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Abstract. In this paper, we develop new primal-dual algorithms to solve a class of nonsmooth
and nonlinear convex-concave minimax problems, which covers many existing and brand-new models
as special cases. Our approach relies on a combination of a generalized augmented Lagrangian func-
tion, Nesterov’s accelerated scheme, and adaptive parameter updating strategies. Our algorithmic
framework is single-loop and unifies two important settings: general convex-concave and convex-linear
cases. Under mild assumptions, our algorithms achieve O(1/k) convergence rates through three dif-
ferent criteria: primal-dual gap, primal objective residual, and dual objective residual, where k is the
iteration counter. Our rates are both ergodic (i.e., on a weighted averaging sequence) and nonergodic
(i.e., on the last-iterate sequence). These convergence rates can be boosted up to O(1/k2) if only
one objective term is strongly convex (or, equivalently, its conjugate is L-smooth). To the best of
our knowledge, this is the first algorithm achieving optimal rates on the primal last-iterate sequence
for convex-linear minimax problems. As a byproduct, we specify our algorithms to solve a general
convex cone constrained program with both ergodic and nonergodic rate guarantees. We test our
algorithms and compare them with two recent methods on two numerical examples.
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1. Introduction. The goal of this paper is to develop novel primal-dual algo-
rithms to solve the nonsmooth and nonlinear convex-concave minimax problem

(SP) min
x2Rp

max
y2Rn

n
eL(x, y) := F (x) + �(x, y)�H

⇤(y)
o
,

where F , H, and � satisfy the following structures:
1. F (x) := f(x) + h(x), where f : Rp

! R is Lf -smooth and convex, and
h : Rp

! R[{+1} is proper, closed, and convex, but not necessarily smooth;
2. H : Rn

! R [ {+1} is proper, closed, and convex, but not necessarily
smooth, and H

⇤(y) = sup
s
{hy, si �H(s)} is its Fenchel conjugate;

3. � : Rp
⇥Rn

! R is continuously di↵erentiable, and convex in x and concave
in y.

In this paper, we will focus on two settings: general convex-concave � and convex-

linear �, i.e., �(x, y) = hg(x), yi for some nonlinear function g : Rp
! Rn. In

particular, if g(x) = Kx for a given matrix K, then (SP) reduces to the well-known
convex-concave minimax problem involving bilinear objective function.
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Associated with (SP), we can define the primal-dual problem pair as follows:

P
? := min

x2Rp

{P(x) := F (x) + P (x)} , where P (x) := max
y2Rn

{�(x, y)�H
⇤(y)} ,(P)

D
? := max

y2Rn

{D(y) := D(y)�H
⇤(y)} , where D(y) := min

x2Rp

{F (x) + �(x, y)} .(D)

If �(x, y) = hg(x), yi, then P (x) = H(g(x)) in (P), and thus (P) also covers the
nonlinear compositional convex optimization problem as a special case. In partic-
ular, if H⇤(y) := �K⇤(y), the indicator of the dual cone K

⇤ of a proper cone K in
Rn, and �(x, y) = hg(x), yi, then (P) reduces to the following general convex cone
constrained program:

(CP) F
? := min

x2Rp

�
F (x) := f(x) + h(x) s.t. g(x) 2 �K

 
.

This problem covers several subclasses such as conic programs and convex programs
with nonlinear convex constraints (e.g., quadratically constrained quadratic programs)
[2]. Let us first review some representative applications and then discuss the limita-
tions of existing works regarding (SP) and its primal-dual pair (P) and (D).

Representative applications. If �(x, y) = hKx, yi, then (SP) already covers
various applications in signal and image processing, compressive sensing, machine
learning, and statistics; see, e.g., [2, 5, 8, 13, 19]. When � is convex-linear or generally
convex-concave, it additionally covers many other key applications in di↵erent fields.
For instance, the kernel matrix learning problem for support vector machines studied
in [26, problem (20)] can be formulated into (SP), where � is quadratic in x (model
parameters) and linear or concave in y (a kernel matrix). Another related problem
is the maximum margin clustering application studied in [53], where the coupling
objective is linear in y. Various robust optimization models relying on the well-known
Wald’s max-min formulation can be cast into (SP), where y characterizes a source
of uncertainty; see, e.g., [3]. The generative adversarial networks (GANs) problem
involvingWasserstein distances studied in [1] can also be formulated as a special case of
(SP). This model is also related to optimal transport problems as shown in [16]. Other
applications of (SP) in machine learning, (distributionally) robust optimization, game
theory, and signal and image processing can be found, e.g., in [14, 15, 24, 38, 39, 42].
It is also worth noting that (SP) and its special case (CP) can serve as subproblems
in several nonconvex-concave minimax and nonconvex optimization methods such as
proximal-point, inner approximation, and penalty-based schemes; see, e.g., [4, 28, 47].

Limitation of existing work. Methods for solving (SP) and its primal problem
(P) when � is bilinear are well developed; see, e.g., [2, 5, 9, 11, 13, 20, 21, 35, 36, 41,
43, 46, 48, 49]. However, when � is no longer bilinear, algorithms for solving (SP)
remain limited; see, e.g., [18, 22, 27, 33, 44, 45, 58]. We find that existing works have
the following limitations.

⇧ Model assumptions. Gradient-based methods such as [27, 45, 57, 58] require
rx� and ry� to be uniformly Lipschitz continuous on both x and y (see Assump-
tion 2.4), which unfortunately excludes some important cases, e.g., the convex cone
constrained problem (CP), where rx�(x, y) = g

0(x)>y, which is not uniformly Lip-
schitz continuous on x for all y (see Assumption 2.3). In addition, if �(x, y) = hg(x), yi
and H

⇤ is not strongly convex or restricted strongly convex as in [12, 27, 44, 52],
then P (·) in (P) can be nonsmooth, which creates several challenges for first-order
optimization methods.
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⇧ High per-iteration complexity. Various methods, including [27, 33, 45, 54, 56, 57],
require double loops even when �(x, y) = hg(x), yi, where the inner loop approxi-
mately solves a subproblem, e.g., a penalized or an augmented Lagrangian subproblem
in x. These methods (including variants of the alternating minimization algorithm and
the alternating direction method of multipliers (ADMM)) can be viewed as inexact
first-order schemes to solve (P), where the complexity of each outer iteration is often
high. In addition, related parameters such as the inner iteration number are often
chosen based on some convergence bounds and may depend on a desired accuracy.
This dependence requires sophisticated hyperparameter tuning strategy to achieve
good performance, and it is often challenging to implement in practice. There exist
very limited single-loop algorithms such as [18, 27, 29, 30] for general convex-concave
minimax problems, and [55] for a special case of (CP).

⇧ Convergence guarantees. Subgradient and mirror descent-based methods such
as [22, 33] often have slow convergence rates compared to gradient and accelerated
gradient-based methods [34]. Hitherto, existing works can only show the best known
convergence rates on ergodic (or averaging) sequences, via a gap function (cf. (4)); see,
e.g., [7, 18, 22, 30, 31, 32, 33, 45, 55]. It means that the convergence guarantee is based
on an averaging or a weighted averaging sequence of all the past iterates. In practical
implementation, however, researchers often report performance on the nonergodic (or
the last-iterate) sequence, which may only have asymptotic convergence or suboptimal
rate compared to the averaging one. As indicated in [17], the theoretical guarantee
on the last-iterate sequence can be significantly slower than an averaging one. To
achieve faster convergence rates on the last iterates, as shown in [48, 50], one needs
to fundamentally redesign the underlying algorithm. Note that averaging sequences
break desired structures of final solutions such as sparsity, low-rankness, or sharp-
edged structures required in many applications, including imaging science.

These three major limitations of existing works motivate us to conduct this
research and develop novel primal-dual algorithms, which a�rmatively solve the
above challenges.

Our approach. Problem (SP) is much more challenging to solve than its bilinear
case, especially under Assumption 2.3, where rx�(·, y) is not uniformly Lipschitz
continuous in x for all y. Our approach relies on a novel combination of di↵erent
techniques. First, we introduce a surrogate L of the Lagrange function eL in (SP) and
a new potential function L⇢ (see subsection 2.4). The function L⇢ plays a key role
in our convergence analysis. Second, we alternatively minimize L⇢ w.r.t. its auxiliary
variable s and then the primal variable x. The subproblem in x is linearized to
use the proximal operator of h and rf . Third, we also utilize Nesterov’s accelerated
momentum step with a new step-size rule to obtain optimal convergence rates. Finally,
we exploit a homotopy strategy developed in [46, 48] to dynamically update the
involved parameters in an explicit manner.

Our contribution. The contribution of this paper can be summarized as follows:
(a) We develop a novel unified single-loop primal-dual algorithmic framework,

Algorithm 1, to solve (SP), (P), and (D) simultaneously, which covers six
di↵erent variants. We introduce a new potential function L⇢ for (SP) to
analyze the convergence of our algorithms. We establish key properties of  ⇢,
a component of L⇢, which could be of independent interest, and can be used
to develop other algorithms.

(b) We establish O (1/k) optimal convergence rates for di↵erent variants of Algo-
rithm 1 in the general convex-concave case and the convex-linear case on the
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primal-dual gap, where k is the iteration counter. Our sublinear convergence
rates are achieved via both averaging sequences and the primal last-iterate
sequence, which we call ergodic and semi-ergodic rates, respectively. In addi-
tion, we develop adaptive update rules for our algorithmic parameters in the
ergodic case.

(c) When F is strongly convex (i.e., either f or h is strongly convex), by deriving
new parameter update rules, we establish O

�
1/k2

�
optimal convergence rates

for di↵erent variants of Algorithm 1 on the primal-dual gap. Again, our
convergence rates are achieved via both averaging and primal last-iterate
sequences.

(d) As a byproduct, we also obtain the same convergence rates on the primal
objective residual and the dual objective residual for both (P) and (D), re-
spectively, in all variants. We also specify Algorithm 1 to solve the general
convex cone constrained program (CP), where our optimal convergence rates,
both ergodic and nonergodic, on the primal objective residual and primal fea-
sibility violation are established.

Comparison. Problem (SP) can be cast into a special variational inequality
problem (VIP) or a maximally monotone inclusion, where several methods can be
applied to solve it; see, e.g., [2, 14, 15, 23, 25, 31, 32]. However, the following aspects
make our methods stand out from existing works on the minimax setting (SP) and
its primal-dual pair (P) and (D). First, the main assumption of the VIP approach
is the uniformly Lipschitz continuity of the underlying monotone operator, which
unfortunately does not hold for our second setting under Assumption 2.3, and in
particular for (CP). Second, our algorithms are di↵erent from those in [2, 14, 15,
31, 32], where we focus on nonasymptotically sublinear convergence rates under mild
assumptions, instead of asymptotic or linear rates as approaches in [2, 14, 15, 31, 32].
Third, many variants of Algorithm 1 are single-loop as opposed to double-loop ones as
in [27, 33, 37, 45, 56, 57]. Note that single-loop algorithms are often easy to implement
and extend. Fourth, we do not require ry� to be uniformly Lipschitz continuous in x

for all y as in [27, 45, 56, 57], where the domain of y in our setting can be unbounded.
Fifth, compared to other single-loop methods such as in [18, 29, 44], our rates are
nonergodic on the primal sequence. To the best of our knowledge, this is the first
work establishing such nonergodic rates for the convex-linear case of (SP). Sixth, we
only focus on the general convex case, and the strongly convex case of F , and ignore
the case when both F and H

⇤ are strongly convex since this condition leads to a
strong monotonicity of the underlying KKT system of (SP), and linear convergence
is often well known [2, 14, 15]. Seventh, our convergence guarantees are on three
di↵erent standard criteria, and in a semi-ergodic sense. Even in the ergodic sense, our
parameter updates as well as assumptions are adaptive and also di↵erent from those
in [18, 29] (see Theorems 2, 3, and 4). Finally, our special setting (CP) remains more
general than the one in [54, 55], which can cover conic programs. Our algorithm and
its convergence rates stated in Theorem 11 are still new compared to [54, 55]. Our
rates include both ergodic and nonergodic ones as opposed to the ergodic rates in [55].

