OPTIMIZATION METHODS & SOFTWARE Ialylcir & Francis
https://doi.org/10.1080/10556788.2022.2119233 aylor &Francis Group

[W) Check for updates‘

A new randomized primal-dual algorithm for convex
optimization with fast last iterate convergence rates

Quoc Tran-Dinh and Deyi Liu

Department of Statistics and Operations Research, The University of North Carolina (UNC) at Chapel Hill,
Chapel Hill, NC, USA

ABSTRACT ARTICLE HISTORY
We develop a novel unified randomized block-coordinate primal- Received 22 March 2021
dual algorithm to solve a class of nonsmooth constrained convex Accepted 20 June 2022
optimization problems, which covers different existing variants and KEYWORDS

model settings from the literature. We prove that our algorithm Randomized block
achieves O (n/k) and O (n?/k?) convergence rates in two cases: coordinate algorithm;
merely convexity and strong convexity, respectively, where k is the primal-dual method;
iteration counter and n is the number of block-coordinates. These constrained convex
rates are known to be optimal (up to a constant factor) when n = 1. optimization; fast last-iterate
Our convergence rates are obtained through three criteria: primal convergence rate
objective residual and primal feasibility violation, dual objective

residual, and primal-dual expected gap. Moreover, our rates for the

primal problem are on the last-iterate sequence. Our dual conver-

gence guarantee requires additionally a Lipschitz continuity assump-

tion. We specify our algorithm to handle two important special cases,

where our rates are still applied. Finally, we verify our algorithm

on two well-studied numerical examples and compare it with two

existing methods. Our results show that the proposed method has

encouraging performance on different experiments.

1. Introduction

We consider the following nonsmooth constrained convex optimization problem:

F*:= min {F(x,w) = h(x) + Z fitx)) +gw) st. Kx+Bw=by, (P)

xeRP,weR™ 1
1=

where f; : RP — R U {+o00} for i =1,...,n, are proper, closed, possibly nonsmooth,
and convex functions, p; +---+p, =p, h: R? — R is a smooth and convex func-
tion, g : R™ — R U {+00} is a proper, closed, possibly nonsmooth, and convex function,
K € R¥?, B e R¥™ and b € R¥ are given. For notational simplicity, let us denote by
f(x) :== Y"1, fi(x;) throughout this paper.

Note that (P) looks simple, but it is sufficiently general to cope with a broad class of con-
vex optimization problems in practice, ranging from unconstrained to constrained settings,

CONTACT Quoc Tran-Dinh @ quoctd@email.unc.edu e Department of Statistics and Operations Research, The
University of North Carolina (UNC) at Chapel Hill, 318 Hanes Hall, Chapel Hill, NC 27599, USA

© 2022 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2022.2119233&domain=pdf&date_stamp=2022-09-23
mailto:quoctd@email.unc.edu

2 @ Q. TRAN-DINH AND D. LIU

including the composite models considered in [1,3,12,42,50]. In particular, (P) also cov-
ers conic programming (e.g. linear, convex quadratic, second-order cone, and semidefinite
programming), image and signal processing, machine learning, network and distributed
optimization, and optimal transport, see, e.g. [6,10,40,45].

The corresponding dual problem of (P) can be written as

D* = max D(y), where D(y) := min {F(x, w) + (Kx + Bw — b,y)} . (D)
yeR W

Here, D is called the dual function of (P). Our goal in this paper is to develop a new unified
randomized block-coordinate primal-dual algorithm to simultaneously solve both (P) and
its dual (D) which is simple to implement and can achieve state-of-the-art convergence
rates without imposing strong assumptions on (P).

Motivation. We are interested in the case when the primal dimension p of x is sufficiently
large so that computing the full gradient of & and the proximal operator of f can be prohib-
ited. However, the dimensions m of w and d of y are relatively small, so that full operations
on these spaces can be computed efficiently. This structure is sufficiently generic to cope
with many existing models, including [1,3,12,42,50].

Although randomized primal-dual algorithms for solving (P) have been widely studied
in the literature, including [33,42,48], it remains unclear if one can achieve a faster conver-
gence rates on the last iterate under only convexity or strong convexity. Moreover, many
works only focus on the unconstrained setting with smoothness assumption as opposed
to the nonsmooth setting (P). For example, [33,48] only consider the unconstrained case
when the objective function is both strongly convex and L-smooth to achieve a linear
convergence rate, while [42] only achieves O(1/+/k) convergence rates under convexity,
where k is the iteration counter. Our goal is to combine the augmented Lagrangian frame-
work, randomized block-coordinate strategy [29], and Nesterov’s accelerated scheme [37]
to develop a new algorithm, Algorithm 1, which can achieve a O(n/k) convergence rate.
This convergence rate is much faster than O(n/ Vk) rate in [42]. Moreover, compared to
other existing methods in [3,12,41], Algorithm 1 achieves convergence rates on the last
primal iterate (x*, w¥). These rates can be boosted up to O (n?/K?) rates on the last pri-
mal iterate (x¥, w¥) when either f or h is strongly convex thanks to the new update rules of
parameters.

Related work. Solution methods for solving (P) and (D) have attracted great attention in
recent years, including penalty schemes, augmented Lagrangian frameworks, primal-dual
hybrid gradient method (PDHG), proximal splitting algorithms, and variational inequal-
ity tools, see, e.g. [5,8,9,11,13,17,19,20,25,27,30,32,43], just to name a few. Notably, in [25],
the authors generalize PDHG and show that their framework covers proximal forward-
backward splitting (PFBS), the alternating direction method of multipliers (ADMM), and
the Douglas-Rachford splitting as special cases. Hitherto, first-order primal-dual methods
are perhaps the most popular ones for solving (P), see, e.g. [5,14,26]. In terms of con-
vergence analysis, both linear convergence rate under strong convexity and smoothness
assumptions and sublinear convergence rate under weaker assumptions are well estab-
lished for primal-dual methods, including [7,15,22,23,32,36,44]. However, most existing
convergence rates are achieved via averaging or weighted averaging sequences instead of
the last-iterate sequence.

OPTIMIZATION METHODS & SOFTWARE . 3

There also exist many stochastic primal-dual variants, including [2,3,12,28,34,38,41,
42,50], for solving (P) and its special instances. For instance, one of the most notable
works is [12], which extends PDHG to stochastic variants. As shown in [12], such stochas-
tic variants often outperform their deterministic counterparts. As another example, [50]
also extends PDHG to a stochastic primal-dual coordinate variant, called SPDC. This
method can achieve a linear convergence rate under the strong convexity and smooth-
ness assumptions. In [1,3], the authors consider other stochastic variants of PDHG and
obtain a O (n/k)-rate without strong convexity assumption. Alternatively, stochastic alter-
nating direction methods of multipliers (ADMM) have also been proposed to solve (P),
see, e.g. [12,28,38,41,49]. Sublinear convergence rates in expectation or high probabil-
ity have also been investigated for stochastic ADMM [12,28,41]. Recently, [12,28,42,50]
showed that stochastic primal-dual algorithms can perform several times faster than their
deterministic counterparts for solving large-scale applications in machine learning. Other
randomized block-coordinate methods and their asynchronous variants have been recently
extended to monotone inclusions and general convex-concave minimax problems such
as [18,21,31,39], which cover (P) as a special case. However, these algorithms are not
accelerated and have no or slower non-ergodic convergence rates. Recently, [4,51] also
extended other primal-dual methods to randomized and stochastic variants. A very recent
survey [24] provided an excellent source on first-order methods for solving (P), including
randomized methods.

Contribution. Our main contribution in this paper can be summarized as follows.

(a) We develop a unified randomized block-coordinate primal-dual algorithm, Algorithm
1, to solve both (P) and (D). We prove O (n/k) convergence rates for both (P) and (D)
on three criteria: primal objective residual and primal feasibility violation, dual objec-
tive residual, and primal-dual expected gap, under only convexity and strong duality.
Moreover, our rates are on the last primal iterate (xk, wh) compared to [12], which are
also optimal (up to a constant factor) when n = 1. Our dual convergence guarantee
requires additionally the Lipschitz continuity of the conjugate (f + h)*.

(b) If, in addition, f or h is strongly convex, then by appropriately adapting the parameter
update rules, Algorithm 1 can be boosted up to O (n?/k?) rates under the same three
criteria. Again, our rates are optimal (up to a constant factor) when n = 1 and on the
last primal iterate (xk, why.

(c) We specify our algorithm to handle two special cases commonly studied in the litera-
ture: nonsmooth convex minimization with linear constraints and composite convex
minimization. In both cases, our convergence rates remain applicable.

Comparison. Let us highlight the following aspects of our contribution. First,
Algorithm 1 handles a more general class of problems than the composite model in,
e.g. [3,12]. Moreover, it is fundamentally different from SMART-CD in [3], where it
updates two dual variables and relies on an augmented Lagrangian framework instead of
a smoothing technique as in [3]. Algorithm 1 is also different from SPDHG in [12] since
it is based on Nesterov’s accelerated scheme with additional momentum steps. Second,
if ¢ = 0 and B = 0, then Algorithm 1 is also a fully randomized block-coordinate vari-
ant w.r.t. the primal variable x as the one in [42]. However, Algorithm 1 is accelerated.
It can be reduced to a non-accelerated variant as a special case of the method in [42],

4 (& QTRAN-DINHANDD.LIU

see Subsection 3.4.1. Third, by eliminating w, the dual update of Algorithm 1 possesses
a three-point momentum step and uses dynamic parameter updates without any tuning.
This leads to a new type of algorithm, called a ‘non-stationary’ method [35]. Note that
analysing the convergence of ‘non-stationary’ algorithms is often more challenging than
that of stationary counterparts [35]. Fourthly, we establish three types of convergence guar-
antees, while most existing works only consider one. Finally, compared to [46], both [46]
and Algorithm 1 exploit an augmented Lagrangian approach, and combine it with Nes-
terov’s accelerated steps. However, Algorithm 1 is different from [46] on several aspects.
First, (P) has a different structure than the problem in [46] (see Subsection 3.4.2). Second,
Algorithm 1 is a randomized method, while [46] is deterministic. Third, it relies on the
accelerated scheme in [47], while [46] exploits Nesterov’s original scheme in [37]. Fourth,
Algorithm 1 unifies two cases (convex and strongly convex) in one single algorithm, while
the second algorithm in [46] for the strongly convex case is different and requires two
proximal operations of f per iteration. Finally, the analysis of Algorithm 1 is much more
involved than the deterministic case in [46], where a new Lyapunov function is constructed
(see (30)).

Content. The rest of this paper is organized as follows. Section 2 states our fundamental
assumptions and presents some background related to (P) and (D). Section 3 develops our
main algorithm, Algorithm 1, and establishes its convergence rates in two settings. This
section also investigates two special cases. Section 4 provides two numerical examples to
verify our algorithmic variants and compare them with two other methods. The proofs of
the main results are given in Section 5.

2. Fundamental assumptions and related background

This section states our fundamental assumption and presents some related background.

