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ABSTRACT
We develop a novel unified randomized block-coordinate primal-
dual algorithm to solve a class of nonsmooth constrained convex
optimization problems, which covers different existing variants and
model settings from the literature. We prove that our algorithm
achieves O (n/k) and O

(
n2/k2

)
convergence rates in two cases:

merely convexity and strong convexity, respectively, where k is the
iteration counter and n is the number of block-coordinates. These
rates are known to be optimal (up to a constant factor) when n = 1.
Our convergence rates are obtained through three criteria: primal
objective residual and primal feasibility violation, dual objective
residual, and primal-dual expected gap. Moreover, our rates for the
primal problem are on the last-iterate sequence. Our dual conver-
genceguarantee requires additionally a Lipschitz continuity assump-
tion.We specify our algorithm to handle two important special cases,
where our rates are still applied. Finally, we verify our algorithm
on two well-studied numerical examples and compare it with two
existing methods. Our results show that the proposed method has
encouraging performance on different experiments.
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1. Introduction

We consider the following nonsmooth constrained convex optimization problem:

F! := min
x∈Rp,w∈Rm

{

F(x,w) := h(x) +
n∑

i=1
fi(xi) + g(w) s.t. Kx + Bw = b

}

, (P)

where fi : Rpi → R ∪ {+∞} for i = 1, . . . , n, are proper, closed, possibly nonsmooth,
and convex functions, p1 + · · · + pn = p, h : Rp → R is a smooth and convex func-
tion, g : Rm → R ∪ {+∞} is a proper, closed, possibly nonsmooth, and convex function,
K ∈ Rd×p, B ∈ Rd×m, and b ∈ Rd are given. For notational simplicity, let us denote by
f (x) :=

∑n
i=1 fi(xi) throughout this paper.

Note that (P) looks simple, but it is su!ciently general to cope with a broad class of con-
vex optimization problems in practice, ranging fromunconstrained to constrained settings,
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including the composite models considered in [1,3,12,42,50]. In particular, (P) also cov-
ers conic programming (e.g. linear, convex quadratic, second-order cone, and semide"nite
programming), image and signal processing, machine learning, network and distributed
optimization, and optimal transport, see, e.g. [6,10,40,45].

The corresponding dual problem of (P) can be written as

D! := max
y∈Rd

D(y), where D(y) := min
x,w

{
F(x,w) + 〈Kx + Bw − b, y〉

}
. (D)

Here,D is called the dual function of (P). Our goal in this paper is to develop a new uni"ed
randomized block-coordinate primal-dual algorithm to simultaneously solve both (P) and
its dual (D) which is simple to implement and can achieve state-of-the-art convergence
rates without imposing strong assumptions on (P).

Motivation.We are interested in the case when the primal dimension p of x is su!ciently
large so that computing the full gradient of h and the proximal operator of f can be prohib-
ited. However, the dimensionsm of w and d of y are relatively small, so that full operations
on these spaces can be computed e!ciently. This structure is su!ciently generic to cope
with many existing models, including [1,3,12,42,50].

Although randomized primal-dual algorithms for solving (P) have been widely studied
in the literature, including [33,42,48], it remains unclear if one can achieve a faster conver-
gence rates on the last iterate under only convexity or strong convexity. Moreover, many
works only focus on the unconstrained setting with smoothness assumption as opposed
to the nonsmooth setting (P). For example, [33,48] only consider the unconstrained case
when the objective function is both strongly convex and L-smooth to achieve a linear
convergence rate, while [42] only achieves O(1/

√
k) convergence rates under convexity,

where k is the iteration counter. Our goal is to combine the augmented Lagrangian frame-
work, randomized block-coordinate strategy [29], and Nesterov’s accelerated scheme [37]
to develop a new algorithm, Algorithm 1, which can achieve a O(n/k) convergence rate.
This convergence rate is much faster than O(n/

√
k) rate in [42]. Moreover, compared to

other existing methods in [3,12,41], Algorithm 1 achieves convergence rates on the last
primal iterate (xk,wk). These rates can be boosted up to O

(
n2/k2

)
rates on the last pri-

mal iterate (xk,wk) when either f or h is strongly convex thanks to the new update rules of
parameters.

Related work. Solution methods for solving (P) and (D) have attracted great attention in
recent years, including penalty schemes, augmented Lagrangian frameworks, primal-dual
hybrid gradient method (PDHG), proximal splitting algorithms, and variational inequal-
ity tools, see, e.g. [5,8,9,11,13,17,19,20,25,27,30,32,43], just to name a few. Notably, in [25],
the authors generalize PDHG and show that their framework covers proximal forward-
backward splitting (PFBS), the alternating direction method of multipliers (ADMM), and
the Douglas–Rachford splitting as special cases. Hitherto, "rst-order primal-dual methods
are perhaps the most popular ones for solving (P), see, e.g. [5,14,26]. In terms of con-
vergence analysis, both linear convergence rate under strong convexity and smoothness
assumptions and sublinear convergence rate under weaker assumptions are well estab-
lished for primal-dual methods, including [7,15,22,23,32,36,44]. However, most existing
convergence rates are achieved via averaging or weighted averaging sequences instead of
the last-iterate sequence.
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There also exist many stochastic primal-dual variants, including [2,3,12,28,34,38,41,
42,50], for solving (P) and its special instances. For instance, one of the most notable
works is [12], which extends PDHG to stochastic variants. As shown in [12], such stochas-
tic variants often outperform their deterministic counterparts. As another example, [50]
also extends PDHG to a stochastic primal-dual coordinate variant, called SPDC. This
method can achieve a linear convergence rate under the strong convexity and smooth-
ness assumptions. In [1,3], the authors consider other stochastic variants of PDHG and
obtain aO (n/k)-rate without strong convexity assumption. Alternatively, stochastic alter-
nating direction methods of multipliers (ADMM) have also been proposed to solve (P),
see, e.g. [12,28,38,41,49]. Sublinear convergence rates in expectation or high probabil-
ity have also been investigated for stochastic ADMM [12,28,41]. Recently, [12,28,42,50]
showed that stochastic primal-dual algorithms can perform several times faster than their
deterministic counterparts for solving large-scale applications in machine learning. Other
randomized block-coordinatemethods and their asynchronous variants have been recently
extended to monotone inclusions and general convex-concave minimax problems such
as [18,21,31,39], which cover (P) as a special case. However, these algorithms are not
accelerated and have no or slower non-ergodic convergence rates. Recently, [4,51] also
extended other primal-dual methods to randomized and stochastic variants. A very recent
survey [24] provided an excellent source on "rst-order methods for solving (P), including
randomized methods.

Contribution. Our main contribution in this paper can be summarized as follows.

(a) Wedevelop a uni"ed randomized block-coordinate primal-dual algorithm,Algorithm
1, to solve both (P) and (D).We proveO (n/k) convergence rates for both (P) and (D)
on three criteria: primal objective residual and primal feasibility violation, dual objec-
tive residual, and primal-dual expected gap, under only convexity and strong duality.
Moreover, our rates are on the last primal iterate (xk,wk) compared to [12], which are
also optimal (up to a constant factor) when n = 1. Our dual convergence guarantee
requires additionally the Lipschitz continuity of the conjugate (f + h)∗.

(b) If, in addition, f or h is strongly convex, then by appropriately adapting the parameter
update rules, Algorithm 1 can be boosted up toO

(
n2/k2

)
rates under the same three

criteria. Again, our rates are optimal (up to a constant factor) when n = 1 and on the
last primal iterate (xk,wk).

(c) We specify our algorithm to handle two special cases commonly studied in the litera-
ture: nonsmooth convex minimization with linear constraints and composite convex
minimization. In both cases, our convergence rates remain applicable.

Comparison. Let us highlight the following aspects of our contribution. First,
Algorithm 1 handles a more general class of problems than the composite model in,
e.g. [3,12]. Moreover, it is fundamentally di#erent from SMART-CD in [3], where it
updates two dual variables and relies on an augmented Lagrangian framework instead of
a smoothing technique as in [3]. Algorithm 1 is also di#erent from SPDHG in [12] since
it is based on Nesterov’s accelerated scheme with additional momentum steps. Second,
if g = 0 and B = 0, then Algorithm 1 is also a fully randomized block-coordinate vari-
ant w.r.t. the primal variable x as the one in [42]. However, Algorithm 1 is accelerated.
It can be reduced to a non-accelerated variant as a special case of the method in [42],
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see Subsection 3.4.1. Third, by eliminating w, the dual update of Algorithm 1 possesses
a three-point momentum step and uses dynamic parameter updates without any tuning.
This leads to a new type of algorithm, called a ‘non-stationary’ method [35]. Note that
analysing the convergence of ‘non-stationary’ algorithms is often more challenging than
that of stationary counterparts [35]. Fourthly, we establish three types of convergence guar-
antees, while most existing works only consider one. Finally, compared to [46], both [46]
and Algorithm 1 exploit an augmented Lagrangian approach, and combine it with Nes-
terov’s accelerated steps. However, Algorithm 1 is di#erent from [46] on several aspects.
First, (P) has a di#erent structure than the problem in [46] (see Subsection 3.4.2). Second,
Algorithm 1 is a randomized method, while [46] is deterministic. Third, it relies on the
accelerated scheme in [47], while [46] exploits Nesterov’s original scheme in [37]. Fourth,
Algorithm 1 uni"es two cases (convex and strongly convex) in one single algorithm, while
the second algorithm in [46] for the strongly convex case is di#erent and requires two
proximal operations of f per iteration. Finally, the analysis of Algorithm 1 is much more
involved than the deterministic case in [46], where a newLyapunov function is constructed
(see (30)).

Content. The rest of this paper is organized as follows. Section 2 states our fundamental
assumptions and presents some background related to (P) and (D). Section 3 develops our
main algorithm, Algorithm 1, and establishes its convergence rates in two settings. This
section also investigates two special cases. Section 4 provides two numerical examples to
verify our algorithmic variants and compare them with two other methods. The proofs of
the main results are given in Section 5.

2. Fundamental assumptions and related background

This section states our fundamental assumption and presents some related background.

2.1. Basic notation and concepts

We work with "nite dimensional spaces Rp, Rm, and Rd, equipped with the standard
inner product 〈·, ·〉 and Euclidean norm ‖·‖. For any nonempty, closed, and convex set
X in Rp, ri (X ) denotes the relative interior of X and δX (·) is the indicator of X .
For any proper, closed, and convex function f : Rp → R ∪ {+∞}, dom(f ) denotes its
domain, f ∗ is its Fenchel conjugate, ∂f denotes its subdi#erential [5].Wede"ne proxf (x) :=
argminy{f (y) + (1/2)‖y − x‖2} the proximal operator of f. If ∇f is Lipschitz continuous
with a Lipschitz constant Lf ≥ 0, i.e. ‖∇f (x) − ∇f (y)‖ ≤ Lf ‖x − y‖ for x, y ∈ dom(f ),
then f is called Lf -smooth. If f (·) − µf

2 ‖ · ‖2 is convex for someµf > 0, then f is calledµf -
strongly convex with a strong convexity parameter µf . If µf = 0, then f is just convex. We
say that f is Mf -Lipschitz continuous if |f (x) − f (x̂)| ≤ Mf ‖x − x̂‖ for all x, x̂ ∈ dom(f ).
We use R++ to denote the set of positive real numbers, and [n] := {1, 2, . . . , n} for any
positive integer n.