This work is also di↵erent from [18, 48] in the following aspects. First, our setting
(SP) is much more general than the one in [48] both in terms of model and structured
assumptions. Second, [48, Algorithm 1] can be considered as a special case of the
variant (33) when F is non–strongly convex. However, when F is strongly convex,
[48, Algorithm 2] is really di↵erent from both (30) and (33). Except for this similarity,
other results in this paper are new compared to [48]. Third, [18] only studies ergodic
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2584 YUZIXUAN ZHU, DEYI LIU, AND QUOC TRAN-DINH

convergence under Assumption 2.4, which is similar to Theorem 2. Nevertheless, [18]
can exploit the gradient ry� to avoid the proximal operator of ��(x, ·). However,
under Assumption 2.3, [18] requires a linesearch-type procedure (see [18, eqn. (4.9)])
to achieve convergence guarantees. Finally, our semi-ergodic convergence rates are
new compared to [18].

Paper outline. The rest of this paper is organized as follows. Section 2 recalls
some basic concepts used in this paper and introduces our new potential function.
Section 3 develops our unified algorithmic framework, Algorithm 1, for solving (SP)
and its primal and dual formulations. Section 4 analyzes the ergodic convergence rates
of Algorithm 1, while section 5 is devoted to studying its semi-ergodic convergence
rates. Section 6 specifies our method to (CP). Section 7 provides two numerical
examples to verify our theoretical results. For clarity of presentation, all technical
proofs are deferred to the appendices.

2. Background, assumptions, and new potential function. This
section recalls some necessary concepts and tools used in this paper and states our
main assumptions.

2.1. Basic concepts. We work with Euclidean spaces Rp and Rn equipped
with a standard inner product hu, vi and norm kuk. For any nonempty, closed, and
convex set X in Rp, ri (X ) denotes its relative interior and �X denotes its indicator
function. If K is a convex cone, then K

⇤ := {w 2 Rp
| hw, xi � 0 8x 2 K} defines its

dual cone. For any proper, closed, and convex function f : Rp
! R[{+1}, dom(f) :=

{x 2 Rp
| f(x) < +1} is its (e↵ective) domain, f⇤(y) := sup

x
{hx, yi � f(x)} defines

its Fenchel conjugate, @f(x) := {w 2 Rp
| f(y) � f(x) � hw, y � xi 8y 2 dom(f)}

stands for its subdi↵erential at x, and rf is its gradient or subgradient. We also
use prox

f
(x) := argminy{f(y) +

1
2ky � xk

2
} to define the proximal operator of f .

If f = �X , then prox
f
reduces to the projection projX onto X . For a di↵erentiable

vector function g : Rp
! Rn, g0(·) 2 Rn⇥p denotes its Jacobian.

A function f : Rp
! R is called Mf -Lipschitz continuous on dom(f) with a

Lipschitz constant Mf 2 [0,+1) if |f(x)� f(x̂)|  Mfkx� x̂k for all x, x̂ 2 dom(f).
If f is di↵erentiable on dom(f) and rf is Lipschitz continuous with a Lipschitz
constant Lf 2 [0,+1), i.e., krf(x) �rf(x̂)k  Lfkx � x̂k for x, x̂ 2 dom(f), then
we say that f is Lf -smooth. If f(·) � µf

2 k · k
2 is still convex for some µf > 0, then

we say that f is µf -strongly convex with a strong convexity parameter µf . If µf = 0,
then f is just convex.

2.2. Fundamental assumptions. The algorithms developed in this paper rely
on the following assumptions imposed on (SP) and its primal and dual forms (P)
and (D).

Assumption 2.1. There exists (x?
, y

?) 2 dom(F )⇥ dom(H⇤) of (SP) such that

(1) eL(x?
, y)  eL(x?

, y
?)  eL(x, y?) 8(x, y) 2 dom(F )⇥ dom(H⇤).

Moreover, dom(F )⇥ dom(H⇤) ✓ dom(�) and eL(x?
, y

?) is finite.

Assumption 2.1 is standard in convex-concave minimax problems. It guarantees
strong duality P

? = D
? = eL(x?

, y
?) and the existence of solutions for (P) and (D);

see, e.g., [40].

Assumption 2.2. The function � is continuously di↵erentiable; f , h, and H are
proper, closed, and convex; and F := f + h. Moreover, f is Lf -smooth with Lf 2

[0,+1).
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Together with Assumptions 2.1 and 2.2, we consider two settings corresponding
to Assumptions 2.3 and 2.4 below. We treat them separately in our analysis.

Assumption 2.3. �(x, y) = hg(x), yi is convex in x for any y 2 dom(H⇤) and
linear in y for any x 2 dom(F ). In addition, for any x, x̂ 2 dom(F ) and y 2 dom(H⇤),
it satisfies

(2)

(
krx�(x̂, y)�rx�(x, y)k = k[g0(x̂)� g

0(x)]>yk  L11kykkx� x̂k,

kry�(x̂, y)�ry�(x, y)k = kg(x̂)� g(x)k  L21kx̂� xk,

where L11, L21 2 [0,+1) are given Lipschitz constants.

Assumption 2.4. �(·, y) is convex in x for any y 2 dom(H⇤) and �(x, ·) is concave
in y for any x 2 dom(F ). In addition, for any x, x̂ 2 dom(F ) and y, ŷ 2 dom(H⇤), it
satisfies

(3)

(
krx�(x̂, y)�rx�(x, y)k  L11kx� x̂k,

kry�(x̂, ŷ)�ry�(x, y)k  L21kx̂� xk+ L22kŷ � yk,

where L11, L21, L22 2 [0,+1) are given Lipschitz constants.

Assumption 2.4 is widely used in convex-concave minimax problems; see, e.g.
[18, 27, 29, 45, 56, 57]. Clearly, if �(x, y) = hg(x), yi as in Assumption 2.3, then it
satisfies the last condition of (3) with L22 = 0. However, the first condition of (2) in
Assumption 2.3 is weaker than the first line of (3) in Assumption 2.4 if dom(H⇤) is
not bounded. Hence, we treat two settings corresponding to these two assumptions
separately in this paper. Clearly, if �(x, y) = hKx, yi is bilinear, then it automatically
satisfies both Assumptions 2.3 and 2.4.

2.3. Optimality condition and gap function. In view of Assumptions 2.1
and 2.2, there exists a saddle-point (x?

, y
?) 2 dom(F )⇥dom(H⇤) of (SP) that satisfies

0 2 @F (x?) +rx�(x
?
, y

?) and 0 2 ry�(x
?
, y

?)� @H
⇤(y?).

To characterize saddle-points of (SP), we define the following gap function (see [5, 14,
15, 33]):

(4) GZ(x, y) := sup
� eL(x, ŷ)� eL(x̂, y) : x̂ 2 X , ŷ 2 Y

 
,

where X ✓ dom(F ) and Y ✓ dom(H⇤) are two nonempty and closed subsets such
that Z := X ⇥Y contains a saddle-point (x?

, y
?). It is clear that GZ(x, y) � 0 for any

(x, y) 2 dom(F )⇥dom(H⇤). If (x?
, y

?) is a saddle-point of (SP), then GZ(x?
, y

?) = 0.

2.4. Potential function and its key properties. One of the main steps to
develop our algorithms is to build an appropriate potential function, which is for-
malized as follows. First, we lower bound H

⇤ using its Fenchel conjugate, i.e.,
H

⇤(y) � hs, yi � H(s) for any s 2 dom(H). Consequently, we can upper bound
the Lagrange function eL of (SP) by

(5) L(x, s, y) := F (x) +H(s) + �(x, y)� hs, yi.
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Clearly, for any (x, s, y) 2 dom(F )⇥ dom(H)⇥ dom(H⇤), we have

(6) eL(x, y)  L(x, s, y) and eL(x, y) = L(x, s, y) i↵ s 2 @H
⇤(y).

As a result, for s? := ry�(x?
, y

?) 2 @H
⇤(y?), (1) implies that

(7) eL(x?
, y)  L(x?

, s
?
, y)  L(x?

, s
?
, y

?) = eL(x?
, y

?)  eL(x, y?)  L(x, s, y?).

Next, let us introduce our potential function as follows:

(8) L⇢(x, s, y) := F (x) +H(s) +  ⇢(x, s, y),

where ⇢ > 0 is a given parameter and  ⇢(·) is defined as follows:

(9)  ⇢(x, s, y) := max
u2Rn

n
�(x, u)� hs, ui �

1
2⇢ku� yk

2
o
.

We also denote by u
⇤
⇢
(x, s, y) := prox�⇢�(x,·)(y � ⇢s) the unique solution of the max-

imization problem in (9). In particular, if �(x, y) = hg(x), yi, which is convex-linear,
then  ⇢(x, s, y) = hg(x)� s, yi+ ⇢

2kg(x)� sk
2 and u

⇤
⇢
(x, s, y) = y+ ⇢(g(x)� s), which

are explicitly given. In fact, (8) can be viewed as a generalized augmented Lagrangian
function of (SP); see [40].

We first prove the following lemma in Appendix A, which will be used for our
analysis. However, we believe that this result by itself is of independent interest and
can be used to develop other algorithms for solving (SP). We therefore state it in the
main text.

Lemma 1. Let  ⇢ and u
⇤
⇢
be defined by (9), and Assumption 2.2 and either

Assumption 2.3 or Assumption 2.4 hold. Then  ⇢ is convex in x if u
⇤
⇢
(x, s, y) 2

dom(H⇤), convex in s for given y 2 dom(H⇤), and concave in y for given (x, s) 2

dom(F )⇥dom(H). Moreover, rx ⇢(x, s, y) = rx�(x, u⇤
⇢
(x, s, y)) and rs ⇢(x, s, y) =

�u
⇤
⇢
(x, s, y).
Let us define

(10)
`⇢(x̂, ŝ;x, s, y) :=  ⇢(x, s, y) + hrx ⇢(x, s, y), x̂� xi+ hrs ⇢(x, s, y), ŝ� si,

�⇢(x̂, ŝ;x, s, y) :=  ⇢(x̂, ŝ, y)� `⇢(x̂, ŝ;x, s, y).

Then, for x̂, x 2 dom(F ), ŝ, s 2 dom(H), y, ŷ 2 dom(H⇤), and ⇢, ⇢̂ > 0, we have

(11)

8
>><

>>:

�(x, ŷ)� hs, ŷi   ⇢(x, s, y) +
1
2⇢kŷ � yk

2
,

 ⇢(x, s, y)   ⇢̂(x, s, y) +
(⇢�⇢̂)
2⇢⇢̂ ku

⇤
⇢
(x, s, y)� yk

2
,

`⇢(x̂, ŝ;x, s, y)  �(x̂, u⇤
⇢
(x, s, y))� hŝ, u

⇤
⇢
(x, s, y)i � 1

2⇢ku
⇤
⇢
(x, s, y)� yk

2
.

In particular, if �(x, y) = hg(x), yi, then  ⇢(x, s, y) =  ⇢̂(x, s, y)+
(⇢�⇢̂)
2⇢2 ku

⇤
⇢
(x, s, y)�

yk
2
. Moreover, if u

⇤
⇢
(x, s, y) 2 dom(H⇤), then for x̂, x 2 dom(F ), ŝ, s 2 dom(H), and

y, ŷ 2 dom(H⇤), we also have

(12)

ku
⇤
⇢
(x̂, ŝ, ŷ)� u

⇤
⇢
(x, s, y)k


⇢

1+µy⇢

⇥
L21kx� x̂k+ ks� ŝk

⇤
+ 1

1+⇢µy

kŷ � yk,

(1+⇢µy)
2⇢ ku

⇤
⇢
(x̂, ŝ, y)� u

⇤
⇢
(x, s, y)k2

 �⇢(x̂, ŝ;x, s, y)


L11
2 kx̂� xk

2 + (1+⇢L22)
2⇢ ku

⇤
⇢
(x̂, ŝ, y)� u

⇤
⇢
(x, s, y)k2,

where µy is the strong concavity parameter of �(x, ·), L11 := L11ku
⇤
⇢
(x, s, y)k and

L22 = 0 if Assumption 2.3 holds, and L11 := L11 if Assumption 2.4 holds.

