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Abstract

We propose Pathfinder, a variational method for approximately sampling from differentiable prob-
ability densities. Starting from a random initialization, Pathfinder locates normal approximations
to the target density along a quasi-Newton optimization path, with local covariance estimated us-
ing the inverse Hessian estimates produced by the optimizer. Pathfinder returns draws from the
approximation with the lowest estimated Kullback-Leibler (KL) divergence to the target distribution.

We evaluate Pathfinder on a wide range of posterior distributions, demonstrating that its approx-
imate draws are better than those from automatic differentiation variational inference (ADVI) and
comparable to those produced by short chains of dynamic Hamiltonian Monte Carlo (HMC), as
measured by 1-Wasserstein distance. Compared to ADVI and short dynamic HMC runs, Pathfinder
requires one to two orders of magnitude fewer log density and gradient evaluations, with greater
reductions for more challenging posteriors. Importance resampling over multiple runs of Pathfinder
improves the diversity of approximate draws, reducing 1-Wasserstein distance further and providing
a measure of robustness to optimization failures on plateaus, saddle points, or in minor modes.
The Monte Carlo KL divergence estimates are embarrassingly parallelizable in the core Pathfinder
algorithm, as are multiple runs in the resampling version, further increasing Pathfinder’s speed
advantage with multiple cores.
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1. Introduction

Obtaining efficient, scalable, and robust posterior inference remains the primary challenge in ad-
vanced Bayesian computation. The difficulty of this challenge has led researchers to develop a
wide range of posterior approximation algorithms. One of the most popular classes of approximate
methods is variational inference (VI), which searches for a tractable approximate distribution that
minimizes Kullback-Leibler (KL) divergence to the posterior. Although VI is typically faster than
Monte Carlo sampling (Blei et al., 2017), popular approaches such as black-box variational inference
(Ranganath et al., 2014) and automatic differentiation variational inference (Kucukelbir et al., 2017)
can fail to converge due to the high variance of nested gradient estimates (Dhaka et al., 2021).

In this paper, we develop Pathfinder, an algorithm that locates approximations to the target
density along a quasi-Newton optimization path. Starting from a random initialization in the tail
of the posterior distribution, the quasi-Newton optimization trajectory can quickly move from
the tail, through the body of the distribution, to a mode or pole. By evaluating the ELBO in
parallel for the normal approximations along the optimization path generated by L-BFGS, a popular
quasi-Newton method, Pathfinder can quickly find a region of high probability mass from which
to draw approximate samples. Novel contributions of this paper include (1) new VI algorithms
that use curvature information of the target distribution collected by optimization trajectories to
propose approximate distributions; (2) an efficient sampling algorithm for the normal approximations
estimated from quasi-Newton inverse Hessian approximations; (3) the design of Pathfinder, which
allows evaluating the evidence lower bound (ELBO) in parallel for each normal approximation.
Hence, Pathfinder can be greatly accelerated by parallel computing, which is not possible with
existing VI algorithms that directly minimize KL divergence, all of which are sequential.

Figure 1 illustrates the evolution of approximate posteriors along the optimization path for a
density with a single mode. In cases with posterior modes, Pathfinder provides a Laplace-like
approximation of the posterior density using the quasi-Newton optimizer’s efficient inverse Hessian
estimate for covariance. Figure 2 shows how Pathfinder behaves for unbounded target densities like
the funnel, where it balances the competing goals of high entropy and containment within the target
density to stop before heading off to a pole. In both cases, the use of approximate inverse Hessian
information allows the quasi-Newton optimizer to move quickly and stably into and through the high
probability region of the posterior.

Multimodal distributions can be approximated by running several instances of Pathfinder in
parallel from different initialization points, followed by filtering with importance resampling. In
Section 2.2, we describe this multi-path version of Pathfinder. We adapt importance sampling using
Pareto smoothed importance weights (Yao et al., 2018; Vehtari et al., 2019) to importance resampling
to obtain more stable approximate draws.

We evaluate the performance of Pathfinder experimentally in Section 3. We compare Pathfinder
to automatic differentiation variational inference (ADVI), a state-of-the-art variational inference
algorithm (Kucukelbir et al., 2017).! We also compare to the approximate draws generated by
running many short MCMC chains with dynamic Hamiltonian Monte Carlo in the form of the
no-U-turn sampler (Hoffman and Gelman, 2014) as refined by Betancourt (2017).2 The short MCMC

1. We also evaluated a robust version of ADVI from Dhaka et al. (2020), which provided similar results in its mean-field
form, but the implementation failed to converge in its dense form.
2. We use Stan’s implementation of ADVI and dynamic HMC (Stan Development Team, 2021a).
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Figure 1: A series of normal approximations (black ellipse for 95% central region) along a quasi-
Newton optimization path (black polyline) for the posterior of a logistic regression model (green to
blue contours), whose high probability mass region is indicated by the yellow to orange contours. As
the optimization path reaches the mode, the central 95% region of the normal approximation closely
matches the high probability mass region of the target density.

chains can be viewed as the first stage of warmup for MCMC sampling or as a variational inference
algorithm in its own right, following Hoffman and Ma (2020).

We evaluate approximations to the target density based on the discrete form of 1-Wasserstein
distance, with the target density defined by long runs of dynamic HMC thinned to roughly independent
draws. Wasserstein distance measures how much one distribution would need to be distorted to
match the other. Unlike the asymmetric KL divergence measure, Wasserstein distance is a proper
distance metric obeying symmetry and the triangle inequality.

Over a diverse set of 20 models from the posteriordb evaluation set (Magnusson et al.,
2021), we found Pathfinder’s approximations ranged from slightly worse to much better than those of
ADVI using diagonal covariance (mean field), ADVI with dense covariance (full rank), and dynamic
HMC using short chains (75 iterations). Pathfinder required one to two orders of magnitude fewer
log density and gradient evaluations than these systems without parallelization. We further explore
Pathfinder’s features and limitations based on case studies of high-dimensional models in Section 3.

Although we frame Pathfinder as a form of variational inference, its development was motivated
by the question of how to efficiently generate a handful of approximate draws with which to initialize
asymptotically exact Markov chain Monte Carlo (MCMC) methods such as dynamic HMC. The
best initialization for MCMC is a draw from the posterior, as that leads to a stationary Markov chain.
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Figure 2: A series of normal approximations (black ellipse for 95% central region) along a quasi-
Newton optimization path (black polyline) for a funnel-like posterior density with no mode (green to
blue contours), whose high probability mass region is indicated by the yellow to orange contours. The
normal approximations with the highest ELBO value (lower left) occurs at a point on the optimization
trajectory before it heads off toward the pole at negative infinity on the vertical axis. The ELBO
values rise and fall along the optimization path.

Initializing MCMC with an approximate draw from the posterior allows us to skip this first stage of
MCMC adaptation (sometimes called “burn-in”). In Section 4, we demonstrate the benefits of using
Pathfinder to initialize MCMC through an analysis of a Gaussian process model.

2. Pathfinder

This section describes the Pathfinder algorithm for generating approximate draws from a differentiable
target density known only up to a normalizing constant. We follow the presentation of the basic
Pathfinder algorithm in Section 2.1 with a multi-path version in Section 2.2, which runs multiple
optimization paths and uses importance resampling to select draws. Resampling from multiple normal
approximations better matches non-normal target densities and also mitigates the problem of L-BFGS
getting stuck at local optima or in saddle points on plateaus. To discriminate the Pathfinder algorithms
in Section 2.1 and Section 2.2, we refer to the former one as single-path Pathfinder and the latter one
as multi-path Pathfinder. The remaining sections provide details of the algorithms used in the inner
loop of Pathfinder. Section 2.3 provides relevant details of L-BFGS optimization, Sections 2.4 and
2.5 present the algorithm for evaluating and sampling from the normal approximations in Pathfinder,
Section 2.6 explains the Monte Carlo evaluations of the evidence lower bound, and Section 2.7
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describes the importance resampling algorithm implemented in the multi-path Pathfinder algorithm.
We review connections to related methods in Section 2.8.

2.1 Pathfinder algorithm

The Pathfinder algorithm begins by drawing from an initialization distribution 7y, from which
it follows a quasi-Newton optimization trajectory. We use L-BFGS to generate an optimization
trajectory 8L = (0 ... 9(1)) towards a local maximum (or pole) of the log density log p(6),
where (9 denotes the initial point and the superscript indicates the iteration. In applications to
Bayesian posterior sampling, the target density p(#) is the posterior p(6 | y), where § € RN
represents the N-dimensional parameter vector and y denotes the observations. The exact posterior
is often intractable, and practitioners have to resort to iterative algorithms like MCMC and VI
to obtain posterior samples or inferences based on a log probability function, which is the log
density of the posterior up to an additive constant. For the ease of explanation, we use log p(6)
to refer to the tractable log probability function. Based on the exploration of the optimization
trajectory, Pathfinder generates local normal approximations of the target density using the gradient
and curvature information collected along the optimization trajectory. To obtain the approximations,
we develop a function @-RECOVER that uses the optimization trajectory and the gradient along
the optimization path Vlog p(6%L)) to compute a diagonal estimate of the covariance matrix
of the approximation for each iteration. The a-RECOVER routine returns the diagonal elements
of the covariance estimation for all iterations a‘""%), and provides indicators &(I*L) of whether a
pair of the updates of the position and gradient along the optimization path should be used in
further covariance estimation or not. It also returns the updates of locations s('*/) and gradients
of the negative log joint density z("%) along the optimization path, where s} = g — =1
and z!) = Viog p(8U=D) — Viog p(8)). We describe the algorithm @-RECOVER and provide
pseudocode in Section 2.4. Then for each iteration, we generate a local approximation based on the
second-order Taylor series expansion and the quasi-Newton inverse Hessian estimate of covariance.
We further develop an evaluation algorithm that generates samples and estimates the evidence
lower bound (ELBO) in parallel for all local approximations. In particular, we propose an efficient
sampling algorithm BFGS-SAMPLE in Section 2.5, which returns K samples ¢~'5) and their
log-densities under the approximation log g(¢>"K)) for the local approximation at iteration /. Here
we use double superscripts to distinguish samples from different approximations, the first superscript
indexes the approximation and the second superscript indexes the draws. We calculate a Monte
Carlo estimate of the ELBO 1) for approximation / with Algorithm 6 in Appendix F.The last step
in Pathfinder selects the approximation that maximizes the evidence lower bound (equivalently,
minimizes Kullback-Leibler divergence to the target density), and then generates M draws from
the best normal approximation. Algorithm 1 presents pseudocode for Pathfinder. We later show
in Section 3 that Pathfinder is not particularly sensitive to its tuning parameters, which include an
initial distribution, maximum number of L-BFGS iterations (L™*), L-BFGS convergence tolerance
(7™, size of the history used to approximate the inverse Hessian (J), and the number of Monte Carlo
draws used to evaluate the ELBO (K).

The computational cost of single-path Pathfinder is dominated by the (1) L-BFGS optimization,
(2) sampling from the approximate normal distributions, and (3) evaluating the evidence lower
bounds. The cost of L-BFGS optimization is dominated by log density and gradient evaluations, the
number of which will be determined by the tuning parameters of L-BFGS, including 7™, L™* and
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Algorithm 1 Single-path Pathfinder

Input:
log p: differentiable log density function of dimension N
7o: initial distribution
L™*: maximum number of L-BFGS iterations
7l: relative tolerance for convergence of L-BFGS
J: size of the history used to approximate the inverse Hessian
K: number of Monte Carlo draws to evaluate ELBO
M: number of approximate posterior draws to return

Output:
Yy, ™) draws from ELBO-maximizing normal approximation
logg(y™M),. .. logq(y™)): log density of draws in ELBO-maximizing normal approxi-

mation

1: procedure PATHFINDER(log p, 7, L, 7™, J, K, M)
2: sample 67 ~ 7
let (%D, Viog p(8%1))) = L-BFGS (log p, 89, J, 7™, L™x)
let (@(:D), g(:L) (L) o (1:L)) = a—RECOVER(O(O:L), Vlog p(6(%:1)), J)
for [/ € 1: L in parallel do
let p-1K) log g (¢-1K)) = BFGS-saMPLE(s!""), 21D 0(!) Viog p(9D),a®, £ K)
forkel:Kdo
evaluate and store log p(¢(-%))

let A0 = ELBO(log p(¢"15)), log g (¢-1:K)))
10: let [* = arg max; 1)
11: let (M) Tog g (¢ ("M)) = BEGS-saMPLE(s (117, 2 00 v iog p(8U7)), 1), ) )

R A

J. The cost of sampling from the normal approximations is modest because we efficiently rescale
and rotate standard normal draws using the factored L-BFGS covariance approximation. Estimating
the evidence lower bound requires a number of log density evaluations equal to the number of Monte
Carlo draws (K). The accuracy and reliability of the Monte Carlo estimates can be diagnosed without
regard to a reference distribution using a diagnostic based on the Pareto k statistic (Vehtari et al.,
2019; Dhaka et al., 2021). Sampling from the normal approximation and estimating the evidence
lower bound may be done in parallel across the points on the optimization trajectory. This makes
L-BFGS the serialization bottleneck for this algorithm. L-BFGS is economical in its calls to gradient
and log density functions because of its ability to leverage quasi-Newton estimates of local curvature.