Given K ∈ Rd×p, Ki denotes the ith column block of K. Given σ ∈ Rn
++, we de"ne

the weighted norm as ‖x‖σ := (
∑n

i=1 σi‖xi‖2)1/2. Let q ∈ Rn
++ be a discrete probability

distribution on [n] such that
∑n

i=1 qi = 1 and ik ∈ [n] be a random index such that

Prob (ik = i) = qi. (1)
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We write ik ∼ Uq ([n]) for sampling a block ik from [n] based on the distribution q.

2.2. Basic assumptions and optimality condition

Our new primal-dual method relies on the following assumptions imposed on (P).

Assumption 2.1: The solution set S! of (P) is nonempty and the Slater condition
ri
(
dom(f + h) × dom(g)

)
∩ {(x,w) ∈ Rp × Rm : Kx + Bw = b} 1= ∅ holds.

The functions f and g in (P) are proper, closed, possibly nonsmooth, and convex on their
domain. The function h is convex and partially Lh,i-smooth for all i ∈ [n], i.e. for any x ∈ Rp

and di ∈ Rpi with i ∈ [n], we have

‖∇xih(x + Uidi) − ∇xih(x)‖ ≤ Lh,i‖di‖, (2)

where Ui ∈ Rp×pi has pi unit vectors such that [U1,U2, . . . ,Un] forms the identity matrix I
in Rp×p.

Assumption 2.1 is often required in primal-dual methods. Since S! is nonempty,
Assumption 2.1 implies strong duality, i.e. F! = D!, and the solution set Y! of (D) is
nonempty.

The primal-dual forms (P) and (D) can be put into the following minimax form:

min
x∈Rp,w∈Rm

max
y∈Rd

{
L(x,w, y) := F(x,w) + 〈Kx + Bw − b, y〉

}
, (3)

whereL is the Lagrange function associated with (P) and y is a dual variable or a Lagrange
multiplier. The optimality condition associated with (P) and its dual form (D) can be
written as follows:

0 ∈ ∂f (x!) + ∇h(x!) + K3y!, 0 ∈ ∂g(w!) + B3y!, and Kx! + Bw! − b = 0. (4)

Any point (x!,w!, y!) satisfying (4) is called a saddle-point of L in (3), i.e.:

L(x!,w!, y) ≤ L(x!,w!, y!) ≤ L(x,w, y!), ∀ x ∈ dom(f + h),w ∈ dom(g), y ∈ Rd. (5)

Under Assumption 2.1, (x!,w!) is a primal optimal solution of (P) and y! is a dual optimal
solution of (D).

Primal-dual expected gap. To characterize saddle-points of (3), we de"ne

GZ(x,w, y) := sup
(x̂,ŵ,ŷ)∈Z

E
[
L(x,w, ŷ) − L(x̂, ŵ, y)

]
, (6)

for any nonempty and compact subset Z := X × W × Y in Rp × Rm × Rd such that
Z ∩ Z! 1= ∅, whereZ! = S! × Y!. Here, the expectation is taken overall the randomvec-
tor (x,w, y). By (5), one can show that GZ(x,w, y) ≥ 0 for any random vector (x,w, y) ∈
Rp × Rm × Rd, and if (x,w, y) belongs to the set of saddle-points of (3) w.p. 1, then GZ
(x,w, y) = 0.

The function in (6) has been widely used in convex optimization as well as convex-
concave saddle-point problems, see, e.g. [13,42]. Note that the expectation in (6) is inside
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the supremum instead of outside as the one in [1,17]. Hence, we call (6) a primal-dual
expected gap function to distinguish it from [1,17]. Asmentioned in [1], there is a technical
issue in the proof of [13] and recently in [42], leading to an inconsistent conclusion on the
gap function guarantee in both papers [13,42].

3. Randomized block-coordinate alternating primal-dual algorithm

In this section, we develop a uni"ed randomized block-coordinate primal-dual algorithm
to solve (P) and its dual form (D). Then, we investigate its convergence rates.

3.1. Themain idea and the full algorithm

Main idea. Our approach relies on a classical augmented Lagrangian function associated
with (P), which is de"ned as follows:

Lρ(x,w, y) := f (x) + h(x) + g(w) + 〈Kx + Bw − b, y〉 + ρ

2
‖Kx + Bw − b‖2, (7)

where ρ > 0 is a penalty parameter. This functionwill serve as amerit function tomeasure
the optimality for both (P) and its dual form (D).

Our central idea can be presented as follows.

(1) First, we alternatively minimize Lρ w.r.t. w and x. While the minimization over w is
updated in full, the minimization over x is updated by a randomized block-coordinate
scheme. More speci"cally, the minimization problem over w can be written as

wk+1 ∈ arg min
w∈Rm

{
g(w) + 〈ŷk,Bw〉 + ρk

2
‖Bw + Kx̂k − b‖2

}
. (8)

However, since the minimization problem in x is large-scale, we not only linearize
it, but also apply a randomized proximal coordinate gradient method, e.g. in [29] to
minimizeLρk(·,wk+1, ŷk).More concretely, we sample a randomblock-coordinate i =
ik and update x̃ki by partially linearizing bothψρk(x,wk+1, ŷk) := 〈yk,Kx〉 + ρk

2 ‖Kx +
Bwk+1 − b‖2 and h around x̂k as

x̃k+1
i := arg min

xi∈Rpi

{
fi(xi) + 〈∇xih(x̂

k) + ∇xiψρk(x̂
k,wk+1, ŷk), xi − x̂ki 〉

+ τkσi
2τ0βk

‖xi − x̃ki ‖2
}
,

where βk > 0 and τk ∈ (0, 1). Otherwise, we maintain x̃k+1
i := x̃ki for i 1= ik. Here, σi

is a scaling parameter for each block i, which will be chosen proportionally to ‖Ki‖2
and Lh,i to minimize the overall Lipschitz constants L̄σ and Lhσ in (9).

(2) Second, we also apply the accelerated steps as in [29] and adaptively update the related
parameters ρk, βk, and τk using the ideas in [46].

(3) Third, we update the dual variable ŷk instead of "xing it as in [3].
(4) Finally, we add an averaging dual step ȳk to derive dual convergence rates.

We now specify each step discussed above to obtain the full algorithm.
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Algorithm 1 (Randomized Block-Coordinate Alternating Primal-Dual Algorithm)
Initialization:
1: Choose x0 ∈ Rp, and ŷ0 ∈ Rd such that −B3ŷ0 ∈ dom(g∗).
2: Choose ρ0 > 0 or as in Theorem 3.2.
3: Set x̃0 := x0, ȳ0 := ŷ0, and τ0 := qmin, where qmin := mini∈[n] qi > 0.

For k := 0 to kmax, perform
4: Update τk, ρk, βk, and ηk as in Theorem 3.1 or Theorem 3.2.
5: Update x̂k := (1 − τk)xk + τkx̃k.
6: Update wk+1 by solving (8).
7: Update ȳk+1 := (1 − τk)ȳk + τk[ŷk + ρk(Kx̂k + Bwk+1 − b)] (if necessary).
8: Sample a block-coordinate ik ∼ Uq ([n]) with the distribution (1).
9: For all i 1= ik, maintain x̃k+1

i := x̃ki , and for i = ik, update

x̃k+1
i := prox τ0βk

τkσi
fi

(
x̃ki − τ0βk

τkσi

(
∇xih(x̂

k) + K3
i (ŷk + ρk(Kx̂k + Bwk+1 − b))

))
.

10: Update xk+1 := x̂k + τk
τ0

(x̃k+1 − x̃k).

11: Update ŷk+1 := ŷk + ηk[(Kxk+1 + Bwk+1 − b) − (1 − τk)(Kxk + Bwk − b)].
EndFor

The full algorithm. Our complete algorithm, called Randomized block-coordinate alter-
nating primal-dual (PD) algorithm, is described in detail in Algorithm 1.

Per-iteration complexity. The main computation of Algorithm 1 consists of:

(1) Step 6 for updatingwk+1 requires solving the subproblem (8). IfB = −I, where I is the
identity matrix, then wk+1 = proxg/ρk(Kx

k − b + 1
ρk
ŷk), which reduces to evaluating

one proximal operator of g.
(2) Step 7 on ȳk+1 is only required if we prove a dual convergence guarantee. Note that

ȳk+1 does not depend on ik, and therefore, it can be calculated before knowing x̃k+1

and xk+1.
(3) Step 9 only updates one block-coordinate ik of x̃k. This step needs one proximal oper-

ation of the component fik , one partial derivative ∇xik h, one Kx̂
k, one Bwk+1, and one

K3
ik ŷ

k. Note that since xk+1 is only changed at one block-coordinate ik, calculating the
product Kxk+1 only needs to update Kik x̃kik .

(4) The dual steps, Steps 11 and 7, require updating full vectors in Rd.

Currently, we have not speci"ed how to e!ciently implement Algorithm 1. We will
derive in Subsection 3.5 an e!cient implementation of Algorithm 1.

3.2. Convergence guarantees under general convexity

Let us de"ne the following quantities, which will be repeatedly used in the sequel.

L̄σ := max
i∈[n]

{‖Ki‖2

σi

}
, Lhσ := max

i∈[n]

{
Lh,i
σi

}
, and τ0 := qmin = min

i∈[n]
qi ∈ (0, 1). (9)
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We also de"ne Fk := σ (i0, i1, . . . , ik−1) the smallest σ -algebra generated by random vari-
ables il for l = 0, . . . , k − 1. We also use a shorthand Eik [·] for the expectation Eik [· | Fk]
conditioned on Fk, and E [·] for the full expectation on the overall σ -algebra Fk+1.

We state the "rst main result for Algorithm 1 in Theorem 3.1, whose proof is postponed
to Subsection 5.7.

Theorem 3.1: Suppose that (P) satis!es Assumption 2.1, and µfi = 0 for all i ∈ [n]. Let L̄σ ,
Lhσ , and τ0 be given by (9) and ρ0 > 0. Let

{
(xk,wk, ȳk)

}
be generated by Algorithm 1, where

τk, βk, ρk, and ηk are updated by

τk :=
τ0

k + 1
, ρk :=

ρ0τ0
τk

, βk :=
1

Lhσ + 2L̄σ ρk
, and ηk :=

ρk
2
. (10)

In addition, let GZ be de!ned by (6). Then, the following estimates hold:





∣∣E
[
F(xk,wk) − F!