D
ow

nl
oa

de
d 

03
/0

6/
23

 to
 4

5.
37

.1
06

.1
80

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRIMAL-DUAL ALGORITHMS FOR MINIMAX PROBLEMS 2587

3. A unified primal-dual algorithmic framework. We now develop a new
primal-dual algorithmic framework to solve (SP) and its primal-dual forms (P) and (D).

3.1. Primal and dual updates. Our main idea is to exploit the potential
function L⇢ defined in (8) to measure the progress of an iterate sequence {(xk

, ŷ
k)}

generated by the proposed algorithm. Since this function not only involves x but also
the dual variable y and the auxiliary variable s, we also need to update them in an
alternating manner.

Primal steps. First, given x̂
k

2 dom(F ) and ŷ
k

2 dom(H⇤), we minimize
L⇢k

(x̂k
, s, ŷ

k) w.r.t. s to obtain s
k+1. By combining this step and (9) and exchanging

the min-max, we get

(13)

(
u
k+1 := argmin

u

�
H

⇤(u)��(x̂k
, u)+ 1

2⇢k

ku� ŷ
k
k
2
 
=prox

⇢k(H⇤(·)��(x̂k,·))
�
ŷ
k
�
,

s
k+1 :=ry�(x̂k

, u
k+1)� 1

⇢k

(uk+1
�ŷ

k).

With s
k+1 obtained from (13), we minimize L⇢k

(x, sk+1
, ŷ

k) w.r.t. x to obtain x
k+1.

However, minimizing this function directly is di�cult. We instead linearize f(·) +
 ⇢k

(·, sk+1
, ŷ

k) at x̂k and then minimize the surrogate of L⇢k
as

(14)
x
k+1 := argmin

x

�
h(x)+hrf(x̂k)+rx ⇢k

(x̂k
, s

k+1
, ŷ

k), x� x̂
k
i+ Lk

2 kx� x̂
k
k
2
 

= prox
h/Lk

�
x̂
k
�

1
Lk

⇥
rf(x̂k) +rx ⇢k

(x̂k
, s

k+1
, ŷ

k)
⇤�
,

where Lk > 0 is a given parameter, which will be determined later.

Dual step. As analyzed in Lemma 13, we can update ŷ
k with a step-size

⌘k � 0 as

(15) ŷ
k+1 := ŷ

k + ⌘k

�
ry ⇢k

(xk+1
, s

k+1
, ŷ

k)� (1� ⌧k)ry ⇢k�1(x
k
, s

k
, ŷ

k)
�
.

Here, we allow ⌘k = 0, leading to ŷ
k being fixed at y

0 as ŷ
k := y

0 for all k � 0
(see (30)).

Dual averaging step. Given ỹ
k
, ⌧k 2 (0, 1], and u

k+1 in (13), we update ỹk+1 as

(16) ỹ
k+1 := (1� ⌧k)ỹ

k + ⌧ku
k+1

.

While the primal step is key to our algorithms, the dual step may not be required as
in the variant (30) below. This step is only required in the semi-ergodic variants.

3.2. The full algorithm. To explicitly express our algorithm, we note that

rx ⇢k
(x̂k

, s
k+1

, ŷ
k) = rx�(x̂

k
, u

k+1) and ry ⇢(x, s, ŷ
k) = 1

⇢
(u⇤

⇢
(x, s, ŷk)� ŷ

k),

where u
⇤
⇢
(x, s, ŷk) = prox�⇢�(x,·)(ŷ

k
� ⇢s). To update x̂

k, we apply Nesterov’s accel-

erated scheme [34] as x̂k+1 := x
k+1 + �k+1(xk+1

� x
k) for an appropriate parameter

�k+1 � 0.
Finally, putting all the above steps together, we obtain a complete single-loop

primal-dual first-order algorithmic framework for solving (SP) as specified in Algo-
rithm 1.

4. Ergodic convergence rates. Let us first analyze the ergodic convergence
rates of Algorithm 1 for both general convex-concave and convex-linear settings.
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Algorithm 1 (Unified single-loop primal-dual first-order algorithmic framework).

1: Initialization: Choose an initial point (x0
, y

0) 2 dom(F )⇥ dom(H⇤).
2: Set x̂0 := x

0, ŷ0 := y
0, ˘̄u0 := y

0, and s
0 := 0. Set ỹ0 := y

0 for Theorem 6 or 8.
3: Choose ⌧0, L0, ⇢0, and ⌘0 according to Theorem 2, 3, 4, 6, or 8.
4: For k := 0 to kmax

5: Update ⌧k, Lk, ⇢k, ⌘k, and �k as in Theorem 2, 3, 4, 6, or 8 (consistent with
step 3).

6: Compute u
k+1 := prox

⇢k(H⇤(·)��(x̂k,·))
�
ŷ
k
�

and s
k+1 := ry�(x̂k

, u
k+1)�

1
⇢k

(uk+1
� ŷ

k).

7: Compute x
k+1 := prox

h/Lk

�
x̂
k
�

1
Lk

[rf(x̂k) +rx�(x̂k
, u

k+1)]
�
.

8: Update x̂
k+1 := x

k+1 + �k+1(xk+1
� x

k).
9: Compute ŭ

k+1 := prox�⇢k�(xk+1,·)
�
ŷ
k
� ⇢ks

k+1
�
.

10: Update ŷ
k+1 := ŷ

k + ⌘k

⇢k

(ŭk+1
� ŷ

k)� (1�⌧k)⌘k

⇢k�1
(˘̄uk

� ŷ
k).

11: Compute ˘̄uk+1 := prox�⇢k�(xk+1,·)
�
ŷ
k+1

� ⇢ks
k+1

�
.

12: Update ỹ
k+1 := (1� ⌧k)ỹk + ⌧ku

k+1 for the variants in Theorems 6 and 8.
EndFor

4.1. The general convex-concave case. Let us fix ⌧k := 1 and x̂
k := x

k (i.e.,
�k = 0) in Algorithm 1. In this case, the main steps, steps 6 to 11, of Algorithm 1
reduce to

(17)

8
>>>>><

>>>>>:

u
k+1 := prox

⇢k(H⇤(·)��(xk,·))
�
ŷ
k
�
,

s
k+1 := ry�(xk

, u
k+1)� 1

⇢k

(uk+1
� ŷ

k),

x
k+1 := prox

h/Lk

�
x
k
�

1
Lk

[rf(xk) +rx�(xk
, u

k+1)]
�
,

ŷ
k+1 := ŷ

k + ⌘k

⇢k

(prox�⇢k�(xk+1,·)
�
ŷ
k
� ⇢ks

k+1
�
� ŷ

k).

In fact, the first line of (17) requires computing the proximal operator of H⇤(·) �
�(xk

, ·), which could be computationally expensive if � is nonlinear in y. To overcome
this issue, we can also linearize L⇢k

(x̂k
, s, ŷ

k) around ŝ
k to decompose the first and

second lines of (17) into the two alternating steps:

u
k+1 := prox�⇢k�(x̂k,·)(ŷ

k
� ⇢kŝ

k) and s
k+1 := prox

H/L̂k

�
ŝ
k + L̂

�1
k

u
k+1

�
.

Here, ŝk and L̂k can be updated similarly to x̂
k and Lk, respectively. This decom-

position allows us to use the proximal operators of ��(xk
, ·) and H separately. The

convergence analysis of this variant is very similar to that of (17). However, to avoid
overloading the paper, we skip it here and only focus on (17). Compared to [18],
Algorithm 1 uses the proximal operator of ��(x, ·) instead of the gradient ry�(x, ·)
as in [18].

Our goal in this section is to establish convergence rates of Algorithm 1, in-
cluding the variant (17), on the following ergodic (i.e., weighted averaging) sequence
{(x̄k

, ȳ
k)}:

(18) x̄
k :=

1

⌃k

kX

j=0

⌘jx
j+1

, ȳ
k :=

1

⌃k

kX

j=0

⌘ju
j+1

, where ⌃k :=
kX

j=0

⌘j .

Here, ⌘j for j = 0, . . . , k are given weights.
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The following theorem states both O (1/k)- and O
�
1/k2

�
-ergodic convergence

rates of the variant (17) under Assumption 2.4, whose proof can be found in Appen-
dix C.1.

Theorem 2. Suppose that Assumptions 2.1, 2.2, and 2.4 hold for (SP). Let

{(xk
, y

k)} be generated by the variant (17) of Algorithm 1 and let {(x̄k
, ȳ

k)} be defined

by (18).
• If µF = 0 (i.e., F is only convex), then we fix ⇢k := ⇢0 > 0 for all k � 0.

• If µF > 0 (i.e., F is strongly convex) and L22 = 0, then we update ⇢k+1 :=
2bk⇢k

⌫+
p

⌫2+8L2
21bk⇢k

, where ⌫ := L11 + Lf � µf , bk := ⌫ + µF + 2L2
21⇢k, and

⇢0 �
µF+4⌫
16L2

21
.

Let Lk and ⌘k be updated, respectively, by

(19) Lk := L11 + Lf + L
2
21(2 + ⇢kL22)⇢k and ⌘k :=

⇢k

2
.

Then, with GZ defined by (4), for all k � 0, we have

(20) GZ(x̄
k
, ȳ

k) 
1

2Sk

· sup
(x,y)2Z

n
⇢0(L0 � µf )kx� x

0
k
2 + 2ky � y

0
k
2
o
,

where Sk := ⇢0(k + 1) if µF = 0, and Sk := (k + 1)
⇥
⇢0 +

µF

16L2
21
(k + 2)

⇤
if µF > 0.

When F is strongly convex, Theorem 2 achieves O
�
1/k2

�
rate if L22 = 0. If

L22 > 0, then the rate of the variant (17) stated in Theorem 2 could be slower than
O
�
1/k2

�
. Hence, one needs to modify our update rules and adapt the analysis to

obtain a rate of O
�
1/k2

�
.

4.2. The convex-linear case. Next, we analyze the O (1/k)-ergodic conver-
gence of Algorithm 1 when �(x, y) := hg(x), yi (convex-linear) under Assumption 2.3.
In this case, the main steps, steps 6 to 11, of Algorithm 1 reduce to

(21)

8
>><

>>:

u
k+1 := prox

⇢kH
⇤(·)

�
ŷ
k + ⇢kg(xk)

�
,

x
k+1 := prox

h/Lk

�
x
k
�

1
Lk

[rf(xk) + g
0(xk)>uk+1]

�
,

ŷ
k+1 := ŷ

k + ⌘k

⇥
g(xk+1)� g(xk) + 1

⇢k

(uk+1
� ŷ

k)
⇤
.

The following theorem states the convergence of (21), whose proof is given in Appen-
dix C.3.

Theorem 3. Suppose that Assumptions 2.1, 2.2, and 2.3 hold for (SP) and ẏ 2

@H(ṡ) for a given ṡ 2 ri (dom(H)). Let {(xk
, y

k)} be generated by the variant (21)
of Algorithm 1 using ⇢k := 2

Lk

and ⌘k := 1
Lk

for all k � 0, and Lk is adaptively

updated by

(22) Lk := L11[kẏk+ kŷ
k
� ẏk] +

p
2L11kg(xk)� ṡk+ Lf + 2L21.

Let {(x̄k
, ȳ

k)} be an ergodic sequence defined by (18). Then, for all k � 0, we have

(23) GZ(x̄
k
, ȳ

k) 
L̄

2(k + 1)
· sup
(x,y)2Z

�
kx� x

0
k
2 + ky � y

0
k
2
 
,

where L̄ is a given constant explicitly defined as in (52) in Lemma 15.