In some cases, the optimization path terminates at the initialization point and in others it can
fail to generate a positive definite inverse Hessian estimate. In both of these settings, Pathfinder
essentially fails. Rather than worry about coding exceptions or failure return codes, Pathfinder returns
the last iteration of the optimization path as a single approximating draw with oo for the approximate
normal log density of the draw. This ensures that failed fits get zero importance weights in the
multi-path Pathfinder algorithm, which we describe in the next section.
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Algorithm 2 Multi-path Pathfinder
Input:
log p: differentiable log density function of dimension N
7o: initial distribution
L™ maximum number of L-BFGS iterations
7l: relative tolerance for convergence of L-BFGS
J: size of the history used to approximate the inverse Hessian
K: number of Monte Carlo draws to evaluate ELBO
I: number of independent Pathfinder runs
M : number of draws returned by each Pathfinder run
R: number of draws returned by importance resampling (R < IM)
Output:
z,l/(l), e, 1//(R): approximate draws from target density p
1: procedure MULTIPATHPATHFINDER(log p, g, L™, ! J K, I, M,R)
2 fori € 1: [ in parallel do
3 let ¢&1M) Jog g(¢>1:M)) = Pathfinder(log p, mg, L™, 7™ J, K, M)
4: compute and store target log densities log p(¢>1), ... log p(¢HM))
5
6
7

let (w(l)’ i(l)), o (w(R)’ i(R)) — PS_IR(¢(1:I,1:M), logq~(¢(l:1’1:M)),logﬁ(q)“:l’l:M)), R),
where log (™)) = log% - multi-normal(¢*™ | u@, £DY) = log g(¢ ™) —log(I)
and log p(¢'"™) =log ; - p(¢'""™) = log p(¢"™) — log(I).

2.2 Multi-path Pathfinder algorithm

The multi-path Pathfinder algorithm is given in Algorithm 2. It runs Pathfinder / times in parallel.
For run i of Pathfinder, it saves the approximate samples ¢-!*)_ Then it generates R approximate
draws based on all of the approximate draws ¢!*/-1*M) by importance resampling. The resulting
approximation generalizes the normal distribution of Pathfinder to a mixture of / normal distributions,
which improves approximations for distributions that are far from normal. Importance resampling
from a mixture of normals also reduces the variability arising from single runs using random initial
values and stochastic ELBO estimates to choose the best normal approximation along the trajectory.
In particular, for more than one run of Pathfinder, we augment the parameter space to include
the discrete index i € 1:/ indicating the mixture component that generated the parameters. With
the assumption that all runs of Pathfinder return the same number of draws and that the mixture
components are equally weighted, the resulting proposal distribution of draws and mixture indicator
is

1 . ,
G(e,i) = 7 multi-normal(¢ | u?, ),

where multi-normal(u®, X)) is the normal approximation selected by run i of Pathfinder. The
corresponding joint target distribution can be extended in the same way, to

P6.0) = 7 p(9)

With the augmented parameter space, we can importance resample across different runs of Pathfinder
without recomputing the marginal proposal distribution of ¢ for all draws. The importance resampling
procedure based on several proposal densities from multiple runs of Pathfinder is a form of multiple
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importance sampling. More specifically, we use the scheme labeled N1 by Elvira et al. (2019), which
has the least computational burden among the proper alternatives and can be computed in parallel in
each individual run of Pathfinder. Furthermore, optimization paths stuck in minor modes, at saddle
points, or on plateaus can be eliminated through the natural weighting of importance resampling. The
second step of the multi-path Pathfinder algorithm in Algorithm 2 uses importance resampling, based
on the joint (parameter and mixture indicator) log density of the proposal density function G (¢, i)
and target density function j(¢,i). The pseudocode for Pareto-smoothed importance resampling
(PS-IR) is provided in Algorithm 5.

Multi-path Pathfinder performs / completely independent runs of Pathfinder, so that its expected
number of operations is / times as many operations as are expected from Pathfinder. Because
these independent runs can be executed asynchronously and each takes roughly the same amount
of work, wall time for multi-path Pathfinder should be only slightly higher than that of Pathfinder.
The importance resampling step is fast, but it requires all runs of Pathfinder to complete before it is
executed, making the expected time to run multi-path Pathfinder a bit longer than that of the slowest
of the independent Pathfinder chains. There is a bit of additional parallelizable work to evaluate
log densities in the approximation and in the target density. After this evaluation, resampling only
requires normalization, random number generation, and selection, all of which are fast.

2.3 L-BFGS optimization

For minimizing the objective function — log p(8), Newton steps move in the direction of the inverse
Hessian of —log p(6) times the gradient, with all derivatives being respect to the parameter vector 6,

5= (=V*logp(6))~" - Vlog p(6).

Quasi-Newton methods are so called because they use an approximation of the inverse Hessian.

The BFGS optimization algorithm is a quasi-Newton method that approximates the inverse
Hessian through updates of positions and gradients of the objective function at positions along the
optimization path (Broyden, 1970; Fletcher, 1987; Goldfarb, 1970; Shanno, 1970). The limited-
memory BFGS (L-BFGS) algorithm limits the size of the history of finite differences for greater
scalability and to allow the local inverse Hessian estimates to adapt to varying curvature along the
optimization path (Nocedal, 1980). There are several prominent implementations of L-BFGS that
vary in their details; we use the version introduced by Byrd et al. (1995) and detailed by Zhu et al.
(1997).3 The pseudocode for Zhu et al.’s version of L-BFGS (without bounds) is listed in Algorithm 7
in Appendix F.

The standard L-BFGS algorithm approximates inverse Hessians using the previous J updates
of positions and gradients of the objective function along the optimization path. For iteration /, let

S = [S1 e SJ] and Z = [21 e Z_]] be N X J matrices that store the previous J updates of
positions and gradients, (i.e., S; = §=/*) —gU=I+i=D 7. = V]og p(§=/*)) -V log p(9!=/+/~1)
forj=1,...,J). Let @ be an N-vector that stores the diagonal elements of an initial diagonal inverse

Hessian estimate. Following Byrd et al. (1994, eq. 2.6), the estimated inverse Hessian at iteration /
based on the previous J positions can be formulated as

>® = diag(a) +B-v- BT, )

3. We use the L-BFGS-B implementation in the R function stats: :optim() (R Core Team, 2021).
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where

0 —E!

—ET ET.(diag(p) + Z7 - diag(a) - Z) - E7'|’ @

B:[diag(a)-Z S] ,y:[

with

ST-7Z;, ifi<j
E, . =¢"1 " - n=|ST-Zy - 8T-Z;| .
o {O otherwise 7 [ L 4 J]

Although L-BFGS never explicitly constructs X, in Section 2.5 we show how its factored form can
be used to derive an efficient algorithm to sample from the normal distributions with covariance (),

which is the key step in the Monte Carlo estimator of the ELBO.

2.4 Local density approximations along the optimization path

The proposed normal approximations in Pathfinder are located along the optimization path. The
second-order Taylor series expansion of the target log density log p(6 | y) at a point Y on the
optimization path is

logp(0 | y)
~logp(6" | y) +Viogp(6" | y) - (6 -6") - 5(6 - 6)T - H(6V) - (6 - 6"))

=logp(61y),

where H(#) = =V2log p(6 | y) = —V? log p(6) is the Hessian function mapping points to the matrix
of second derivatives of —log p(8) with respect to 8 at that point. The approximate distribution
p(6 | y) is a second-order Taylor series expansion around 8Y), which produces a multivariate normal
approximation with mean

D =00 +H1OD) - Viegp(8?V | y) = 6P +H1(8V) - Viog p(6?)

and covariance H™'(6("). At a mode, the first-order term drops out and we are left with a standard
Laplace approximation.

Pathfinder reconstructs the factors of the inverse Hessian approximations as needed using the
optimization trajectory, as shown in Algorithm 3. We construct covariance estimates rather than
caching the estimates from the optimization algorithm for three reasons. First, it gives us the flexibility
to use a different inverse Hessian approximation than that used in the optimization algorithm. In our
implementation, we use standard L-BFGS to generate an optimization path whose diagonal inverse
Hessian estimation diag(«) is a scaled identity matrix, while we use Gilbert and Lemaréchal (1989,
eq. 4.9) in the recovery of the diagonal inverse Hessian estimation to allow the elements in « to vary.
Second, the separation allows us to set up a more restricted condition to filter out sharp updates
for the inverse Hessian estimation. In Algorithm 3 line 5, the condition of selecting the correct
pairs (50, z(V) filters out candidates whose gradient changes 10'? times more than the position on
the direction of the update of gradient. Third, the outputs of the @-RECOVER procedure enable us
to recover the factors in the covariance estimation (1) for each iteration in parallel without saving
matrices S and vy in (2), which reduces total memory overhead and reduces communication costs.
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Algorithm 3 Diagonal inverse Hessian estimation.
Input:
0 .. ) e RN: optimization path
Viog p(8©),...,Viog p(6")) € RN: gradients of log density of (L)
J: size of the history used to approximate the inverse Hessian

Output:
(@M, ..., aD)): The diagonal elements of the initial inverse Hessian approximation
(M, ..., &1)): The indicator of whether the updates of position and gradient are
included in the inverse-Hessian approximation or not.
(sV, ..., s1): The updates of position of the optimization path

(zV,...,z1)): The updates of the gradient (—V log p) of the optimization path

1: procedure o-RECOVER(6(%L) Vlog p(6%1)), J)
2 let @© = 1, where 1, denotes the vector of 1’s in RN O(N)
3 for/e1:Ldo O(LJN)
4 let s = 9® — 9= and let zV) = Viog p(8U~1) — Vlog p(61)
s: if sOTz(0) < e ||z|> with € = 107'2 then
6 let&@ =1
7 leta =zOT -diag(a(l‘l)) 20 p = DT 5D o = (DT -diag(a(l‘l))‘l .s(D O(N)
8 fornel:Ndo 1 O(N)
| 0 (o, _as
9: leta,’ = . a,(ll_l) + == - . a/r(ll‘l)z o(1)
10: else
11: leta® =D and¢® =0

We store a sequence of indicators to pick out pairs of positions and gradients to use in covariance
estimates.

Pathfinder evaluates the evidence lower bound for all local approximations to select the best
normal approximation. By considering all normal approximations from the tail to the mode or pole
of the posterior distribution, Pathfinder can quickly find approximations that generate draws in the
high probability region of the target density.

2.5 Sampling from the approximation and evaluating the log density of a draw

To implement Pathfinder, we need to be able to sample from the approximating distributions in order
to evaluate the evidence lower bound. Furthermore, we need to be able to evaluate the log density
of these sampled points for importance resampling. While these operations could be implemented
by factoring our inverse Hessian approximations %V, this would require O(N?) operations in N
dimensions.