2.1. Basic notation and concepts

We work with finite dimensional spaces R?, R™, and R, equipped with the standard
inner product (-,) and Euclidean norm ||-||. For any nonempty, closed, and convex set
X in R?, ri (X) denotes the relative interior of X and §x(-) is the indicator of X.
For any proper, closed, and convex function f : R — R U {400}, dom(f) denotes its
domain, f* is its Fenchel conjugate, df denotes its subdifferential [5]. We define proxg (x) :=
argmin, {f (y) + (1/2)|ly — x||?} the proximal operator of f. If Vf is Lipschitz continuous
with a Lipschitz constant Ly > 0, ie. [[Vf(x) — Vf())| < Lfllx — y|| for x,y € dom(f),
then f is called Lg-smooth. If f(-) — % | - |1 is convex for some us > 0,then f is called pus-
strongly convex with a strong convexity parameter uy. If s = 0, then f is just convex. We
say that f is M-Lipschitz continuous if |f(x) — f(x)| < M| lx — X|| for all x, x € dom(f).
We use R, to denote the set of positive real numbers, and [n] := {1,2,...,n} for any
positive integer 7.

Given K € R9*?_ K; denotes the ith column block of K. Given o € R’ ,, we define
the weighted norm as || x|, :== O, oillxil12)Y/2. Let q € R’ , be a discrete probability
distribution on [n] such that ", g; = 1 and ix € [n] be a random index such that

Prob (i = i) = g;. (1)

OPTIMIZATION METHODS & SOFTWARE . 5

We write i ~ Ugq ([n]) for sampling a block ik from [n] based on the distribution g.

2.2. Basic assumptions and optimality condition

Our new primal-dual method relies on the following assumptions imposed on (P).

Assumption 2.1: The solution set S* of (P) is nonempty and the Slater condition
ri (dom(f + h) x dom(g)) N {(x,w) € RP x R™ : Kx + Bw = b} # @ holds.

The functions f and g in (P) are proper, closed, possibly nonsmooth, and convex on their
domain. The function h is convex and partially Ly, ;-smooth for all i € [n], i.e. for any x € RP
and d; € RPi with i € [n], we have

IVxh(x + Uidi) — Vish(0)|l < Lyl dill, (2)

where U; € RP*Pi has p; unit vectors such that [Uy, U, . . ., Uy] forms the identity matrix 1
in RP*P,

Assumption 2.1 is often required in primal-dual methods. Since S* is nonempty,
Assumption 2.1 implies strong duality, i.e. F* = D*, and the solution set }* of (D) is
nonempty.

The primal-dual forms (P) and (D) can be put into the following minimax form:

i L(x,w,y) := F(x, Kx+Bw—1b,y)i, 3
et) = P & (Kx B =) ®

where L is the Lagrange function associated with (P) and y is a dual variable or a Lagrange
multiplier. The optimality condition associated with (P) and its dual form (D) can be
written as follows:

0€df(x) + Vh(x") +K'y*, 0edgw*)+B'y*, and Kx*+Bw*—b=0. (4
Any point (x*, w*, y*) satisfying (4) is called a saddle-point of £ in (3), i.e.:
L w,y) < LS why) < L6 w,y*), Yx € dom(f + h), w € dom(g),y € RY. (5)

Under Assumption 2.1, (x*, w*) is a primal optimal solution of (P) and y* is a dual optimal
solution of (D).
Primal-dual expected gap. To characterize saddle-points of (3), we define

Gzx,w,y):= sup E [ﬁ(x, w,y) — L(Z, fv,y)] , (6)
Ewy)eZ

for any nonempty and compact subset Z := X x W x) in R? x R™ x R? such that
Z N Z* # B, where Z2* = §* x V*. Here, the expectation is taken overall the random vec-
tor (x, w, y). By (5), one can show that Gz (x, w,y) > 0 for any random vector (x,w,y) €
R? x R™ x R4, and if (x, w, y) belongs to the set of saddle-points of (3) w.p. 1, then Gz
(x,w,y) =0.

The function in (6) has been widely used in convex optimization as well as convex-
concave saddle-point problems, see, e.g. [13,42]. Note that the expectation in (6) is inside

6 (&) QTRAN-DINHANDD.LIU

the supremum instead of outside as the one in [1,17]. Hence, we call (6) a primal-dual
expected gap function to distinguish it from [1,17]. As mentioned in [1], there is a technical
issue in the proof of [13] and recently in [42], leading to an inconsistent conclusion on the
gap function guarantee in both papers [13,42].

3. Randomized block-coordinate alternating primal-dual algorithm

In this section, we develop a unified randomized block-coordinate primal-dual algorithm
to solve (P) and its dual form (D). Then, we investigate its convergence rates.

3.1. The main idea and the full algorithm

Main idea. Our approach relies on a classical augmented Lagrangian function associated
with (P), which is defined as follows:

L,(x,w,y) := f(x) + h(x) + gw) + (Kx + Bw — b, y) + glle +Bw—bl% (7)

where p > 01isa penalty parameter. This function will serve as a merit function to measure
the optimality for both (P) and its dual form (D).
Our central idea can be presented as follows.

(1) First, we alternatively minimize £, w.r.t. w and x. While the minimization over w is
updated in full, the minimization over x is updated by a randomized block-coordinate
scheme. More specifically, the minimization problem over w can be written as

Wit e arg m[iRn {g(w) + (j/k,Bw) + %”BW + K3k — b||2} . (8)
weR™

However, since the minimization problem in x is large-scale, we not only linearize
it, but also apply a randomized proximal coordinate gradient method, e.g. in [29] to
minimize £, (-, w*1, 7%). More concretely, we sample a random block-coordinate i =
i and update 5cf‘ by partially linearizing both v/, (x, wktl) j/k) = (yk, Kx) + % | Kx +
Bw**t! — b||% and h around %* as

)~C£,<+1 := arg rrel]g; {f,-(xi) + (inh(&k) + inll/pk(g}k, Wk+1,5/k),xi - 5€?>
x;€RPi

TkOi ~k(2
+ ”xl - xi ” } >
270 Bk

where B; > 0 and 7% € (0, 1). Otherwise, we maintain 5cf-<+1 = 565‘ for i £ ir.. Here, o;

is a scaling parameter for each block i, which will be chosen proportionally to ||K;||
and Ly,; to minimize the overall Lipschitz constants L, and L in (9).

(2) Second, we also apply the accelerated steps as in [29] and adaptively update the related
parameters pi, By, and ti using the ideas in [46].

(3) Third, we update the dual variable j/k instead of fixing it as in [3].

(4) Finally, we add an averaging dual step y* to derive dual convergence rates.

We now specify each step discussed above to obtain the full algorithm.

OPTIMIZATION METHODS & SOFTWARE . 7

Algorithm 1 (Randomized Block-Coordinate Alternating Primal-Dual Algorithm)

Initialization:
1: Choose x° € R?, and 7° € R? such that —B'7° € dom(g*).
2: Choose pg > 0 or as in Theorem 3.2.
3. Setx¥ := xo,)_/o = }70, and 7y := gmin, Wwhere gmin := minje[,) g;i > 0.
For k := 0 to kp,x, perform
4. Update tx, pk, Bk and 1y as in Theorem 3.1 or Theorem 3.2.
5. Update £% := (1 — tp)xk 4+ 735
6 Update w1 by solving (8).
7. Update 1 := (1 —)% 4+ t[J* + pr(K&* 4 Bwkt! — b)] (if necessary).
8: Sample a block-coordinate i ~ Ugq ([n]) with the distribution (1).
k+1

. e~ =~k .
9: Forall i # i, maintain X; " := X}, and for i = i, update

i & ToPk . R .

FH = proxu (xi - Db (VahG) + KT GF + pp (KR + Bttt — b)))) .
0 t Tkal

10: Update x*t1 .= 2% + ;—g(&k“ — 7).

11: Update 7*+1 := 3% + np[(Ke¥ ! + BWA — b) — (1 — 1) (Kxk 4 Bwk — b)].
EndFor

The full algorithm. Our complete algorithm, called Randomized block-coordinate alter-
nating primal-dual (PD) algorithm, is described in detail in Algorithm 1.
Per-iteration complexity. The main computation of Algorithm 1 consists of:

(1) Step 6 for updating w*! requires solving the subproblem (8).If B = —1I, where I is the
identity matrix, then wk*! = prox, (Kxk — b+ plk 7, which reduces to evaluating
one proximal operator of g.

(2) Step 7 on y*1 is only required if we prove a dual convergence guarantee. Note that

71 does not depend on i, and therefore, it can be calculated before knowing ¥+
and X1,

(3) Step 9 only updates one block-coordinate iy of X*. This step needs one proximal oper-

ation of the component fj,, one partial derivative Vy, h, one K#*, one BWk*1, and one

/ Pk

Ki—kr 7*. Note that since x**! is only changed at one block-coordinate i, calculating the

k+1

product Kx*™" only needs to update K,-kicf-‘k .

(4) The dual steps, Steps 11 and 7, require updating full vectors in R,

Currently, we have not specified how to efficiently implement Algorithm 1. We will
derive in Subsection 3.5 an efficient implementation of Algorithm 1.

3.2. Convergence guarantees under general convexity

Let us define the following quantities, which will be repeatedly used in the sequel.

, K| Ly,
L, := max IKil , Lg = max —hi , and 79 := gmin = ming; € (0,1). (9)
ie[n] i€[n] ie[n]

Oi Oi

8 (&) QTRAN-DINHANDD.LIU

We also define Fy := o (ig, i1, . . . , ik—1) the smallest o -algebra generated by random vari-
ables iy for[= 0,...,k — 1. We also use a shorthand [;, [-] for the expectation E;, [- | F]
conditioned on Fy, and [E [-] for the full expectation on the overall o -algebra F .

We state the first main result for Algorithm 1 in Theorem 3.1, whose proof is postponed
to Subsection 5.7.

Theorem 3.1: Suppose that (P) satisfies Assumption 2.1, and ys, = 0 for all i € [n]. Let Lo,

L, and to be given by (9) and po > 0. Let {(xk, wk,}_/k)} be generated by Algorithm 1, where
Tk Bk Pk and ny are updated by

7o PoTo 1 Ok
T} = , =—, =—_— d = —. 10
k= P o Br 15 ¥ 2L, pr and 7= = (10)
In addition, let Gz be defined by (6). Then, the following estimates hold:
o ,
|IE [F (xk, why — F*]| < %ﬁ%}w”’ (primal objective residual)
2&
E [Kk + Bwk—b 2] < R rimal feasibilit
|| P = et oy (primal feasibiliy) "
"}E'
E [D* — D()_/k)] < S — (dual objective residual)
Took +01 "0y L 2
F(x", —D(U”)+R
gg(xk,wk,j/k) < L w) v =5 (primal-dual expected gap)
Tok+1—19
where &, Fo, and R% are respectively defined as
_) 2. 1, 02 — 10)
€0 1= FG,w") = DY) - —lly” =517 + I3 4+ =)’
(Lh + 2p01_4)‘L’() N
+%”x _xO”i/q’
_ . 2 . 1. Po(2 —)
Fo = B = DGR + -y =371 + 90+ =1l
LT +2pl0)% Mo, (12)
; (L +2poLo) 0 2.
Rzz = sup " |lx - x0||(2;/q +—lly = 3°I1?
(xp)eXxY 2 £0
L. 002 =70 0,2
+— 1317 + =——1"I1%
Po 4 2

Here, u® := Kx" + Bw® — b, 0/q is the result of componentwise division of & by g, Mo :=
sup{[lx — x01|% : ||x|| < Mgy+}, and My« is the Lipschitz constant of the Fenchel conjugate
@* of ¢ = f + h. Notice that we assume that ¢* is Lipschitz continuous to obtain the dual
objective residual bound.