Alternatively, we consider the case when F in (SP) is strongly convex with µF :=
µf +µh > 0. The following theorem establishes an O

�
1/k2

�
-ergodic convergence rate

of the variant (21) of Algorithm 1, whose proof is given in Appendix C.4.
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Theorem 4. Suppose that Assumptions 2.1, 2.2, and 2.3 hold for (SP). Suppose

further that F in (SP) is µF -strongly convex with µF := µf + µh > 0 and ẏ 2 @H(ṡ)
for a given ṡ 2 ri (dom(H)). Given ⇢0 > 0 and  > 0, we first choose the initial

parameters as

(24) ⌘0 := ⇢0

2 and L0 := Lf +A0 + ⇢0(B0 + 2L2
21),

where A0 := L11[kẏk+kŷ
0
� ẏk] and B0 := L11kg(x0)� ṡk. Let {(xk

, y
k)} be generated

by the variant (21) of Algorithm 1 using the following parameter update rules:

(25)

8
<

:

⌘k := ⇢k

2 , Lk := Lf +Ak + ⇢k(Bk + 2L2
21),

⇢k := 2⇢k�1(Lk�1+µh)

(Ak+Lf�µf )+
p

(Ak+Lf�µf )2+4⇢k�1(Lk�1+µh)(Bk+2L2
21)

,

where ⇠k := L11[kẏk + kŷ
k
� ẏk] and ⇣k := L11kg(xk) � ṡk; and Ak and Bk are

updated by

(26)

Ak :=

(
Ak�1 if ⇠k < Ak�1,

max{Ak�1 + , ⇠k} otherwise
and

Bk :=

(
Bk�1 if ⇣k < Bk�1,

max{Bk�1 + , ⇣k} otherwise.

Let {(x̄k
, ȳ

k)} be defined by (18). Then, for all k � k̄0, the following bound holds:

(27) GZ(x̄
k
, ȳ

k) 
2(k̄0 + 1)2

P0(k � k̄0)2
· sup
(x,y)2Z

n
⇢0(L0 � µf )kx� x

0
k
2 + 2ky � y

0
k
2
o
,

where k̄0 and P0 are two positive constants explicitly defined in Lemma 17 of Appen-

dix C.2.

Note that the choice of  in Theorem 4 will a↵ect the value of k̄0. Let us roughly
explain how k̄0 depends on , kx0

� x
?
k, ky0 � y

?
k, kg(x?) � g(x0)k, L11, L21, and

Lf . Let ṡ = g(x0) and ŷ0 = ẏ. To simplify our explanation, we define Lmax :=
max{L11, L21, Lf} and Mmax := max{kx0

�x
?
k, ky

0
� y

?
k, kg(x?)� g(x0)k}. We also

choose ⌘0 = ⇢0

2 = O(1/Lmax). Then we have L0 = O(Lmax) from (24), C1 = O(Mmax)
and C2 = O(LmaxMmax+) from (56), and L̄ = O(LmaxMmax) from (52). Therefore,

from (61) we obtain k̄0 = O
�
LmaxMmax

�
LmaxMmax+



�2�
. Suppose that we choose

 := O(LmaxMmax). Then we obtain the convergence rate guarantee of Algorithm 1
starting from k̄0 := O(LmaxMmax).

Unlike existing works, Assumption 2.3 associated with � is challenging to handle
due to L11 = L11kyk depending on y. If dom(H⇤) is unbounded, which is usually the
case in constrained convex optimization, then kyk is not bounded. In Theorems 3 and
4, we have to use adaptive techniques to update Lk in order to overcome this challenge.

Finally, we prove the primal-dual convergence rates on (P) and (D) (see Appen-
dix C.5).

Corollary 5. Under the conditions and configuration of either Theorem 2, 3,
or 4, the following statements hold. If H in (P) is MH-Lipschitz continuous, then

(28) P(x̄k)� P
?


1

2Sk

⇥
⇢0(L0 � µf )kx

0
� x

?
k
2 + 2

�
ky

0
k+MH

�2⇤
.
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Alternatively, if F
⇤
in (D) is MF⇤-Lipschitz continuous, then

(29) D
?
�D(ȳk) 

1

2Sk

⇥
⇢0(L0 � µf )(kx

0
k+MF⇤)2 + 2ky0 � y

?
k
2
⇤
.

Here, Sk := ⇢0(k + 1) if µF = 0, and Sk := (k + 1)
⇥
⇢0 +

µF

16L2
21
(k + 2)

⇤
if µF > 0 in

Theorem 2, Sk := 2(k+1)
L̄

in Theorem 3, and Sk := P0(k�k̄0)
2

4(k̄0+1)2
in Theorem 4.

5. Semi-ergodic convergence rates. In this section, we analyze semi-ergodic
convergence rates (i.e., the rates on the primal last-iterate sequence and the dual
averaging sequence) of Algorithm 1 for two di↵erent variants detailed below.

5.1. The convex-linear case without dual update. We first consider a vari-
ant of Algorithm 1 with ⌘k = 0 (i.e., ŷk = y

0 for all k � 0 in (15)) for the convex-linear
setting �(x, y) = hg(x), yi. Clearly, the main steps, steps 6 to 11, of Algorithm 1 re-
duce to

(30)

8
><

>:

u
k+1 := prox

⇢kH
⇤
�
y
0 + ⇢kg(x̂k)

�
,

x
k+1 := prox

h/Lk

�
x̂
k
�

1
Lk

[rf(x̂k) +rx�(x̂k
, u

k+1)]
�
,

x̂
k+1 := x

k+1 + �k+1(xk+1
� x

k).

The variant (30) has a similar form to that of standard primal-dual methods in the
bilinear case such as [5, 10, 11, 13, 51]. However, the first line is di↵erent from those
due to fixed y

0.
The following theorem states the convergence of (30) in both convex-linear and

strongly convex-linear cases, whose proof is deferred to Appendix D.2.

Theorem 6. Suppose that Assumptions 2.1, 2.2, and 2.3 hold for (SP). Let us fix
ẋ 2 dom(F ) and ẏ 2 @H

⇤(g(ẋ)). Assume that either H is MH-Lipschitz continuous

or kg(x) � g(ẋ)k  Bg for all x 2 dom(F ) \ dom(g) such that L11Bg < +1. Let

{(xk
, ỹ

k)} be generated by the variant (30) of Algorithm 1 and (16) with y
0 := ẏ. Let

Lk be updated by

(31) Lk :=

(
L11MH + Lf + ⇢kL

2
21 if H is MH-Lipschitz continuous,

L11kẏk+ Lf + ⇢k(L2
21 + L11Bg) otherwise.

Let ⌧0 := 1, ⇢k := ⇢k�1

1�⌧k
, ⌘k := ⇢k

2 , and ⌧k and �k be updated as follows:

• If µF =0, then update ⌧k :=
1

k+1 and �k+1 :=
(1�⌧k)⌧k+1

⌧k
, and ⇢0>0 arbitrarily.

• If µF > 0, then update ⌧k+1 :=
⌧k

�p
⌧
2
k
+4�⌧k

�

2 and �k+1 := (Lk+µh)⌧k+1(1�⌧k)
(Lk+1�µf )⌧k

.

Moreover, we choose
µF ⌧1

L
2
21

 ⇢0 
µF

L
2
21

if H is MH-Lipschitz continuous, and

µF ⌧1

L11Bg+L
2
21

 ⇢0 
µF

L11Bg+L
2
21

otherwise.

Then, with GZ defined by (4), for all k � 0, we have

(32) GZ(x
k
, ỹ

k) 
1

2Sk

· sup
(x,y)2Z

n
⇢0(L0 � µf )kx� x

0
k
2 + 2ky � ẏk

2
o
,

where Sk := ⇢0(k + 1) if µF = 0, and Sk := ⇢0

4 (k + 2)2 if µF > 0.

Theorem 6 establishes an O (1/k)-semi-ergodic convergence rate of the variant
(30) on the gap function GZ , and an O

�
1/k2

�
-semi-ergodic rate when either f or h

is strongly convex.
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5.2. The convex-linear case with dual update. For �(x, y) = hg(x), yi, if
we update ŷk as in (15), then the main steps, steps 6 to 11, of Algorithm 1 reduce to

(33)

8
>>>>>>><

>>>>>>>:

u
k+1 := prox

⇢kH
⇤
�
ŷ
k + ⇢kg(x̂k)

�
,

x
k+1 := prox

h/Lk

�
x̂
k
�

1
Lk

[rf(x̂k) + g
0(x̂k)>uk+1]

�
,

x̂
k+1 := x

k+1 + �k+1(xk+1
� x

k),

⇥k+1 := g(xk+1)� g(x̂k) + 1
⇢k

(uk+1
� ŷ

k),

ŷ
k+1 := ŷ

k + ⌘k[⇥k+1 � (1� ⌧k)⇥k].

This variant essentially has the same per-iteration complexity as (30), but requires
one additional evaluation g(xk+1). Nevertheless, due to the new dual update of ŷk,
it is really di↵erent from existing methods. If � is bilinear, then it reduces to the
scheme in [48]. However, if F is strongly convex, then (33) is new compared to [48]
even when � is bilinear.

Remark 7. We note that (33) is also di↵erent from existing augmented Lagrangian-
based methods, including ADMM in the following aspects. First, its primal step in
x
k+1 minimizes a surrogate of L⇢k

(x, sk+1
, ŷ

k) by linearizing f and the augmented
term  ⇢. This is similar to the preconditioned ADMM variant, e.g., in [5]. Second, it
has Nesterov’s accelerated step on x̂

k in the third line. Third, the dual updates ŷk and
ỹ
k are also di↵erent from existing methods in the literature. Finally, our convergence

rates in Theorems 8 are achieved on the primal last-iterate xk instead of an averaging
one as in existing ADMM. These rates are also optimal under our assumptions (up
to a constant factor).

Theorem 8 (see Appendix D.3 for its proof) proves semi-ergodic rates of Algo-
rithm 1 on the primal last-iterate sequence {x

k
} and the dual averaging sequence

{ỹ
k
}.

Theorem 8. Suppose that Assumptions 2.1, 2.2, and 2.3 hold for (SP). Let

us fix ẋ 2 dom(F ) \ dom(g) and take ẏ 2 @H
⇤(g(ẋ)). Let either H be MH-Lipschitz

continuous or kg(x)�g(ẋ)k  Bg for all x 2 dom(F )\dom(g) such that L11Bg < +1.

Let {(xk
, ỹ

k)} be generated by the variant (33) of Algorithm 1 and (16) using y
0 := ẏ

and the update rules:

(34)

8
>><

>>:

⇢k := ⇢k�1

1�⌧k
, ⌘k := ⇢k

2 (for a given ⇢0 > 0),

Lk :=

(
L11MH + Lf + 3⇢kL2

21 if H is MH-Lipschitz continuous,

L11ky
0
k+ Lf + 3⇢k(L11Bg + L

2
21) otherwise.

Moreover, ⌧k and �k+1 are updated as follows:

• If µF = 0 (i.e., F is only convex), then we update ⌧k := 1
k+1 and �k+1 :=

(1�⌧k)⌧k+1

⌧k
.

• If µF > 0 (i.e., F is strongly convex), then we update ⌧k+1 := ⌧k

2

�p
⌧
2
k
+ 4�

⌧k

�
and �k+1 := (Lk+µh)⌧k+1(1�⌧k)

(Lk+1�µf )⌧k
with ⌧0 := 1. In addition, we choose

µF ⌧1

L
2
21

 ⇢0 
µF

L
2
21

if H is MH-Lipschitz continuous and
µF ⌧1

L11Bg+L
2
21

 ⇢0 

µF

L11Bg+L
2
21

otherwise.

Then, with GZ defined by (4), for all k � 1, the following bound holds:

(35) GZ(x
k
, ỹ

k) 
1

2Sk

· sup
(x,y)2Z

n
⇢0(L0 � µf )kx� x

0
k
2 + 2ky � y

0
k
2
o
,
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where Sk := ⇢0k if µF = 0, and Sk := ⇢0(k+1)2

4 if µF > 0.

Remark 9. The O (1/k)- and O
�
1/k2

�
-convergence rates stated in this paper are

optimal (up to a constant factor) under the corresponding assumptions in the above
theorems since these rates are optimal for the special bilinear case as shown in [48].

Remark 10. Similar to Corollary 5, we can derive primal-dual convergence rates
for (P) and (D) of both the variants (30) and (33) based on the results of Theorems 6
and 8. However, we skip the detailed statements here to avoid repetition.

6. Application to convex cone constrained optimization. In this section,
we specify Algorithm 1 and their convergence results to handle the special case (CP)
of (SP). This problem is a general convex cone constrained program as in [18]
and is more general than the setting studied in existing works such as [55]. By
Assumption 2.3, since �(x, y) = hy, g(x)i is convex in x for any y 2 K

⇤, g is K-
convex, i.e., for all x, x̂ 2 dom(g) and � 2 [0, 1], it holds that (1 � �)g(x) + �g(x̂) �
g ((1� �)x+ �x̂) 2 K. To guarantee strong duality, we require the Slater condition
on (CP): {x 2 ri (dom(F )) : g(x) 2 �int(K)} 6= ;.