]∣∣ ≤ Ē0+‖y!‖(2Ē0/ρ0)1/2
τ0k+1−τ0 , (primal objective residual)

E
[
‖Kxk + Bwk − b‖2

]
≤ 2Ē0
ρ0(τ0k + 1 − τ0)2

, (primal feasibility)

E
[
D! − D(ȳk)

]
≤ F̄0
τ0k + 1 − τ0

, (dual objective residual)

GZ(xk,wk, ȳk) ≤
F(x0,w0) − D(ŷ0) + R̄2Z

τ0k + 1 − τ0
, (primal-dual expected gap)

(11)

where Ē0, F̄0, and R̄2Z are respectively de!ned as





Ē0 := F(x0,w0) − D(ŷ0) + 2
ρ0

‖y! − ŷ0‖2 + 1
ρ0

‖ŷ0‖2 + ρ0(2 − τ0)

2
‖u0‖2

+ (Lhσ + 2ρ0L̄σ )τ0
2

‖x! − x0‖2σ/q,

F̄0 := F(x0,w0) − D(ŷ0) + 2
ρ0

‖y! − ŷ0‖2 + 1
ρ0

‖ŷ0‖2 + ρ0(2 − τ0)

2
‖u0‖2

+ (Lhσ + 2ρ0L̄σ )τ0
2

M0,

R̄2Z := sup
(x,y)∈X×Y

{
(Lhσ + 2ρ0L̄σ )τ0

2
‖x − x0‖2σ/q + 2

ρ0
‖y − ŷ0‖2

}

+ 1
ρ0

‖ŷ0‖2 + ρ0(2 − τ0)

2
‖u0‖2.

(12)

Here, u0 := Kx0 + Bw0 − b, σ/q is the result of componentwise division of σ by q, M0 :=
sup{‖x − x0‖2 : ‖x‖ ≤ Mφ∗}, and Mφ∗ is the Lipschitz constant of the Fenchel conjugate
φ∗ of φ = f + h. Notice that we assume that φ∗ is Lipschitz continuous to obtain the dual
objective residual bound.

Remark 3.1 (The !niteness ofD(ȳk)): Note that, by (D), we have

D(y) = min
x,w

{
φ(x) + g(w) +

〈
Kx + Bw − b, y

〉}
= −φ∗(−K3y) − g∗(−B3y) −

〈
b, y
〉
.

Hence, we have dom(D) = {y ∈ Rd : −K3y ∈ dom(φ∗), −B3y ∈ dom(g∗)}. We show in
the proof of Theorem 3.1 that {ȳk} in Algorithm 1 always belongs to dom(D) as long as
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−B3ȳ0 ∈ dom(g∗) and φ∗ isMφ∗-Lipschitz continuous. Consequently, sinceD is concave
and proper, we conclude that D(ȳk) is "nite.

Remark 3.2: If we choose qi := 1
n for all i ∈ [n], then τ0 = 1

n , and the convergence rate in
Theorem 3.1 isO

(n
k
)
, which matches the rate in [3]. If n = 1, then this rate is optimal up

to a constant factor as discussed in [46].
If we choose

σi = qi = Lh,i + ρ0‖Ki‖2∑n
i=1(Lh,i + ρ0‖Ki‖2)

, ∀ i ∈ [n],

then, Algorithm1 takes into account the Lipschitz constantLh,i of h and ‖Ki‖2 of each block
i. This is expected to improve the performance of Algorithm 1 when the input data repre-
sented in K is not normalized, and the partial Lipschitz constants Lh,i are really di#erent
between block-coordinates xi for some i ∈ [n].

3.3. Convergence guarantees under strong convexity

If either f or h in (P) is strongly convex, then we can boost Algorithm 1 up to aO
(
1/k2

)

convergence rate. The following theorem states this acceleration when f is strongly convex,
whose proof is deferred to Subsection 5.8.

Theorem 3.2: Suppose that (P) satis!es Assumption 2.1 and f is strongly convex, i.e.µfi > 0
for all i ∈ [n], but h and g are not necessarily strongly convex. Let τ0, L̄σ , and Lhσ be given
by (9) and

{
(xk,wk, ȳk)

}
be generated by Algorithm 1, where τk, βk, ρk, and ηk are updated

by

τk :=
τk−1

[
(τ 2k−1 + 4)1/2 − τk−1

]

2
, ρk :=

ρk−1
1 − τk

, βk :=
1

Lhσ + 2L̄σ ρk
, and

ηk :=
ρk
2
,

with ρ0 being chosen such that 0 < ρ0 ≤ 1
4L̄σ

min{µfi
σi

: i ∈ [n]}. Then, we have





∣∣∣E
[
F(xk,wk) − F!

]∣∣∣ ≤
4
[
Ẽ0 + ‖y!‖(2Ẽ0/ρ0)1/2

]

(τ0k + 2)2
, (primal objective residual)

E
[
‖Kxk + Bwk − b‖2

]
≤ 8Ẽ0
ρ0(τ0k + 2)4

, (primal feasibility)

E
[
D! − D(ȳk)

]
≤ 4F̃0

(τ0k + 2)2
, (dual objective residual)

GZ(xk,wk, ȳk) ≤
F(x0,w0) − D(ŷ0) + R̃2Z

(τ0k + 2)2
, (primal-dual expected gap),

(13)
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where Ẽ0, F̃0, and R̃2Z are respectively de!ned as






Ẽ0 := F(x0,w0) − D(ŷ0) +
n∑

i=1

τ0
2qi

[
(Lhσ + 2ρ0L̄σ )σi + µfi

]
‖x!i − x0i ‖2

+ 2
ρ0

‖y! − ŷ0‖2 + 1
ρ0

‖ŷ0‖2 + ρ0(2 − τ0)

2
‖u0‖2,

F̃0 := F(x0,w0) − D(ŷ0) +
n∑

i=1

τ0
2qi

[
(Lhσ + 2ρ0L̄σ )σi + µfi

]
M0

+ 2
ρ0

‖y! − ŷ0‖2 + 1
ρ0

‖ŷ0‖2 + ρ0(2 − τ0)

2
‖u0‖2,

R̃2Z := sup
(x,y)∈X×Y

{ n∑

i=1

τ0
2qi

[
(Lhσ + 2ρ0L̄σ )σi + µfi

]
‖xi − x0i ‖2 + 2

ρ0
‖y − ŷ0‖2

}

+ 1
ρ0

‖ŷ0‖2 + ρ0(2 − τ0)

2
‖u0‖2.

Here, u0 := Kx0 + Bw0 − b, M0 := sup{‖x − x0‖2 : ‖x‖ ≤ Mφ∗}, and Mφ∗ is the Lipschitz
constant of the Fenchel conjugate φ∗ of φ = f + h. Notice that we assume that φ∗ is Lipschitz
continuous to obtain the dual objective residual bound.

Note that we can choose ŷ0 := 0 in Theorems 3.1 and 3.2 to simplify our corresponding
convergence bounds as long as 0 ∈ dom(g∗). Similar to Theorem 3.1, if we choose qi = 1

n
for all i ∈ [n], then the convergence rate of Theorem 3.2 isO

(
n2/k2

)
, which is optimal (up

to a constant factor) by assuming that n = 1 as shown in [46]. We can also choose another
qi as in Remark 3.2.

Handling strong convexity of h. In Theorem 3.2, we assume that f is strongly convex,
but h is not necessarily strongly convex. However, if f is just convex, but h is µh-strongly
convex with µh > 0, then we can process as follows:

(1) Replace h by h̃(x) := h(x) − µh
2 ‖x‖2, which is only convex. Moreover, h̃ is also Lh̃,i-

smooth w.r.t. xi with Lh̃,i = Lh,i − µh, and ∇xi h̃(x) = ∇xih(x) − µhxi.
(2) Replace f by f̃ (x) := f (x) + µh

2 ‖x‖2, which isµh-strongly convex. In this case, f̃i(xi) =
fi(xi) + µh

2 ‖xi‖2, which is also µh-strongly convex for all i ∈ [n]. Moreover, we have
prox

γ f̃i(xi) = proxγ fi/(1+γµh)
(xi/(1 + γµh)).

With these modi"cations, we apply Algorithm 1 to F(x,w) = f̃ (x) + h̃(x) + g(w), and
the convergence guarantees in Theorem 3.2 still hold for this case.

3.4. Two special variants of Algorithm 1

Let us consider two special variants of Algorithm 1 which cover several existing works.
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3.4.1. Nonsmooth constrained convex problem
If g = 0 and B = 0, then problem (P) reduces to

min
x∈Rp

{

F(x) :=
n∑

i=1
fi(xi) + h(x) s.t. Kx = b

}

. (14)

In this case, the main steps of Algorithm 1 for solving (14) can be written as follows:





x̃k+1
i :=





prox τ0βk

τkσi
fi

(
x̃ki − τ0βk

τkσi

(
∇xih(x̂

k)+K3
i (ŷk + ρk(Kx̂k − b))

))
, if i= ik,

x̃ki , otherwise,
ŷk+1 := ŷk + ηk

[
(Kxk+1 − b) − (1 − τk)(Kxk − b)

]
.

(15)

Other steps remain the same as in Algorithm 1, except that we remove all wk.
Note that (14) covers the model in [42] as a special case by appropriately reformulat-

ing it into (14). More speci"cally, to process f (u) + g(Mu), we write f (u) + g(v) subject to
Mu−v = 0. If we de"ne x := (u, v), then we can transform the model in [42] into (14). In
this case, the variant (15) of Algorithm 1 has fully randomized block-coordinate updates
over the primal variable x. To align with [42, Algorithm 1], we can choose a pair of ran-
dom block-coordinates (ik, jk) for ik ∈ [n1] and jk ∈ [n2], where n1 is the number of blocks
in u and n2 is the number of blocks in v. Here, we update blocks ik and jk simultane-
ously. In terms of convergence rates, [42, Algorithm 1] only achievesO

(
1/

√
k
)
rate, while

Algorithm 1 has a much better rate, which is O (1/k) as shown in Theorem 3.1. More-
over, our convergence rate is non-ergodic (i.e. on the last primal iterate xk) as opposed to
averaging sequences in [42].

3.4.2. Nonsmooth composite convexminimization
If b = 0 and B = −I, then (P) reduces to the following setting:

min
x∈Rp

{

F(x) :=
n∑

i=1
fi(xi) + h(x) + g(Kx)

}

. (16)

In this case, from (8), we havewk+1 := proxg/ρk(
1
ρk
ŷk + Kx̂k). UsingMoreau’s identity, we

get wk+1 = 1
ρk

(ŷk + ρkKx̂k − yk+1) with yk+1 := proxρkg∗(ŷk + ρkKx̂k). Utilizing these
relations, the main steps of Algorithm 1 for solving (16) can be written as





yk+1 := proxρkg∗

(
ŷk + ρkKx̂k

)
,

x̃k+1
i :=





prox τ0βk

τkσi
fi

(
x̃ki − τ0βk

τkσi

(
∇xih(x̂

k) + K3
i y

k+1
))

, if i = ik,

x̃ki otherwise,

(17)

This step is similar to the main step of SPDHG and other existing primal-dual methods,
see, e.g. [3,12]. The convergence of this variant can be derived from Theorems 3.1 and 3.2
combining with the results in [46]. However, we omit the details here to avoid overloading
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this paper. More speci"cally, the primal convergence is given as follows:

0 ≤ E
[
F(xk) − F!