Remark 3.1 (The finiteness of D(j/k)): Note that, by (D), we have
D(y) = min {¢x) +g(w) + {Kx + Bw — b,y)} = —¢*(=K"y) —g" (=B y) = (b.).

Hence, we have dom(D) = {y € R4 : —KTy € dom(¢*), —BTy € dom(g*)}. We show in
the proof of Theorem 3.1 that {*} in Algorithm 1 always belongs to dom(D) as long as

OPTIMIZATION METHODS & SOFTWARE . 9

—BT3" € dom(g*) and ¢* is Myx-Lipschitz continuous. Consequently, since D is concave
and proper, we conclude that D(¥¥) is finite.

Remark 3.2: If we choose g; := % foralli € [n], then 1y = %, and the convergence rate in
Theorem 3.1is O (%), which matches the rate in [3]. If n = 1, then this rate is optimal up
to a constant factor as discussed in [46].

If we choose

Ly; + pollKill
Y L+ pollKil12)

then, Algorithm 1 takes into account the Lipschitz constant Ly, ; of h and || K | 2 of each block
i. This is expected to improve the performance of Algorithm 1 when the input data repre-
sented in K is not normalized, and the partial Lipschitz constants Ly, ; are really different
between block-coordinates x; for some i € [n].

0i=q;= Vie [n],

3.3. Convergence guarantees under strong convexity

If either f or h in (P) is strongly convex, then we can boost Algorithm 1 up to a O (1/k?)
convergence rate. The following theorem states this acceleration when f is strongly convex,
whose proof is deferred to Subsection 5.8.

Theorem 3.2: Suppose that (P) satisfies Assumption 2.1 and fis strongly convex, i.e. juf; > 0
for all i € [n), but h and g are not necessarily strongly convex. Let T, Ly, and L be given
by (9) and {(xk, wk,}_/k)} be generated by Algorithm 1, where i, Bk, Pk, and ni are updated
by

Ty (22 + HYV2 — 1
fm -1 (T +4) k 1]) o = Pre1 r=———, and
2 1— 1 L' + 2L, px
= X
k- 2
with pg being chosen such that 0 < py < i min{% : i € [n]}. Then, we have
o 4[& + 1/
‘E [F(x , W) — F*] < (k12 ., (primal objective residual)
8&
E|[Kx* + Bwf — b2 | < —————, (primal feasibility)
|:” ”] 5 ,O()(‘L'()k + 2)4 P f % (13)
4F
E [D* _ D()—,k)] < W, 0) (dual objective residual)
F(x", — D@y R
Gz (K, wk,)_/k) < (x W(zok n (2};2) * = (primal-dual expected gap),

10 Q. TRAN-DINH AND D. LIU

where £, Fo, and RZZ are respectively defined as

£o = F&, ") — DG + Z - [+ 2mladon g | st = 1P
2 " (2 — ‘E()) 0112
+=ly* =31+ || 0112 +—||M [
Jol 4 2
Fo = FO,w°) — DG”) + Z [(Lh + 2poL)oi + uf]
2 . /00(2 — 70)
+—ly* =11 + —||y°||2 + ——1u")1%,
L0 \ 2
RZZ = sup = [(Lh + 2poLs)o; +M,] llxi — x; 912 + ||y)A/OII2
(x,y)eXxy{qu S R
. po(2 — 7o)
+— 100 + 2,
00 2
Here, u® := Kx® + Bw® — b, My := sup{|lx — x°||% : |x|| < My}, and Mg~ is the Lipschitz

constant of the Fenchel conjugate ¢* of ¢ = f + h. Notice that we assume that ¢* is Lipschitz
continuous to obtain the dual objective residual bound.

Note that we can choose ° := 0 in Theorems 3.1 and 3.2 to simplify our corresponding
convergence bounds as long as 0 € dom(g*). Similar to Theorem 3.1, if we choose g; = %
foralli € [n], then the convergence rate of Theorem 3.2 is O (n2 / kz), which is optimal (up
to a constant factor) by assuming that n = 1 as shown in [46]. We can also choose another
qi as in Remark 3.2.

Handling strong convexity of h. In Theorem 3.2, we assume that f is strongly convex,
but h is not necessarily strongly convex. However, if f is just convex, but h is uy-strongly
convex with uy > 0, then we can process as follows:

(1) Replace h by ﬁ(x) = h(x) — % l|x]1%, which is only convex. Moreover, h is also L -
smooth w.r.t. x; with Lj, . = Ly; — up, and Vx,fl(x) = Vyh(x) — wpx;.

(2) Replacef byf’(x) = f(x) + % l|x||2, which is wp-strongly convex. In this case, ﬁ(xi) =
filxi) + % l|x;[|%, which is also pp-strongly convex for all i € [n]. Moreover, we have
PIOX, 3 (41) = POX, 11 4y i/ (1 + 1),

With these modifications, we apply Algorithm 1 to F(x, w) = f(x) + ;z(x) + g(w), and
the convergence guarantees in Theorem 3.2 still hold for this case.

3.4. Two special variants of Algorithm 1

Let us consider two special variants of Algorithm 1 which cover several existing works.

OPTIMIZATION METHODS & SOFTWARE . 1

3.4.1. Nonsmooth constrained convex problem
If ¢ = 0 and B = 0, then problem (P) reduces to

chlélikr; {F(x) = Zf,-(xi) + h(x) st Kx= b} . (14)

i=1

In this case, the main steps of Algorithm 1 for solving (14) can be written as follows:

-k ToBk N R N e
“k+1) ProXms, (xf‘ - — (inh(xk) + KiT(yk + ,ok(ka — b)))), if i =i,
x,‘ = rkaif’ TkO;

k (15)

x> otherwise,

A= 5k 4 [(ka“ —b) — (1 —) (K — b)] :

Other steps remain the same as in Algorithm 1, except that we remove all wk,

Note that (14) covers the model in [42] as a special case by appropriately reformulat-
ing it into (14). More specifically, to process f (1) + g(Mu), we write f (1) + g(v) subject to
Mu—v = 0. If we define x := (u, v), then we can transform the model in [42] into (14). In
this case, the variant (15) of Algorithm 1 has fully randomized block-coordinate updates
over the primal variable x. To align with [42, Algorithm 1], we can choose a pair of ran-
dom block-coordinates (i, jx) for i € [n1] and ji € [n,], where n; is the number of blocks
in u and n; is the number of blocks in v. Here, we update blocks i, and ji simultane-

ously. In terms of convergence rates, [42, Algorithm 1] only achieves O (1 / ﬁ) rate, while

Algorithm 1 has a much better rate, which is O (1/k) as shown in Theorem 3.1. More-
over, our convergence rate is non-ergodic (i.e. on the last primal iterate x*) as opposed to
averaging sequences in [42].

3.4.2. Nonsmooth composite convex minimization
If b = 0 and B = —I, then (P) reduces to the following setting:

min { F(x) ==Y fi(xi) + h(x) + g(Kx)} . (16)

i=1

1= Proxy, pk(#j/k + K&K). Using Moreau’s identity, we

get whtl = pik()A/k + pK&K — k1) with yk 1= Prox,, o« (" + prK&F). Utilizing these
relations, the main steps of Algorithm 1 for solving (16) can be written as

In this case, from (8), we have wk+1

Yyl = Prox,, .« (j/k + pkKick> ,
T ~ e .
e ProX sy - (54‘ _ ToBk (inh(xk) n KiTyk“)> L ifi =i, (17)
X = woi)i 40
Xk otherwise,

1

This step is similar to the main step of SPDHG and other existing primal-dual methods,
see, e.g. [3,12]. The convergence of this variant can be derived from Theorems 3.1 and 3.2
combining with the results in [46]. However, we omit the details here to avoid overloading

12 Q. TRAN-DINH AND D. LIU

this paper. More specifically, the primal convergence is given as follows:

o+ Uyl + Mg)y/ 2E0/ po

v R ifmini,ufi=0,
0<E|Fuk) —F| < e
[] 4 [50 + (ly*Il + Mg)y/ 250//)0]
if min; g > 0,
(tok 1 2)2 it min; ug, > 0

where g is M, -Lipschitz continuous, and o and & are respectively defined in Theorems 3.1
and 3.2, but using F(x°) instead of F(x°, w°). We can also derive convergence rates on the
dual objective residual and primal-dual expected gap for (16) (see [46]).

The setting (16) covers the models studied, e.g. in [3,12,46,50]. However, the variant (17)
is still different from [3, Algorithm 1], where it has dual updates 7* and j*. In [3, Algorithm
1], * is fixed at y without any dual update, making it less flexible to monitor the dual
progress. Moreover, [3] only considers the general convex case and primal convergences,
while we consider both the general case and the strongly convex case, and also prove three
convergence criteria. Compared to [1,12,50], the variant (17) of Algorithm 1 relies on a
Nesterov’s accelerated scheme, which has the same convergence rates on the last iterate xk
as opposed to ergodic sequences as in these works. Note also that, by eliminating w* in the
update of j/k, then j/k will depend on three consecutive iterates at the iterations k + 1, k, and
k—1 as discussed in [46].

3.5. Efficientimplementation of Algorithm 1

In order to efficiently implement Algorithm 1, we introduce three intermediate vectors
ik .= K&k, uk .= Kxk, and vF := BwF — bin R to store matrix-vector products. Then, we
have Ki* = (1 — tx)u* + 7it*. Hence, for i = iy, we obtain

k1 -k ToPk .
xiJr = proxmf (xfC - — (inh(xk) + K,-Tka)) ,
Tp0;/t T)Oj
where y**1 .= (1 — t)u + idF + VAL

Next, using i¥, u¥, vk, and y**! above, we can update other steps as follows:

(1) Update u**! := (1 — gu* + gtk + 2@ — b,
(2) Update %t1 := 3K 4 ne[ubt! 4+ v — (1 — 1) (uF +45)).
(3) Update the averaging dual vector: 31 := (1 —)5 + riF+1.

By exploiting the tricks in [3,29], we can remove the full vector operations in R?, and
only perform the updates on each block iy € [n] at each iteration k. We omit this derivation
and refer to [3,29] for more details.

4. Numerical experiments

In this section, we provide two numerical examples to verify our theoretical results and
compare Algorithm 1 with some recent existing methods. Our first aim is to verify the

OPTIMIZATION METHODS & SOFTWARE . 13

theoretical convergence rates of Algorithm 1 stated in Theorems 3.1 and 3.2. Then, we
compare Algorithm 1 with two other candidates: SPDHG [12] and PDHG [13] on two
common examples. Note that both Algorithm 1 and SPDHG essentially have the same
per-iteration complexity and convergence rates, but in the last-iterate vs. ergodic sense.

We implemented our methods in Python and adapt the code of SPDHG and PDHG
from https://github.com/mehrhardt/spdhg. Our experiments were run on a Linux desktop
with 3.6 GHz Intel Core i7-7700 processor and 16 Gb memory.

Parameter selection strategies. For Algorithm 1, we search the initial value pg in the range
[1/]IK]|,0.1] for each dataset, and other parameters are updated by exactly following the
update rules in Theorems 3.1 and 3.2, respectively without any tuning. For PDHG and
SPDHG, we finely tune their step-sizes T and o in the range [1/] K]|,0.1]. We also tune
the extrapolation parameter 6 in the range [1,d] for each dataset, where d is the num-
ber of rows of matrix K. We pick the best values of the parameters after tuning for each
algorithm to perform our experiments. By default, the number of block-coordinates is
chosen as n = 32 in all algorithms. However, we also use other choices to examine the
performance of Algorithm 1.