To solve (CP), we apply Algorithm 1 and replace the update of uk+1 at step 6 by

(36) u
k+1 := projK⇤

�
ŷ
k + ⇢kg(x̂

k)
�
,

where projK⇤ is the projection onto the dual cone K
⇤ (see also (51)). We will char-

acterize the convergence of Algorithm 1 via the following combined primal-dual mea-
surement:

(37)
E(x) := max {c?|F (x)� F

?
|, dist�K (g(x))} ,

where dist�K (g(x)) := inf
s2�K

kg(x)� sk,

and c? := max{1, ky?k}.
The following theorem proves the convergence of the proposed variant of Algo-

rithm 1 for solving (CP), whose proof can be found in Appendix E.

Theorem 11. Suppose that Assumptions 2.1, 2.2, and 2.3 and the Slater con-

dition hold for (CP). Let {x
k
} be generated by the variant of Algorithm 1 using

(36) for solving (CP). Let E(x) be defined by (37) and �0 := ⇢0L0

2 kx
0
� x

?
k
2 +

�
ky

0
k+ ky

?
k+ 1

�2
. Then the following hold:

(a) Under the conditions of Theorem 3, we have E(x̄k) L̄�0
2(k+1) in an ergodic sense.

(b) Under the conditions of Theorem 4, we have E(x̄k)  4(k̄0+1)2�0

P0(k�k̄0)2
in an

ergodic sense.

Alternatively, if kg(x)� g(ẋ)k  Bg for all x 2 dom(F ) \ dom(g) and Sk is given as

in Theorem 6 or 8, then the following statements hold:

(c) Under the conditions of Theorem 6, we have E(xk) �0
4Sk

in the last iterate x
k
.

(d) Under the conditions of Theorem 8, we have E(xk) �0
4Sk

in the last iterate x
k
.

In the last two cases (c) and (d) of Theorem 11, we do not have the Lipschitz
continuity of H since H(·) = ��K(·). Hence, we need the assumption that kg(x) �
g(ẋ)k  Bg for all x 2 dom(F )\dom(g), when g is not a�ne. The convergence bounds
of Theorem 11 already combine both the primal objective residual |F (x)�F

?
| (scaled

by a factor c? := max {1, ky?k}) and the primal feasibility violation dist�K (g(x)).
Moreover, their convergence rates are optimal. The statements (a) and (b) cover [55]
as special cases.
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7. Numerical experiments. In this section, we test and compare di↵erent
variants of Algorithm 1 on two numerical examples in subsections 7.1 and 7.2, respec-
tively. Our experiments are implemented in MATLAB R2018b, running on a laptop
with 2.8 GHz Quad-Core Intel Core i7 and 16Gb RAM using Microsoft Windows.

7.1. Quadratically constrained quadratic programming. To test our algo-
rithms on an unbounded dual domain problem, we consider the following quadratically
constrained quadratic program (QCQP):

(38)
min
x2Rp

n
f(x) := 1

2x
>
A0x+ b

>
0 x s.t. kxk  D,

1
2x

>
Aix+ b

>
i
x+ ci  0, i = 1, . . . , n

o
,

where Ai 2 Rp⇥p is symmetric and positive semidefinite, bi 2 Rp, and ci 2 R for
all i. In addition, A0 is positive definite, and D := 10. This problem is a special
case of (CP), and hence of (SP), where h := �X is the indicator function of X :=
{x 2 Rp : kxk  D}, H⇤(y) is the indicator of Rn

+, and �(x, y) :=
P

n

i=1 yigi(x) for
gi(x) :=

1
2x

>
Aix+ b

>
i
x+ ci.

We first denote Mi := kAikD + kbik and Ni :=
1
2kAikD

2 + kbikD + |ci|. Then
Assumption 2.3 is satisfied with L11 :=

p
nmax{kAik : 1  i  n} and L21 := kMk.

Moreover, for a given ẋ with g(ẋ) = 0, we have kg(x) � g(ẋ)k  Bg := kNk for
all x 2 X .

In this experiment, we solve (38) using six variants of Algorithm 1: Alg.1(v1)
(Theorem 3), Alg.1(v2) (Theorem 4), Alg.1(v3) (Theorem 6 for the merely convex
case), Alg.1(v3s) (Theorem 6 for the strongly convex case), Alg.1(v4) (Theorem 8
for the merely convex case), and Alg.1(v4s) (Theorem 8 for the strongly convex
case). We compare our schemes with the Accelerated Primal-Dual (APD) algorithm
(the strongly convex variant) in [18] and the Mirror Descent method in [33]. Note
that Mirror Descent is double-loop where the inner loop approximately computes the
prox-mapping. The input data is generated randomly using the standard Gaussian
distribution in MATLAB to make sure that (38) is feasible. We generate five test
cases, where p varies from 100 to 5000 variables, and n is from 10 to 100 constraints
as shown in Table 1.

To obtain a fair comparison, we tune the hyperparameters of these algorithms.
More specifically, for APD and Mirror-Descent, we tune their primal-dual step-sizes
in the range of [1⇥ 10�6

, 1]. For our algorithms, we only tune ⇢0 in the same range,
while updating other parameters based on our theoretical results in Theorems 3, 4, 6,
and 8, respectively. We use both the relative primal-dual (or duality) gap (P(xk) �
D(yk))/|P?

| and the CPU time (in seconds) to measure algorithm’s performance.
Our numerical results on the five tests are summarized in Table 1 after 105 iter-

ations. Note that, from the theoretical convergence guarantees, the gap is computed
based on averaging sequences, i.e., P(x̄k) � D(ȳk) for Alg.1(v1), Alg.1(v2), APD,
and Mirror-Descent. For Alg.1(v3), Alg.1(v3s), Alg.1(v4), and Alg.1(v4s), it
is computed based on the primal last-iterate and the dual averaging sequence, i.e.,
P(xk)�D(ȳk).

We observe from Table 1 that Alg.1(v4s) outperforms other algorithms in terms
of primal-dual gap in many cases. Alg.1(v2) is slightly better than APD when the
strong convexity is exploited. The CPU time of our variants is comparable with APD
and Mirror-Descent. Since Alg.1(v1), Alg.1(v3), and Alg.1(v4) do not utilize
the strong convexity of f in (38), their performance is worse than the strongly convex
variants: Alg.1(v2), (v3s), (v4s), APD, and Mirror-descent. For the merely convex
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Table 1
The numerical results of the eight algorithms on the five tests of the QCQP (38) after

105 iterations.

Prob. Size (p, n) (100, 10) (1000, 10) (1000, 100) (5000, 10) (5000, 100)
Algorithms Rel. gap Time[s] Rel. gap Time[s] Rel. gap Time[s] Rel. gap Time[s] Rel. gap Time[s]
Alg.1(v1) 3.9e-4 2.8e0 1.1e-2 2.7e1 7.2e-3 2.8e2 2.6e-2 1.0e2 2.6e-2 1.0e3
Alg.1(v2) 5.3e-6 2.8e0 1.8e-5 2.8e1 1.2e-4 2.8e2 4.1e-6 1.0e2 8.4e-6 1.0e3
Alg.1(v3) 4.5e-4 2.6e0 4.5e-5 2.7e1 9.0e-3 2.6e2 2.7e-4 1.2e2 1.7e-4 9.9e2
Alg.1(v3s) 5.2e-6 2.7e0 1.6e-6 2.8e1 5.1e-6 2.7e2 3.2e-6 1.1e2 5.5e-6 1.0e3
Alg.1(v4) 2.9e-4 2.7e0 3.0e-5 2.7e1 6.2e-3 2.8e2 1.8e-5 1.0e2 1.2e-4 1.0e3
Alg.1(v4s) 3.4e-6 2.7e0 1.2e-6 2.8e1 9.0e-6 2.8e2 1.6e-6 1.0e2 3.6e-6 1.0e3

APD 2.3e-7 2.7e0 6.6e-5 2.8e1 3.8e-5 2.8e2 2.9e-4 1.0e2 1.6e-4 1.0e3
Mirror-Descent 4.7e-4 5.3e0 2.2e-3 4.0e1 1.1e-3 5.5e2 4.6e-3 2.1e2 4.5e-3 1.4e3

case, the semi-ergodic variants Alg.1(v3) and Alg.1(v4) are still better than the
ergodic one, Alg.1(v1), in most cases.

7.2. Convex-concave minimax game. We consider a convex-concave mini-
max game between two players, where Player 1 chooses her strategy x 2 �p := {x 2

Rp

+ :
P

p

j=1 xj = 1} to minimize a cost function F (x), and simultaneously Player 2

chooses her strategy y 2 �n := {y 2 Rn

+ :
P

n

i=1 yi = 1} to minimize a cost function
H

⇤. In addition, Player 1 has to pay �(x, y) loss to Player 2. By concrete choices of �
as in [7, section 4.3], we can model this problem into the following minimax problem
with convex-concave term:

(39) min
x2�p

max
y2�n

⇢
eL(x, y) := 1

N

NX

j=1

log(1 + exp(a>
j
x)) + hg(x), l(y)i

�
.

Clearly, (39) can be cast into our model (SP) with f(x) := 1
N

P
N

j=1 log(1+e
a
>
j
x), h(x)

and H
⇤(y) being the indicator functions of �p and �n, and �(x, y) := hg(x), l(y)i.

By choosing di↵erent g(x) and l(y), (39) can cover both convex-concave and convex-
linear cases.

Convex-linear case. Let gi(x) :=
bi

1+xi

and li(y) := yi for i = 1, . . . , n. Then
(39) becomes a convex-linear problem. It is easy to check that Assumption 2.3 is
satisfied with L11 := 2kbk1 and L21 := kbk1. Since f in (39) is not strongly convex,
we solve (39) using two variants of Algorithm 1: Alg.1(v1) and Alg.1(v3), both
with O(1/k) convergence rates on the primal-dual gap. We compare Alg.1(v1) and
Alg.1(v3) with APD and Mirror-Descent. The hyperparameters of these algorithms
are tuned as in subsection 7.1.

Convex-concave case. Let gi(x) := bi

1+xi

and li(y) := �
1
2y

2
i
for i = 1, . . . , n.

Then (39) becomes a general convex-concave problem. It is easy to check that As-
sumption 2.4 is satisfied with L11 := L21 := L22 := kbk1. Since this is a general
convex-concave problem, we solve (39) using the variant of Algorithm 1 in Theorem 2
named Alg.1(v5) with O(1/k) convergence rate on the primal-dual gap. We compare
Alg.1(v5) with APD and Mirror-Descent. The hyperparameters of these algorithms
are tuned as in subsection 7.1.

For input data, we take the real-sim dataset from LIBSVM [6] to form vector ai
and generate bi by using a standard uniform distribution. To fully test the perfor-
mance of five algorithms, we generate 30 problem instances by randomly splitting the
real-sim dataset into 30 equal blocks (N = 2411 samples per block), respectively.
The performance of the five algorithms on 30 problem instances is depicted in Figure 1.
Here, for Alg.1(v1), Alg.1(v5), APD, and Mirror-Descent, the primal-dual gap is
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computed based on the primal and dual averaging sequences, i.e., P(x̄k) � D(ȳk),
while for Alg.1(v3), this gap is computed through the primal last-iterate and the
dual averaging sequence, i.e., P(xk) � D(ȳk). Next, we compute the statistic mean
over all 30 instances and highlight it in a thick curve of Figure 1, while the deviation
range of the duality gap is plotted in a shaded area.

From Figure 1 (left), we observe that Alg.1(v3) converges faster than Alg.1(v1),
APD, and Mirror-Descent. However, it exhibits the most oscillation behavior as
shown through both the mean curve and the shaded deviation area. In fact, this is
normal behavior since it uses the last-iterate sequence, which does not have a mono-
tone decrease on the duality gap, and thus is less smooth than other curves, which
use an averaging sequence. Alternatively, Figure 1 (right) shows the performance of
Alg.1(v5) (stated in Theorem 2) and its competitors. Clearly, Alg.1(v5) outper-
forms both APD and Mirror-Descent.