]
≤






Ē0 + (‖y!‖ + Mg)
√
2Ē0/ρ0

τ0k + 1 − τ0
if mini µfi = 0,

4
[
Ẽ0 + (‖y!‖ + Mg)

√
2Ẽ0/ρ0

]

(τ0k + 2)2
if mini µfi > 0,

where g isMg-Lipschitz continuous, and Ē0 and Ẽ0 are respectively de"ned inTheorems 3.1
and 3.2, but using F(x0) instead of F(x0,w0). We can also derive convergence rates on the
dual objective residual and primal-dual expected gap for (16) (see [46]).

The setting (16) covers themodels studied, e.g. in [3,12,46,50].However, the variant (17)
is still di#erent from [3, Algorithm 1], where it has dual updates ŷk and ȳk. In [3, Algorithm
1], ŷk is "xed at ẏ without any dual update, making it less $exible to monitor the dual
progress. Moreover, [3] only considers the general convex case and primal convergences,
while we consider both the general case and the strongly convex case, and also prove three
convergence criteria. Compared to [1,12,50], the variant (17) of Algorithm 1 relies on a
Nesterov’s accelerated scheme, which has the same convergence rates on the last iterate xk
as opposed to ergodic sequences as in these works. Note also that, by eliminating wk in the
update of ŷk, then ŷk will depend on three consecutive iterates at the iterations k+ 1, k, and
k−1 as discussed in [46].

3.5. E!cient implementation of Algorithm 1

In order to e!ciently implement Algorithm 1, we introduce three intermediate vectors
ũk := Kx̃k, uk := Kxk, and vk := Bwk − b in Rd to store matrix-vector products. Then, we
have Kx̂k = (1 − τk)uk + τkũk. Hence, for i = ik, we obtain

x̃k+1
i := prox τ0βk

τkσi
fi

(
x̃ki − τ0βk

τkσi

(
∇xih(x̂

k) + K3
i y

k+1
))

,

where yk+1 := (1 − τk)uk + τkũk + vk+1.
Next, using ũk, uk, vk, and yk+1 above, we can update other steps as follows:

(1) Update uk+1 := (1 − τk)uk + τkũk + τk
τ0

(ũk+1 − ũk).
(2) Update ŷk+1 := ŷk + ηk[uk+1 + vk+1 − (1 − τk)(uk + vk)].
(3) Update the averaging dual vector: ȳk+1 := (1 − τk)ȳk + τkyk+1.

By exploiting the tricks in [3,29], we can remove the full vector operations in Rp, and
only perform the updates on each block ik ∈ [n] at each iteration k.We omit this derivation
and refer to [3,29] for more details.

4. Numerical experiments

In this section, we provide two numerical examples to verify our theoretical results and
compare Algorithm 1 with some recent existing methods. Our "rst aim is to verify the
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theoretical convergence rates of Algorithm 1 stated in Theorems 3.1 and 3.2. Then, we
compare Algorithm 1 with two other candidates: SPDHG [12] and PDHG [13] on two
common examples. Note that both Algorithm 1 and SPDHG essentially have the same
per-iteration complexity and convergence rates, but in the last-iterate vs. ergodic sense.

We implemented our methods in Python and adapt the code of SPDHG and PDHG
from https://github.com/mehrhardt/spdhg. Our experiments were run on a Linux desktop
with 3.6GHz Intel Core i7-7700 processor and 16Gb memory.

Parameter selection strategies. ForAlgorithm 1, we search the initial value ρ0 in the range
[1/‖K‖, 0.1] for each dataset, and other parameters are updated by exactly following the
update rules in Theorems 3.1 and 3.2, respectively without any tuning. For PDHG and
SPDHG, we "nely tune their step-sizes τ and σ in the range [1/‖K‖, 0.1]. We also tune
the extrapolation parameter θ in the range [1, d] for each dataset, where d is the num-
ber of rows of matrix K. We pick the best values of the parameters after tuning for each
algorithm to perform our experiments. By default, the number of block-coordinates is
chosen as n = 32 in all algorithms. However, we also use other choices to examine the
performance of Algorithm 1.

4.1. Support vectormachine

Given a training set ofm examples {(ai, bi)}mi=1, ai ∈ Rp and class labels bi ∈ {−1,+1}, the
soft margin SVM problem (without bias) is de"ned as

min
x∈Rp

{

F(x) := 1
m

m∑

i=1
max {0, 1 − bi 〈ai, x〉} + λ

2
‖x‖2

}

. (18)

Let us de"ne g(w) := 1
m
∑m

i=1 max {0, 1 − wi}, f (x) := λ
2‖x‖

2, h(x) := 0, and using a lin-
ear constraint Ax−w = 0, where biai is the ith row of A. Then, (18) can be cast into (P).
To perform our tests, we use several real datasets from LIBSVM [16].

Experiment 1: Theoretical rate illustration. We "rst illustrate the O (1/k) convergence
rate of Algorithms 1 in Theorem 3.1 to solve (18) using the a8a dataset in LIBSVM [16].
Figure 1 (the top-left plot) shows the convergence behaviour of Algorithm 1 when µf = 0
(corresponding to Theorem 3.1) on the duality gap F(xk) − D(ȳk) (which has the same rate
as F(xk) − F! and D! − D(ȳk)). Here, we also modify the update of τk in Theorem 3.1 by
τk := cτ0

k+c for c := 2/τ0 to observe faster convergence rates as in deterministic algorithms,
see, e.g. [46]. The plot of this variant is in green.

It is interesting to see that without tuning ρ0, Algorithm 1 converges withO(1/k)-rate
if µf = 0 as stated by Theorem 3.1. If we modify τk with c := 2/τ0 as mentioned, a faster
rate is observed in the green curve.

Now, we reformulate (18) into (14) in order to test the variant (15) of Algorithm 1,
denoted by Algorithm 1(b). The top-right plot of Figure 1 shows the performance of this
variant. We still obtain similar convergence rates as shown in the "rst test.

Finally, we test the O
(
1/k2

)
rates for Algorithm 1 when µf := λ > 0 in (18) on the

a1a and rcv1 datasets. The result is shown in the bottom-left and bottom-right plots of
Figure 1. With the update rules of parameters as in Theorem 3.2, we obtainO

(
1/k2

)
rate

as theoretically stated. This actual rate can be boosted faster than O
(
1/k2

)
if we choose

τk := cτ0
k+c for c := 2/τ0 (green curves).

https://github.com/mehrhardt/spdhg
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Figure 1. Convergence rates of Algorithm 1 (Theorems 3.1 and 3.2) and its variant, Algorithm 1(b), and
using a modified rule of τk for solving (18) on the a8a and rcv1 datasets.

Figure 2. Comparisonof three algorithms, includingAlgorithm1, for solving (18) on3different datasets.

Experiment 2: Comparison with PDHG and SPDHG.We apply Algorithm 1 to solve (18)
and compare it with SPDHG [12] and PDHG [13,25]. We observe that SPDHG is almost
identical to SPDC in [50] except for assumptions. We only choose the variant (17) of
Algorithm 1 since it has almost the same per-iteration complexity as SPDHG. However, we
do not take into account the strong convexity of f in this test. We have tuned these algo-
rithms to obtain the best parameter setting for each dataset. We test all these algorithms
on three di#erent datasets in LIBSVM: rcv1, real-sim, and news20 and set λ to 10−4. The
performance is shown in Figure 2, where the duality gap F(xk) − D(ȳk) is used to measure
the performance.
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Figure 3. The performance of Algorithm 1 and SPDHG with single coordinate, i.e. pi = 1 (i ∈ [n]).

From Figure 2, we can see that Algorithm 1 gives better convergence behaviour than
SPDHG in all the datasets.

As usual, stochastic variants such asAlgorithm1 and SPDHGoutperform the determin-
istic variant, PDHG. In Figure 2, the stochastic algorithms are implemented by separating
the whole dimensions into n = 32 blocks and updating one block at each iteration.

Experiment 3: Single coordinate update. We provide an experiment to test Algorithm 1
and SPDHG using single coordinate (i.e. pi = 1 for all i ∈ [n], each block has a single
entry). Figure 3 shows the performance of the two algorithms on the w8a, rcv1, and real-
sim datasets. We choose ρ0 := 10/‖K‖ in Algorithm 1 and τ = σ := 10/‖K‖ in SPDHG
among all datasets. Since the per-iteration complexity of these algorithms is at most
O
(
max

{
p, d

})
, we run them up to 3p and 3m iterations, respectively, corresponding to

3 epochs. From Figure 3, we can see that SPDHG performs better than Algorithm 1 on the
w8a and rcv1 datasets. However, Algorithm 1 is better than SPDHGon the real-sim dataset.

Experiment 4: Using di"erent block-coordinate sizes. In this experiment, we test the e#ect
of the number of block-coordinates on the performance of Algorithm 1 and SPDHG. We
still compare themwith PDHG.We only choose the rcv1 dataset since it has relatively large
p and d (d = 20242 and p = 47236). We choose the number of blocks n to be 64, 128,
256, and 512.We choose ρ0 := 10/‖K‖ in Algorithm 1, τ = σ := 10/‖K‖ in SPDHG, and
τ := 10/‖K‖, σ := 0.03 in PDHG for all cases. The performance of three algorithms is
shown in Figure 4 for a "xed number of iterations.

From Figure 4, we can see that Algorithm 1 still performs well and better than SPDHG
as well as PDHG. Hence, Algorithm 1 seems to work well on (18) when running it with
block coordinates.

4.2. Least absolute deviation (LAD) problem

We consider the following well-studied least absolute deviations (LAD) problem:

min
x∈Rp

{F(x) := ‖Kx − b‖1 + λ‖x‖1} , (19)

where K ∈ Rd×p, b ∈ Rd and λ > 0 is a regularization parameter.
We again test Algorithm 1 and compare it with SPDHG and PDHG on three problem

instances, whereK is generated from the standardGaussian distributionwith di#erent den-
sities. Here, we choose λ := 1/d (d is the number of rows ofK) and b := Kx. + 0.1L(0, 1),
where x. is a prede"ned sparse vector and L stands for Laplace noise. The experiment
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Figure 4. Comparing Algorithm 1 and SPDHG using different number of blocks: n = 64, 128, 256, and
512 on the rcv1 dataset.

Figure 5. Comparison of Algorithm 1 with PDHG and SPDHG on (19) using synthetic data.

results are reported in Figure 5, where we run for 300 epochs and use 32 blocks in
the randomized algorithms.

For (19), we choose 3 instances, where one case is dense with 10% nonzero entries in
K, and two other instances are sparse with only 1% and 0.1% nonzero entries, respectively.
After a "ning tune, we choose the parameter ρ0 of Algorithm 1 and the step-size τ and σ
for SPDHG and PDHG, respectively as follows.

(1) Instance 1 with 10% nonzero entries, we choose ρ0 := 10/‖K‖ in Algorithm 1, τ :=
0.005, σ := 0.01 in SPDHG, and τ := 0.005, σ := 0.01 in PDHG.
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(2) Instance 2 with 1% nonzero entries, we choose ρ0 := 50/‖K‖ in Algorithm 1), τ :=
0.03, σ := 0.01 in SPDHG, and τ := 0.005, σ := 0.1 in PDHG.