4.1. Support vector machine

Given a training set of m examples {(a;, b;)} |, a; € R? and class labels b; € {—1, 41}, the
soft margin SVM problem (without bias) is defined as

] 1 & Ay
min $F(x) = — ;max{o,l bi {ai,)} + ZxI? ¢ (18)
Let us define g(w) := % Yo max{0,1 — wi}, f(x) := %lellz, h(x) := 0, and using a lin-
ear constraint Ax—w = 0, where b;q; is the ith row of A. Then, (18) can be cast into (P).
To perform our tests, we use several real datasets from LIBSVM [16].

Experiment 1: Theoretical rate illustration. We first illustrate the O (1/k) convergence
rate of Algorithms 1 in Theorem 3.1 to solve (18) using the a8a dataset in LIBSVM [16].
Figure 1 (the top-left plot) shows the convergence behaviour of Algorithm 1 when pf = 0
(corresponding to Theorem 3.1) on the duality gap F (xk) — D()_/k) (which has the same rate
as F(x*) — F* and D* — D()_/k)). Here, we also modify the update of 7 in Theorem 3.1 by
Tk = 1oz for ¢ := 2/7 to observe faster convergence rates as in deterministic algorithms,
see, e.g. [46]. The plot of this variant is in green.

It is interesting to see that without tuning pg, Algorithm 1 converges with O(1/k)-rate
if uf = 0 as stated by Theorem 3.1. If we modify 7i with ¢ := 2/79 as mentioned, a faster
rate is observed in the green curve.

Now, we reformulate (18) into (14) in order to test the variant (15) of Algorithm 1,
denoted by Algorithm 1(b). The top-right plot of Figure 1 shows the performance of this
variant. We still obtain similar convergence rates as shown in the first test.

Finally, we test the O (1/k*) rates for Algorithm 1 when pf =X > 0in (18) on the
ala and rcvl datasets. The result is shown in the bottom-left and bottom-right plots of
Figure 1. With the update rules of parameters as in Theorem 3.2, we obtain O (1 / k2) rate
as theoretically stated. This actual rate can be boosted faster than O (1/k?) if we choose

£2 for ¢ := 2/7) (green curves).

Tk = Fte

https://github.com/mehrhardt/spdhg

14 Q. TRAN-DINH AND D. LIU

o Algorithm 1 for a8a: d = 22696, p = 123 100 Algorithm 1(b) for a8a: d = 22696, p = 123
10 T T i
107"
g , §
B10° o
2 2 2
E Yyl §°
e 'y ©
= ©
S10 g10°® ‘
E 9— Algorithm 1 T —4— Algorithm 1(b)
—@— Algorithm 1 (¢ = 2/7) ©— Algorithm 1(b)(c = 2/7)
-y -0(1/k) 104 -w--O(l/kg
> O(1/k?)
106 O(1/k?) |] : .
10° o 102 10° 10° 10! 102
Number of epochs Number of epochs
1O(g\l@writhm 1 (Strongly Convex) - a8a: d = 22696, p = 123 Algorithm 1 (Strongly Convex) - rev1: d = 20242, p = 47236
A 10° T]
Qo a
©
G102F &
=z >10%
K] T
>
8 a
T4k T
£ E 10* 3
o —4— Algorithm 1 b o —4— Algorithm 1
—@— Algorithm 1(c = 2/7) —@— Algorithm 1 (¢ = 2/7)
2
ool 0(1/K?)] O(1/K?) 3
0 1 2 3 10°] '
10 10 10 10 10° 10" 102 10°
Number of epochs Number of epochs

Figure 1. Convergence rates of Algorithm 1 (Theorems 3.1 and 3.2) and its variant, Algorithm 1(b), and
using a modified rule of i for solving (18) on the a8a and rcv1 datasets.

news20: d = 19996, p = 1355191

revi: d = 20242, p = 47236 real-sim: m = 72309, n = 20958
(o
10 —e— Algorithm 1 10° o Alzorithm 1 ‘OQM —e— Algorithm 1
—y—SPDHG —y—SPDHG —y—SPDHG

o PDHG N PDHG o PDHG
] =] k3
G10° (9} ©
2 210" 210"
s K] E]
a a 8
10" K]
E Eqo2 Eq2
£ S10 s

10°

109 10%
0 50 100 150 200 250 300 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of epochs Number of epochs

Number of epochs

Figure 2. Comparison of three algorithms, including Algorithm 1, for solving (18) on 3 different datasets.

Experiment 2: Comparison with PDHG and SPDHG. We apply Algorithm 1 to solve (18)
and compare it with SPDHG [12] and PDHG [13,25]. We observe that SPDHG is almost
identical to SPDC in [50] except for assumptions. We only choose the variant (17) of
Algorithm 1 since it has almost the same per-iteration complexity as SPDHG. However, we
do not take into account the strong convexity of f in this test. We have tuned these algo-
rithms to obtain the best parameter setting for each dataset. We test all these algorithms
on three different datasets in LIBSVM: rcvl, real-sim, and news20 and set A to 10~%. The
performance is shown in Figure 2, where the duality gap F(x*) — D(3¥) is used to measure
the performance.

OPTIMIZATION METHODS & SOFTWARE ‘ 15

w8a: d = 49749, p = 300 revi: d = 20242, p = 47236 real-sim: d = 72309, p = 20958

—o— Algorithm 1
—v—SPDHG

—e— Algorithm 1
—v—SPDHG

o o
® ©

p
o oo
X
o o
» ©

1y o
o N

o
>
e
3

S bl
o
g
@

S

e
o
Primal - Duality Gap

ek
o

Primal - Duality Gaj
[
P

Primal - Duali

o
@

o

w
o
kS

0 05 25 0 05 25 0 05 25 3

1 15 2 1 15 2 1 15 2
Number of epochs Number of epochs Number of epochs

Figure 3. The performance of Algorithm 1 and SPDHG with single coordinate, i.e.p; = 1 (i € [n]).

From Figure 2, we can see that Algorithm 1 gives better convergence behaviour than
SPDHG in all the datasets.

As usual, stochastic variants such as Algorithm 1 and SPDHG outperform the determin-
istic variant, PDHG. In Figure 2, the stochastic algorithms are implemented by separating
the whole dimensions into #n = 32 blocks and updating one block at each iteration.

Experiment 3: Single coordinate update. We provide an experiment to test Algorithm 1
and SPDHG using single coordinate (i.e. p; =1 for all i € [n], each block has a single
entry). Figure 3 shows the performance of the two algorithms on the w8a, rcv1, and real-
sim datasets. We choose pg := 10/||K|| in Algorithm 1 and v = ¢ := 10/||K]| in SPDHG
among all datasets. Since the per-iteration complexity of these algorithms is at most
O (max { P, d}), we run them up to 3p and 3m iterations, respectively, corresponding to
3 epochs. From Figure 3, we can see that SPDHG performs better than Algorithm 1 on the
w8a and rcv1 datasets. However, Algorithm 1 is better than SPDHG on the real-sim dataset.

Experiment 4: Using different block-coordinate sizes. In this experiment, we test the effect
of the number of block-coordinates on the performance of Algorithm 1 and SPDHG. We
still compare them with PDHG. We only choose the rcv1 dataset since it has relatively large
p and d (d = 20242 and p = 47236). We choose the number of blocks # to be 64, 128,
256, and 512. We choose pg := 10/||K|| in Algorithm 1, T = ¢ := 10/||K|| in SPDHG, and
7 := 10/||K]|,o := 0.03 in PDHG for all cases. The performance of three algorithms is
shown in Figure 4 for a fixed number of iterations.

From Figure 4, we can see that Algorithm 1 still performs well and better than SPDHG
as well as PDHG. Hence, Algorithm 1 seems to work well on (18) when running it with
block coordinates.

4.2. Least absolute deviation (LAD) problem

We consider the following well-studied least absolute deviations (LAD) problem:

min {F(x) := [|[Kx — b1 + Allx[l1}, (19)
xeRP

where K e R>*? b e R9and A > Oisa regularization parameter.

We again test Algorithm 1 and compare it with SPDHG and PDHG on three problem
instances, where K is generated from the standard Gaussian distribution with different den-
sities. Here, we choose A := 1/d (d is the number of rows of K) and b := Kx" + 0.1£(0, 1),
where x° is a predefined sparse vector and £ stands for Laplace noise. The experiment

16 . Q. TRAN-DINH AND D. LIU

rcvi: d = 20242, p = 47236 (64 blocks) rcvi: d = 20242, p = 47236 (128 blocks)

10% T T
—@— Algorithm 1 100 —— Algorithm 13
—w— SPDHG SPDHG
PDHG y
a o PDHG
8 107 1 6
> 210"
3 s
S >
Aa a
T g2] ©
g g 1072
a o
-3 4
10 | { 10_3 s s L
0 50 100 150 0 20 40 60 80
Number of epochs Number of epochs
o revi: d = 20242, p = 47236 (256 blocks) revi: d = 20242, p = 47236 (512 blocks)
10 T T T T T T T T r T T T
—— Algorithm 1 100" —o— Algorithm 1]]
—v—SPDHG —y—SPDHG
PDHG
g PDHG
O] a
& 3
® |, 1 >
S 10 =
o K
= 810"
©
£
a
102F E | |
0 5 10 15 20 25 30 35 40 0 5 10 15 20

Number of epochs Number of epochs

Figure 4. Comparing Algorithm 1 and SPDHG using different number of blocks: n = 64, 128, 256, and
512 on the rcv1 dataset.

LAD: d = 1000, p = 10000, density = 0.1 LAD: d = 10000, p = 10000, density = 0.01 LAD: d = 10000, p = 100000, density = 0.001
| e Algorithm 1 I e Algorithm 1 e Algorithm 1
ol —v—SPDHG —v—SPDHG 100 —v—SPDHG
PDHG 10° PDHG PDHG
ool O
L .
B L.
= 102
<% 10 \‘\
103 \.\‘\""0—0
Bl G = SO D
0 50 100 150 200 250 300 o E) 100 150 200 250 00 0 50 100 150 200 250 300
Number of Epochs Number of Epochs Number of Epochs

Figure 5. Comparison of Algorithm 1 with PDHG and SPDHG on (19) using synthetic data.

results are reported in Figure 5, where we run for 300 epochs and use 32 blocks in
the randomized algorithms.

For (19), we choose 3 instances, where one case is dense with 10% nonzero entries in
K, and two other instances are sparse with only 1% and 0.1% nonzero entries, respectively.
After a fining tune, we choose the parameter py of Algorithm 1 and the step-size v and o
for SPDHG and PDHG, respectively as follows.

(1) Instance 1 with 10% nonzero entries, we choose pg := 10/||K|| in Algorithm 1, 7 :=
0.005, 0 := 0.01 in SPDHG, and 7 := 0.005, 0 := 0.01 in PDHG.

OPTIMIZATION METHODS & SOFTWARE . 17

(2) Instance 2 with 1% nonzero entries, we choose pp := 50/||K|| in Algorithm 1), 7 :=
0.03,0 := 0.01 in SPDHG, and 7 := 0.005,0 := 0.1 in PDHG.