10-2 10-1 100

Time (s)

10-5

10-4

10-3

10-2

10-1

100

Algorithm 1 (v1)

Algorithm 1 (v3)

APD

Mirror Descent

10-2 10-1 100

Time (s)

10-5

10-4

10-3

10-2

Algorithm 1 (v5)

APD

Mirror Descent

Fig. 1. The average performance of di↵erent algorithms on 30 problem instances of (39) using
the real-sim dataset. Left: The convex-linear case. Right: The convex-concave case.

Appendix A. Proof of Lemma 1: Properties of  ⇢. Since ⇠(x, s, y, u) :=
�(x, u)�hs, ui�

1
2⇢ku�yk

2 is linear in s and convex in x,  ⇢(x, s, y) = maxu ⇠(x, s, y, u)

is convex in both x and s for any y 2 dom(H⇤) if u⇤
⇢
(x, s, y) 2 dom(H⇤). Moreover,

since ⇠(x, s, y, u) is jointly strongly concave in (y, u),  ⇢(x, s, y) = maxu ⇠(x, s, y, u) is
concave in y for any (x, s) 2 dom(F ) ⇥ dom(H). The proof of (11) is similar to [46,
Lemma A.1(b)].

Now, from the optimality condition of (9), we havery�(x, u⇤
⇢
) = 1

⇢
(u⇤

⇢
�y)+s and

ry�(x̂, û⇤
⇢
) = 1

⇢
(û⇤

⇢
�ŷ)+ŝ, where we abbreviate u⇤

⇢
:= u

⇤
⇢
(x, s, y) and û

⇤
⇢
:= u

⇤
⇢
(x̂, ŝ, ŷ),

respectively. Using µy-concavity of �(x, ·), we can easily derive that

1
⇢
kû

⇤
⇢
�u

⇤
⇢
k
2 + hŝ�s,û

⇤
⇢
�u

⇤
⇢
i�

1
⇢
hŷ�y,û

⇤
⇢
�u

⇤
⇢
i=hry�(x̂,û⇤

⇢
)�ry�(x,u⇤

⇢
),û⇤

⇢
�u

⇤
⇢
i

�µykû
⇤
⇢
�u

⇤
⇢
k
2+hry�(x̂,u⇤

⇢
)�ry�(x,u⇤

⇢
),û⇤

⇢
�u

⇤
⇢
i.

Furthermore, by the Cauchy–Schwarz inequality and the L21-smoothness of �(·, u⇤
⇢
),

we can derive from the last expression that
�
1
⇢
+µy

�
kû

⇤
⇢
�u

⇤
⇢
k
2
 hry�(x̂,u⇤

⇢
)�ry�(x,u⇤

⇢
),û⇤

⇢
�u

⇤
⇢
i�hŝ�s�

1
⇢
(ŷ�y),û⇤

⇢
�u

⇤
⇢
i


⇥
L21kx̂�xk+kŝ�sk+ 1

⇢
kŷ�yk

⇤
kû

⇤
⇢
�u

⇤
⇢
k,

which proves the first estimate of (12).
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Next, let us redefine û
⇤
⇢
:= u

⇤
⇢
(x̂, ŝ, y) and use a shorthand � := �(x̂, ŝ;x, s, y).

Then, by the optimality condition of (9), we have ŝ+ 1
⇢
(û⇤

⇢
� y) = ry�(x̂, û⇤

⇢
). Using

this expression and  ⇢(x, s, y) = �(x, u⇤
⇢
) � hs, u

⇤
⇢
i �

1
2⇢ku

⇤
⇢
� yk

2 from (9), we can
easily show that

� = �(x̂, û⇤
⇢
) + hry�(x̂, û⇤

⇢
), u⇤

⇢
� û

⇤
⇢
i � �(x, u⇤

⇢
)� hrx�(x, u⇤

⇢
), x̂� xi+ 1

2⇢kû
⇤
⇢
� u

⇤
⇢
k
2
.

Suppose that u
⇤
⇢
2 dom(H⇤). Then, by µy-concavity of �(x̂, ·) and convexity of

�(·, u⇤
⇢
), the last expression leads to

� � �(x̂,u⇤
⇢
)��(x,u⇤

⇢
)�hrx�(x,u⇤

⇢
),x̂�xi+

⇣
1
2⇢+

µy

2

⌘
kû

⇤
⇢
�u

⇤
⇢
k
2
�

(1+⇢µy)
2⇢ kû

⇤
⇢
�u

⇤
⇢
k
2
.

Alternatively, by L22-smoothness of �(x̂, ·) and L11-smoothness of �(·, u⇤
⇢
), we also have

�  �(x̂, u⇤
⇢
)� �(x, u⇤

⇢
)� hrx�(x, u⇤

⇢
), x̂� xi+

⇣
1
2⇢ + L22

2

⌘
kû

⇤
⇢
� u

⇤
⇢
k
2


L11
2 kx̂� xk

2 + (1+⇢L22)
2⇢ kû

⇤
⇢
� u

⇤
⇢
k
2
.

Combining both inequalities obtained above, we get the second estimate of (12).

Appendix B. Key estimates for convergence analysis. This appendix
provides di↵erent general bounds for our convergence analysis in what follows.

Lemma 12. Suppose that Assumptions 2.1, 2.2, and either 2.3 or 2.4 hold. Let

u
k+1

, s
k+1

, and x
k+1

be updated by (13) and (14), respectively. Let L, L⇢, and  ⇢

be given by (5), (8), and (9), respectively. Then, for any (x, s) 2 dom(F )⇥ dom(H),
we have

(40)

L⇢k
(xk+1

, s
k+1

, ŷ
k)  F (x) +H(s) + ˆ̀

⇢k
(x, s; ŷk) + Lkhx

k+1
� x̂

k
, x� x

k+1
i

+ 1
2

�
Lk

11 + Lf + ⇢k(1+⇢kL22)L
2
21

(1+⇢kµy)2

�
kx

k+1
� x̂

k
k
2

�
µH

2 ks
k+1

� sk
2
�

µh

2 kx
k+1

� xk
2
�

µf

2 kx̂
k
� xk

2
,

where ˆ̀
⇢k
(x, s; ŷk) :=  ⇢k

(x̂k
, s

k+1
, ŷ

k) + hrx ⇢k
(x̂k

, s
k+1

, ŷ
k), x� x̂

k
i + hrs ⇢k

(x̂k
,

s
k+1

, ŷ
k), s � s

k+1
i, and Lk

11 := L11ku
k+1

k under Assumption 2.3 and Lk

11 := L11

under Assumption 2.4.

Proof. First, the optimality condition of (14) can be written as

(41)
rh(xk+1) +rf(x̂k) +rx ⇢k

(x̂k
, s

k+1
, ŷ

k) + Lk(x
k+1

� x̂
k) = 0,

rh(xk+1) 2 @h(xk+1).

Next, by convexity of h and f , and Lf -smoothness of f , for any x 2 dom(F ), we have
(

h(xk+1)  h(x) + hrh(xk+1), x
k+1

� xi �
µh

2 kx
k+1

� xk
2
,

f(xk+1)  f(x) + hrf(x̂k), x
k+1

� xi+ Lf

2 kx
k+1

� x̂
k
k
2
�

µf

2 kx̂
k
� xk

2
.

Combining these two inequalities and then using (41) and F := f + h, we can derive

(42) F (xk+1)
(41)
 F (x)� hrx ⇢k

(x̂k
, s

k+1
, ŷ

k), x
k+1

� xi+ Lf

2 kx
k+1

� x̂
k
k
2

+ Lkhx
k+1

� x̂
k
, x� x

k+1
i �

µh

2 kx
k+1

� xk
2
�

µf

2 kx̂
k
� xk

2
.
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Similarly, using the optimality condition �rs ⇢k
(x̂k

, s
k+1

, ŷ
k) 2 @H(sk+1) of (13)

and the µH -convexity of H, we have

(43) H(sk+1)  H(s) + hrs ⇢k
(x̂k

, s
k+1

, ŷ
k), s� s

k+1
i �

µH

2 ks
k+1

� sk
2
.

In addition, from u
k+1

2 @H(sk+1) (or equivalently s
k+1

2 @H
⇤(uk+1)), we have

u
k+1

2 dom(H⇤). Using (12) in Lemma 1, we get

(44)
 ⇢k

(xk+1
, s

k+1
, ŷ

k)   ⇢k
(x̂k

, s
k+1

, ŷ
k) + hrx ⇢k

(x̂k
, s

k+1
, ŷ

k), xk+1
� x̂

k
i

+ Lk

11
2 kx

k+1
� x̂

k
k
2 + (1+⇢kL22)

2⇢k

ku
⇤
⇢k
(xk+1

, s
k+1

, ŷ
k)� u

k+1
k
2
.

By (12) again, we have ku
⇤
⇢k
(xk+1

, s
k+1

, ŷ
k) � u

k+1
k 

⇢kL21

1+⇢kµy

kx
k+1

� x̂
k
k. Now,

combining (8), (42), (43), (44), and the last inequality, and using ˆ̀
⇢k
(·; ŷk), we can

easily derive

L⇢k
(xk+1

, s
k+1

, ŷ
k)  F (x) +H(s) + ˆ̀

⇢k
(x, s; ŷk) + Lkhx

k+1
� x̂

k
, x� x

k+1
i

+ 1
2

⇣
Lk

11 + Lf + ⇢k(1+⇢kL22)L
2
21

(1+⇢kµy)2

⌘
kx

k+1
� x̂

k
k
2

�
µH

2 ks
k+1

� sk
2
�

µh

2 kx
k+1

� xk
2
�

µf

2 kx̂
k
� xk

2
,

which proves (40).

Next, using Lemma 12, we can prove the following estimate for accelerated methods.

Lemma 13. Suppose that Assumptions 2.1, 2.2, and either 2.3 or 2.4 hold. Let

s
k+1

, x
k+1

, and ỹ
k+1

be computed by (13), (14), and (16), respectively. Let L and

L⇢ be given by (5) and (8), respectively. Then, for any (x, s) 2 dom(F ) ⇥ dom(H),
we have

(45)

L⇢k
(xk+1

, s
k+1

, ŷ
k)� L(x, s, ỹk+1)  (1� ⌧k)

⇥
L⇢k�1(x

k
, s

k
, ŷ

k)� L(x, s, ỹk)
⇤

+ ⌧
2
k
(Lk�µf )

2 k
1
⌧k
[x̂k

� (1� ⌧k)xk]� xk
2
�

⌧
2
k
(Lk+µh)

2 k
1
⌧k
[xk+1

� (1� ⌧k)xk]� xk
2

�
(Lk�Lk

11�Lf�⇢k(1+⇢kL22)L
2
21)

2 kx
k+1

� x̂
k
k
2
�

1
2⇢k

k(uk+1
� ŷ

k)� (1� ⌧k)(ūk
� ŷ

k)k2

�
(1�⌧k)(⌧k��⇢k)

2⇢k

kū
k
� ŷ

k
k
2
�

µF ⌧k(1�⌧k)
2 kx

k
� xk

2
,

where ū
k := u

⇤
⇢k
(xk

, s
k
, ŷ

k); uk+1 := u
⇤
⇢k
(x̂k

, s
k+1

, ŷ
k); µF := µf + µh; Lk

11 is given

in Lemma 12; and �⇢k := ⇢k�⇢k�1

⇢k

if �(x, y) := hg(x), yi, and �⇢k := ⇢k�⇢k�1

⇢k�1

otherwise.

Proof. Without loss of generality, assume that µy = 0. Let Lk

11, ū
k, and u

k+1 be
as given in Lemma 13, and let Bk := Lk

11 + Lf + ⇢k(1 + ⇢kL22)L2
21. First, we have

(
(1�⌧k)kxk+1

�x
k
k
2+⌧kkxk+1

�xk
2 = kx

k+1
�(1�⌧k)xk

�⌧kxk
2+⌧k(1�⌧k)kxk

�xk
2
,

(1�⌧k)kx̂k
�x

k
k
2+⌧kkx̂k

�xk
2 = kx̂

k
�(1�⌧k)xk

�⌧kxk
2+⌧k(1�⌧k)kxk

�xk
2
.