Fortunately, the outer product representation may be used along with a thin QR factorization and
Cholesky factorization in order to produce draws and their log density in O(NJ? + J3) operations
using only O(NJ + J?) memory, where J is the history size of L-BFGS and N is the number of
dimensions. That is, the algorithm is linear in dimensionality, with a constant factor determined by
the history size for L-BFGS Hessian approximations.

10
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To achieve this efficiency, the Hessian can be factored as
0 = diag(a%) (I + diag(a_%) “B-y-BT- diag(a_%)) diag(a%), 3)
where we have simplified notation by dropping the superscripts on a (). Next, let
Q-R= diag(a_%) -B

be the thin QR-factorization of diag(a‘%) -3, so that Q is an N X 2J matrix with orthonormal columns
and R is a 2J x 2J upper triangular matrix. Let P be the N x (N — 2J) matrix with orthonormal
columns that makes [Q P] an N X N orthogonal matrix. We can then factor the inverse Hessian
estimate as

s =7.77, (4)

where 1
T = diag(a?)-[Q-L P,
and L is defined through Cholesky decomposition to satisfy L - LT =TI+ R -y - RT. We provide a
more detailed derivation of (4) in Appendix A.
If we draw a standard normal N-vector v ~ multi-normal(0, I), then we can translate, scale, and
rotate it so that it is a draw from the approximate distribution,

,u(l) +7T-v ~ multi-normal(,u(l),Z(l)),
where the location vector is computed via
p =00 +30 - Viogp(6" | y) = 'V +diag(a) - Vieg p(0) + By - 7 - Vlogp(8),

which only involves matrix vector multiplication and requires order O(JN + J?) operations and
memory. Next, consider generating u ~ multi-normal(0, I) and setting

v:[Q P]T-u.

It follows that v ~ multi-normal(0, I), with the orthogonality between columns of P and Q allowing
us to produce draws Y + T - v ~ multi-normal (6, ©(!)) defined by

pD 1.y = y(l)+diag(a/%)(Q-l~,-QT'u+P~PT-u)

u + diag(@®)(Q-L- QT -u+u—-0Q-Q" -u) . 5)

Using the factorization in (4), we can compute the log determinant required for evaluating the
approximate log density as

log |EU) | = log |diag(a)| + 2 log |Z| .

This provides a means to efficiently calculate the log density of the sampled point in the approximating
distribution as

lognormal(u(l) +T-v | u®,z0)
1
=-3 (1og [EO[+ (u® +Tv = g @Dy (1D + Ty - p®) + Nlog(27r)) ©)

1
=-5 (1og }2(l)| +ulu+ Nlog(er)) .
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In summary, the sampling and log density evaluation algorithm relies on efficiently decomposing
the factored form instead of directly Cholesky decomposing X() to generate draws and compute
log densities of draws. Algorithm 4 provides the complete pseudocode for the sampling and density
evaluation algorithm.

Algorithm 4 Sample from local approximations
Input:
s(I:D: the updates of position upto iteration /
71D the updates of gradient (—V log p) upto iteration [
6 the position of optimization path at iteration [
Vlog p(8W): the gradient of log density at ()
aD: The diagonal elements of the initial inverse Hessian approximation
&0 The indicator of whether the update of the position and gradient are
included in the inverse-Hessian approximation or not.
J: size of the history used to approximate the inverse Hessian
M : number of draws to return

Output:
oW, ..., ¢M): draws from approximate distribution (M X N matrix)
logg(¢M), ..., log g(¢™)): log densities of draws in the approximate normal distribution
(M -vector)
1: procedure BEGS-sAMPLE(s1"), z(1:D 9 V]og p(61),a®D, &0 M)
2: find the indexes y of the last (at most) J non-zero indicators in & (1 D) and record the last J
updates of positions § = s&) =[S - ;] and gradients Z =z = [z, - Z,].
The latest update is on the last column
3: generate the upper-triangular matrix E by O(J?N)
{Sl.T .Z; ifi<j _
E; ;= _, and save the diagonal elements of E as n
' 0 otherwise
4: generate 3,y by O(J?N +J3)

—E-1

(0
B = [diag(aV)-Z 5], —ET ET.(diag(n) + Z7 - diag(a®) - Z) - E™!

5: compute the thin QR-factorization Q and R for diag(a‘%) -B O(J?N)
6: calculate the Cholesky decomposition L of I+ R -y - RT o(J?)
7 let log |X| = log |diag(«@)| + 2 log |Z| O(N)
8: let u = 0 + diag(a) - Vlogp(@) +B-y - BT - Vlog p(0) O(JN +J?)
90  formel:Mdo O(JNM +J*M)
10: sample u"™ ~ multi-normal(0, I) O(N)
11 let ¢ = +diag(a2){Q - (L= 1) - (QT - u™) + u(™m} O(JN +J?)
12: let log g(¢™) = -1 (log |Z| + u™T - 4™ + Nlog(2r)) O(N)
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2.6 Estimating KL divergence from the approximate densities

From the sequence multi-normal(x("V,x(M), ... multi-normal(u‘%, (1)) of normal approxima-
tions along the optimization path, Pathfinder then selects the approximation from step /* that
minimizes Kullback-Leibler divergence to the target density,

I* = arg min, KL[multi—normal(@ | u @, =1 || p(0| y)].

As usual in variational inference, it is more convenient to define [* equivalently as the point that
maximizes the evidence lower bound (ELBO) (Wainwright and Jordan, 2008). With draws from the
approximating distribution, ¢(1, ..., &) ~ multi-normal(u¥, £(), the ELBO is straightforward
to evaluate with Monte Carlo,

ELBO[multi—normal(,u(l), () ||p(9 | y)]
K

1
¥ Z logp(¢(k)) - log(multi—normal(¢(k) | u@, 21y, 7
k=1

The pseudocode for the ELBO estimation algorithm is provided in Algorithm 6 in Appendix F.

Given the factorization of the L-BFGS covariance described in the previous section, the ELBO
can be approximated using K draws from the approximating distribution in O(NJ?+J3+JNK +J?K)
operations using only O(NJ + J?) memory, where J is the history size of L-BFGS, N is the number
of dimensions, and K is the number of Monte Carlo draws used to evaluate the ELBO. Both the
history size (J) and number of Monte Carlo evaluations (K) will be small and fixed, rendering the
overall complexity linear in the dimensionality of the target distribution (V).

Using a larger number K of Monte Carlo draws will reduce the variance of the ELBO estimate at
the cost of more computation. The ELBO tends to be more stable than other divergence measures
when using a finite sample size K (Dhaka et al., 2021). We have chosen K = 5 in our experiments in
Section 3. Furthermore, the K samples can be drawn and evaluated for log density in parallel with
no synchronization required until they are averaged to produce a final estimate. We evaluate the
sensitivity of our results to the choice of K in Section 3.

2.7 Pareto-smoothed importance resampling

In the final step of multi-path Pathfinder, we employ a Pareto-smoothed importance resampling
algorithm to refine the approximation draws based on approximations from / independent runs of
Pathfinder. Importance resampling is a method for refining a set of draws from an approximating
distribution to better approximate draws from a target distribution (Rubin, 1987). Importance
resampling works by resampling from the original sample with replacement with probabilities
proportional to the importance weights. Importance sampling estimators weight draws based on
their importance ratios but can have high or even infinite variance. Ionides (2008) showed that
truncating the importance weights improves the efficiency of the resulting Monte Carlo estimator
by reducing its variance. Vehtari et al. (2019) introduced a continuous generalization of truncation
that fits the importance weights to a generalized Pareto distribution, whose cumulative distribution
function is then used to provide an evenly spaced set of importance weights. Rather than directly
using the smoothed weights to calculate expectations, we instead use them as importance resampling
weights, leading to Pareto smoothed importance resampling (PS-IR), as listed in Algorithm 5. As
far as we know, Pareto smoothing has not been previously applied to importance resampling, but
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Algorithm 5 Pareto-smoothed importance resampling (PS-IR)
Input:
oM, ..., ¢): draws from proposal distribution ¢
logg(¢), ..., logq(¢”)): proposal log densities
log p(¢™M), ..., log p(¢))): target log densities
R: number of draws resampled (R < J)
Output:
D, ..., y®: importance resampled draws
1: procedure PS-IR(¢"") log g(¢"")),1og p(¢1')), R)
2: let wy, ..., wy; = PSIS(log g(¢1/)),log p(¢‘*)))) be the Pareto-smoothed

importance sampling weights o)
3: sample ;.//(1), R r,l/(R) from ¢(1), R ¢(J ) with replacement, with probabilities
proportional to w; O(RJ)

only to importance sampling. We use resampling in order to make it easy to use as an initialization
algorithm for MCMC and to simplify expectation and quantile estimation by returning draws rather
than weighted draws.

2.8 Related methods

Automatic differentiation variational inference (ADV]) is a method for black-box variational inference
with differentiable densities (Kucukelbir et al., 2017). ADVTI’s variational objective is identical to
Pathfinder’s, namely Kullback-Leibler (KL) divergence from the approximating distribution to the
target distribution. The difference is that ADVI directly optimizes the variational objective using
stochastic gradient descent, whereas Pathfinder optimizes the target density using quasi-Newton
optimization and then chooses the point along the optimization path based on the variational objective.

Like Pathfinder, ADVI uses a multivariate normal approximating distribution on an unconstrained
parameter space. Any constrained variables such as scales or covariance matrices or simplexes
are transformed to an unconstrained representation in RY, with appropriate change of variables
adjustments. ADVI’s covariance matrix may be taken to be dense or it may be constrained to be
diagonal; Kucukelbir et al. (2017) call the former “full rank” and the latter “mean field,” though both
are technically required to have rank N.

The Kullback-Leibler (KL) divergence from the normal approximation to the target distribution
is evaluated using Monte Carlo methods by taking an average of the log density of draws from the
approximating distribution. This results in a stochastic gradient algorithm, with gradients calculated
using automatic differentiation (Mohamed et al., 2019; Carpenter et al., 2015). Dhaka et al. (2021)
show that Monte Carlo estimates of this KL divergence and its gradient are in general stable, although
they may have high variance.

Compared to Pathfinder’s direct quasi-Newton optimization of the log density, ADVI is restricted
to small step sizes because of the stochastic nature of the gradient calculation and the lack of curvature
information. In evaluations below, we show that ADVI requires one to two orders of magnitude
more function evaluations than Pathfinder to find the high probability mass region. In addition,
we show that Pathfinder produces approximations that range from slightly worse to much better
than ADVI (with limited computation time) in complex problems as measured by the 1-Wasserstein
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metric. Finally, ADVI is intrinsically serial in its evaluation of the KL divergence at each iteration
of optimization, whereas Pathfinder is embarrassingly parallel after the relatively fast L-BFGS
optimization.

Early stopping optimization divides the data in two parts, with one part used for optimization and
other part is used to compute out-of-sample performance criterion and the optimization is stopped
when the out-of-sample performance starts to decrease (Vehtari et al., 2000). The downside of the
approach is that it requires factorizing the likelihood and additional data manipulation to make the
data divisions. Pathfinder works also for non-factorized likelihoods as the “stopping” is decided
by the ELBO estimate (in our implementation the optimization is not stopped early but run to the
termination and then ELBO is estimated for each optimization trajectory point, potentially in parallel).
Furthermore Pathfinder returns normal approximations instead of just points along the trajectory.

Early stopping variational inference generates approximate posterior draws by taking random
draws from an initialization distribution, then following an optimization path for a fixed number of
steps and taking the result as an approximate posterior draw (Duvenaud et al., 2016). The number of
steps is selected to minimize the KL divergence from the approximating distribution to the target
distribution. Early stopping variational inference can be viewed as a normalizing flow (Rezende and
Mohamed, 2015), which generates an approximate draw from a target distribution by generating a
draw from a simple distribution, such as uniform or standard normal, then transforming it. Pathfinder
is similar, but it stops at a normal approximation from which we draw a sample.

Early stopping VI differs from Pathfinder in several substantive ways. Most importantly, early
stopping VI determines a number of optimization steps as the variational parameter, generating a
range of values based on the random initialization. Pathfinder, in contrast, evaluates a variational
approximation centered at each point on the optimization path as a variational approximation.
Secondarily, early stopping VI chooses a point on the optimization path, whereas Pathfinder generates
a point from a normal approximation located at a point on the optimization path. Computationally,
early stopping variational inference requires an optimization run for each approximate posterior
draw, whereas Pathfinder uses a single optimization run (though multi-path Pathfinder importance
resamples among several such paths).