(3) Instance 3 with 0.1% nonzero entries, we choose pp := 100/| K|| in Algorithm 1, 7 :=
0.01,0 := 0.05 in SPDHG, and 7 := 0.001,0 := 0.5 in PDHG.

Note that the choice of pg simply trades off the effect of the primal and dual initial points
to the complexity bounds as we can see in the right-hand side bounds of Theorems 3.1
and 3.2.

We can observe from Figure 5 that Algorithm 1 still works well compared to SPDHG
under 3 different instances. As expected, both Algorithm 1 and SPDHG outperform PDHG
in all cases.

5. The proof of the main results: Theorems 3.1 and 3.2

This section provides the full proof of Theorems 3.1 and 3.2.

5.1. Preliminary results

The following identities will be repeatedly used for our convergence analysis.

(i) Foranya,b,u € RP and 7 € [0, 1], we have
tA—Du—al?>+|Q—Da+tu—>bl*>=1|u—0b|>+ 1 —1)|b—2al® (20)
(ii) Foranya,a e RP,7 €[0,1], p > 0,and p > 0, we have
(1 —1)plla—al* +zpllal* — 1 —1)(o — Dllall* = plla— 1 —)al?
+ 1 =1)p— A —v)pllall’ (21)
(iii) Foranya,b € RP, p > 0,and p > p, we have

. PP
mwﬁ—mwﬁsﬁ lla — bl (22)

In addition, the following lemma will also be used in the sequel, whose proof is in [29].

Lemma 5.1 ([29]): Given a sequence {%k}kzo in RP and a nonincreasing sequence {Ti}r>0
in (0, 1], let {(xF, %k)}kzo be updated as

=1 -+ and K =3F 4+ z—](:(fckH — 9.
Then, we have
L (1 —) VK1 . ifl=0,....,k—1
= Z Viix, where yjp1g = (I — vk + % — . ifl =k, (23)
=0 T ifl = k+1,

To

and yo,0 := 1. Moreover, we have yx; > 0 for | =0, ...,k and Zf:o Vil = 1 fork > 0.

18 (&) QTRAN-DINHANDD.LIU

5.2. Properties of the augmented Lagrangian function

The augmented Lagrangian function £, defined by (7) will serve as a merit function for
our convergence analysis. To investigate the properties of £, (-, -), we consider

VoGt w,y) == (y, Kx + Bw — b) + §||Kx+3w— b2, (24)
This function has following properties:

V¥, (x, w,y) = BT (y + p(Kx + Bw — b)),
Vi (x, w,y) = KI-T(}/ + p(Kx + Bw — b)), (25)
VW (x + Uidis w,) — Vit (s wo p) | = p I K Kidil| < pl|Kill2lldill, ¥ di € RP.

These estimates allow us to conclude that Vy, ¥, (x 4+ U;i(-), w, y) is Lipschitz continuous
with the Lipschitz constant p||K;||>. Directly using the definition of v/, for all x, w, y, %,
and w, we also have the following identity:

V(% w,p) = ¥, (x5, w,9) + (Vi (x5, w,), X — X) + (Vo (X, w,), W — w)
n gIIK(fc—x)—i-B(fv—w)llz. (26)

As a consequence of (26), with L, defined by (9), if X only changes one block i from x to
X = x+ Ujd; for any i € [n], then we have

. . Lo .
Yo G W,) < Vo (6w, 9) + (Vi (5, Wy), & — x) + pTIIx X2 @7

The expressions (26) and (27) are key to our analysis in the sequel.

5.3. Lyapunov function and key estimates

Lyapunov function. Give a sequence of nonnegative real numbers {yy ;}x ;>0 and a sequence
(%%} k>0 in R?, let us introduce the following quantities:

k n
= "yifiG) and fF=3"fF (28)
1=0 i=1

For y,, defined by (24) and]_‘k defined by (28), we also introduce
Li(y) = 5+ h(F) 4+ gwWh) + vy, 65 Wh). (29)
Given (29) and L defined by (3), we define a Lyapunov function as follows:

_ _ 1 R
Ex(xwy) == Lr(y) — L w, i) + 2—|ka — I
Nk—1

n
Tk—1 [Tk—10i ~k 2
+y At +u,.> [E (30)
= 24 (Toﬂk—l h)

OPTIMIZATION METHODS & SOFTWARE . 19

Full update vs. block coordinate update. For our convergence analysis, we consider the
following full update of X% := (&K, ..., xk):

):Ci,q‘l = argn}cin !fl(x,) + <thh(5\ck) + inwﬂk (fck’ Wk'H,)’)k),Xi — -’AC{(>

Tkt

To Bk
Then, from (31), Step 9 of Algorithm 1 can be shortly rewritten as

e {fcf.‘“ if i = i,
X =

I ,—Sc{.‘||2}, Vie [n]. (31)

A " (32)
! xﬁ‘ otherwise.

5.4. Preparatory: two intermediate steps of convergence analysis

The following two lemmas serve as key estimates for our convergence analysis of
Algorithm 1 in the sequel.

Lemma5.2: Let {(xk, K, wk“,j/k)} be generated by Algorithm 1, f* be defined by (28), and
Y, be defined by (24). Then, for any fixed x € dom(f), it holds that

E;, { k4 Z 2 (L) 15 — x,-nz} < (1= f* + f (®)

n
Tk ~ ~ ~ =
+ ‘l,'_ Z qi <inh(xk) + vxﬂﬂﬂk(xk’ Wk+1> k), (1-)x + q—x IF+1>
0 i

n
Tk Tka ~k
+ Z . [W +(1 - q,)uﬁ] 1% — x;l|*

~k+1 ~k) 2
= 24

’”x,'

(33)

A A PkTi Lo -
o [I/ka(karl ket k)] <y, GF, WAL 5K + 2£ Zqzﬁzllka #)
0 i=1

+ Zq, Vi G w99, 2 — 56,
i=1

n h
A Tkqi Aky = - wlloj = 5
Eik[h(x"“)]fh(x"HE —Tq’ |}inh(xk),xf+l—xf)+—2; ’IIxf+1—xff||2i|.
i=1 0 0

Proof: First, the optimality condition of (31) for x can be read as

0 = VAGEHY) + Vi h(RR) + Vi, G, Wkt 5Ky 4 & ﬂk("*l &, (34

for some Vﬁ(i_cf-""l) € Bﬁ(achH).
By juf;-convexity of f;, (34), for any X; € RP/, we can derive

= o = = o /in = o
FHiGEY < fiG) 4+ (VAGEE, 1 — %) — 7f X — 52

20 Q. TRAN-DINH AND D. LIU

(34) o N N ~ o =
= fiE) + (Vih(@) + Vi ¥, G5, w"“,yk) 5— 5
TkO; = ~k o = = o
+ 1 (x;(-‘rl _ x:'(,.xi _ xff-‘rl) ” k+1 ”2 (35)
o Bk

Now, using % := (1 — D)% + 2x; with 2 € [0,1] and 2(a,b) = lla+b|* — [la]* —
6|, it is easy to show that

k1 ~k Zk+1 k1 ~k T, ~k Zk+l 70 Zk+1
<xi+ —X; xz_x+) = <x,'+ _xis(l - ;)(xi _xi+)+_'(xi_xi+))
1 1
0 Zk+1 =~k k+1 0\ i~k =k+1,2
:;<X,-+ — X xz—x+) ¢! ——_)||xl-—xi l
1
To -~ 70 = 1 . =
< ol — P = o = X - SR -2 (36)
Zq 1 2q 2 1 1
1 1

Again, by u4-convexity of f;, we can deduce that

o Mnf = o 70 -~ To U To\ To -
FiG) — SR)2 < (1 - —)fi(xf‘) + L - 2E (—) D x; — &2
2 qi qi 2 qi) qi
’”Lf'u(>~"+ D — 2
qi qi

@ (1 - %)ﬁ(izﬁ‘) + gﬁ-(xi)

“fi | To =k 70 Zk ~
s [—nx,-“ —xill* + (1 - —) 1%+ — x,»knz}
2 Lgi qi

s(l—ﬂ)ﬁﬁc{w@fl x) — Bk (3)
qi qi 2g;

1
Therefore, plugging (36) and (37) into (35), and using again X; := (1 — %)Scf‘ + %xi, we
can further derive

fiE) < (l—g)ﬁ() + f(D) — ’q‘f’n“‘+1 X2

1

T1O; - = TO; . =
2 — 7 —||x,-—x’»‘“||2 — k= B

1 1 1 1
24Pk 270 Bk

+<vxih(5c">+vxiwpk6ck, L3R, (1 — D)3k 4 q,xi—§c§+1>. (38)

i
Next, using (23) of Lemma 5.1 into (28), we can show that

k+1
=Y @ B (- nof + uf @ + = [f(ick“)—f(ick)].

1=0

Taking conditional expectation IE;, [-] of this expression, we can further derive

By [] = 0= moff + mf @ + 2 Z ai[fiG — fiGH]

OPTIMIZATION METHODS & SOFTWARE . 21

(38) - 2 & B -
= A-wff +af @+ 03 o [l = 212 = 1 = F1

i=1

n 2
Tk “k+1 2 k
—5Zuﬁnxﬁ — il = o

=k _ Zk+1)2
qill X — x|

+ = Zq,<vx,h(x)+vxﬂ/fpk(L, (1——)x +q_"1 fcif“>.

i=1

Finally, substituting the following expressions

n n
Oi (\~k ~k+1 2 ~k 2 “k+1 2
E;, [Z;(nxi — x> = I1E = x]) = ailll& — xill* — I1FH —)%,
! i=1

i:nl u ;)
By | D022 (18 = xll2 = (1= golR — xil12) | = 2wl - xl?
i-1 1 i=1
into the last inequality and rearranging the result we eventually obtain the first estimate
of (33).
Since xFt1 .= 3k + ;—"(fckH — %), it is clear that x**1 is different from &* only in one
block i. By utilizing (27), we obtain

k+1

k+1 _ k+1 ~k sk k+1 sk sk k+1 sk k+1 ~k
ka(x+:W+’)’)Ska(x)W+’)’)+<vx1/fpk(x’w+a)/)7x+ —Xx")

b= n
PkLo k41 ~kyp2
+= Zl ol — &2 (39)

Alternatively, by (2) and using L defined by (9), we also have
k k ky ok b Lo s k k
RO < G + (Veh @), M =)+ 22) Joillag - &P (40)
Next, by Step 9 of Algorithm 1 and (32), one can establish that

By, [(Vi G w1, 39,041 — iy | = 2 Zq, Vi ¥ip G5, Wi 359, 35— &),

i=1

E;, [(Vxh(fck),ka - ;}")] - z_(’; Z 4i{Vigh(R5), #F1 — &5,

Finally, taking conditional expectation of (39) and (40), and substituting the above equal-
ities into the results, we obtain the last two estimates of (33). [

Lemma5.3: Let { (xk, %K, Wk, yk)} be generated by Algorithm 1 and Ly (-) be defined by (29).
Then, for any (x, w) € dom(F), the following estimate holds:

E;, |:£k+1(y)+z i (f";; +u)nx"+1 —xiuz} < (1 - w LG

22 Q. TRAN-DINH AND D. LIU

+ [F(x, w) + GF + op(K&* + BwFH! — b), Kx + Bw — b)]
TkOi ~k 2
§ S ia- 13— x
+ qu [roﬂ + (q:)uf,] I — xill
2 /1 n
k ~k+1 ~k2
— K = oo — L) D gl - &
21_02 (ﬂk Pk) Z iqill i 1”
— —||(1<Ak + BWM — b) — (1 — 1) (KXF + Bwk — b)||?

