Adversarial training: The adversarial training method
proposed in [Madry et al., 2018] where they use a K-
step PGD attack as adversary.

• TRADES: TRADES [Zhang et al., 2019] improves ad-
versarial training by an additional loss on the clean ex-
amples and achieves the state-of-art performance on ro-
bust accuracy.

• Natural: the natural training which only minimizes the
cross entropy loss.

Furthermore, since many recently proposed adversarial train-
ing methods have considered CIFAR-10 with Wide-ResNet
structure as the standard setting for reporting their numbers,
we also compare our performance with 7 previous methods
on this specific setting.

5.1 Experimental Setup
Dataset and Model Structure. We use CIFAR-10 dataset
for performance evaluation. We use both standard VGG-
16 [Simonyan and Zisserman, 2015] and Wide ResNet that
is used in both vanilla adversarial training [Madry et al.,
2018] and TRADES [Zhang et al., 2019]. For VGG-16,
we implement adversarial training with the standard hyper-
parameters and train TRADES with the official implementa-
tion. For Wide ResNet, since the model has become stan-
dard for testing adversarial training methods, we use exactly
the same model structure provided by [Madry et al., 2018;
Zhang et al., 2019]. We use the models’ checkpoint released
by TRADES official repository and implement the Madry’s
adversarial training using the standard hyper-parameters. All

our experiments were implemented in Pytorch-1.4 and con-
ducted using a GTX 2080 TI GPU.
Implementation Details. We set the number of iterations in
adversarial attack to be 10 for all methods during training.
Adversarial training and TRADES are trained on PGD
attacks setting ε = 8/255 with cross entropy loss (CE).
All the models are trained using SGD with momentum
0.9, weight decay 5 × 10−4. For VGG-16/Wide ResNet
models, we use the initial learning rate of 0.01/0.1, and
we decay the learning rate by 90% at the 80th, 140th, and
180th epoch. For CAT, we set epsilon scheduling parameter
η = 0.005, εmax = 8/255 and weighting parameter c = 10.
We set β = 1 for the distribution Dirichlet(β), which
is equal to a uniform distribution. Also, we set κ = 10.
Our code is publicly available at https://github.com/cmhcbb/
CAT-Customized-Adversarial-Training-for-Improved-Robustness.

5.2 Robustness Evaluation and Analysis
White-box Attacks Results. For CIFAR10, we evaluate all
the models under white-box ε = 8/255 "∞-norm bounded
non-targeted PGD and C&Wattack. Specifically, we use both
PGDX (X-step PGD with step size ε/5) and C&W∞. As
suggested, we test our model under different steps PGD and
multiple random restarts.

The experimental results are shown in Table 2, where we
can easily see that CAT clearly outperforms other methods.
CAT achieves a significant better robust accuracy at the stan-
dard 8/255 perturbation threshold considered in the litera-
ture, and also have better clean accuracy. We also test the
performance of CAT under attacks with 20 restarts and 1,000
iterations to confirm the robustness of the model. Futhermore,
we visualize the loss landscape in the ablation study.

Wide-ResNet has become a standard structure for compar-
ing adversarial training methods, and it’s standard to train
and evaluate with 8/255 "∞ norm perturbation. For this set-
ting, we collect the reported accuracy from 7 other adversar-
ial training methods, with several of them published very re-
cently, to have a detailed full comparison. As shown in Ta-
ble 3, our method achieves state-of-art robust accuracy while
maintaining a high clean accuracy.
Black-box Transfer Attacks Results. We follow the crite-
rion of evaluating transfer attacks as suggested by [Athalye et
al., 2018] to inspect whether the models trained by CAT will
cause the issue of obfuscated gradients and give a false sense
of model robustness. We generate 10,000 adversarial exam-
ples of CIFAR-10 from natural models with ε = 8/255 and
evaluate their attack performance on the target model. Table 4
shows that CAT achieves the best accuracy compared with ad-
versarial training and TRADES, suggesting the effectiveness
of CAT in defending both white-box and transfer attacks.