Invertible flow non-equilibrium sampling (InFiNE) is another method based on selecting points on
a deterministic optimization path with importance resampling (Thin et al., 2021). Unlike Pathfinder
and the other systems mentioned so far, InFiNE is asymptotically exact. It was motivated by the
need for efficient estimators for normalizing constants of intractable densities known only up to a
constant factor, such as most Bayesian posteriors. The other motivation mentioned in the paper is
in accurately evaluating KL divergence using the evidence lower bound (ELBO). To achieve these
goals, InFiNE uses an iterative importance resampling scheme (Andrieu et al., 2010).

As with normalizing flows, InFiNE keeps the Jacobian tractable over the optimization path by
using a Hamiltonian flow with a friction term that will cause the flow to come to rest at a local mode
(a well in potential energy, which is negative log density) or just keep falling.

Short parallel MCMC chains. Hoffman and Ma (2020) demonstrate that HMC can quickly reach
the high probability region, which they exploit by generating many short MCMC chains in parallel
and using only the small part from the end. In experiments not reported here, we tested starting many
parallel chains from the L-BFGS trajectory points and testing for a trend in the log density. A lack of
trend in the log density is consistent with the chains having been initialized in the high probability
region. Although we have verified this approach works by evaluating short-chain dynamic HMC, the
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number of log density evaluations required is several orders of magnitude larger than needed by the
ELBO estimate used in Pathfinder.

3. Experiments

This section provides experimental evaluations of Pathfinder. In Section 3.1, we compare Pathfinder
to two popular posterior approximation algorithms, ADVI and an ensemble of short adaptive HMC
chains. ADVI (Kucukelbir et al., 2017) is the industry standard black-box variational inference
algorithm, implemented in Stan (Stan Development Team, 2021a), PyMC3 (Salvatier et al., 2016),
Pyro (Bingham et al., 2019), TensorFlow Probability (Dillon et al., 2017), JAX (Bradbury et al., 2018),
Turing.jl (Ge et al., 2018), and other differentiable programming languages. Like Pathfinder, ADVI
provides normal approximations of posteriors. ADVI can be configured to use a dense covariance
or restricted to a diagonal covariance matrix. We evaluate both alternatives in this section. We
treat Stan’s no-U-turn sampler (Hoffman and Gelman, 2014; Betancourt, 2017) as a nonparametric
posterior approximation algorithm, and, following the conclusions in Hoffman and Ma (2020), we
ran many parallel MCMC chains and took samples from the last iteration as approximate draws. We
evaluate Pathfinder’s sensitivity to tuning parameters in Section 3.2. In Section 3.3, we investigate
the behavior of Pathfinder for difficult posteriors. We evaluate the results of using Pathfinder versus
short chains of adaptive HMC for initializing a Gaussian process model in Section 4. The code for
simulations is available at https://github.com/LuZhangstat/Pathfinder.

We use 1-Wasserstein distance (Craig, 2016; Villani, 2009; McCann, 1995) between the empirical
distribution of the approximate samples and the target posterior distribution to evaluate how well
we are taking independent draws from the posterior. We provide an introduction to 1-Wasserstein
distance and its computation in our simulation studies in Appendix B.In all of the evaluations
presented in this section, the model parameters are transformed to the unconstrained scale, with
corresponding change of variables adjustments. The resulting support on all of RN matches the
support of the multivariate normal approximations used by ADVI and Pathfinder and allows the
algorithms to avoid dealing with boundaries. Moreover, we assume that the posterior distribution is
closer to normal in the unconstrained space. Hence, for both ADVI and Pathfinder, the Gaussian
approximation is made in the unconstrained space. And in all of our experiments, we compare the
approximation performance through samples in the unconstrained space. In practice, these samples
will be (inverse) transformed back to the constrained space. Details of the transformations, inverse
transforms, and their log absolute Jacobian determinants are provided by Stan Development Team
(2021a, Chapter 10).

3.1 Evaluating Pathfinder as variational inference

In this section, we compare Pathfinder with ADVI and Stan’s default phase I warmup (dynamic HMC
in the form of the no-U-turn sampler) through experiments. We evaluate Pathfinder using the 20
models and data sets from posteriordb (Magnusson et al., 2021), each of which is supplied with
reference posteriors in the form of 10,000 roughly independent draws. The set of models evaluated
includes

» generalized linear models: nes, earnings, dogs, diamonds sblrc,

* hierarchical meta-analysis models: eight_schools (centered and non-centered),
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* Gaussian processes: gp_pois,

e mixtures: low_dim_gauss_mix,

differential equation dynamics models: hudson_lynx_hare, one_comp_MM_elim,

hidden Markov models: bball_drive, and

* time-series models: arma, arK, and garch.

For each model in posteriordb, we run single-path Pathfinder with 100 different random initial-
izations, using our proposed default settings:

e maximum L-BFGS iterations (L™** = 1000),

* relative tolerance for L-BFGS convergence (7l = 10713),

* size of L-BFGS history to approximate inverse Hessian (J = 6),
e number of Monte Carlo draws to evaluate ELBO (K = 5), and

* number of draws per run (M = 100).

For multi-path Pathfinder, we again take 100 approximate draws, but use a larger number of interme-
diate runs,

* number of single-path Pathfinder runs (1 = 20),
* number of draws returned by each single-path Pathfinder run (M = 100), and

* number of draws per run (R = 100).

For both single-path and multi-path Pathfinder, we repeat the entire process 100 times. We use
Wasserstein distance from the approximate draws in each run to the reference posterior draws to
determine how well Pathfinder achieves its goal of producing approximate posterior samples.

In addition to single-path and multi-path Pathfinder, we also evaluate 100 runs by

 Stan phase I adaptation: adaptive Hamiltonian Monte Carlo with Stan’s no-U-turn sampler
(unit metric, step size adaptation, and a maximum tree depth of 10, keeping the last of 75
iterations),

¢ dense ADVI: automatic differentiation variational inference with a dense covariance matrix
(Stan default settings, return 100 approximate draws), and

* mean-field ADVI: automatic differentiation variational inference with a diagonal covariance
matrix (Stan default settings, return 100 approximate draws).

Each of these procedures uses random initialization values, generated from a uniform(—2, 2) distri-
bution, which is the default for Stan.

The expressive power of Pathfinder’s low-rank plus diagonal covariance approximation is between
that of ADVI’s diagonal and dense choices for covariance. In summary, we generated 100 runs of 100
draws for each of our candidate approximate posterior distribution algorithms, including Pathfinder,
multi-path Pathfinder, mean-field ADVI and dense ADVI, and we generated 100 approximate samples
using Stan’s phase I sampler.
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Figure 3: Box plots of 1-Wasserstein distances between the reference posterior samples and approxi-
mate draws from single-path Pathfinder and ADVI for the 20 models in posteriordb. Each box
plot displays 1-Wasserstein distances of 100 independent runs of (single-path) Pathfinder, mean-field
ADVI, and dense ADVI. We calculate the 1-Wasserstein distance with 100 approximate draws from
the last iteration of 100 runs of Stan’s phase I warmup (adaptive HMC). Distances for each model
are scaled by the median of the 1-Wasserstein distances for single-path Pathfinder.

Assessing the quality of approximations. We provide a comparison of single-path Pathfinder,
ADVI and Stan’s phase I sampler through 1-Wasserstein distances for all 20 models from posteriordb
in Figure 3. A comparison of multi-path Pathfinder, single-path Pathfinder and Stan’s phase I sampler
is in Figure 4. To adjust for the varying scale of the 1-Wasserstein distances across target densities,
we scaled results relative to the median of the 100 1-Wasserstein distances for single-path Pathfinder
for each model. This allows us to compare ratios of the 1-Wasserstein distance between Pathfinder’s
draws and the target posterior and the 1-Wasserstein distance between another system’s draws and
the target posterior.

It is clear that single-path and multi-path Pathfinder outperform the ADVI variants for most of
the models in posteriordb. The bar and whisker plots show that over 100 independent runs,
multi-path Pathfinder is the most stable, followed by single-path Pathfinder, and then mean-field
ADVI, with dense ADVI providing the most variability in 1-Wasserstein distance to the true posterior.
The median 1-Wasserstein distance for mean-field ADVI is more than double that of single-path
Pathfinder for 8 (of 20) test models. Dense ADVI is worse, with 9 (of 20) test models having double
the 1-Wasserstein distance of single-path Pathfinder.

There is only one model where the 1-Wasserstein distance is much smaller for mean-field
ADVI, the hidden Markov model bball_ drive_event_ O0-hmm_drive_0, with a median 1-
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4 Stan Phase | multi-path pathfinder pathfinder

arma-armaii A

sblrc-blr A A
earnings-logearn_interaction q
diamonds—-diamonds
bball_drive_event_1-hmm_drive_1 A
hudson_lynx_hare-lotka_volterra 4
low_dim_gauss_mix 4
gp_pois_regr-gp_regr 4

dogs-dogs
one_comp_mm_elim_abs 4
nes2000-nes A

arK-arK 4 A

hmm_example 4 al
gp_pois_regr-gp_pois_regr
dogs—dogs_log A A
mcycle_gp-accel_gp -
garch—garch11 4
eight_schools_noncentered q

eight_schools_centered 4

bball_drive_event_0-hmm_drive_0 4

1/‘32 1/‘16 1;8 1;4 1;2 1I é 4‘1 é 1‘6 3‘2 6‘4 1é8
scaled 1-Wasserstein distance
Figure 4: Box plots of 1-Wasserstein distances between the reference posterior samples and
approximate draws from single-path Pathfinder and multi-path Pathfinder for the 20 models in
posteriordb. Each box plot displays 1-Wasserstein distances of 100 independent runs of single-
path or multi-path Pathfinder. We calculate 1-Wasserstein distance with 100 approximate draws from
the last iteration of 100 runs of Stan’s phase I warmup (NUTS). Distances for each model are scaled
by the median of the 1-Wasserstein distances for single-path Pathfinder.

Wasserstein distance that less than one tenth of that for single-path Pathfinder. This particular model
has multiple meaningful posterior modes. The noise inherent in the stochastic gradient descent
approach used by ADVI allows it to escape minor modes than can trap the L-BFGS optimizer used
by Pathfinder. It might be possible to resolve this problem for single-path Pathfinder with a more
robust optimization algorithm. Until we find such an algorithm, we note that multi-path Pathfinder
eliminates this problem for the bball_drive_event_0-hmm_drive_0 model, resulting in
1-Wasserstein distances that are comparable to those for mean-field ADVI.

In addition to working better on most posteriors, single-path and multi-path Pathfinder are more
stable than Stan’s HMC-based phase I adaptation for more challenging posteriors. For 7 (of 20)
test models, Stan’s phase I warmup produced 1-Wasserstein distances more than double the median
distance of single-path Pathfinder. Except for the bball_drive_event_0-hmm_drive_0
example, the 1-Wasserstein distances for single-path Pathfinder are at most double that of Stan’s

phase I warmup.

Assessing the computational cost. Pathfinder, Stan’s phase I sampler, and automatic differentiation
variational inference are all dominated computationally by log density and gradient calculations.
Using the number of these operations as a measure of computation conveys the further advantage of
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Figure 5: Box plots of the number of (a) log density evaluations and (b) gradient evaluations required
by the candidate algorithms. For each algorithm, we performed 100 independent runs and summarize
the results with box plots. Candidate algorithms can abort due to various errors. We count the
log density and gradient evaluations in failed runs. We do not plot multi-path Pathfinder because
its number of evaluations is just a multiple of the single-path results plus a small number of extra
approximate and log density evaluations for importance resampling.
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Multiple of Pathfinder’s evaluations
Stan phase I mean-field ADVI dense ADVI
log density 7.9 24 28
gradient 34 48 54

Table 1: The values in the table indicate how much more work is required for Stan’s phase I warmup
and ADVI compared to Pathfinder averaged over all of the test models in posteriordb. The
values are ratios of evaluations, so that, for example, mean-field ADVI required 48 times as many
gradient evaluations as Pathfinder. Dense ADVI does additional work beyond gradient evaluations
in log density and simulation which are not included. The actual implementation of candidate
algorithms can be aborted due to various errors. In this experiment, we count all the log density and
its gradient evaluation in the failed trials until success.

being implementation agnostic. We summarize the cost for 100 repetitions of (single-path) Pathfinder,
Stan phase I warmup, and ADVI for each model through box plots in Figure 5 (the repetitions are
not part of the algorithm, but merely to provide a sense of execution cost variability from run to run).