(0 —m)
2

(o1 — (1 —) pi] |KxF + Bwk — |2, (41)

Proof: First, we write down the optimality condition of (8) as follows:
0 € agw Yy + BT GF 4 pp(K&* + Bw*H! — b)).

Using this condition, the convexity of g, and V1, (X%, w"*1, %) = BT GF + pr(K&F +
Bwkt! — b)), for any w:= (1 — T)Ws + ew with w € dom(g), we have

gy < () + (BT GF + pp(K&F + BwFHL — b)), w — wkt1)

(25) N N
< (1 — t)gWr) 4+ trg(w) + (Vi GE, wF L 55), (1 — mow® 4 gow — WD),

Combining the last inequality and (33), and then using the definition of £y, we have

Ey, [ﬁkﬂ(y)+ Z (o Mﬁ) I3+~ xiuz} < A=) [J+g0)]

T)O -
+ T [f() +gw)] + Z [— +a- q:)ﬂﬁ] 1% — xi])?
2q: 0/3

Tkz (1 i Lh) Z ||:k+1 “‘k||2
-— |- - oiqillx; " — Xx;

2_[()2 B, PkLo o 2 iqgillXx; ;
Y G WL 5K (Vi GF, wWEHL 5, x — 759
+ (wapk (&k’ Wk+1)j>k)) (1 - Tk)wk + W — Wk+1>
+ h(Z5) + T (Veh(3F), x — 75, (42)

Next, since ¥, (x, w,) = (5%, Kx + Bw — b) + 5| Kx + Bw — b||?, we have

OPTIMIZATION METHODS & SOFTWARE . 23

ky PKT
Ty = e (%, W,)/k) - —kII(K(x — 7% + Bw — wkth)2

~ ~ T ~
— 03k + pr(KZ5 + BW! — b), Kx + Bw — b) — %nka + BWAL)2,
(43)

Moreover, by Step 5 of Algorithm 1, we have 7y (x — =1 =)k = 7 + (e — 75).
Using this expression, we can deduce that

Tio) 1= Y 5 W55 + TV G5, W, 359, — 34
+ (Vi G5 w55, (1 = iowhk + gow — whH)
— (-1 [ka(ffk’ Wt Ak) + prk(ka, wk“,j/k),xk _ 3k
+(leﬁpk(5€k,wk+1,5/k),wk _ Wk+1>]
o 1 [G55 (T BR324
(B WAL 55, =).
Furthermore, utilizing (43) and (26), we can further estimate 7p;] as

(I — 1)k
2

s pk k
+ T (o W, 37y — EE5 K (x — #5) + Bw — wht |12

(26) ~ N
T = (1 — i) ¥ (5, wh 35 — IK(xF — &%) + Bwk — whthy|2

43 (1 — 1)k .
L (1= oy, 65w 5K — TnK(xk—x")+B<w"—wk“>||2
+ 7 (3 + pr (K& + B! — b), Kx + Bw — b) + ||1<Ak + Bwkt — p)?

(44)
n (1 =)ok — Pk=1)

5 | Kxk + Bwk — b)|?

B 1 = 1oy, (5 wE) + Tk + (KR + BwFTL — b), Kx + Bw — b)

——||I<Ak+B M _p— (1 —) (Kx* + BwF — b) |2

_(0=m)
2

(k-1 — (1 = wo) e [Kx* + Bw* — b2,
In addition, we also have

PG + (V@0 = #) < 1 (1= 0 +) < (1= 0hGH) + TG, (45)
Substituting (44) and (45) into (42), and then simplifying the result, we get (41). [|

5.5. Key estimate for Algorithm 1

Next, we further estimate (41) in terms of y in the following lemma.

24 Q. TRAN-DINH AND D. LIU

Lemma 5.4: Let {(x %k, wk, 3 yk)} be generated by Algorithm 1, L be defined by (3), and
Li() be defined by (29). Then, for any (x, w,y) € dom(F) x R4, we have

By, [L1 () — L w, y"“)] = (- [L) - L w7

1 A
431 =y = B (17 =]

TkO, -
+ Z 2 [— +(1 - Q‘)Mfi:| 1% — xill?

n
Tk [TkOi ~k41 2
— . L ;
i [gj 2 (Toﬁk + 1) I — }

2 = n
T 1 - PrNkL ~ %
“ 0 (E R iy > ol xH - x|

(0=
2

[ok—1 — (1 — T) px] |KxF + Bwk — |2, (46)

Proof: From (29), for any y, we have Ek(j/k) = ,C_k(y) + ()A/k -, Kx* + Bwk — b). There-
fore, using the update of ! from Algorithm 1, we can show that

Li1 G5 — A =) LrG5) = L1 () — (1 — 5 Lr(y)
+ % =y, KT+ BWF — b — (1 — 1) (Kx* + Bwk — b))
Y2 () — (=) Lk () o <y — 33 =K
= Lit1(0) — A —) L)

1 . A
= 5 (155 =2 = 5 = 1R =54
Nk

Moreover, since Y1 := (1 — 7)7* + 1 [JF + pr(KZK + Bw*+! — b)] by Step 7, using the
definition (3) of £, we can easily show that

L,w, 7 — (1= 1) L6 w, 75 = 1e(7F + pp(KEX + BWFT — b), Kx + Bw — b)]
+ . F(x, w).

Substituting the above two estimates into (41), we can further derive
By, | Lin10) = Loaw 7] = (1 = w0 | £u) = L w5 |

L Tk skt1 skl akyp2
+ i (195 =P 17— 1 5417

Tk | TkOi
i 1— — X
+1§1 20 [roﬁ +(CI)Mf,i| I1%F — xi))?

OPTIMIZATION METHODS & SOFTWARE . 25

n
Tk [TkOi k41 2
— R LI el —
¢ [Ezqi(mﬂﬁ) ’“”]

2 n
1 = h Skl k2
e <E — pkLo — L(,) > oigill X - |

i=1
_ %nm" 4+ BW — b — (1 —) (Kxk + Bwk — b))

(-7
2

[pk—1 — (1 — T px] | Kx* + Bw* — b|*. (47)
Next, by (22) and Kt i only different from % at one block iy, we have

1 n Pk ~
Cr = z—nkny"“ — k17 - ?nka +BwWF! — b — (1 —) (Kx* 4 Bwk —)2

_ @“kaﬂ + BW — b — (1 — 1) (KX + BwF — b)||?

— —||1<A" + Bwt — b — (1 — 1) (KK + BwK — b) |2
@2) nkpk NkpkL .
< KM =3P = Y o = &)
2(pk — k) 2(px — k)

i=1

Note also that E [llkarl fcf-‘||2] = T"q’ ||~kJrl 5cf-‘||2 due to (32) and Step 10 of

Algorithm 1. Using these expressions, we can estimate
NkPkLo k+1
Ei [C = o ——— oill ! — &1
. 2o —) Z’

T
— ﬂ [Zq,G,kaH x ||2i|

278 (pk — 1K)

Substituting the last inequality into (47), we obtain (46). [|

5.6. Conditions for parameter selection

The following lemma provides conditions on the parameters to guarantee a contraction
property of the Lyapunov function & () defined by (30).

Lemma 5.5: Let 79, Ly, and L be defined by (9), and {(xk,wk,)_/k)} be generated by
Algorithm 1. Suppose that tx, Br, px. and ny satisfy the following conditions:

Pk—1 = (1 —) Pks

(1 —) = Ng—1,
Pk — Nk

LI (pr — m) + Lo o
2

OiTi_4 1 2 .
+ K, + A —qgpgte |, Vie[n]

= IBk) (48)

Th—1 =
T0Br—1 (I — 1) T0,3k

26 (&) Q.TRAN-DINHAND D.LIU

Then, for given (x, w,y) € dom(F) x R, the function Ex(-) defined by (30) satisfies
E[Exs1(6w)] < (1 —)E [Ex(x, w,)] (49)
Proof: From the conditions of (48), we can easily check that

i<1—‘ck

L P
= sy Pk—1— A —1)prk >0, and — — pxLs — L(}; _ PkNklo > 0.
we e Pr Pk — Tk

Using these relations and the last two conditions of (48), we can simplify (46) as

_ _ 1
E;, |:£k+1(y) — Lxw, 7 + ﬁlly"+1 - yllz]

_) 1
<1 -1 [ﬁk(y) — L(x,w, 75 + M—lllyk —yllz]

n
Tk—1 [Tk—10i ~k 2
-1) ——) 15— x
o Y = 24 (TO,Bk—l —HLf') I =l

n
Tk [TkOi ~k+1 2
SE X —+u,«) 1 —) | (50)
* [; 29 (TO,Bk s) l
Rearranging this inequality and using & defined by (30), we obtain

Eik [gk+l(x> W)y)] S (1 - Tk)gk(x) W,)/)

Taking full expectation [E [-] given (x, w,y) on both sides of the last inequality so that
E [Eik []] =E[E[- | Fx]] = E[], we eventually get

E [Ek—i-l(x’ W))/)] <=- Tk)E [gk(x’ Wa}’)] >

which proves (49). |

5.7. The proof of Theorem 3.1: general convex case

Since puf; = 0 for all i € [n], if we assume that the conditions of (48) are tight, then we can
easily derive that
Pk—1

o= —— and T :=
1—1

Tk—1
Te—1 +1 ’

(51)

where pg > 0 is given and 7y is defined by (9). Let us also update ny as ny := %. Then, it
is straightforward to prove that

Tp po(tok + 1)
Pk = po(Tok + 1), 1= —F——,

Tl = ,
T k1 2

(52)

k
1
= 1—1)= .
Wk i|=1| () ok + 1

OPTIMIZATION METHODS & SOFTWARE ‘ 27

Moreover, the third condition % > B of (48) becomes

Hence, we can update Sy as following to guarantee this condition:

1
— > B
th2lo 00 = Pr

1 1
Br = — = = . (53)
Lt +2L,pr LM + 2Ly po(tok + 1)

In summary, it is clear that the update rule (10) satisfies all the conditions of (48).
Next, from (49) and (52), we can show that

k

(49)
E [Exp1(x,w,9)] 459 [H(l - Ti)j| E[&1(xw,y)]

i=1
s 1
B ok +1

E [51 (x, w,y)] . (54)

Using (46) and the definition (30) of &, we have

Ewy) E L) — Louw i) + —Ily P 2/3 — x|
46) - _ B 1 R
< @ =1w)[Lo(y) — L(x,w, : ||x?—x,'||2+2—no||y—y0||2
Ao(x, w,y), (sincel — 79 < 1) (55)

where éo (x,w, y) is defined as
N 1
Eo(x,w,y) = F(O, %) — L(x,w,3°) + (, Kx® + Bw® — b) + e 15° = yII?
0

p—1 (L +2poLy) 0
+TIIKxO+BWO—b||2+%”x 0||G/q

Denoting u® := Kx° + Bw® — b. Then, since p_; = po(1 — 70) and 219 = po, we have

1
Tp3) = <y,Kx°+Bw°—b>+;|| —yp 22t ||Kx + Bw® — b||?
0

1 Po 02 L a0 2 ,00(—70) g2
—yl? + Sl + —15° =yl + ——— 1]
2po 4 2 Po r 2

IA

A

00(2 — 10)
Tnu"n2

>

1 2
< —13°1* + =130 — yl* +
£0) £0 4 J

where the last inequality comes from %||y||2 < 13°11> + lly — 3°II*>. Using 73}, and
—L(x,w,3°) < —D(3°), we can further simplify & as