5.3 Ablation Study
The Importance of Adaptive Label Uncertainty. Here we
discuss and perform an ablation study using VGG-16 and
CIFAR-10 on the importance of adaptive label uncertainty
and adaptive instance-wise ε. In Table 5, Adv train denotes
the original adversarial training, Adv+LS denotes adversar-
ial training with label smoothing (setting y by Eq (4)), Adp-
Adv denotes adversarial training with adaptive instance-wise
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Methods No attack Deepfool PGD100 C&W100 20 PGD1000 20 C&W1000

Natural train 93.34% 16.39% 0.6% 0.0% 0.0% 0.0%
Adv train [Madry et al., 2018] 80.32% 44.65% 36.36% 37.89% 36.12% 36.8%
TRADES [Zhang et al., 2019] 84.85% 48.37% 38.81% 39.49% 37.95% 38.94%
CAT (ours) 85.44% 70.19% 75.54% 51.81% 75.17% 50.08%

Table 2: The clean and robust accuracy of VGG-16 models trained by various defense methods. All robust accuracy results use ε = 8/255
"∞ ball. (X) denotes using a X-step PGD attack. X random denotes X times random restart.

Methods Clean accuracy PGD accuracy C&W accuracy
Natural training 95.93% 0% 0%
Adversarial training [Madry et al., 2018] 87.30% 52.68% 50.73%
Dynamic adversarial training [Wang et al., 2019a] 84.51% 55.03% 51.98%
TRADES [Zhang et al., 2019] 84.22% 56.40%(20) 51.98%
Bilateral Adv Training [Wang, 2019] 91.00% 57.5%(∗20) 56.2%(∗20)

MMA [Ding et al., 2018] 84.36% 47.18% !
MART [Wang et al., 2019b] 84.17% 58.56%(20) 54.58%
IAAT [Balaji et al., 2019] 91.34% 48.53%(∗10) 56.80%
CAT (ours) 89.61% 73.16%(∗20) 71.67%(∗20)

Table 3: The clean and robust accuracy of Wide Resnet models trained by various defense methods. All robust accuracy results use ε = 8/255
"∞ ball. We reported the best performance listed in the papers. (∗) denotes random-restart is applied in the testing attack. (X) denotes using
a X-step PGD attack. ! denotes not reported.

Method VGG 16 Wide ResNet
Adv train 79.13% 85.84%
TRADES 83.53% 83.90%
CAT 86.58% 88.66 %

Table 4: Robust accuracy under transfer attack on CIFAR-10

Methods Clean Acc PGD Acc
Adv train 80.32% 36.63%
Adv+LS 80.25% 43.0%
Adp-Adv 87.91% 38.59%
CAT 84.22% 75.54%

Table 5: Ablation study on CAT by changing the loss function and
removing Label Adaption (LA). All robust accuracy results use ε =
8/255 "∞ ball.

ε, and CAT is the proposed method which is a combination
of these two tricks. We found that only applying adaptive
instance-wise ε or label smoothing cannot significantly boost
the robust accuracy over standard adversarial training, but the
proposed method, by nicely combining these two ideas, can
significantly improve the performance.
Loss Landscape Exploration. To further verify the supe-
rior robustness using CAT, we visualize the loss landscape of
different training methods in Figure 2. Following the imple-
mentation in [Engstrom et al., 2018], we divide the data in-
put along a linear space grid defined by the sign of the input
gradient and a random Rademacher vector, where the x- and
y- axes represent the magnitude of the perturbation added in
each direction and the z-axis represents the loss. As shown in
Figure 2, CAT generates a model with a lower and smoother
loss landscape. Also, it could be taken as another strong evi-
dence that we have found a robust model through CAT.
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(d) CAT

Figure 2: Loss landscape comparison of different adv training meth-
ods

6 Conclusions
In this paper, we propose CAT, a customized adversarial train-
ing method that is designed to have better generalization for
both clean and robust performance. We also provide a the-
oretical analysis that explains the performance of our algo-
rithm. Experimental results show that CAT has achieved
state-of-art robust accuracy and a high clean accuracy while
keeping similar running time as standard adversarial training.
The success of CAT indicates that it is crucial to customize
the perturbation level on both data sample side and its label
in adversarial training.
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