(3) Instance 3 with 0.1% nonzero entries, we choose ρ0 := 100/‖K‖ in Algorithm 1, τ :=
0.01, σ := 0.05 in SPDHG, and τ := 0.001, σ := 0.5 in PDHG.

Note that the choice of ρ0 simply trades o# the e#ect of the primal and dual initial points
to the complexity bounds as we can see in the right-hand side bounds of Theorems 3.1
and 3.2.

We can observe from Figure 5 that Algorithm 1 still works well compared to SPDHG
under 3 di#erent instances. As expected, bothAlgorithm1 and SPDHGoutperformPDHG
in all cases.

5. The proof of themain results: Theorems 3.1 and 3.2

This section provides the full proof of Theorems 3.1 and 3.2.

5.1. Preliminary results

The following identities will be repeatedly used for our convergence analysis.

(i) For any a, b, u ∈ Rp and τ ∈ [0, 1], we have

τ (1 − τ )‖u − a‖2 + ‖(1 − τ )a + τu − b‖2 = τ‖u − b‖2 + (1 − τ )‖b − a‖2. (20)

(ii) For any a, â ∈ Rp, τ ∈ [0, 1], ρ > 0, and ρ̂ > 0, we have

(1 − τ )ρ‖a − â‖2 + τρ‖â‖2 − (1 − τ )(ρ − ρ̂)‖a‖2 = ρ‖â − (1 − τ )a‖2

+ (1 − τ )[ρ̂ − (1 − τ )ρ]‖a‖2. (21)

(iii) For any a, b ∈ Rp, ρ > 0, and ρ̂ > ρ, we have

ρ ‖a‖2 − ρ̂‖b‖2 ≤ ρρ̂

ρ̂ − ρ
‖a − b‖2. (22)

In addition, the following lemma will also be used in the sequel, whose proof is in [29].

Lemma 5.1 ([29]): Given a sequence {x̃k}k≥0 in Rp and a nonincreasing sequence {τk}k≥0
in (0, 1], let {(xk, x̂k)}k≥0 be updated as

x̂k := (1 − τk)xk + τkx̃k and xk+1 := x̂k + τk
τ0

(x̃k+1 − x̃k).

Then, we have

xk =
k∑

l=0
γk,lx̃l, where γk+1,l :=






(1 − τk)γk,l if l = 0, . . . , k − 1
(1 − τk)γk,k + τk − τk

τ0
if l = k,

τk
τ0

if l = k + 1,
(23)

and γ0,0 := 1. Moreover, we have γk,l ≥ 0 for l = 0, . . . , k and
∑k

l=0 γk,l = 1 for k ≥ 0.



18 Q. TRAN-DINH AND D. LIU

5.2. Properties of the augmented Lagrangian function

The augmented Lagrangian function Lρ de"ned by (7) will serve as a merit function for
our convergence analysis. To investigate the properties of Lρ(·, ·), we consider

ψρ(x,w, y) := 〈y,Kx + Bw − b〉 + ρ

2
‖Kx + Bw − b‖2. (24)

This function has following properties:





∇wψρ(x,w, y) = B3(y + ρ(Kx + Bw − b)),
∇xiψρ(x,w, y) = K3

i (y + ρ(Kx + Bw − b)),
‖∇xiψρ(x+Uidi,w, y)− ∇xiψρ(x,w, y)‖= ρ‖K3

i Kidi‖ ≤ ρ‖Ki‖2‖di‖, ∀ di ∈ Rpi .
(25)

These estimates allow us to conclude that ∇xiψρ(x + Ui(·),w, y) is Lipschitz continuous
with the Lipschitz constant ρ‖Ki‖2. Directly using the de"nition of ψρ , for all x, w, y, x̂,
and ŵ, we also have the following identity:

ψρ(x̂, ŵ, y) = ψρ(x,w, y) + 〈∇xψρ(x,w, y), x̂ − x〉 + 〈∇wψρ(x,w, y), ŵ − w〉

+ ρ

2
‖K(x̂ − x) + B(ŵ − w)‖2. (26)

As a consequence of (26), with L̄σ de"ned by (9), if x̂ only changes one block i from x to
x̂ = x + Uidi for any i ∈ [n], then we have

ψρ(x̂,w, y) ≤ ψρ(x,w, y) + 〈∇xψρ(x,w, y), x̂ − x〉 + ρL̄σ
2

‖x̂ − x‖2σ . (27)

The expressions (26) and (27) are key to our analysis in the sequel.

5.3. Lyapunov function and key estimates

Lyapunov function.Give a sequence of nonnegative real numbers {γk,l}k,l≥0 and a sequence
{x̃k}k≥0 in Rp, let us introduce the following quantities:

f̄ ki :=
k∑

l=0
γk,lfi(x̃li) and f̄ k :=

n∑

i=1
f̄ ki . (28)

For ψρ de"ned by (24) and f̄ k de"ned by (28), we also introduce

L̄k(y) := f̄ k + h(xk) + g(wk) + ψρk−1(x
k,wk, y). (29)

Given (29) and L de"ned by (3), we de"ne a Lyapunov function as follows:

Ek(x,w, y) := L̄k(y) − L(x,w, ȳk) + 1
2ηk−1

‖ŷk − y‖2

+
n∑

i=1

τk−1
2qi

(
τk−1σi
τ0βk−1

+ µfi

)
‖x̃ki − xi‖2. (30)
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Full update vs. block coordinate update. For our convergence analysis, we consider the
following full update of x̃k := (x̃k1, . . . , x̃kn):

¯̃xk+1
i := argmin

xi

{
fi(xi) + 〈∇xih(x̂

k) + ∇xiψρk(x̂
k,wk+1, ŷk), xi − x̂ki 〉

+ τkσi
2τ0βk

‖xi − x̃ki ‖2
}
, ∀ i ∈ [n]. (31)

Then, from (31), Step 9 of Algorithm 1 can be shortly rewritten as

x̃k+1
i =

{
¯̃xk+1
i if i = ik,
x̃ki otherwise.

(32)

5.4. Preparatory: two intermediate steps of convergence analysis

The following two lemmas serve as key estimates for our convergence analysis of
Algorithm 1 in the sequel.

Lemma 5.2: Let
{
(xk, x̃k,wk+1, ŷk)

}
be generated by Algorithm 1, f̄ k be de!ned by (28), and

ψρ be de!ned by (24). Then, for any !xed x ∈ dom(f ), it holds that

Eik

[

f̄ k+1 +
n∑

i=1

τk
2qi

(
τkσi
τ0βk

+ µfi

)
‖x̃k+1

i − xi‖2
]

≤ (1 − τk)f̄ k + τkf (x)

+ τk
τ0

n∑

i=1
qi
〈
∇xih(x̂

k) + ∇xiψρk(x̂
k,wk+1, ŷk), (1 − τ0

qi
)x̃ki + τ0

qi
xi − ¯̃xk+1

i

〉

+
n∑

i=1

τk
2qi

[
τkσi
τ0βk

+ (1 − qi)µfi

]
‖x̃ki − xi‖2 −

τ 2k
2τ 20βk

n∑

i=1
σiqi‖ ¯̃xk+1

i − x̃ki ‖2,

Eik

[
ψρk(x

k+1,wk+1, ŷk)
]

≤ ψρk(x̂
k,wk+1, ŷk) +

ρkτ
2
k L̄σ

2τ 20

n∑

i=1
qiσi‖ ¯̃xk+1

i − x̃ki ‖2

+ τk
τ0

n∑

i=1
qi〈∇xiψρk(x̂

k,wk+1, ŷk), ¯̃xk+1
i − x̃ki 〉,

Eik

[
h(xk+1)

]
≤ h(x̂k)+

n∑

i=1

τkqi
τ0

[

〈∇xih(x̂
k), ¯̃xk+1

i − x̃ki 〉+ τkLhσ σi
2τ0

‖ ¯̃xk+1
i − x̃ki ‖2

]

.

(33)

Proof: First, the optimality condition of (31) for x can be read as

0 = ∇fi( ¯̃xk+1
i ) + ∇xih(x̂

k) + ∇xiψρk(x̂
k,wk+1, ŷk) + τkσi

τ0βk
( ¯̃xk+1

i − x̃ki ), (34)

for some ∇fi( ¯̃xk+1
i ) ∈ ∂fi( ¯̃xk+1

i ).
By µfi-convexity of fi, (34), for any x̆i ∈ Rpi , we can derive

fi( ¯̃xk+1
i ) ≤ fi(x̆i) + 〈∇fi( ¯̃xk+1

i ), ¯̃xk+1
i − x̆i〉 −

µfi
2

‖ ¯̃xk+1
i − x̆i‖2
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(34)= fi(x̆i) + 〈∇xih(x̂
k) + ∇xiψρk(x̂

k,wk+1, ŷk), x̆i − ¯̃xk+1
i 〉

+ τkσi
τ0βk

〈 ¯̃xk+1
i − x̃ki , x̆i − ¯̃xk+1

i 〉 −
µfi
2

‖ ¯̃xk+1
i − x̆i‖2. (35)

Now, using x̆i := (1 − τ0
qi )x̃

k
i + τ0

qi xi with τ0
qi ∈ [0, 1] and 2〈a, b〉 = ‖a + b‖2 − ‖a‖2 −

‖b‖2, it is easy to show that

〈 ¯̃xk+1
i − x̃ki , x̆i − ¯̃xk+1

i 〉 = 〈 ¯̃xk+1
i − x̃ki , (1 − τ0

qi
)(x̃ki − ¯̃xk+1

i ) + τ0
qi

(xi − ¯̃xk+1
i )〉

= τ0
qi

〈 ¯̃xk+1
i − x̃ki , xi − ¯̃xk+1

i 〉 − (1 − τ0
qi

)‖x̃ki − ¯̃xk+1
i ‖2

≤ τ0
2qi

‖xi − x̃ki ‖2 − τ0
2qi

‖xi − ¯̃xk+1
i ‖2 − 1

2
‖x̃ki − ¯̃xk+1

i ‖2. (36)

Again, by µfi-convexity of fi, we can deduce that

fi(x̆i) −
µfi
2

‖ ¯̃xk+1
i − x̆i‖2 ≤

(
1 − τ0

qi

)
fi(x̃ki ) + τ0

qi
fi(xi) −

µfi
2

(
1 − τ0

qi

)
τ0
qi

‖xi − x̃ki ‖2

−
µfi
2

‖
(
1 − τ0

qi

)
x̃ki + τ0

qi
xi − ¯̃xk+1

i ‖2

(20)=
(
1 − τ0

qi

)
fi(x̃ki ) + τ0

qi
fi(xi)

−
µfi
2

[
τ0
qi

‖ ¯̃xk+1
i − xi‖2 +

(
1 − τ0

qi

)
‖ ¯̃xk+1

i − x̃ki ‖2
]

≤
(
1 − τ0

qi

)
fi(x̃ki ) + τ0

qi
fi(xi) −

τ0µfi
2qi

‖ ¯̃xk+1
i − xi‖2. (37)

Therefore, plugging (36) and (37) into (35), and using again x̆i := (1 − τ0
qi )x̃

k
i + τ0

qi xi, we
can further derive

fi( ¯̃xk+1
i ) ≤

(
1 − τ0

qi

)
fi(x̃ki ) + τ0

qi
fi(xi) −

τ0µfi
2qi

‖ ¯̃xk+1
i − xi‖2

+ τkσi
2qiβk

[
‖xi − x̃ki ‖2 − ‖xi − ¯̃xk+1

i ‖2
]

− τkσi
2τ0βk

‖x̃ki − ¯̃xk+1
i ‖2

+
〈
∇xih(x̂

k) + ∇xiψρk(x̂
k,wk+1, ŷk), (1 − τ0

qi
)x̃ki + τ0

qi
xi − ¯̃xk+1

i

〉
. (38)

Next, using (23) of Lemma 5.1 into (28), we can show that

f̄ k+1 :=
k+1∑

l=0
γk+1,lf (x̃l)

(23)= (1 − τk)f̄ k + τkf (x̃k) + τk
τ0

[
f (x̃k+1) − f (x̃k)

]
.