Table 1 summarizes average costs in terms of log density and gradient operations. Although
we summarize both log density and gradient costs for completeness, gradients typically consume
closer to 80% of overall compute cost for Stan phase I and ADVI when calculated with automatic
differentiation (Carpenter et al., 2015). Because gradients are more expensive with automatic
differentiation than log density evaluations, the results indicate that other methods require around 30
to 50 times more operations than Pathfinder.

These results only consider serial execution. Multi-path Pathfinder requires 20 (the default
number used in the experiments) times as many evaluations as single-path Pathfinder plus the
importance resampling step. Importance resampling is fast, but it does require evaluating a few
log densities of each candidate in both the approximating and target density. Thus the wall time
for running multi-path Pathfinder could be nearly as fast as the slowest of the runs of single-path
Pathfinder. Compared to short chains of adaptive HMC, there is less variability across runs for
Pathfinder, as can be gleaned from the plots in Figure 5. These are timings for single runs (averaged
over 100 runs). In practice, we typically initialize multiple Markov chains, so the gap in number of
evaluations becomes even wider, though these can be parallelized for all systems.

3.2 Sensitivity to tuning parameters

In this section, we provide an analysis of Pathfinder’s sensitivity to tuning parameters to evaluate
whether we just got lucky with our suggested default settings for Pathfinder. For both adaptive
Hamiltonian Monte Carlo and automatic differentiation variational inference, we use the default
settings in Stan, which have proven successful for a broad range of applications (Stan Development
Team, 2021a).

Optimization tolerance and maximum number of iterations. To test the performance of Path-
finder under different relative tolerances for convergence 7™ and maximum iteration for L-BFGS
L™ we reproduced 100 runs of Pathfinder with L™ reduced to 100 and 7™ increased to 1073 for
each model in posteriordb. The lower cap on number of iterations and more relaxed tolerances
should lead to less computation and perhaps less stability in Pathfinder. Following the simulation

21



ZHANG, CARPENTER, GELMAN, AND VEHTARI

E3 Lmax =100, tol = 1e-3,K=5,J=6 Lmax = 1000, tol = 1e-13, K=5,J=6

arma-armaii -
sbirc—blr 4 P ey S
earnings—logearn_interaction - g
diamonds—diamonds 4 -
bball_drive_event_1-hmm_drive_1 4 = ! .
hudson_lynx_hare-lotka_volterra - S —— —
low_dim_gauss_mix 4 T —
gp_pois_regr-gp_regr 4 - -
dogs-dogs 1 I S
one_comp_mm_elim_abs q P E—
nes2000-nes 4 —— T
arK-arK 4 -
hmm_example N S— ==
gp_pois_regr-gp_pois_regr —
dogs—dogs_log 4 —_— T
mcycle_gp-accel_gp q 1
garch—-garch11 - T
eight_schools_noncentered q 1o
eight_schools_centered 1T
bball_drive_event_0-hmm_drive_0 q B —— I
1/‘16 1;8 1;4 1;2 1‘ é ;1 é 1‘6 3‘2 6‘4 1é8

scaled 1-Wasserstein distance

Figure 6: Box plots of 1-Wasserstein distances between the reference posterior samples and ap-
proximate draws from Pathfinder for examples in posteriordb. Each box plot summarizes
1-Wasserstein distances for 100 independent runs of Pathfinder. The two results are for Pathfinder
with default settings (orange), and with the number of iterations reduced to L™ = 100 and the
convergence threshold increased to 1073 (black). We scaled the 1-Wasserstein distances for the same
model by the median distances using the default settings.

design in Section 3.1, we estimate the 1-Wasserstein distance for 100 approximate draws from each
run of Pathfinder. Figure 6 illustrates reduced fidelity and increase in uncertainty with lower L™#*
and higher 7 for most of the tested models. For model earnings—-logearn_interation,
diamonds—-diamondandbball_drive_event_1-hmm_drive_1 1-Wasserstein distances
increased more than a factor of 8. None of the models show improved performance under these
alternative settings. We thus prefer to keep a larger L and a smaller 7™, as they do not add much
computation for simpler models, for which optimization terminates before the maximum iteration
threshold.

The number of Monte Carlo draws to estimate ELBO. Figure 7 reports our sensitivity test
for the number of Monte Carlo draws used to evaluate the evidence lower bound in Pathfinder
(tuning parameter K). In particular, it compares 1-Wasserstein distances using the default K = 5
draws for evaluating the ELBO with the result of K = 30 draws. This increases the number of log
density evaluations and the number of random numbers generated, but not the number of gradient
evaluations, and reduces the scale of Monte Carlo error by around (1 — V5/4/30), or 60%. Increasing
K consistently improves the performance of Pathfinder, but not by much. The median 1-Wasserstein
distances for all models were reduced by only about 3.2% on average, with a maximum reduction
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Figure 7: Box plots of 1-Wasserstein distances between the reference posterior samples and approxi-
mate draws from Pathfinder for examples in posteriordb when using K =5 (default, in orange)
and K = 30 (black) Monte Carlo draws to evaluate the evidence lower bound. The results are scaled
by the median of 1-Wasserstein distances for Pathfinder in the default setting.

of only 15.1%. The cost is about 4.9 times as many log-density evaluations on average. Based on
the tradeoff between the quality of approximation and cost, a smaller K is a better choice when
using Pathfinder, especially multi-path Pathfinder, to quickly find a handful of draws close to high
probability mass region. On the other hand, when using Pathfinder to generate an approximate
posterior, a larger K may be warranted. Using K = 30 also reduces the variability in 1-Wasserstein
distance by a little bit, as can be seen in the narrow 50% intervals and less extreme tail behavior.

History size of L-BFGS. Figure 8 provides a plot evaluating the difference between the default
history size of J = 6 for L-BFGS to estimate an inverse Hessian with the much longer history size
of J = 60. As before, we report on a comparison of 100 different runs of each system. Sensitivity
to L-BFGS history size (J) varies across models. For the majority of models, Pathfinder works
better with longer histories. There is substantial improvement for diamonds—diamonds, whereas
performance for sblrc-blr declines with larger J. This is because in some cases we need
more history to get a higher-rank estimate of covariance, whereas in other cases, it can hurt local
adaptation to keep a longer history. The example diamonds—-diamonds has 27 parameters and
the posterior distribution exhibits high correlations among 25 parameters. Hence we observed a
great improvement of Pathfinder with a larger J. We encourage a larger J for approximation when
the target distribution is expected to have high dependencies among a large number of parameters.
Meanwhile, a smaller J requires less memory and computational cost, which is more efficient for
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Figure 8: Box plots of 1-Wasserstein distances between the reference posterior samples and approx-
imate draws from Pathfinder for examples in posteriordb with the default of J = 6 (orange)
gradients used to approximate the inverse Hessian and a much larger value of J = 60 (black) history
elements. The distances are scaled by the median of the default behavior (J = 6).

finding draws from the high probability mass region. For the other 19 models in posteriordb,
median 1-Wasserstein distances were reduced an average of 0.7% when moving from J = 6 to J = 60.
Among these 19 models, the maximum reduction was 16.3% and the maximum increase was 9.8%.
In summary, a good choice of J depends on the specific problem. We found that, in general, J = 6
works well for the models in posteriordb. Our default history length is in line with defaults
used for J in the range of 5-10 used as the default for most software distributions of L-BFGS. For
example, R’s stats: :optim () function defaults to 5, whereas SciPy uses 10 as the default for
its scipy.optimize.fmin_1_bfgs_Db function (Virtanen et al., 2020).

Number of parallel runs. To evaluate how sensitive multi-path Pathfinder is to the number of
single-path Pathfinder runs used (/), we reproduce 100 runs of multi-path Pathfinder with I €
{5,20,40}, generating R = 100 approximate draws from each run (20 is our suggested default
setting). We left all other tuning parameters at their proposed default values. We estimate the
1-Wasserstein distance for each run of multi-path Pathfinder to compare the performance of multi-
path Pathfinder under different values of /. Figure 9 shows that the change of I does not have
much impact on the approximate performance of multi-path Pathfinder. When decreasing / from
20 to 5, the median 1-Wasserstein distances only increase 5.4% on average, with a minimum
increase of 0.1% and maximum increase of 12.5%. When increasing / from 20 to 40, the median
1-Wasserstein distances are reduced by only 1.1% on average, with a maximum reduction of 5.5%
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Figure 9: Box plots of 1-Wasserstein distances between the reference posterior samples and approxi-
mate draws from multi-path Pathfinder for examples in posteriordb when using I =5 (green),
20 (orange, default), and 40 (black) independent Pathfinder runs. The results are scaled by the
median of 1-Wasserstein distances for multi-path Pathfinder with I = 20.

and maximum increase of 6.4%. Increasing / from 5 to over 20 eliminates the extreme outcomes for
the bball_drive_event_0-hmm_drive_0 example, which we further investigate in the next
section.

3.3 Pathfinder for posteriors with challenging geometry

In this section, we consider four problems that challenge optimizers and MCMC samplers and thus
might be expected to challenge Pathfinder.

Neal’s funnel. Neal (2003) presents a model with funnel-like posterior geometry, defined by

N
p(t,B1,...,BN) =normal(t | 0,3) - ]—[ normal (8, | 0,exp(7/2)). )

n=1

For values of 7 > 0, the 3, are relatively free (the “mouth” of the funnel), whereas for 7 < 0, they
are constrained to be near O (the “neck” of the funnel). This density is problematic for at least two
reasons. First, the density grows without bound (i.e., has no maximum) as T — —oo and §,, — 0.
Second, the condition number of the inverse Hessian (ratio of largest to smallest eigenvalue) grows
quickly as T moves away from 0, which bounds the efficacy of gradient-based updates. Furthermore,
there is no way to globally precondition this distribution, as the curvature changes direction as 7
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(a) optimization paths, (b) approximate draws from
uniform(-2, 2) inits multi-path Pathfinder
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(c) optimization paths, (d) approximate draws from
uniform(—15, 15) inits multi-path Pathfinder

Figure 10: Results of multi-path Pathfinder with varying initial distribution for the eight-schools
model with a centered parameterization. Optimization paths (left column) are displayed next to the
points points selected by pathfinder (right column), with uniform(=2,2) initialization (top row) and
uniform(—15, 15) initialization (bottom row). Multi-path Pathfinder used all 20 optimization paths.
The density plots use lighter color for higher density. The optimization paths are plotted in the left
panels using white for initial points and orange for later points in the optimization trajectories, later
points dive into the neck of the funnel where density increases without bound but volume and hence
probability mass is low.

moves away from 0 to the positive and negative side. The poor conditioning is endemic to hierarchical
models, even with data (Betancourt and Girolami, 2015). The posteriordb package includes
the eight schools model of Rubin (1981), in both a centered and non-centered parameterization; see
Papaspiliopoulos et al. (2003); Stan Development Team (2021b); Betancourt and Girolami (2015)
for more information on these parameterizations.