Plugging (x, s) := (xk
, s

k) into (40) of Lemma 12, and using (12) once again, we
obtain

L⇢k
(xk+1

, s
k+1

, ŷ
k)  L⇢k

(xk
, s

k
, ŷ

k) + Lkhx
k+1

� x̂
k
, x

k
� x

k+1
i

+ Bk

2 kx
k+1

� x̂
k
k
2
�

µf

2 kx̂
k
� x

k
k
2
�

µh

2 kx
k+1

� x
k
k
2
�

1
2⇢k

ku
k+1

� ū
k
k
2
.
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Next, multiplying the above estimate by 1 � ⌧k 2 [0, 1), and (40) by ⌧k 2 (0, 1], and
then summing up the results, and using the first two elementary expressions, we get

(46)

L⇢k
(xk+1

, s
k+1

, ŷ
k)

 (1� ⌧k)L⇢k
(xk

, s
k
, ŷ

k) + ⌧k

⇥
F (x) +H(s) + ˆ̀

⇢k
(x, s; ŷk)

⇤

+ Lkhx
k+1

� x̂
k
, (1� ⌧k)xk + ⌧kx� x

k+1
i �

(1�⌧k)
2⇢k

ku
k+1

� ū
k
k
2

�
µh⌧

2
k

2 k
1
⌧k
[xk+1

� (1� ⌧k)xk]� xk
2 + Bk

2 kx
k+1

� x̂
k
k
2

�
(µf+µh)⌧k(1�⌧k)

2 kx
k
� xk

2
�

µf⌧
2
k

2 k
1
⌧k
[x̂k

� (1� ⌧k)xk]� xk
2
.

Using the relation 2hu, vi = ku+ vk
2
� kuk

2
� kvk

2, we further have

T1 :=Lkhx
k+1

� x̂
k
, (1� ⌧k)xk + ⌧kx� x

k+1
i+ Bk

2 kx
k+1

� x̂
k
k
2

= Lk⌧
2
k

2

⇥
k

1
⌧k
[x̂k

� (1� ⌧k)xk]� xk
2
� k

1
⌧k
[xk+1

� (1� ⌧k)xk]� xk
2
⇤

�
(Lk�Bk)

2 kx
k+1

� x̂
k
k
2
.

Now, let �⇢k := ⇢k�⇢k�1

⇢k

if �(x, y) := hg(x), yi, and �⇢k := ⇢k�⇢k�1

⇢k�1
otherwise. Using

(11) and (8), we can easily get

(47)

(
L⇢k

(xk
, s

k
, ŷ

k)  L⇢k�1(x
k
, s

k
, ŷ

k) + �⇢k

2⇢k

kū
k
� ŷ

k
k
2
,

F (x) +H(s) + ˆ̀
⇢k
(x, s; ŷk)  L(x, s, uk+1)� 1

2⇢k

ku
k+1

� ŷ
k
k
2
.

Substituting T1 and (47) into (46), we can further derive

(48)

L⇢k
(xk+1

,s
k+1

,ŷ
k)

 (1�⌧k)L⇢k�1(x
k
,s

k
,ŷ

k)+⌧kL(x,s,uk+1)� (µf+µh)⌧k(1�⌧k)
2 kx

k
�xk

2

+ ⌧
2
k

2 (Lk�µf )k
1
⌧k
[x̂k

�(1�⌧k)xk]�xk
2
�

(Lk�Bk)
2 kx

k+1
�x̂

k
k
2

�
⌧
2
k

2 (Lk+µh)k
1
⌧k
[xk+1

�(1�⌧k)xk]�xk
2
�

(1�⌧k)
2⇢k

ku
k+1

�ū
k
k
2

�
⌧k

2⇢k

ku
k+1

�ŷ
k
k
2+ (1�⌧k)�⇢k

2⇢k

kū
k
�ŷ

k
k
2
.

The last three terms of (48) can be processed as follows:

T2 := (1� ⌧k)kuk+1
� ū

k
k
2 + ⌧kku

k+1
� ŷ

k
k
2
� (1� ⌧k)�⇢kkūk

� ŷ
k
k
2

= k(uk+1
� ŷ

k)� (1� ⌧k)(ūk
� ŷ

k)k2 + (1� ⌧k)(⌧k ��⇢k)kūk
� ŷ

k
k
2
.

Moreover, since ỹ
k+1 := (1 � ⌧k)ỹk + ⌧ku

k+1 due to (16), by concavity of L(x, s, ·)
w.r.t. y, we have ⌧kL(x, s, uk+1)  L(x, s, ỹk+1) � (1 � ⌧k)L(x, s, ỹk). Substituting
this expression and T2 into (48), we obtain (45).

For the convenience of our analysis in what follows, we need the following addi-
tional result.

Corollary 14. Under the conditions and configuration of Lemma 12, if

{(xk
, s

k
, ŷ

k)} is updated by the variant (17) of Algorithm 1 with ⇢k > ⌘k > 0, then

(49)

L⇢k
(xk+1

, s
k+1

, y)

 L(x, s, uk+1) + (Lk�µf )
2 kx

k
� xk

2
�

(Lk+µh)
2 kx

k+1
� xk

2

�
1
2

h
Lk � Lk

11 � Lf � ⇢k(1 + ⇢kL22)L2
21 �

⌘k⇢kL
2
21

⇢k�⌘k

i
kx

k+1
� x̂

k
k
2

+ 1
2⌘k

ky � ŷ
k
k
2
�

1
2⌘k

ky � ŷ
k+1

k
2
.
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Proof. Using the second line of (47) and x̂
k = x

k, we can derive from (40) that

L⇢k
(xk+1

, s
k+1

, ŷ
k)  L(x, s, uk+1) + (Lk�µf )

2 kx
k
� xk

2
�

(Lk+µh)
2 kx

k+1
� xk

2

�
[Lk�Lk

11�⇢k(1+⇢kL22)L
2
21]

2 kx
k+1

� x̂
k
k
2
�

1
2⇢k

ku
k+1

� ŷ
k
k
2
,

where u
k+1 := u

⇤
⇢k
(x̂k

, s
k+1

, ŷ
k). By concavity of  ⇢(x, s, ·) w.r.t. y and ŷ

k+1 :=

ŷ
k + ⌘kry ⇢k

(xk+1
, s

k+1
, ŷ

k) = ŷ
k + ⌘k

⇢k

(u⇤
⇢k
(xk+1

, s
k+1

, ŷ
k)� ŷ

k) from (17), we have

L⇢k
(xk+1

, s
k+1

, y)  L⇢k
(xk+1

, s
k+1

, ŷ
k) + hry ⇢k

(xk+1
, s

k+1
, ŷ

k), y � ŷ
k
i

= L⇢k
(xk+1

, s
k+1

, ŷ
k) + 1

2⌘k

ky � ŷ
k
k
2
�

1
2⌘k

ky � ŷ
k+1

k
2

+ ⌘k

2⇢2
k

ku
⇤
⇢
(xk+1

, s
k+1

, ŷ
k)� ŷ

k
k
2
.

Combining the last two estimates, we obtain

L⇢k
(xk+1

, s
k+1

, y)  L(x, s, uk+1) + (Lk�µf )
2 kx

k
� xk

2
�

(Lk+µh)
2 kx

k+1
� xk

2

+ 1
2⌘k

ky � ŷ
k
k
2
�

1
2⌘k

ky � ŷ
k+1

k
2
�

(Lk�Lk

11�⇢k(1+⇢kL22)L
2
21)

2 kx
k+1

� x̂
k
k
2

�
1

2⇢k

ku
k+1

� ŷ
k
k
2 + ⌘k

2⇢2
k

ku
⇤
⇢k
(xk+1

, s
k+1

, ŷ
k)� ŷ

k
k
2
.

Using (12), ⇢k > ⌘k > 0, and an elementary inequality ⇢k

⌘k

kwk
2
 kzk

2+ ⌘k

⇢k�⌘k

kw�zk
2,

we can easily show that

⌘k

⇢k

ku
⇤
⇢
(xk+1

, s
k+1

, ŷ
k)� ŷ

k
k
2
� ku

k+1
� ŷ

k
k
2


⌘k

⇢k�⌘k

ku
⇤
⇢
(xk+1

, s
k+1

, ŷ
k)� u

k+1
k
2

(12)


⌘k⇢
2
k
L

2
21

⇢k�⌘k

kx
k+1

� x
k
k
2
.

Substituting this estimate into the above inequality, we obtain (49).

Appendix C. Ergodic convergence of Algorithm 1. This appendix pro-
vides the full proofs of Theorems 2, 3, and 4.

C.1. Proof of Theorem 2. First, by (19), we have Lk � Lk

11 � Lf � ⇢k(1 +

⇢kL22)L2
21 �

⌘k⇢kL
2
21

⇢k�⌘k

= 0. Moreover, the update of ⇢k in Theorem 2 for both cases

implies that ⇢j(Lj +µh) = ⇢j+1(Lj+1�µf ). Using these facts and ⇢j = 2⌘j into (49),
we have

⌘j

⇥
L(xj+1

, s
j+1

, y)� L(x, s, uj+1)
⇤


⇢j(Lj�µf )

4 kx
j
� xk

2 + 1
2kŷ

j
� yk

2

�
⇥
⇢j+1(Lj+1�µf )

4 kx
j+1

� xk
2 + 1

2kŷ
j+1

� yk
2
⇤
.

Summing up this inequality from j = 0 to j = k and noting that ŷ0 = y
0, we obtain

P
k

j=0 ⌘j

⇥
L(xj+1

, s
j+1

, y)� L(x, s, uj+1)
⇤


⇢0(L0�µf )

4 kx
0
� xk

2 + 1
2ky

0
� yk

2
.

Dividing this estimate by
P

k

j=0 ⌘j , and using convexity of L w.r.t. x and s, concavity

of L in y, {(x̄k
, ȳ

k)} from (18), and s̄
k :=

�P
k

j=0 ⌘j

��1Pk

j=0 ⌘js
j+1, we get

(50) L(x̄k
, s̄

k
, y)� L(x, s, ȳk)  1

4
P

k

j=0 ⌘j

⇥
⇢0(L0 � µf )kx0

� xk
2 + 2ky0 � yk

2
⇤
.

Case 1: If µF = 0, then using ⌘j =
⇢j

2 = ⇢0

2 , we have Sk := 2
P

k

j=0 ⌘j = ⇢0(k+1).

Case 2: If µF > 0 and L22 = 0, then applying again the update rule of ⇢k
from (19), we can show that ⇢k+1 � ⇢k + µF

8L2
21
, provided that ⇢0 �

µF+4⌫
16L2

21
, where
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⌫ := L11 + Lf � µf � 0. By induction, we get ⇢k � ⇢0 + µF

8L2
21
(k + 1). Therefore,

if we define Sk := (k + 1)
⇥
⇢0 +

µF

16L2
21
(k + 2)

⇤
, then we have 2

P
k

j=0 ⌘j =
P

k

j=0 ⇢j �

⇢0(k + 1) + µF

16L2
21
(k + 1)(k + 2) = Sk.

Finally, by (6), we have eL(x̄k
, y)  L(x̄k

, s̄
k
, y) and eL(x, ȳk) = L(x, s̆k, ȳk) for

s̆
k
2 @H

⇤(ȳk). Hence, eL(x̄k
, y) � eL(x, ȳk)  L(x̄k

, s̄
k
, y) � L(x, s̆k, ȳk). Substituting

s := s̆
k and this inequality into (50) and using Sk as defined in Cases 1 and 2, we

obtain eL(x̄k
, y) � eL(x, ȳk) 

1
2Sk

⇥
⇢0(L0 � µf )kx0

� xk
2 + 2ky0 � yk

2
⇤
. Taking the

supremum on both sides of this inequality over (x, y) 2 Z and using GZ from (4), we
get (20).

C.2. Technical lemmas for Theorems 3 and 4. Since we consider �(x, y) =
hg(x), yi as a convex-linear function in Theorems 3 and 4, (13) becomes

(51)
u
k+1 := argmin

u

n
H

⇤(u)� hg(x̂k), ui+ 1
2⇢k

ku� ŷ
k
k
2
o

= prox
⇢kH

⇤(ŷk + ⇢kg(x̂
k)).

We will need the following lemma to prove Theorem 3.