. R . 2 . 1 .
Eolx, w,y) < Eo(x,y) := F(x°, w’) — DG°) + %Ily =31+ %ny"u2

> 1 L' 4+ 2p0Lo)T
+ T 0y o g4 B P20 o, (s

28 (&) Q.TRAN-DINHAND D.LIU

Now, by convexity of f, using (28) and (23) we can show that

k

) 2 (Zyklx) D rif &)
=0

1=0
Therefore, we can derive
Lo, (xk, wk,y) — L(x, w,)_/k) = F(xk, wk) + Yo, (xk, wk,y) — L(x, w,)_/k)
S]_‘k + h(xky + g(wk) + wpk(xk, wk,y) — L(x, w,)_/k)

(30)
< Ek(x, W,).
Combining this inequality, E[éo] = éo (%,), (54), (55), and (56), we get

So(x, ¥)

_ 57
Tok+1—19 (57)

E[Ly, 5 whp) = Lo w)] =
Since L£(xk, wk,y) <L, , (xk, wk,y), (57) leads to

Gz (xk, wk, 7%

©® max E[L(x w,y) L‘,(x,w,)_/k)]

(xwy)eZ

R 2 —19)
< |F&) — DG /OO(—KO Bu® — b2
_Tok+1—r0|:(xw) () + E22 K + B’ — b

Lo 2 o Lo +200Llo)t0 g0
+— 1P+ sup S~y =+ = e = g g |
Lo xy)eX xy 00 2 o/q
which proves the last inequality of (11).
Next, using the saddle-point condition (5), we can show that
(©)]
= F(x",w*) = ,C(x*,w*,)_/k) < LK, wk,y*) = F(K, why + (y*,ka + Bwk — b).

This implies that E [F(xk, wky — F* 4+ (y*,ka + Bwk — b)] > 0. On the other hand,
using (57), we also have

3 é’ *
E [F(xk, wh) — F* 4 (5" K+ Bwk — by + 2L kok 1 Bk — b||2] < Loy
2 Tok+1— 19
(58)

Hence, together with px_; = po(tok + 1 — 79), we obtain

Zéo(x*,y*)
po(tok +1 — ‘L’o)z'

E [quk + Bwk — b||2] <
Moreover, from (12), we have & = éo (x*,*). Thus (58) implies
‘IE [F(xk, wk) — F*

|2 o i (B 1 + b - o17])"”

OPTIMIZATION METHODS & SOFTWARE . 29

1 . 2 2\
<— &+ I =€ ;
s gl 2 ™|l <p0 0)

which proves the first two lines of (11).
Now, let D()_/k) := miny,,, L(x, w,)_/k) be the dual function. Then, we have

D) = min {¢ @) + gow) + (Kx + Bw - b,7)}
= —¢*(—K'5) - g"(=BTj") — (b.3").

Therefore, dom(D) = {y € R4 | —KTy € dom(¢*), —BT)/ € dom(g*)}. Let us show that
y* € dom(D). Firstly, by the assumption that ¢* is M+-Lipschitz continuous, we have
dom(¢*) = R%. Hence, we only need to prove —BT)_/k € dom(g*). Indeed, from (8), we
have 0 € Bg(wkH) +BT ()A/k + ,Ok(BwkJrl + K&k — b)), which becomes

whtl e 8g* (=BT 9% + pr (B! + K&K — b))).

Thus —B" ()A/k + pe(BWET + K&k — b)) € dom(g*). Also from Step 7 of our Algorithm 1,
)‘/kH =(1- tk))_/k + tk[j/k + pe(BWT! + K&k — b)], where 71 € (0,1). Therefore, if
—B'y* € dom(g*), then —BTj*! € dom(g*). As a result, if we assume that —B' 3" €
dom(g*) at the initialization of Algorithm 1, then —BT3* € dom(g*) for all k > 0. We con-
clude that)'/k € dom(D), which implies D()'/k) > —oo for all k > 0. Finally, since ¢ and g
are propet, by the Fenchel-Moreau theorem [5, Theorem 13.37], ¢* and g* are also proper,
and hence D is proper. This shows that D(y) < 400 for all y € dom(D). Combining two
cases, we can state that D()_/k) is finite.

Next, we note that)_/k is independent of i;_1, and therefore, independent of (xk, wh).
Hence, from D()_/k) = miny,,, L(x, w,)_/k), using the optimality condition of this minimiza-
tion problem, for any w*~! € 9g*(—B' y*) and any ¥~ € d¢*(—K T y*), we have D(7*) =
L&k, wk=1, yk=1) where ¢* is the Fenchel conjugate of ¢ := f + h, and we shift the index
to k—1 to show that both ¥~ and #w*~! are Fj_, -measurable, and independent of (xk, wh).
Therefore, one has

(5)
D* _ D(}_/k) < ﬁ(xk,wk,y*) _ £()-Ck—l)wk—1))—/k)

< Ly (K wk %) — L& AL R,

5)
Here, we have used D* = F* < L(xk, wk,y*) < Lo, (x*, wk, y*)(5). From (49), by induc-
tion and similar to the proof of (57), we get

Eo(x,y%)

k ok xy =k *
E[.cpkfl(x WY — Lx,w,y)] < E[&xwy)] < okl

k—

where f:’o is defined by (56). Now, we substitute x = X 1 and w = #w*! into the last

inequality to get

éO()_Ck_l,y*)

B[Lo 0wyt — L@ LWL] < ZE

30 Q. TRAN-DINH AND D. LIU

Here, the expectation is now conditioned on (J'ckfl, v'vk’l), which is random. Taking the

full expectation, and combining the result with the above estimate, we get

E[&x1,%)]

E [D* - D()_’k)] < Tkl —

In addition, since ¢* is My+-Lipschitz continuous, almost surely, we have

sup [I = 20120 # € 0g" (KM | s Mo= sup I =02,)
741 <M

The last two inequalities lead to

(6) 1 2 1
E[p-DH]| S ——— [F<x°,w°> = DGO + =1 = I + 15
4 ok +1—10 4 ,Ooy 4 /Ooy
2— L 4+ 2poLo) ToM,
+,00(Tp) 1K+ Bu® — b + (Lg +2p0Ls)T0 0:|
2 2
‘L’()k+ 1-— ‘L'O’
which proves the third line of (11). OJ

5.8. The proof of Theorem 3.2: strongly convex case

We first show that if 7, pk, nk, and By are updated as in Theorem 3.2, then they satisfy

the conditions of (48). First, it is obvious to show that p, 1k, and B satisfy the first three
2
conditions of (48). Next, since tx is updated as in Theorem 3.2, it satisfies 1 — 7y = r;—k
k-1
Hence, we obtain

.(2

To Tk k-1
<7t l—-7)=—~<———— and = .
ok+1 o= Tok+2 1—[(12 7 (k4 2)? Pk 7 Pi=1

2

2
Then, by induction, we get Ok = %. Therefore, ;. = 5. Consequently, one

T
+2Lap f
can show thai Fﬂk — % ﬂk 1 =2L, ,ooro

Now, we verify the last condition of (48). Multiplying this condition by 1;—;" = kit

is equivalent to

K, [Tk Tk Tk -
—_— | — =01):|2—— = 2L poTo-
1 0Bk T0Pr-1 ’

It is easy to check that tkf—fl = /1 — 7% is increasing. Using 79 < g; from (9), the above
inequality holds if

= | T | T
2Ly poTo < B [i—(l—fo)] = @[—I—Fm—l},
T o; | To

gj 0 i

OPTIMIZATION METHODS & SOFTWARE . 31

2 2
| AT H4tTo—2 . A/ Ty H4A+T0—2
Lh }—0 == Using ¥ —0—= > 1

oiLy 4719 4719 - we
can simplify this expression by a tighter one 0 < pp < i min;e(y) %, which is exactly the

o

which is equivalent to 0 < pg < min;e[y) {

last condition in Theorem 3.2.
The remaining proof of Theorem 3.2 is similar to the proof of Theorem 3.1 but using
&o(x, y) instead of Ey(x, y) in the key bound (57), where

- . 2 . 1 .
Eo(x,y) == F(:°,w® — DG + =y = 3°1> + —13°11?
£0 £0

2—1
n po(. 0) 1K + B — b2

n

70 1 T
+2 o [(Lf; +2poLy)oi + Mf,-] llxi — 0112
i=1 1

Similarly, we also replace Fy and R% by Fp and ﬁzz, respectively. To avoid repetition, we
omit the detailed derivation here. O

6. Conclusions

We have developed a unified randomized block-coordinate alternating primal-dual
algorithm to solve a generic class of nonsmooth and constrained convex optimization prob-
lems of the form (P) and its dual problem (D). Our algorithm is new and achieves the best
known convergence rates for both merely convex case and strongly convex case. Our rates
are on three criteria and non-ergodic on the primal sequence. We have also specified our
algorithm to handle two special cases, which commonly appear in the literature. This leads
to new variants where our convergence rates guarantees are still applied. We have tested
our algorithm on two well-studied examples and compared it with two state-of-the-art
algorithms. We have observed that our algorithm has encouraging performance on differ-
ent experiments of real and synthetic datasets. Our next step is to extend this approach
to convex optimization models with nonlinear constraints and general convex-concave
saddle-point problems.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work is partly supported by the Office of Naval Research Global [grant number ONR-
N00014-20-1-2088] (2020-2023), the National Science Foundation (NSF) [grant number NSF
DMS-2134107] (2022-2027), and the NAFOSTED [Vietnam] [grant number 101.01-2020.06]
(2020-2022).

32 Q. TRAN-DINH AND D. LIU

Notes on contributors

Quoc Tran-Dinh is an associate professor at the Department of Statistics and Operations Research,
UNC-Chapel Hill. He obtained a Ph.D. degree in Optimization in Engineering from KU Leu-
ven, Belgium in November 2012. His research interests consist of theory and numerical algo-
rithms for convex, nonconvex, and stochastic optimization, and related problems. He currently
serves as an associate editor of Mathematical Programming Computation (MPC) and Computational
Optimization and Applications (COAP).

Deyi Liu is currently a data scientist at ByteDance, USA. He obtained his Ph.D. degree from the
Department of Statistics and Operations Research, UNC-Chapel Hill in June 2022. His research
interests consist of numerical methods for convex optimization and stochastic optimization, and
optimization applications in machine learning and image processing.

References

[1] A. Alacaoglu, O. Fercoq, and V. Cevher, On the convergence of stochastic primal-dual hybrid
gradient. SIAM]. Optim 32(2) (2022), pp. 1288-1318.

[2] A. Alacaoglu, O. Fercoq, and V. Cevher, Random extrapolation for primal-dual coordinate
descent, in International Conference on Machine Learning, PMLR, 2020, Vol. 119, pp. 191-201.
http://proceedings.mlr.press/v119/alacaoglu20a.html.

[3] A. Alacaoglu, Q. Tran-Dinh, O. Fercoq, and V. Cevher, Smooth primal-dual coordinate descent
algorithms for nonsmooth convex optimization. in Advances in Neural Information Process-
ing Systems (NIPS), Long Beach, CA, USA, 2017, pp. 1-9. https://proceedings.neurips.cc/
paper/2017/hash/71887£62f073a78511cbac56f8cab53f- Abstract.html.