Taking conditional expectation Eik [·] of this expression, we can further derive

Eik

[
f̄ k+1

]
= (1 − τk)f̄ k + τkf (x̃k) + τk

τ0

n∑

i=1
qi
[
fi( ¯̃xk+1

i ) − fi(x̃ki )
]
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(38)
≤ (1 − τk)f̄ k + τkf (x) +

τ 2k
2τ0βk

n∑

i=1
σi
[
‖xi − x̃ki ‖2 − ‖xi − ¯̃xk+1

i ‖2
]

− τk
2

n∑

i=1
µfi‖ ¯̃xk+1

i − xi‖2 −
τ 2k

2τ 20βk

n∑

i=1
σiqi‖x̃ki − ¯̃xk+1

i ‖2

+ τk
τ0

n∑

i=1
qi
〈
∇xih(x̂

k) + ∇xiψρk(x̂
k,wk+1, ŷk), (1 − τ0

qi
)x̃ki + τ0

qi
xi − ¯̃xk+1

i

〉
.

Finally, substituting the following expressions





Eik

[ n∑

i=1

σi
qi

(
‖x̃ki − xi‖2 − ‖x̃k+1

i − xi‖2
)]

=
n∑

i=1
σi[‖x̃ki − xi‖2 − ‖ ¯̃xk+1

i − xi‖2],

Eik

[ n∑

i=1

µfi
qi

(
‖x̃k+1

i − xi‖2 − (1 − qi)‖x̃ki − xi‖2
)]

=
n∑

i=1
µfi‖ ¯̃xk+1

i − xi‖2,

into the last inequality and rearranging the result we eventually obtain the "rst estimate
of (33).

Since xk+1 := x̂k + τk
τ0

(x̃k+1 − x̃k), it is clear that xk+1 is di#erent from x̂k only in one
block ik. By utilizing (27), we obtain

ψρk(x
k+1,wk+1, ŷk) ≤ ψρk(x̂

k,wk+1, ŷk) + 〈∇xψρk(x̂
k,wk+1, ŷk), xk+1 − x̂k〉

+ ρkL̄σ
2

n∑

i=1
σi‖xk+1

i − x̂ki ‖2. (39)

Alternatively, by (2) and using Lhσ de"ned by (9), we also have

h(xk+1) ≤ h(x̂k) + 〈∇xh(x̂k), xk+1 − x̂k〉 + Lhσ
2

n∑

i=1
σi‖xk+1

i − x̂ki ‖2. (40)

Next, by Step 9 of Algorithm 1 and (32), one can establish that





Eik

[
〈∇xψρk(x̂

k,wk+1, ŷk), xk+1 − x̂k〉
]

= τk
τ0

n∑

i=1
qi〈∇xiψρk(x̂

k,wk+1, ŷk), ¯̃xk+1
i − x̃ki 〉,

Eik

[
〈∇xh(x̂k), xk+1 − x̂k〉

]
= τk
τ0

n∑

i=1
qi〈∇xih(x̂

k), ¯̃xk+1
i − x̃ki 〉.

Finally, taking conditional expectation of (39) and (40), and substituting the above equal-
ities into the results, we obtain the last two estimates of (33). !

Lemma 5.3: Let
{
(xk, x̃k,wk, ŷk)

}
be generated by Algorithm 1 and L̄k(·) be de!ned by (29).

Then, for any (x,w) ∈ dom(F), the following estimate holds:

Eik

[

L̄k+1(ŷk) +
n∑

i=1

τk
2qi

(
τkσi
τ0βk

+ µfi

)
‖x̃k+1

i − xi‖2
]

≤ (1 − τk)L̄k(ŷk)
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+ τk
[
F(x,w) + 〈ŷk + ρk(Kx̂k + Bwk+1 − b),Kx + Bw − b〉

]

+
n∑

i=1

τk
2qi

[
τkσi
τ0βk

+ (1 − qi)µfi

]
‖x̃ki − xi‖2

−
τ 2k
2τ 20

(
1
βk

− ρkL̄σ − Lhσ
) n∑

i=1
σiqi‖ ¯̃xk+1

i − x̃ki ‖2

− ρk
2

‖(Kx̂k + Bwk+1 − b) − (1 − τk)(Kxk + Bwk − b)‖2

− (1 − τk)

2
[ρk−1 − (1 − τk)ρk] ‖Kxk + Bwk − b‖2. (41)

Proof: First, we write down the optimality condition of (8) as follows:

0 ∈ ∂g(wk+1) + B3(ŷk + ρk(Kx̂k + Bwk+1 − b)).

Using this condition, the convexity of g, and ∇wψρk(x̂k,wk+1, ŷk) = B3(ŷk + ρk(Kx̂k +
Bwk+1 − b)), for any w̆ := (1 − τk)wk + τkw with w ∈ dom(g), we have

g(wk+1) ≤ g(w̆) + 〈B3(ŷk + ρk(Kx̂k + Bwk+1 − b)), w̆ − wk+1〉
(25)
≤ (1 − τk)g(wk) + τkg(w) + 〈∇wψρk(x̂

k,wk+1, ŷk), (1 − τk)wk + τkw − wk+1〉.

Combining the last inequality and (33), and then using the de"nition of L̄k, we have

Eik

[

L̄k+1(ŷk) +
n∑

i=1

τk
2qi

(
τkσi
τ0βk

+ µfi

)
‖x̃k+1

i − xi‖2
]

≤ (1 − τk)
[
f̄ k + g(wk)

]

+ τk
[
f (x) + g(w)

]
+

n∑

i=1

τk
2qi

[
τkσi
τ0βk

+ (1 − qi)µfi

]
‖x̃ki − xi‖2

−
τ 2k
2τ 20

(
1
βk

− ρkL̄σ − Lhσ
) n∑

i=1
σiqi‖ ¯̃xk+1

i − x̃ki ‖2

+ ψρk(x̂
k,wk+1, ŷk) + τk〈∇xψρk(x̂

k,wk+1, ŷk), x − x̃k〉

+ 〈∇wψρk(x̂
k,wk+1, ŷk), (1 − τk)wk + τkw − wk+1〉

+ h(x̂k) + τk〈∇xh(x̂k), x − x̃k〉. (42)

Next, since ψρk(x,w, ŷk) = 〈ŷk,Kx + Bw − b〉 + ρk
2 ‖Kx + Bw − b‖2, we have
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T[1] := τkψρk(x,w, ŷ
k) − ρkτk

2
‖(K(x − x̂k) + B(w − wk+1)‖2

= τk〈ŷk + ρk(Kx̂k + Bwk+1 − b),Kx + Bw − b〉 − ρkτk
2

‖Kx̂k + Bwk+1 − b‖2.
(43)

Moreover, by Step 5 of Algorithm 1, we have τk(x − x̃k) = (1 − τk)(xk − x̂k) + τk(x − x̂k).
Using this expression, we can deduce that

T[2] := ψρk(x̂
k,wk+1, ŷk) + τk〈∇xψρk(x̂

k,wk+1, ŷk), x − x̃k〉

+ 〈∇wψρk(x̂
k,wk+1, ŷk), (1 − τk)wk + τkw − wk+1〉

= (1 − τk)
[
ψρk(x̂

k,wk+1, ŷk) + 〈∇xψρk(x̂
k,wk+1, ŷk), xk − x̂k〉

+〈∇wψρk(x̂
k,wk+1, ŷk),wk − wk+1〉

]

+ τk
[
ψρk(x̂

k,wk+1, ŷk) + 〈∇xψρk(x̂
k,wk+1, ŷk), x − x̂k〉

+〈∇wψρk(x̂
k,wk+1, ŷk),w − wk+1〉

]
.

Furthermore, utilizing (43) and (26), we can further estimate T[2] as

T[2]
(26)= (1 − τk)ψρk(x

k,wk, ŷk) − (1 − τk)ρk
2

‖K(xk − x̂k) + B(wk − wk+1)‖2

+ τkψρk(x,w, ŷ
k) − ρkτk

2
‖K(x − x̂k) + B(w − wk+1)‖2

(43)= (1 − τk)ψρk−1(x
k,wk, ŷk) − (1 − τk)ρk

2
‖K(xk − x̂k) + B(wk − wk+1)‖2

+ τk〈ŷk + ρk(Kx̂k +Bwk+1 − b),Kx+Bw− b〉+ ρkτk
2

‖Kx̂k +Bwk+1 − b‖2

+ (1 − τk)(ρk − ρk−1)

2
‖Kxk + Bwk − b‖2

(21)= (1 − τk)ψρk−1(x
k,wk, ŷk) + τk〈ŷk + ρk(Kx̂k + Bwk+1 − b),Kx + Bw − b〉

− ρk
2

‖Kx̂k + Bwk+1 − b − (1 − τk)(Kxk + Bwk − b)‖2

− (1 − τk)

2
[ρk−1 − (1 − τk)ρk] ‖Kxk + Bwk − b‖2.

(44)

In addition, we also have

h(x̂k) + τk〈∇xh(x̂k), x − x̃k〉 ≤ h
(
(1 − τk)xk + τkx

)
≤ (1 − τk)h(xk) + τkh(x). (45)

Substituting (44) and (45) into (42), and then simplifying the result, we get (41). !