In Figure 10, we plot the behavior of the centered parameterization of the eight schools model
as an example of funnel-like behavior, where the optimization paths and approximate draws by
multi-path Pathfinder when initials of Pathfinder are randomly generated from uniform(-2,2) (our
default) or uniform(—15, 15) distributions in the unconstrained parameter space. We observe that
even though the optimization paths correctly follow an optimization trajectory down the neck of the
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Figure 11: Results of multi-path Pathfinder with varying initial distribution for the 100-dimensional
Neal’s funnel model. The optimization paths (left column) are displayed next to the points
points selected by pathfinder (right column), with uniform(-2,2) initialization (top row) and
uniform(—10, 10) initialization (bottom row). Multi-path Pathfinder used all 20 optimization paths.
The density plots illustrate region with higher probability with lighter color. The optimization paths
are plotted in the left panels using white for initial points and orange for later points in the optimiza-
tion trajectories. The reference samples for density plots are generated by 4 MCMC chains fitted
with cmdstanr, with an adaptation period of 100,000 iterations, 850,000 saved iterations, and a
thinning rate of 300.

funnel, Pathfinder successfully identifies points in the high probability mass (not high density) region,
which is evenly split above and below 7 = 0. The figure also shows that Pathfinder is sensitive to the
choice of initial distribution rg. When the initial distribution is concentrated in a region of high target
density, the optimization paths may not pass through all regions of high probability mass, resulting
in approximate draws clustered in a relatively small region as shown in the right-hand side plot in
Figure 10. Meanwhile, ADVI tends to be less sensitive to the initials in this example, outperforming
Pathfinder in both 1-Wasserstein distance and ELBO, as shown in Appendix D.

We will next consider a medium-dimensional instance of Neal’s funnel. Letting N in (8) be 99,
we fit the 100-dimensional Neal’s funnel model with multi-path Pathfinder using our proposed default
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(a) optimization paths (b) draws from multi-path Pathfinder

Figure 12: (a) 20 optimization paths and (b) the 100 approximate draws of multi-path Pathfinder,
overlaid on the density plot of two selected parameters for the gp_pois_regr—-gp_polis_regr
example. Multi-path Pathfinder used all 20 optimization paths. Lighter color in the density plot
indicates higher density. The optimization paths are shaded from white (initial) to orange (final).

settings. As in the eight-schools example, Pathfinder successfully locates the high probability mass
region along the optimization paths as illustrated in Figure 11. With Pathfinder’s default initialization,
the approximate draws are underdispersed when Pathfinder is started at the region of high posterior
density, and the approximation can be greatly improved with a more diffuse initialization distribution.

Non-normal posteriors. Given that Pathfinder and ADVI rely on normal approximations to gen-
erate approximate draws, we are interested in the behavior of Pathfinder for posteriors that are far from
normal. We focus here on the Gaussian process Poisson regression model gp_pois_regr—-gp_pois_regr
to explore the performance of Pathfinder in approximating non-Gaussian posteriors. As shown in
Figure 12, the high probability mass region for this model projected down to two selected dimensions
has the shape of a waning moon. The approximate draws generated by Pathfinder concentrate in
a relatively small region within the high probability mass region. This phenomenon is expected,
because Pathfinder selects an approximate normal distribution based on minimizing KL divergence
to the target density, which favors more concentrated approximations that fall within the bulk of
the target probability mass. Therefore, Pathfinder tends to make a conservative guess on the high
probability region when the posterior cannot be well approximated by a normal distribution.

Multimodality. Multimodal posteriors have more than one local optimum. In some cases, such as
high-dimensional mixture models or neural networks, the multimodality can be so extreme that it
defeats Monte Carlo methods. In other cases, the posterior has one, or maybe a few major modes,
with other modes having negligible probability mass. Off-the-shelf MCMC sampling can work in
these cases if it’s possible to move among the modes, but this is usually too difficult, and specialized
samplers for multimodal problems need to be employed, such as bridge sampling (Meng and Wong,
1996). If there is only one major mode, MCMC will succeed if it’s initialized near that mode or if
chains initialized near minor modes can escape.

We observed severely biased MCMC sampling due to the existence of minor modes for 4 of the 49
test models in posteriordb. In Figure 13 we illustrate 100 approximate draws generated by Stan
phase I sampler, optimization paths for 20 runs of Pathfinder, and 100 approximate draws by multi-
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Figure 13: (a) 100 initializations generated by Stan phase I warmup, (b) 20 optimization paths,
and, and (c) the 100 approximate draws of multi-path Pathfinder, overlaid on the density plot of
two selected parameters for the bball_drive_event_0-hmm_drive_ 0 example. The density
plot illustrates the region with higher probability with lighter color. In (b), the optimization paths are
plotted from white (initialization) to orange (later iterations).

path Pathfinder using all 20 runs of Pathfinder for the bball_drive_event_0-hmm_drive_0
example in posteriordb. This posterior has multiple modes as shown in Figure 13b. Figure 13a
reveals how Stan’s phase I adaptation can get stuck near this minor mode. The importance resampling
step of multi-path Pathfinder is able to filter out points around minor modes as shown in Figure 13c.
Of course, when all optimization paths are trapped in minor modes, importance resampling cannot
recover. As a result, multi-path Pathfinder is more robust with more single-path Pathfinder runs from
which to importance resample.

We now turn to ovarian-logistic_regression_rhs, a challenging high-dimensional
example from posteriordb. The example works on ovarian cancer data containing gene expres-
sion measurements of tissues. The example fits a hierarchical logistic regression for the purpose of
discriminating between tissues from different classes (e.g., tumor and normal samples). The model
has 3075 parameters and a horseshoe prior that performs soft variable selection (Piironen and Vehtari,
2017). The prior induces multiple major modes, one of which corresponds to all unconstrained
coefficients being very close to zero. Piironen and Vehtari (2017, Section 4.2) provide a detailed
discussion about the challenging features in this example. This interesting example is not included in
the tests in Sections 3.1 and 3.2 because the reference samples are not available in posteriordb.
We produce a reference posterior sample by running 4 adaptive HMC chains in cmdstanr with
10,000 warmup iterations, 25,000 saved iterations, and a thinning rate of 10. Figure 14 provides a
three dimensional scatterplot illustrating the multimodality of the reference draws.

We fit multi-path Pathfinder with varying initial distributions and illustrate the results in Figure 15.
The starting points of Pathfinder determine the optimization paths and, therefore, the performance
of Pathfinder. Meanwhile, we observe a small number of distinct samples returned by multi-path
Pathfinder even when the optimization paths succeed in finding the high probability mass region.
The small number of distinct samples shows that importance resampling fails to select appropriately
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Figure 14: lllustration of multimodality for the ovarian—-logistic_regression_rhs exam-
ple. The 3-d scatterplot illustrates the reference posterior samples for three selected parameters.
We can see at least four major modes in this 3-d marginal posterior. Overall, we estimate the joint
posterior to have hundreds of modes with non-negligible masses.

diffuse samples, which provides evidence that the approximation found by Pathfinder is not good
enough.

Due to the high dimensionality and the shape of the posterior, the optimization from random
initial values tends to find the major mode around the origin, which is consistent with all coefficients
being close to zero. This concentration around the origin leads to poor predictive performance as
shown in Figure 15c. On the other hand, if Pathfinder could somehow be initialized within or near
the minor modes, optimization will find them as shown in Figure 15b. Thus, even though Pathfinder
is finding a single region of high probability, in high dimensions it can fail to find other relevant high
probability modes.

Weak identifiability. Unlike multimodal priors, which have multiple modes, non-identifiable
posteriors do not have any modes. For example, a uniform(0, 1) distribution is flat and does not
have a mode. Flat regions in densities must be compact, because flatness in unbounded spaces leads
to unnormalizable distributions. In Stan and this paper, we work with unconstrained distributions,
where a variable a with a uniform(0, 1) distribution is transformed to logit(a) = log 1=, which has
a logistic(0, 1) distribution. Although we cannot have properly flat unbounded posteriors, they can
be nearly flat over large regions, which can cause the same computational problems. For example, we
see such behavior with collinear predictors in regressions, which produces high posterior variability
and high correlation between their regression coefficients. Such flat regions correspond to plateaus in
the density and cause difficulties with convergence for adaptive HMC, ADVI, and Pathfinder.

We observe pathological flatness in the posterior of model mcycle_gp-accel_gp from
posteriordb, which is one of the most expensive models in posteriordb according to the
cost evaluation presented in Figure 5. This example models measurements of head acceleration in a
simulated motorcycle accident. Specifically, the observation y is modeled with a normal distribution
having Gaussian process prior on mean function f and log standard deviation function g,

y ~normal(f,exp(g)), f ~ GP(uy, K1), g§ ~ GP(ug, K2),
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Figure 15: Results of multi-path Pathfinder with varying initial distribution for the
ovarian-logistic_regression_rhs example. With uniform(-2,2) initialization (top left),
multi-path Pathfinder does not explore both modes and predictive performance is poor (bottom left).
When initialized with draws from the reference sample (top right), multi-path Pathfinder explores
both modes and performance improves (bottom right), but is still poor compared to the reference
draws. The density plots illustrate region with higher probability with lighter color. The optimization
paths are plotted from white (initialization) to orange (later iterations). The approximate draws of
Pathfinder are indicated by red dots. The density plots show two major modes for the two selected
parameters (top row, background). Predictive performance is the estimated probability of a tumor,
with the x-axis defined by the reference draws (bottom row).

where K and K, denote covariance functions, and u y and u, model the mean of the priors of f and
g. Both Gaussian processes f and g are modeled with Hilbert-space approximate basis functions
(Solin and Sérkkd, 2020; Riutort-Mayol et al., 2020). There are in total 66 parameters. In Figure 16,
we illustrate 100 draws from multi-path Pathfinder, which are based on resampling 20 optimization
paths, for two selected dimensions of mcycle_gp-accel_gp. Figures 16a and 16b show that
the optimization paths are almost parallel to each other when passing the high probability region.
The gradients of the log density along the x-axis fail to guide optimization paths toward the high
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Figure 16:  lllustration of weakly identified posteriors for two parameters in the
mcycle_gp-accel_gp example. In (a), we see the result of Pathfinder with default initial-
izations in uniform(=2,2); in (b), we zoom in the x-axis of plot (a). The optimization paths are
plotted from initialization in white to later iterations in orange. In (c), we initialize parameters on
the x axis between —40 and 20, resulting in L-BFGS declaring convergence at various points along
the x axis as a result of the weak identification. Due to the poor approximations from Pathfinder,
the importance resampling step in multi-path Pathfinder only picks 4 distinct draws (recall that
sampling is with replacement). Short runs of adaptive HMC perform better than Pathfinder (d), but
are expensive in terms of density and gradient evaluations. Figure (e) shows that a large history size
(J = 100 as opposed to our default J = 5) improves the local Hessian approximations in optimization.
Figure (f) compares posterior expectations of parameters ¢, the mean of the Gaussian process for
[, in the reference draws (horizontal axis) and draws from multi-path Pathfinder with history length
of J =100 (vertical axis).

probability region of the posterior. Figure 16c illustrates that with specialized initials, the positions
of the maxima found by L-BFGS span from —40 to 20 on the x-axis, a strong sign of weak posterior
identifiability. Since Pathfinder relies on estimating curvature along optimization paths to estimate
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Figure 17: Hllustration of non-normality in two additional dimensions of the
mcycle_gp-accel_gp example. The 20 optimization paths are shown in (a) with later
iterations in orange. The 100 approximate draws selected by multi-path Pathfinder are shown in
(b) as red dots overlaid on the target density. The target density is clearly not normal in these
two dimensions. Due to the poor approximations from Pathfinder, importance resampling with
replacement in multi-path Pathfinder only generates 4 distinct draws among the 100 approximate
draws it chooses because of the high variance of the importance weights in this example.

the covariance of normal approximations, Pathfinder fails to provide good covariance estimates for
normal approximations centered near the high probability mass region in this example.

Apart from weakly identified parameters, we find that several parameters exhibit correlation
in the posterior. Therefore, L-BFGS with a small history size (J), which uses a low-rank plus
diagonal matrix to approximate local Hessian, cannot precisely capture local curvature information.
Figure 16e shows how a large history size can improve the performance of Pathfinder in this example.
Pathfinder successfully identifies the high probability mass region among the optimization paths,
though the approximate draws are concentrated in a small region due to the weak identifiability
problem. Figure 16f compares the expectation of f for 133 observations estimated by reference
samples and approximate samples from multi-path Pathfinder with J = 100. We conclude that
approximate inference from Pathfinder is reasonable in this case because expectations are close
between Pathfinder and the reference draws as indicated by the 45-degree line where y = x.