[4] . Bai, W. Hager, and H. Zhang, An inexact accelerated stochastic ADMM for separable convex
optimization,. Comput. Optim. Appl. 81(2) (2022), pp. 479-518.

[5] H.H. Bauschke and P. Combettes, Convex Analysis and Monotone Operators Theory in Hilbert
Spaces, 2nd ed. Springer-Verlag, Cham, 2017.

[6] D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods,
Prentice Hall, 1989.

[7]1 RI Bot, E.R. Csetnek, and A. Heinrich, A primal-dual splitting algorithm for finding zeros of
sums of maximally monotone operators, SIAM J. Optim. 23(4) (2013), pp. 2011-2036.

[8] R.I. Bot, E.R. Csetnek, and D.K. Nguyen, Fast augmented Lagrangian method in the convex
regime with convergence guarantees for the iterates. Math. Program. online first (2022), pp. 1-51.

[9] R.IBotand D.K Nguyen, Improved convergence rates and trajectory convergence for primal-dual
dynamical systems with vanishing damping,]. Differ. Equ. 303 (2021), pp. 369-406.

[10] S.Boyd and L. Vandenberghe, Convex Optimization, University Press, Cambridge, 2004.

[11] L.M. Briceno-Arias and P.L. Combettes, A monotone + skew splitting model for composite
monotone inclusions in duality, SIAM J. Optim. 21(4) (2011), pp. 1230-1250.

[12] A. Chambolle, M.J. Ehrhardt, P. Richtdrik, and C.-B. Schonlieb, Stochastic primal-dual hybrid
gradient algorithm with arbitrary sampling and imaging applications, SIAM]. Optim. 28(4)
(2018), pp. 2783-2808.

[13] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with
applications to imaging, J. Math. Imaging Vis. 40(1) (2011), pp. 120-145.

[14] A.Chambolle and T. Pock, An introduction to continuous optimization for imaging, Acta Numer.
25 (2016), pp. 161-319.

[15] A. Chambolle and T. Pock, On the ergodic convergence rates of a first-order primal-dual
algorithm, Math. Program. 159(1-2) (2016), pp. 253-287.

[16] C.-C.Changand C.-J. Lin, LIBSVM: A library for support vector machines, ACM. Trans. Intell.
Syst. Technol. 2 (2011), pp. 1-27.

[17] Y. Chen, G. Lan, and Y. Ouyang, Optimal primal-dual methods for a class of saddle-point
problems, SIAM J. Optim. 24(4) (2014), pp. 1779-1814.

http://proceedings.mlr.press/v119/alacaoglu20a.html
https://proceedings.neurips.cc/paper/2017/hash/71887f62f073a78511cbac56f8cab53f-Abstract.html

(18]

(19]

(20]

(21]
(22]
(23]
(24]
(25]

(26]

(27]

(28]

[29]
(30]

(31]

(32]
(33]
[34]
(35]

[36]

[37]
(38]
(39]

[40]

OPTIMIZATION METHODS & SOFTWARE . 33

P. Combettes and J. Eckstein, Asynchronous block-iterative primal-dual decomposition methods
for monotone inclusions, Math. Program. 168(1) (2018), pp. 645-672.

P. Combettes and J.-C. Pesquet, Signal recovery by proximal forward-backward splitting, in
Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer-Verlag, New
York, 2011, pp. 185-212.

PL. Combettes and J.-C. Pesquet, Primal-dual splitting algorithm for solving inclusions with mix-
tures of composite, lipschitzian, and parallel-sum type monotone operators, Set-Valued Var. Anal.
20(2) (2012), pp. 307-330.

PL. Combettes and J.-C. Pesquet, Stochastic quasi-Fejér block-coordinate fixed point iterations
with random sweeping, SIAM J. Optim. 25(2) (2015), pp. 1221-1248.

D. Davis, Convergence rate analysis of the forward-Douglas-Rachford splitting scheme, SIAM J.
Optim. 25(3) (2015), pp. 1760-1786.

D. Davis and W. Yin, Faster convergence rates of relaxed Peaceman-Rachford and ADMM under
regularity assumptions, Math. Oper. Res. 42(3) (2017), pp. 577-896.

P. Dvurechensky, M. Staudigl, and S. Shtern, First-order methods for convex optimization, EURO
J. Comput. Optim. 9 (2021), pp. 1-69.

E. Esser, X. Zhang, and T. Chan, A general framework for a class of first order primal-dual
algorithms for TV-minimization, SIAM J. Imaging Sci. 3(4) (2010), pp. 1015-1046.

J.E. Esser, Primal-dual algorithm for convex models and applications to image restoration, reg-
istration and nonlocal inpainting, Ph.D. thesis, University of California, Los Angeles, USA,
2010.

E Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity
Problems, Vol. 1-2, Springer-Verlag, New York, 2003.

C Fang, F Cheng, and Z Lin, Faster and non-ergodic O(1/k) stochastic alternating direction
method of multipliers, in Advances in Neural Information Processing Systems, Long Beach, CA,
30, 2017. https://proceedings.neurips.cc/paper/2017/hash/7e3b7a5bafcb0fa8e8dfe3eataca9d
186-Abstract.html.

O Fercoq and P Richtarik, Accelerated, parallel, and proximal coordinate descent, SIAM J.
Optim. 25(4) (2015), pp. 1997-2023.

T. Goldstein, E. Esser, and R. Baraniuk, Adaptive primal-dual hybrid gradient methods for
saddle point problems, Tech. Rep., 2013, pp. 1-26, http://arxiv.org/pdf/1305.0546v1.pdf.

E.Y. Hamedani, A. Jalilzadeh, N.S. Aybat, and U.V. Shanbhag, Iteration complexity of ran-
domized primal-dual methods for convex-concave saddle point problems, arXiv preprint
arXiv:1806.04118, 2018.

B. He and X. Yuan, Convergence analysis of primal-dual algorithms for saddle-point problem:
From contraction perspective, SIAM]. Imaging Sci. 5 (2012), pp. 119-149.

J. Kone¢n, Z. Qu, and P. Richtarik, Semi-stochastic coordinate descent, Optim. Methods Softw.
32(5) (2017), pp. 993-1005.

G. Lan, An optimal method for stochastic composite optimization, Math. Program. 133(1) (2012),
pp. 365-397.

J. Liang, J. Fadili, and G. Peyré, Local convergence properties of Douglas-Rachford and alternat-
ing direction method of multipliers, J. Optim. Theory Appl. 172(3) (2017), pp. 874-913.

R.D.C. Monteiro and B.E. Svaiter, Iteration-complexity of block-decomposition algorithms and
the alternating minimization augmented Lagrangian method, SIAM J. Optim. 23(1) (2013),
pp. 475-507.

Y. Nesterov, A method for unconstrained convex minimization problem with the rate of conver-
gence O(1/k?), Dokl. Akad. 269 (1983), pp. 543-547.Translated as Soviet Math. Dokl.

H. Ouyang, N. He, L.Q Tran, and A. Gray, Stochastic alternating direction method of multipliers,
JMLR W&CP 28 (2013), pp. 80-88.

Z.Peng, Y. Xu, M. Yan, and W. Yin, ARock: An algorithmic framework for asynchronous parallel
coordinate updates, SIAM J. Scientific Comput. 38(5) (2016), pp. 2851-2879.

T.R. Rockafellar, Network Flows and Monotropic Optimization. Number 1-237. Athena Scien-
tific, Belmont, MA, 1998.

https://proceedings.neurips.cc/paper/2017/hash/7e3b7a5bafcb0fa8e8dfe3ea6aca9186-Abstract.html
http://arxiv.org/pdf/1305.0546v1.pdf

34 Q. TRAN-DINH AND D. LIU

[41]

[42]

[43]
[44]
[45]
[46]
(47]
(48]

[49]

S. Shalev-Shwartz and T. Zhang, Accelerated proximal stochastic dual coordinate ascent for reg-
ularized loss minimization, in International Conference on Machine Learning, Beijing, 2014,
pp. 64-72. http://proceedings.mlr.press/v32/shalev-shwartz14.html.

C. Tan, T. Zhang, S. Ma, and J. Liu, Stochastic primal-dual method for empirical risk minimiza-
tion with O(1) per-iteration complexity, in Advances in Neural Information Processing Systems,
Montreal, 2018, pp. 8376-8385.

Q. Tran-Dinh, Proximal alternating penalty algorithms for constrained convex optimization,
Comput. Optim. Appl. 72(1) (2019), pp. 1-43.

Q. Tran-Dinh, O. Fercoq, and V. Cevher, A smooth primal-dual optimization framework for
nonsmooth composite convex minimization, SIAM J. Optim. 28(1) (2018), pp. 96-134.

Q. Tran-Dinh, I. Necoara, and M. Diehl, Fast inexact decomposition algorithms for large-scale
separable convex optimization, Optimization 65 (2016), pp. 325-356.

Q. Tran-Dinh and Y. Zhu, Non-stationary first-order primal-dual algorithms with faster conver-
gence rates, SIAM J. Optim. 30(4) (2020), pp. 2866-2896.

P. Tseng, On accelerated proximal gradient methods for convex-concave optimization, Submitted
to SIAM J. Optim. 2008.

A W. Yu, Q. Lin, and T. Yang, Doubly stochastic primal-dual coordinate method for empirical
risk minimization and bilinear saddle-point problem, arXiv preprint arXiv:1508.03390, 2015.
Y. Yu and L. Huang, Fast stochastic variance reduced admm for stochastic composition optimiza-
tion, in Proceedings of the 26th International Joint Conference on Artificial Intelligence, AAAI
Press, Melbourne, 2017, pp. 3364-3370.

Y. Zhang and L. Xiao, Stochastic primal-dual coordinate method for regularized empirical risk
minimization, J. Mach. Learn Res. 18(1) (2017), pp. 2939-2980.

Y.-N. Zhu and X. Zhang, Stochastic primal dual fixed point method for composite optimization,
J. Sci. Comput. 84(1) (2020), pp. 1-25.

http://proceedings.mlr.press/v32/shalev-shwartz14.html

	1. Introduction
	2. Fundamental assumptions and related background
	2.1. Basic notation and concepts
	2.2. Basic assumptions and optimality condition

	3. Randomized block-coordinate alternating primal-dual algorithm
	3.1. The main idea and the full algorithm
	3.2. Convergence guarantees under general convexity
	3.3. Convergence guarantees under strong convexity
	3.4. Two special variants of Algorithm 1
	3.4.1. Nonsmooth constrained convex problem
	3.4.2. Nonsmooth composite convex minimization

	3.5. Efficient implementation of Algorithm 1

	4. Numerical experiments
	4.1. Support vector machine
	4.2. Least absolute deviation (LAD) problem

	5. The proof of the main results: Theorems 3.1 and 3.2
	5.1. Preliminary results
	5.2. Properties of the augmented Lagrangian function
	5.3. Lyapunov function and key estimates
	5.4. Preparatory: two intermediate steps of convergence analysis
	5.5. Key estimate for Algorithm 1
	5.6. Conditions for parameter selection
	5.7. The proof of Theorem 3.1: general convex case
	5.8. The proof of Theorem 3.2: strongly convex case

	6. Conclusions
	Disclosure statement
	Funding
	References