5.5. Key estimate for Algorithm 1

Next, we further estimate (41) in terms of y in the following lemma.
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Lemma 5.4: Let
{
(xk, x̃k,wk, ŷk, ȳk)

}
be generated by Algorithm 1, L be de!ned by (3), and

L̄k(·) be de!ned by (29). Then, for any (x,w, y) ∈ dom(F) × Rd, we have

Eik

[
L̄k+1(y) − L(x,w, ȳk+1)

]
≤ (1 − τk)

[
L̄k(y) − L(x,w, ȳk)

]

+ 1
2ηk

‖ŷk − y‖2 − 1
2ηk

Eik

[
‖ŷk+1 − y‖2

]

+
n∑

i=1

τk
2qi

[
τkσi
τ0βk

+ (1 − qi)µfi

]
‖x̃ki − xi‖2

− Eik

[ n∑

i=1

τk
2qi

(
τkσi
τ0βk

+ µfi

)
‖x̃k+1

i − xi‖2
]

−
τ 2k
2τ 20

(
1
βk

− ρkL̄σ − Lhσ − ρkηkL̄σ
ρk − ηk

) n∑

i=1
σiqi‖ ¯̃xk+1

i − x̃ki ‖2

− (1 − τk)

2
[ρk−1 − (1 − τk)ρk] ‖Kxk + Bwk − b‖2. (46)

Proof: From (29), for any y, we have L̄k(ŷk) = L̄k(y) + 〈ŷk − y,Kxk + Bwk − b〉. There-
fore, using the update of ŷk+1 from Algorithm 1, we can show that

L̄k+1(ŷk) − (1 − τk)L̄k(ŷk) = L̄k+1(y) − (1 − τk)L̄k(y)

+ 〈ŷk − y,Kxk+1 + Bwk+1 − b − (1 − τk)(Kxk + Bwk − b)〉
Step 11= L̄k+1(y) − (1 − τk)L̄k(y) + 1

ηk
〈ŷk − y, ŷk+1 − ŷk〉

= L̄k+1(y) − (1 − τk)L̄k(y)

− 1
2ηk

[
‖ŷk − y‖2 − ‖ŷk+1 − y‖2 + ‖ŷk+1 − ŷk‖2

]
.

Moreover, since ȳk+1 := (1 − τk)ȳk + τk[ŷk + ρk(Kx̂k + Bwk+1 − b)] by Step 7, using the
de"nition (3) of L, we can easily show that

L(x,w, ȳk+1) − (1 − τk)L(x,w, ȳk) = τk〈ŷk + ρk(Kx̂k + Bwk+1 − b),Kx + Bw − b〉]
+ τkF(x,w).

Substituting the above two estimates into (41), we can further derive

Eik

[
L̄k+1(y) − L(x,w, ȳk+1)

]
≤ (1 − τk)

[
L̄k(y) − L(x,w, ȳk)

]

+ 1
2ηk

Eik

[
‖ŷk − y‖2 − ‖ŷk+1 − y‖2 + ‖ŷk+1 − ŷk‖2

]

+
n∑

i=1

τk
2qi

[
τkσi
τ0βk

+ (1 − qi)µfi

]
‖x̃ki − xi‖2
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− Eik

[ n∑

i=1

τk
2qi

(
τkσi
τ0βk

+ µfi

)
‖x̃k+1

i − xi‖2
]

−
τ 2k
2τ 20

(
1
βk

− ρkL̄σ − Lhσ
) n∑

i=1
σiqi‖ ¯̃xk+1

i − x̃ki ‖2

− ρk
2

‖Kx̂k + Bwk+1 − b − (1 − τk)(Kxk + Bwk − b)‖2

− (1 − τk)

2
[ρk−1 − (1 − τk)ρk] ‖Kxk + Bwk − b‖2. (47)

Next, by (22) and xk+1 is only di#erent from x̂k at one block ik, we have

Ck :=
1
2ηk

‖ŷk+1 − ŷk‖2 − ρk
2

‖Kx̂k + Bwk+1 − b − (1 − τk)(Kxk + Bwk − b)‖2

= ηk
2

‖Kxk+1 + Bwk+1 − b − (1 − τk)(Kxk + Bwk − b)‖2

− ρk
2

‖Kx̂k + Bwk+1 − b − (1 − τk)(Kxk + Bwk − b)‖2

(22)
≤ ηkρk

2(ρk − ηk)
‖K(xk+1 − x̂k)‖2 ≤ ηkρkL̄σ

2(ρk − ηk)

n∑

i=1
σi‖xk+1

i − x̂ki ‖2.

Note also that Eik

[
‖xk+1

i − x̂ki ‖2
]

= τ 2k qi
τ 20

‖ ¯̃xk+1
i − x̃ki ‖2 due to (32) and Step 10 of

Algorithm 1. Using these expressions, we can estimate

Eik [Ck] ≤ ηkρkL̄σ
2(ρk − ηk)

Eik

[ n∑

i=1
σi‖xk+1

i − x̂ki ‖2
]

=
τ 2k ρkηk

2τ 20 (ρk − ηk)

[

L̄σ
n∑

i=1
qiσi‖ ¯̃xk+1

i − x̃ki ‖2
]

.

Substituting the last inequality into (47), we obtain (46). !

5.6. Conditions for parameter selection

The following lemma provides conditions on the parameters to guarantee a contraction
property of the Lyapunov function Ek(·) de"ned by (30).

Lemma 5.5: Let τ0, L̄σ , and Lhσ be de!ned by (9), and
{
(xk,wk, ȳk)

}
be generated by

Algorithm 1. Suppose that τk, βk, ρk, and ηk satisfy the following conditions:





ρk−1 ≥ (1 − τk)ρk,
ηk(1 − τk) ≥ ηk−1,

ρk − ηk

Lhσ (ρk − ηk) + L̄σ ρ2k
≥ βk,

σiτ
2
k−1

τ0βk−1
+ µfiτk−1 ≥ 1

(1 − τk)

[
σiτ

2
k

τ0βk
+ (1 − qi)µfiτk

]

, ∀ i ∈ [n].

(48)
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Then, for given (x,w, y) ∈ dom(F) × Rd, the function Ek(·) de!ned by (30) satis!es

E
[
Ek+1(x,w, y)

]
≤ (1 − τk)E

[
Ek(x,w, y)

]
. (49)

Proof: From the conditions of (48), we can easily check that

1
ηk

≤ 1 − τk
ηk−1

, ρk−1 − (1 − τk)ρk ≥ 0, and
1
βk

− ρkL̄σ − Lhσ − ρkηkL̄σ
ρk − ηk

≥ 0.

Using these relations and the last two conditions of (48), we can simplify (46) as

Eik

[
L̄k+1(y) − L(x,w, ȳk+1) + 1

2ηk
‖ŷk+1 − y‖2

]

≤ (1 − τk)

[
L̄k(y) − L(x,w, ȳk) + 1

2ηk−1
‖ŷk − y‖2

]

+ (1 − τk)
n∑

i=1

τk−1
2qi

(
τk−1σi
τ0βk−1

+ µfi

)
‖x̃ki − xi‖2

− Eik

[ n∑

i=1

τk
2qi

(
τkσi
τ0βk

+ µfi

)
‖x̃k+1

i − xi‖2
]

. (50)

Rearranging this inequality and using Ek de"ned by (30), we obtain

Eik
[
Ek+1(x,w, y)

]
≤ (1 − τk)Ek(x,w, y).

Taking full expectation E [·] given (x,w, y) on both sides of the last inequality so that
E
[
Eik [·]

]
= E [E [· | Fk]] = E [·], we eventually get

E
[
Ek+1(x,w, y)

]
≤ (1 − τk)E

[
Ek(x,w, y)

]
,

which proves (49). !

5.7. The proof of Theorem 3.1: general convex case

Since µfi = 0 for all i ∈ [n], if we assume that the conditions of (48) are tight, then we can
easily derive that

ρk :=
ρk−1
1 − τk

and τk :=
τk−1

τk−1 + 1
, (51)

where ρ0 > 0 is given and τ0 is de"ned by (9). Let us also update ηk as ηk := ρk
2 . Then, it

is straightforward to prove that

τk :=
τ0

τ0k + 1
, ρk := ρ0(τ0k + 1), ηk :=

ρ0(τ0k + 1)
2

,

ωk :=
k∏

i=1
(1 − τi) = 1

τ0k + 1
.

(52)
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Moreover, the third condition ρk−ηk
Lhσ (ρk−ηk)+L̄σ ρ2k

≥ βk of (48) becomes 1
Lhσ+2L̄σ ρk

≥ βk.
Hence, we can update βk as following to guarantee this condition:

βk :=
1

Lhσ + 2L̄σ ρk
= 1

Lhσ + 2L̄σ ρ0(τ0k + 1)
. (53)

In summary, it is clear that the update rule (10) satis"es all the conditions of (48).
Next, from (49) and (52), we can show that

E
[
Ek+1(x,w, y)

] (49)
≤
[ k∏

i=1
(1 − τi)

]

E
[
E1(x,w, y)

]

(52)= 1
τ0k + 1

E
[
E1(x,w, y)

]
. (54)

Using (46) and the de"nition (30) of Ek, we have

E1(x,w, y)
(30)= L̄1(y) − L(x,w, ȳ1) + 1

2η0
‖y − ŷ1‖2 +

n∑

i=1

τ0σi
2β0qi

‖x̃1i − xi‖2

(46)
≤ (1 − τ0)[L̄0(y) − L(x,w, ȳ0)] +

n∑

i=1

τ0σi
2β0qi

‖x̃0i − xi‖2 + 1
2η0

‖y − ŷ0‖2

≤ Ê0(x,w, y), (since1 − τ0 ≤ 1) (55)

where Ê0(x,w, y) is de"ned as

Ê0(x,w, y) := F(x0,w0) − L(x,w, ŷ0) + 〈y,Kx0 + Bw0 − b〉 + 1
2η0

‖ŷ0 − y‖2

+ ρ−1
2

‖Kx0 + Bw0 − b‖2 + (Lhσ + 2ρ0L̄σ )τ0
2

‖x − x0‖2σ/q.

Denoting u0 := Kx0 + Bw0 − b. Then, since ρ−1 = ρ0(1 − τ0) and 2η0 = ρ0, we have

T[3] := 〈y,Kx0 + Bw0 − b〉 + 1
2η0

‖ŷ0 − y‖2 + ρ−1
2

‖Kx0 + Bw0 − b‖2

≤ 1
2ρ0

‖y‖2 + ρ0
2

‖u0‖2 + 1
ρ0

‖ŷ0 − y‖2 + ρ0(1 − τ0)

2
‖u0‖2

≤ 1
ρ0

‖ŷ0‖2 + 2
ρ0

‖ŷ0 − y‖2 + ρ0(2 − τ0)

2
‖u0‖2,

where the last inequality comes from 1
2‖y‖

2 ≤ ‖ŷ0‖2 + ‖y − ŷ0‖2. Using T[3], and
−L(x,w, ŷ0) ≤ −D(ŷ0), we can further simplify Ê0 as

Ê0(x,w, y) ≤ Ê0(x, y) := F(x0,w0) − D(ŷ0) + 2
ρ0

‖y − ŷ0‖2 + 1
ρ0

‖ŷ0‖2

+ ρ0(2 − τ0)

2
‖Kx0 + Bw0 − b‖2 + (Lhσ + 2ρ0L̄σ )τ0

2
‖x − x0‖2σ/q. (56)
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Now, by convexity of f, using (28) and (23) we can show that

f (xk) (23)= f

( k∑

l=0
γk,lx̃l

)

≤
k∑

l=0
γk,lf (x̃l)

(28)= f̄ k.