In addition to weakly identified and correlated parameters, mcycle_gp-accel_gp has other
features that frustrate Pathfinder. In Figure 17, we see that the high probability region in the other two
dimensions is shaped like a boomerang. Because the posterior distribution is far from normal, none
of the parametric VI algorithms find good approximations. The approximate draws by multi-path
Pathfinder on the two selected dimensions are shown in Figure 17b. Although Pathfinder fails to
provide a good normal approximation, the draws from Pathfinder are close to the target region for
most of the parameters in this example.

For difficult high-dimensional examples such as the Gaussian process mcycle_gp-accel_gp
and the hidden Markov model bball_drive_event_0O-hmm_drive_0, the approximate draws

33



ZHANG, CARPENTER, GELMAN, AND VEHTARI

are concentrated in a small region, but they can be useful starting points for more elaborate and more
costly algorithms.

4. Using Pathfinder to initialize MCMC

Markov chain Monte Carlo methods, including adaptive Hamiltonian Monte Carlo, are typically
initialized randomly and then allowed to evolve until multiple chains have “converged.” This informal
notion of convergence can mean several things. In the strictest sense, it requires running the chains
long enough to fully forget their initial positions, as measured, for example, by coupling (Jacob et al.,
2020). Such forgetting is necessary to avoid estimation bias due to the initialization. A less strict
criterion only requires adequate mixing of the chains, which may be measured through within- and
between-chain variances (Gelman and Rubin, 1992; Vehtari et al., 2021). The most generous notion
of convergence provides the modest goal of using Pathfinder for initialization, namely finding a point,
or several points, that look as if they might have been drawn from the posterior. This is the point at
which the transient bias due to not initializing with a draw from the target is mostly eliminated and
estimation error starts to become dominated by sampling error (Angelino et al., 2016, Section 2.2.4).

Initialization to remove most of the transient bias of MCMC can succeed by producing draws
within the high probability volume of the posterior without covering that posterior—it only requires
draws to look reasonable. Besides, even if initial points are underdispersed, if they are close enough
to the high probability mass region, the total variance would still likely increase faster than the
within chain variance. As there will be additional warmup after Pathfinder, the probability of having
high between-chain variance, would be negligible. Therefore, the convergence diagnostic based on
within- and between-chain variances is still reliable with underdispersed initials in high probability
mass region. We can diagnose problems with Pathfinder’s distributional approximation by using
the Pareto-k statistic (Yao et al., 2018). In such cases, Pathfinder can still be valuable as a starting
distribution for the adaptation phase of MCMC, improving current practice whereby adaptation can
be slow when starting points are not chosen well.

The birthday problem Gaussian process. We consider the challenging problem of modeling the
time series of the number of births by day, where the default no-U-turn Hamiltonian Monte Carlo
sampler in Stan tends to get stuck in local minor modes. This time series shows periodic trends
at weekly and annual scales, as well as longer-term trends and date- and holiday-based behavior.
This is an attractive example for Bayesian inference and computation because national-level data
are publicly available, sample sizes are large enough that fine-grained patterns can be detected with
careful analysis, the underlying scientific questions are accessible and of general interest, and the
repetition at different time scales is not exact (for example, there is a general pattern of more births in
the summer than in the winter, but that contrast changes over time and varies by country). Together,
these features motivate the use of Gaussian processes, a class of models that support flexible patterns
of ad hoc, trend-based, and periodic patterns at different time scales.

We follow Gelman et al. (2013) in analyzing the number of births per day in the United States
from 1969 through 1988 with Gaussian processes (GP). Applying GPs at this scale is challenging
because of the need to work with an N X N covariance matrix, where N is the number of days in the
series. The generic form of the likelihood is

Yn ~ normal(f(xn), 0'), (9)
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where y is the time series of logarithm of number of births by day. (The counts are large enough that
we do not need to worry about their discreteness.) The function f is assigned a Gaussian process
prior, which takes into account a global trend f], yearly seasonal trend f,, the effect of weekdays
Bday of week» and the day of year effect Baay of years

f=a+ fi+ f2+ Bday of week + Bday of year, (10)
a ~normal(0, 1), fi ~ GP(0,K;), f>» ~ GP(0, K3),

Baay of week = 0 if day of week is Monday,

Bday of week ~ normal(0, 1) if day of week is not Monday, and

Bday of year ~ normal(0,0.1),

where the first GP uses the exponentiated quadratic covariance function K| and the second a periodic
covariance function K,. Most years have 365 calendar days and every four years (during the data
range) there are 366 day, and thus we simplify and use period of 365.25 for the periodic component.
The Gaussian process priors for f; and f, are modeled by the Hilbert space approximate basis
function approximation of Gaussian processes (Solin and Sarkkd, 2020; Riutort-Mayol et al., 2020).
This model includes a total of 429 parameters.

To evaluate the performance of Pathfinder, we compare the approximate draws obtained by
adaptive Hamiltonian Monte Caro (Stan’s phase I sampler), multi-path Pathfinder, and adaptive
HMC initialized with draws from multi-path Pathfinder. For multi-path Pathfinder, we generate 20
approximate draws using 20 optimization paths and the default setting of tuning parameters. For
Stan’s phase I sampler, we run 20 adaptive HMC chains with 75 iterations for each, and take the
samples at the last iteration as the approximate draws. The trace plots of log density plotted in
Figure 18 indicate multiple modes in the posterior distribution. Initializing an MCMC algorithm
with Pathfinder avoids wasting computation time sampling within minor modes with negligible
posterior mass. To compute a reference for comparison, we ran 4 MCMC chains with an adaptation
period of 50,000 iterations, 300,000 saved iterations, and a thinning rate of 100 using cmdstanr.
In Figure 18, we illustrate reference posterior draws and approximate draws of three competitors on
two selected dimensions. The reference posterior has the shape of an hourglass, which is found by all
draws from Pathfinder-initialized adaptive HMC. The 1-Wasserstein distance between the reference
posterior draws and draws after 75 iterations of adaptive HMC as well as the comparison of the
estimated number of births highlight the benefits of initializing MCMC with draws from Pathfinder.

Figure 18a show that 5 of the 20 randomly initialized adaptive HMC chains failed to reach
the high probability region, while the remaining chains provided reasonable approximate draws.
Figure 18d shows the 5 non-converging MCMC chains were trapped in minor modes. Convergence
diagnostic results are consistent with multimodality. Therefore, initializing MCMC chains with
Pathfinder helps to avoid the local minor modes in the subsequent MCMC sampling. On average, the
number of gradient evaluations of an adaptive HMC chain in this example is around 10 times that of
single-path Pathfinder. Pathfinder further requires around 5 times more log-density evaluations than
gradient evaluations to estimate ELBOs and generate approximate draws. With our experimental
Pathfinder implementation in cmdstanr, the average running time of a single-path Pathfinder is
around one-third of that of a single 75 iteration HMC chain (3s vs 9s). In summary, initializing
MCMC with Pathfinder can improve the overall sampling efficiency.
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Figure 18: Comparison of 75 iterations of adaptive HMC (Stan Phase I adaptation), multi-path
Pathfinder, and HMC initialized by multi-path Pathfinder for the birthday Gaussian process. Top
row: draws in orange against the target density of two selected parameters for (a) draws from 20
adaptive HMC chains initialized with uniform(-2,2), (b) 20 approximate draws from multi-path
Pathfinder, and (c) draws from 20 adaptive HMC chains initialized by multi-path Pathfinder. Draws
from multi-path Pathfinder are closer to the target than 75 iterations of adaptive HMC. Middle
row: traceplots of 75 adaptive HMC iterations initialized randomly (d) and with Pathfinder (e).
Bottom row: (f) expected number of births by day estimated by reference samples and draws from
adaptive HMC, (g) multi-path Pathfinder, and (h) adaptive HMC initialized by multi-path Pathfinder.
Pathfinder-initialized HMC provides inference closest to the reference.

5. Discussion

The Pathfinder algorithm we present in this paper is similar to automatic differentiation variational
inference (Kucukelbir et al., 2017), with two key differences. First, instead of performing stochastic
gradient descent directly on the evidence lower bound, we use quasi-Newton methods to directly
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optimize the objective function. Second, rather than a diagonal or dense covariance approximation,
Pathfinder uses a low-rank plus diagonal factorization that is more expressive than a simple diagonal
covariance matrix, but nearly as cheap to employ. Direct optimization is much more stable because
we can use cheap L-BFGS estimates of inverse Hessians to locally condition our optimization steps
(Nocedal, 1980). Pathfinder can evaluate the ELBO of normal approximations built upon L-BFGS
estimates of inverse Hessians along this path (in parallel), and we know from the intermediate value
theorem that if starting from the tail of the distribution, the optimization trajectory will move from
the tail, through the body of the distribution, to the mode or pole. In our examples, Pathfinder
requires one to two orders of magnitude fewer log density and gradient evaluations than using
automatic differentiation variational inference or using dynamic Hamiltonian Monte Carlo to warm
up. Pathfinder provides approximations slightly inferior to that of adaptive step-size Hamiltonian
Monte Carlo, but better than mean-field or dense ADVI as measured by 1-Wasserstein distance.

Multi-path Pathfinder improves on the robustness of single-path Pathfinder by running multiple
single-path instances, then importance resampling. We have shown that this can both filter out
minor modes where the algorithm might otherwise get stuck, and improve fidelity in representing
irregular posteriors. In this usage for “black-box” variational inference, Pathfinder is similar to using
multiple short MCMC paths for inference (Hoffman and Ma, 2020). In most cases, the approximation
provided by multi-path Pathfinder is comparable to or better than that of short chains of Hamiltonian
Monte Carlo. Although multi-path Pathfinder requires many log density and gradient evaluations,
these can be parallelized, unlike the necessarily serial evaluation of Markov chain Monte Carlo.

For posteriors with high computational cost, it might be useful to use Bayesian optimization
(Shahriari et al., 2015) to find the ELBO maximizing point along the L-BFGS optimization trajectory.
Such optimization could also consider parameter values between L-BFGS iterations, as L-BFGS
might sometimes take a big step over the optimal point. Multi-path Pathfinder is more robust than
single-path Pathfinder to the variability due to the small number of Monte Carlo draws used to
evaluate the ELBO, because importance resampling will favor the best approximate distributions
from multiple single-path runs.

The performance of Pathfinder can be sensitive to the initial values if they happen to be un-
derdispersed and close to the mode. To make Pathfinder more robust to initial values, it would be
possible to create the first approximation with any initial values and then use that approximation to
generate additional initial values from a normal distribution with much larger scale than the scale of
the first approximation (e.g., 10 times larger scale). For example, in the ovarian cancer example in
Section 3.2, this approach would be likely to find additional modes beyond the mode at the origin.

Pathfinder can be part of a more effective computational workflow, starting with fast multivariate
optimization, moving to Pathfinder’s distributional approximation, and then if necessary moving
to fully stochastic MCMC algorithms. Even biased approximate inference can be useful if it can
produce one reasonable draw quickly or several in parallel. If such draws are unreasonable, there
is a good reason to believe the model is misspecified or has an error in its code. This allows us to
fail fast during model development, a perspective from software engineering (Shore, 2004) that we
recommend applying to statistical workflow (Gelman et al., 2020; Gabry et al., 2019).

Perhaps the most obvious extension to consider is using optimizers other than L-BFGS. For
example, it might be possible to improve scalability by subsampling long data sets and using
stochastic gradient descent (Robbins and Monro, 1951) or one of its modern adaptive variants such
as Adam (Kingma and Ba, 2014) on the objective (not on the evidence lower bound). The overall
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algorithm should be tolerant to data subsampling because we do not need high tolerance for mode
finding. Subsampling may also be more robust in the face of minor modes (i.e., local optima).