Therefore, we can derive

Lρk−1(x
k,wk, y) − L(x,w, ȳk) = F(xk,wk) + ψρk−1(x

k,wk, y) − L(x,w, ȳk)

≤ f̄ k + h(xk) + g(wk) + ψρk(x
k,wk, y) − L(x,w, ȳk)

(30)
≤ Ek(x,w, y).

Combining this inequality, E[Ê0(x, y)] = Ê0(x, y), (54), (55), and (56), we get

E
[
Lρk−1(x

k,wk, y) − L(x,w, ȳk)
]

≤ Ê0(x, y)
τ0k + 1 − τ0

. (57)

Since L(xk,wk, y) ≤ Lρk−1(xk,wk, y), (57) leads to

GZ(xk,wk, ȳk)
(6)= max

(x,w,y)∈Z
E
[
L(xk,wk, y) − L(x,w, ȳk)

]

≤ 1
τ0k + 1 − τ0

[
F(x0,w0) − D(ŷ0) + ρ0(2 − τ0)

2
‖Kx0 + Bw0 − b‖2

+ 1
ρ0

‖ŷ0‖2 + sup
(x,y)∈X×Y

{
2
ρ0

‖y − ŷ0‖2 + (Lhσ + 2ρ0L̄σ )τ0
2

‖x − x0‖2σ/q

}]

,

which proves the last inequality of (11).
Next, using the saddle-point condition (5), we can show that

F! = F(x!,w!) = L(x!,w!, ȳk)
(5)
≤ L(xk,wk, y!) = F(xk,wk) + 〈y!,Kxk + Bwk − b〉.

This implies that E
[
F(xk,wk) − F! + 〈y!,Kxk + Bwk − b〉

]
≥ 0. On the other hand,

using (57), we also have

E
[
F(xk,wk) − F! + 〈y!,Kxk + Bwk − b〉 + ρk−1

2
‖Kxk + Bwk − b‖2

]
≤ Ê0(x!, y!)
τ0k + 1 − τ0

.

(58)

Hence, together with ρk−1 = ρ0(τ0k + 1 − τ0), we obtain

E
[
‖Kxk + Bwk − b‖2

]
≤ 2Ê0(x!, y!)
ρ0(τ0k + 1 − τ0)2

.

Moreover, from (12), we have Ē0 = Ê0(x!, y!). Thus (58) implies
∣∣∣E
[
F(xk,wk) − F!

]∣∣∣ ≤ 1
τ0k + 1 − τ0

Ē0 + ‖y!‖
(
E
[
‖Kxk + Bwk − b‖2

])1/2
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≤ 1
τ0k + 1 − τ0

[

Ē0 + ‖y!‖
(

2
ρ0

Ē0
)1/2

]

,

which proves the "rst two lines of (11).
Now, let D(ȳk) := minx,w L(x,w, ȳk) be the dual function. Then, we have

D(ȳk) = min
x,w

{
φ(x) + g(w) +

〈
Kx + Bw − b, ȳk

〉}

= −φ∗(−K3ȳk) − g∗(−B3ȳk) − 〈b, ȳk〉.

Therefore, dom(D) = {y ∈ Rd | −K3y ∈ dom(φ∗), −B3y ∈ dom(g∗)}. Let us show that
ȳk ∈ dom(D). Firstly, by the assumption that φ∗ is Mφ∗-Lipschitz continuous, we have
dom(φ∗) = Rd. Hence, we only need to prove −B3ȳk ∈ dom(g∗). Indeed, from (8), we
have 0 ∈ ∂g(wk+1) + B3(ŷk + ρk(Bwk+1 + Kx̂k − b)), which becomes

wk+1 ∈ ∂g∗(−B3(ŷk + ρk(Bwk+1 + Kx̂k − b))).

Thus −B3(ŷk + ρk(Bwk+1 + Kx̂k − b)) ∈ dom(g∗). Also from Step 7 of our Algorithm 1,
ȳk+1 = (1 − τk)ȳk + τk[ŷk + ρk(Bwk+1 + Kx̂k − b)], where τk ∈ (0, 1). Therefore, if
−B3ȳk ∈ dom(g∗), then −B3ȳk+1 ∈ dom(g∗). As a result, if we assume that −B3ȳ0 ∈
dom(g∗) at the initialization of Algorithm 1, then−B3ȳk ∈ dom(g∗) for all k ≥ 0.We con-
clude that ȳk ∈ dom(D), which implies D(ȳk) > −∞ for all k ≥ 0. Finally, since φ and g
are proper, by the Fenchel–Moreau theorem [5, Theorem 13.37], φ∗ and g∗ are also proper,
and hence D is proper. This shows that D(y) < +∞ for all y ∈ dom(D). Combining two
cases, we can state that D(ȳk) is "nite.

Next, we note that ȳk is independent of ik−1, and therefore, independent of (xk,wk).
Hence, fromD(ȳk) = minx,w L(x,w, ȳk), using the optimality condition of this minimiza-
tion problem, for any w̄k−1 ∈ ∂g∗(−B3ȳk) and any x̄k−1 ∈ ∂φ∗(−K3ȳk), we haveD(ȳk) =
L(x̄k, w̄k−1, ȳk−1), where φ∗ is the Fenchel conjugate of φ := f + h, and we shift the index
to k−1 to show that both x̄k−1 and w̄k−1 areFk−1-measurable, and independent of (xk,wk).
Therefore, one has

D! − D(ȳk)
(5)
≤ L(xk,wk, y!) − L(x̄k−1, w̄k−1, ȳk)

≤ Lρk−1(x
k,wk, y!) − L(x̄k−1, w̄k−1, ȳk).

Here, we have usedD! = F!
(5)
≤ L(xk,wk, y!) ≤ Lρk−1(xk,wk, y!)(5). From (49), by induc-

tion and similar to the proof of (57), we get

E
[
Lρk−1(x

k,wk, y!) − L(x,w, ȳk)
]

≤ E
[
Ek(x,w, y!)

]
≤ Ê0(x, y!)
τ0k + 1 − τ0

,

where Ê0 is de"ned by (56). Now, we substitute x = x̄k−1 and w = w̄k−1 into the last
inequality to get

E
[
Lρk−1(x

k,wk, y!) − L(x̄k−1, w̄k−1, ȳk)
]

≤ Ê0(x̄k−1, y!)
τ0k + 1 − τ0

.
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Here, the expectation is now conditioned on (x̄k−1, w̄k−1), which is random. Taking the
full expectation, and combining the result with the above estimate, we get

E
[
D! − D(ȳk)

]
≤ E[Ê0(x̄k−1, y!)]

τ0k + 1 − τ0
.

In addition, since φ∗ isMφ∗-Lipschitz continuous, almost surely, we have

sup
{
‖x̄k−1 − x0‖2σ/q : x̄

k−1 ∈ ∂φ∗(−K3ȳk)
}

≤ M0 := sup
‖x̄k−1‖≤Mφ∗

{
‖x̄k−1 − x0‖2σ/q

}
.

The last two inequalities lead to

E
[
D! − D(ȳk)

] (56)
≤ 1

τ0k + 1 − τ0

[
F(x0,w0) − D(ŷ0) + 2

ρ0
‖ŷ0 − y!‖2 + 1

ρ0
‖ŷ0‖2

+ρ0(2 − τ0)

2
‖Kx0 + Bw0 − b‖2 + (Lhσ + 2ρ0L̄σ )τ0M0

2

]

= F̄0
τ0k + 1 − τ0

,

which proves the third line of (11). "

5.8. The proof of Theorem 3.2: strongly convex case

We "rst show that if τk, ρk, ηk, and βk are updated as in Theorem 3.2, then they satisfy
the conditions of (48). First, it is obvious to show that ρk, ηk, and βk satisfy the "rst three
conditions of (48). Next, since τk is updated as in Theorem 3.2, it satis"es 1 − τk = τ 2k

τ 2k−1
.

Hence, we obtain

τ0
τ0k + 1

≤ τk ≤ 2τ0
τ0k + 2

,
k∏

i=1
(1 − τi) =

τ 2k
τ 20

≤ 4
(τ0k + 2)2

, and ρk =
τ 2k−1
τ 2k

ρk−1.

Then, by induction, we get ρk = ρ0τ 20
τ 2k

. Therefore, βk = τ 2k
Lhσ τ 2k +2L̄σ ρ0τ 20

. Consequently, one

can show that τk
τ0βk

− τk
τ0βk−1

= 2L̄σ ρ0τ0.
Now, we verify the last condition of (48). Multiplying this condition by 1−τk

τk
= τk

τ 2k−1
, it

is equivalent to

µfi
σi

[
τk
τk−1

− (1 − qi)
]

≥ τk
τ0βk

− τk
τ0βk−1

= 2L̄σ ρ0τ0.

It is easy to check that τk
τk−1

=
√
1 − τk is increasing. Using τ0 ≤ qi from (9), the above

inequality holds if

2L̄σ ρ0τ0 ≤
µfi
σi

[
τ1
τ0

− (1 − τ0)

]
=

µfi
σi

[
τ1
τ0

+ τ0 − 1
]
,
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which is equivalent to 0 < ρ0 ≤ mini∈[n]
{

µfi
σiL̄σ

} √
τ 20 +4+τ0−2

4τ0 . Using
√
τ 20 +4+τ0−2

4τ0 ≥ 1
4 , we

can simplify this expression by a tighter one 0 < ρ0 ≤ 1
4L̄σ

mini∈[n]
µfi
σi
, which is exactly the

last condition in Theorem 3.2.
The remaining proof of Theorem 3.2 is similar to the proof of Theorem 3.1 but using

Ẽ0(x, y) instead of Ê0(x, y) in the key bound (57), where

Ẽ0(x, y) := F(x0,w0) − D(ŷ0) + 2
ρ0

‖y − ŷ0‖2 + 1
ρ0

‖ŷ0‖2

+ ρ0(2 − τ0)

2
‖Kx0 + Bw0 − b‖2

+ τ0
2

n∑

i=1

1
qi

[
(Lhσ + 2ρ0L̄σ )σi + µfi

]
‖xi − x0i ‖2.

Similarly, we also replace F̄0 and R̄2Z by F̃0 and R̃2Z , respectively. To avoid repetition, we
omit the detailed derivation here. "

6. Conclusions

We have developed a uni"ed randomized block-coordinate alternating primal-dual
algorithm to solve a generic class of nonsmooth and constrained convex optimization prob-
lems of the form (P) and its dual problem (D). Our algorithm is new and achieves the best
known convergence rates for both merely convex case and strongly convex case. Our rates
are on three criteria and non-ergodic on the primal sequence. We have also speci"ed our
algorithm to handle two special cases, which commonly appear in the literature. This leads
to new variants where our convergence rates guarantees are still applied. We have tested
our algorithm on two well-studied examples and compared it with two state-of-the-art
algorithms. We have observed that our algorithm has encouraging performance on di#er-
ent experiments of real and synthetic datasets. Our next step is to extend this approach
to convex optimization models with nonlinear constraints and general convex-concave
saddle-point problems.
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