One of our goals in developing Pathfinder was to find a drop-in replacement to initialize the
warmup phase of MCMC sampling. For Gibbs samplers, that would only involve finding a reasonable
starting point. In contrast, adaptive Metropolis and Hamiltonian Monte Carlo samplers require us
to generate an approximate covariance matrix for either a proposal distribution or to pre-condition
Hamiltonians. Thus finding initial values is only the first phase of warmup and adaptation. In Stan,
the second phase of warmup involves exploring the posterior to estimate the posterior covariance
in either diagonal or dense form. Following Bales et al. (2019), we have verified that the estimated
inverse Hessian from L-BFGS is a reasonable initalization for such adaptation, and may in fact be
accurate enough to bypass Stan’s phase II adaptation, at least for low-dimensional models where it
is easier to estimate covariance. This would remove the remaining serial processing bottleneck for
efficient parallel MCMC. In more difficult problems, it should be possible to use the information
provided by Pathfinder to perform warmup adaptation more efficiently.

With a few dozen test models of fairly low dimension and a handful of higher-dimensional
examples, we have only scratched the surface of potential applications. We believe the use of local
curvature information in L-BFGS should help with fitting in both higher dimensions and in situations
with poor conditioning locally due to varying curvature, compared to either optimizing the ELBO
directly using stochastic gradient methods or subsampling short chains of Hamiltonian Monte Carlo.
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Appendix A. Derivation of (4)

From (3), we have

@ = diag(a%) I+ diag(a_%) “By-BT- diag(of%) diag(a%)

= diag(a?) [0 P] 0

= diag(a?) [Q P] Lé (1)} [IQDT}diag(aé)

R A P A | P e
= diag(a?) [QL P] [i;?] diag(a?).

T

Appendix B. 1-Wasserstein distance

The 1-Wasserstein distance between two probability measures is based on the amount of effort it
would take to rearrange one probability measure to look like the other, where effort is measured
according to the distance mass is moved (Craig, 2016; Villani, 2009; McCann, 1995). If each
distribution is viewed as a unit volume of earth piled according to the density, then the 1-Wasserstein
distance is the minimum cost of turning one pile into the other, with “cost” defined as the amount
of earth that needs to be moved times the mean distance it has to be moved. Unlike KL divergence,
Wasserstein distance is a proper distance metric in that it is symmetric, all distances are non-negative,
it obeys the triangle inequality because mass can be moved in two steps, and distance between a
distribution and itself is zero, because no probability mass needs to be adjusted.

Both multi-path Pathfinder and Stan’s current no-U-turn sampler generate nonparametric approx-
imations. In simulation studies in Section 3, we use the empirical distribution of 100 approximate
draws to measure the Wasserstein distance for approximations generated by multi-path Pathfinder
and Stan’s no-U-turn sampler. We use the empirical distribution based on the 10,000 reference draws
from posteriordb to represent the target posterior distribution. In order to compare multi-path
Pathfinder and Stan’s no-U-turn sampler to single-path Pathfinder and ADVIs, a discrete form of
Wasserstein distance is applied to 100 samples drawn from the approximate distributions produced
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(a) 1-W distance = 0.034 (b) 1-W distance = 0.017 (c) 1-W distance = 0.009

Figure 19: Scatterplot of the 100 approximate draws for the dogs—dogs_1og example from
posteriordb. Higher target densities are shaded lighter. The subtitles provide 1-Wasserstein
(1-W) distances to the target density.

by single-path Pathfinder and ADVIs. In summary, we estimate distances between reference draws
from the target posterior and the approximate draws from Pathfinder (single and multi-path), ADVI
(with diagonal and dense covariance), and Stan’s current no-U-turn sampler. We provide an example
in Figure 19 to demonstrate the 1-Wasserstein distances between reference samples and approximate
draws with different patterns.*

Appendix C. Importance sampling

Importance sampling is a method for adjusting expectation estimates based on an approximate
proposal distribution so that they more closely resemble a target distribution. Rather than weighting
the draws equally, importance sampling reweights them according to the ratio of the target density to
the proposal density. If the proposal distribution is ¢(6) and the target p(6), the importance weight
of adraw 0 ~ g(0) is w(8) = p(0)/q(6). The importance sampling estimate of an expectation with
respect to importance weighted expectation estimate over a target density p given a sequence of
proposal draws 81, ..., (M) ~ 4(6) is

M

Epo)[f(0)] = % Z w(@™)y . F(o'™).

m=1

Appendix D. ELBO comparison for simulation studies in Section 3.1

In the body of the paper, we used Wasserstein-1 distance to evaluate the quality of approximate draws
from a target distribution. In Figure 3, we show the corresponding values of the ELBO derived by
single-path Pathfinder and ADVI in both its diagonal (“mean-field”) and dense (‘“full rank™) versions
for the collection of posteriordb models we considered in Section 3.1. In all cases, we use 100
approximate draws to compute a Monte Carlo estimate of ELBO by (7). The ELBO comparison is

4. We use the function wasserstein () from the R package t ransport (Schuhmacher et al., 2020) to calculate the
1-Wasserstein distance between two sets of draws.

40



PATHFINDER: QUASI-NEWTON POSTERIOR APPROXIMATION
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Figure 20: Box plots of estimated ELBO values (higher is better) for single-path Pathfinder and ADVI
for the 20 examples in posteriordb. Each box plot displays estimated ELBOs of 100 independent
runs of (single-path) Pathfinder, mean-field ADVI, and dense ADVI. We estimate the ELBO with 100
approximate draws from each run. All values are shifted by the median of the estimated ELBO values
for single-path Pathfinder.

consistent with the 1-Wasserstein distance comparison in Section 3.1. Pathfinder results in better
(higher) ELBO values than ADVI for most of the examples from posteriordb. Meanwhile, for
model mcycle_gp-accel_gp, eight_schools—eight_schools_noncentered and
eight_schools-eight_schools_centered, the advantages of ADVI over Pathfinder are
more prominent in ELBO comparison than in Wasserstein distance comparison. Based on the
case studies in Section 3.3, the ELBO more heavily penalizes underdispersed approximations than
Wasserstein distance when the approximate samples are close to the high probability mass region.

Appendix E. Laplace approximation for simulation studies in Section 3.1

In this section, we present an experiment to compare Pathfinder with standard Laplace approximation.
The comparison is based on the same examples in the simulation study in Section 3.1. We define the
standard Laplace approximation as the Laplace approximation at the mode found by optimization.
To generate standard Laplace approximations, we first use L-BFGS to generate an optimization
trajectory until it converges. Then we compute the Hessian of the negative log density at the end of
the optimization path by function jacobian () from the R package numDeriv. The L-BFGS for
finding mode and the L-BFGS in Pathfinder share the same tuning parameters except the maximum
iteration. The Laplace is the Normal approximation with mean at the mode and covariance matrix
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equal to the inverse of the computed Hessian. We generate 100 approximate draws from the Laplace
approximation and compute the 1-Wasserstein distance between the empirical distribution of the
approximate draws and the target distribution. In Figure 21 we compare multi-path Pathfinder with
Laplace approximation based on 1-Wasserstein distances. The distances are scaled by the median of
the 1-Wasserstein distance for multi-path Pathfinder for each example.

Normal approximation at the mode (aka Laplace) and Pathfinder are both based on optimization.
If the mode exists, Pathfinder’s path will also end at the mode. In case of Laplace, we trust that the
mode is a good center of the normal approximation. In case of Pathfinder we use ELBO estimates
to check if some other place along the path would be better. If the ELBO could be estimated
exactly, in case of low-dimensional normal posterior, Pathfinder’s approximation would match the
Laplace approximation. As ELBO is estimated using a small number of Monte Carlo draws, there is
additional variability and Pathfinder’s approximation can be little off compared to the Laplace. In
Figure 21 for nearly normal posteriors like example nes2000-nes, due to the error of the ELBO
estimates, Pathfinder might pick approximations slightly inferior to the Laplace approximation. In
Section 5 we discuss ways to improve the accuracy of ELBO estimation near the optimal ELBO. In
the experiments we intentionally used low J for the low-rank part of Pathfinder’s approximation.
Thus for close to normal posteriors with posterior dependencies, Laplace with dense covariance
matrix beats the low-rank plus diagonal approximation even if that approximation would also be at the
mode. The effect of this is clearly seen in case of diamonds—diamonds posterior that has close
to normal posterior with strong dependencies in 25 dimensions. If such strong dependencies would
be expected, Pathfinder’s accuracy can be trivially improved by increasing J which naturally then
increases also memory and computation costs. As shown in Figure 8, the Wasserstein distances for
single-path Pathfinder can be reduced by half with a larger J. On the other hand, the implementation
of standard Laplace quickly become infeasible as N grows. Standard Laplace not only requires
O(N?) flops and O(N?) memory for obtaining the Cholesky decomposition of the inverse Hessian,
the cost of autodiff for Hessian computation is also expensive, especially for high-dimensional
problems. If the mode doesn’t exist or the second derivatives don’t exist at the mode (e.g., for
eight_schools_centeredand mcycle_gp—accel_go ), then the Laplace approximation
fails but Pathfinder is still likely to be able to provide an approximation. Even if the mode and second
derivatives at the mode exist, Pathfinder is safer for posteriors that are far from normal or multimodal.
Taking sblrc-blr for example, the posterior is skewed due to a small sample size, and we observe
that Pathfinder works better than Laplace. We are thus trading some accuracy (due to the stochastic
ELBO estimates) in case of close to normal posteriors to faster computation (low rank part) and
better accuracy in case of no-normal distributions (use of ELBO).
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Figure 21: Box plots of 1-Wasserstein distances between the reference posterior samples and
approximate draws from multi-path Pathfinder and Laplace approximation for the 20 models in
posteriordb. Each box plot displays 1-Wasserstein distances of 100 independent runs of (multi-
path) Pathfinder and Laplace approximation. Distances for each model are scaled by the median of
the 1-Wasserstein distances for multi-path Pathfinder. The Laplace approximation is not available
for examples eight__schools—-eight_schools_centeredand mcycle gp-accel_gp,
since the Hessian at their modes are singular.

Appendix F. Pseudocode for ELBO estimation and L-BFGS

Algorithm 6 ELBO estimation
Input:
log p(¢™M), ..., log p(¢'X)): target log densities
log g(¢™"), ..., log q(¢®)): log densities of approximation distribution
Output:
ELBO: Monte Carlo estimate of the evidence lower bound

1: procedure ELBO(log p(¢15)), log g(¢(1:K)))
2: let ELBO = % Zszl log p(¢™®) —log g(¢¥) O(K)
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Algorithm 7 L-BFGS.

Input:

log p: differentiable log density function of dimension N

@it initial value in support with log p (6™") finite ( ~ uniform(-2,2)")
J: size of the history used to approximate the inverse Hessian (6)
7l: relative tolerance of log density change for convergence (10713)
L: maximum number of iterations (1000)
c: pair of bounds for Wolfe condition on line search, with0 < ¢; < ¢p < 1 (10‘4, 0.9)
€: positivity threshold for updating covariance estimate (2.2-10719)

Output:

oM ..., 0L optimization path with L’ < L and log p(61) < log p(8U+1))
Viog p(6M), ..., Viog p(6'£)): gradient log density of points on optimization path

. procedure L-BFGS(log p, 8™, J, t™ L, ¢, €)

1
2: let 90 = ginit g = [], Z = [], and @ = 1y, where 1y denotes the N-vector of 1s.  O(N)
3: for/€0:L-1do O(LJ?N)
4: generate 3 and y by (2) O(J°N)
5: let § = (diag(@) + 8-y - BT) - Vlog p(8)) be the search direction O(JN)
6: forﬂel,%,%,...do
7: let 0+ =9 1 2. 6 O(N)
8: break if the Wolfe conditions are satisfied, O(N)
log p(0"* ) > 1ogp(8D) + ¢y - Vieg p(6)T - (- 6)
Viegp(0HNT.6 < ¢;-Viogp(8D)T -6
(I+1)y _ 0
9: return if log p(67") ~log p(0") rel
|log p(61) |
10: let S;pp = 0D — 90 and Z;,; = Viog p(61)) — Viog p(6U+D),
11: if SITHZM > € || Zi+1]|> (Condition 3.9 of Byrd et al. (1995)) then
12: if more than J — 1 updates are stored, delete the first columns of S and Z
13: let S = [S Sl+1] and Z = [Z Zl+1]
Zisl?
14: leta = WZll” O(N
Sz W (V)
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