Lemma 15. Let {(xk
, ŷ

k)} be generated by the variant (17) of Algorithm 1, where

Lk, ⇢k, and ⌘k satisfy (22). Then we have Lk � Lk

11 � Lf � ⇢kL
2
21 �

⇢k⌘kL
2
21

⇢k�⌘k

� 0 for

all k � 0. In addition, we can upper bound Lk by 0 < Lk  L̄, where

(52)
L̄ := L11[kẏk+ kx

0
� x

?
k+ ky

0
� y

?
k+ ky

?
� ẏk] + Lf + 2L21

+
p
2L11[L21kx

0 � x?k+ L21ky
0 � y?k+ kg(x?)� ṡk].

Proof. Since ẏ 2 @H(ṡ) for some ṡ 2 ri (dom(H)), we have ẏ�prox
⇢kH

⇤(ẏ+⇢kṡ) =

0. Since x̂k = x
k, using u

k+1 = prox
⇢kH

⇤(ŷk+⇢kg(xk)) from (51), we can deduce that

(53)
ku

k+1
k= kprox

⇢kH
⇤
�
ŷ
k + ⇢kg(xk)

�
� prox

⇢kH
⇤(ẏ + ⇢kṡ) + ẏk

 kẏk+ kŷ
k
� ẏk+ ⇢kkg(xk)� ṡk.

By the update rule of Lk, ⌘k, and ⇢k as (22), and using (53), for k � 0, we have

(54)

8
<

:
L11⇢kkg(xk)� ṡk = 2

Lk

L11kg(xk)� ṡk 
p
2L11kg(xk)� ṡk,

2⇢kL2
21 = 4L2

21
Lk

 2L21.

Therefore, in view of (53) and (54), we can bound

Lk � Lk

11 � Lf � ⇢kL
2
21 �

⇢k⌘kL
2
21

⇢k�⌘k

�Lk � L11[kẏk+ kŷ
k
� ẏk]�

p
2L11kg(xk)� ṡk

� Lf � 2L21

= 0.

Substituting this condition, µf = µh = 0, and ⌘k := 1
Lk

into (49) of Corollary 14, we
obtain for any (x, s, y) 2 dom(F )⇥ dom(H)⇥ dom(H⇤) that

(55)
L⇢k

(xk+1
, s

k+1
, y)� L(x, s, uk+1) 

Lk

2

⇥
kx

k
� xk

2
� kx

k+1
� xk

2
⇤

+ Lk

2

⇥
kŷ

k
� yk

2
� kŷ

k+1
� yk

2
⇤
.

By (7), we have L⇢k
(xk+1

, s
k+1

, y
?)� L(x?

, s
?
, u

k+1) � 0. Hence, (55) implies that

kx
k+1

� x
?
k
2 + kŷ

k+1
� y

?
k
2
 kx

k
� x

?
k
2 + kŷ

k
� y

?
k
2
.

This means that {kx
k
� x

?
k
2 + kŷ

k
� y

?
k
2
} is a nonincreasing sequence. Therefore,

by induction, we get kŷk � y
?
k
2
 kx

0
� x

?
k
2 + ky

0
� y

?
k
2 and kx

k
� x

?
k
2
 kx

0
�

x
?
k
2 + ky

0
� y

?
k
2.
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Finally, using these bounds, x̂
k = x

k, and kg(xk) � g(x?)k  L21kx
k
� x

?
k,

we have

Lk := L11[kẏk+ kŷ
k
� ẏk] +

p
2L11kg(xk)� ṡk+ Lf + 2L21

 L11[kẏk+ kx
0
� x

?
k+ ky

0
� y

?
k+ ky

?
� ẏk] + Lf + 2L21

+
p
2L11[L21kx

0 � x?k+ L21ky
0 � y?k+ kg(x?)� ṡk] =: L̄,

which proves that Lk  L̄.

We also need the following two additional lemmas to prove Theorem 4.

Lemma 16. Let ⌘k, ⇢k, Lk be updated by (25). We define the following constants:

(56)

8
><

>:

C1 :=
p
⌘0(L0 � µf )kx0 � x?k2 + kŷ0 � y?k2,

C2 := L11 (kẏk+ C1 + ky
?
� ẏk) + ,

L̂ := Lf + C2 + L11C1 + ⇢0

�
L11kg(x?)� ṡk+ 2L2

21 + 
�
.

Then ⇢k �
⇢0L0

L̂
. Moreover, Ak and Bk updated by (26) are, respectively, upper

bounded by

Ak  C2 and Bk 
L̂L11C1
⇢0L0

+ L11kg(x
?)� ṡk+ .

Proof. First, from (53) we have kuk+1
k  kẏk+ kŷ

k
� ẏk+⇢kkg(xk)� ṡk. By the

update rule (26), we also have Ak � L11[kẏk + kŷ
k
� ẏk] and Bk � L11kg(xk) � ṡk.

Combining these two statements, we can show that

Lk�L
k

11�Lf�⇢kL
2
21�

⇢k⌘kL
2
21

⇢k�⌘k

(25)
= Ak+⇢kBk+Lf+2⇢kL2

21�[L11ku
k+1

k+Lf+2⇢kL2
21]

� Ak�L11

�
kẏk+kŷ

k
�ẏk

�
+⇢k

�
Bk�L11kg(xk)� ṡk

�

� 0.

Using this condition in (49), for any (x, s, y) 2 dom(F )⇥dom(H)⇥dom(H⇤), we have

L⇢k
(xk+1

, s
k+1

, y)� L(x, s, uk+1) 
(Lk�µf )

2 kx
k
� xk

2
�

(Lk+µh)
2 kx

k+1
� xk

2

+ 1
2⌘k

kŷ
k
� yk

2
�

1
2⌘k

kŷ
k+1

� yk
2
.

Multiplying both sides of the above inequality by ⇢k and using ⇢k(Lk + µh) =
⇢k+1(Lk+1 � µf ) obtained from the update rule of ⇢k in (25), we get

(57)

⇢k

⇥
L⇢k

(xk+1
, s

k+1
, y)� L(x, s, uk+1)

⇤

(25)


⇢k(Lk�µf )
2 kx

k
� xk

2 + kŷ
k
� yk

2

�
⇢k+1(Lk+1�µf )

2 kx
k+1

� xk
2
� kŷ

k+1
� yk

2
.

By (7), we have L⇢k
(xk+1

, s
k+1

, y
?)�L(x?

, s
?
, u

k+1) � 0. Therefore, the last inequal-
ity implies that

⇢k+1(Lk+1� µf )kx
k+1

� x
?
k
2 + 2kŷk+1

� y
?
k
2
 ⇢k(Lk� µf )kx

k
� x

?
k
2+ 2kŷk� y

?
k
2
.

As a consequence, {⇢k(Lk � µf )kxk
� x

?
k
2 + 2kŷk � y

?
k
2
} is nonincreasing, and

⇢k(Lk � µf )kx
k
� x

?
k
2 + 2kŷk � y

?
k
2
 C

2
1 := ⇢0(L0 � µf )kx

0
� x

?
k
2 + 2kŷ0 � y

?
k
2
.
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Moreover, using Lk := Lf +Ak + ⇢k(Bk + 2L2
21) from (25), one can easily show that

⇢k(Lk � µf ) � 2⇢2
k
L
2
21. Therefore, we have

(58) ⇢kL21kx
k
� x

?
k  C1 and kŷ

k
� y

?
k  C1.

From (26), by induction, we have

Ak  max
1jk

{L11[kẏk+ kŷ
j
� ẏk]}+  and Bk  max

1jk

{L11kg(x
j)� ṡk}+ .

Therefore, Ak can be upper bounded as

(59)
Ak  max

1jk

{L11

⇥
kẏk+ kŷ

j
� ẏk

⇤
}+ 

(58)
 C2 := L11 [kẏk+ C1 + ky

?
� ṡk] + .

Similarly, Bk can be upper bounded as

(60)

Bk  max
1jk

{L11kg(xj)� ṡk}+ 

 max
1jk

�
L11

⇥
L21kx

j
� x

?
k+ kg(x?)� ṡk

⇤ 
+ 

(58)
 L11C1 max

1jk

{
1
⇢k

}+ L11kg(x?)� ṡk+ .

Now, we show that ⇢k is lower bounded. Note that ⇢k updated by (25) satisfies
⇢k�1(Lk�1+µh) = ⇢k(Lk�µf ), leading to ⇢k�1Lk�1 = ⇢kLk�⇢kµf�⇢k�1µh  ⇢kLk.
Hence, by induction, we have ⇢kLk � ⇢0L0. Assume ⇢t is the smallest value up to
the iteration k, i.e., ⇢t = min0jk{⇢j}  ⇢k for some 0  t  k. Then

⇢tLt = ⇢t(At + ⇢tBt + Lf + 2⇢tL2
21)

(59)(60)
 ⇢t

⇥
Lf + C2 + L11C1 + ⇢t(L11kg(x?)� ṡk+ + 2L2

21)
⇤

 ⇢t

⇥
Lf + C2 + L11C1 + ⇢0(L11kg(x?)� ṡk+ + 2L2

21)
⇤
=: ⇢tL̂.

Consequently, we have ⇢t �
⇢0L0

L̂
, and hence ⇢k �

⇢L0

L̂
. Using ⇢k �

⇢L0

L̂
in (60),

we get

Bk 
L11C1L̂

⇢0L0
+ L11kg(x

?)� ṡk+ ,

which completes the proof of Lemma 16.

Lemma 17. Let ⌘k, ⇢k, Lk, Ak, and Bk be updated by (25) and (26), respectively,
and J0 := {k � 0 : Ak+1 > Ak or Bk+1 > Bk}. Then, for all k 2 J0, we have

(61) |J0| < k̄0 :=

⇠
C2



⇡
·

⇠
C1L11L̄+ ⇢0L0[L11kg(x?)� ṡk+ ]

⇢0L0

⇡
.

In addition, for any k � 0 such that k /2 J0, we have

(62) ⇢k+1 � ⇢k � P0 := ⇢0L0µF

L̂(C2+Lf+µh)+2L11C1L̂+[2L11kg(x?)�ṡk+2+4L2
21]⇢0L0

> 0,

where C1, C2, and L̂ are defined as in (56), and L̄ is defined by (52).

Proof. First, since Ak  C2 and Bk 
L11C1L̂

⇢0L0
+L11kg(x?)� ṡk+ due to Lemma

16, combining these facts and (26), we can easily show that for any k 2 J0, it holds
that k  k̄0, where k̄0 is given in (61).
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Next, from the update rules of Ak and Bk in (26) again, for all k /2 J0, we have
Bk+1 = Bk and Ak+1 = Ak. Hence, using ⇢k(Lk + µh) = ⇢k+1(Lk+1 � µf ) derived
from the update rule of ⇢k in (25), we have

⇢k(Ak + Lf + µh) + ⇢
2
k
(Bk + 2L2

21) = ⇢k+1(Ak + Lf � µf ) + ⇢
2
k+1(Bk + 2L2

21).

Using ⇢2
k
� ⇢

2
k+1 + 2⇢k+1(⇢k � ⇢k+1), the above equality can be relaxed to

⇢k(Ak+Lf+µh)+2(Bk+2L2
21)⇢k+1(⇢k�⇢k+1)⇢k+1(Ak+Lf+µh)�⇢k+1(µh+µf ),

which is equivalent to ⇢k+1�⇢k�
(µh+µf )⇢k+1

Ak+Lf+µh+(2Bk+4L2
21)⇢k+1

. Using ⇢k�
⇢0L0

L̂
, AkC2,

and Bk
L11C1L̂

⇢0L0
+L11kg(x?)� ṡk+, we have

⇢k+1�⇢k�P0 :=
⇢0L0µF

L̂(C2+Lf+µh)+2L11C1L̂+[2L11kg(x?)�ṡk+2+4L2
21]⇢0L0

,

which is exactly (62).

C.3. Proof of Theorem 3. First, from (55) and the first line of (11), we have

L(xj+1
,s

j+1
,y)�L(x,s,uj+1) Lj

2

⇥
kx

j
�xk

2
�kx

j+1
�xk

2+kŷ
j
�yk

2
�kŷ

j+1
�yk

2
⇤
.

Multiplying the above inequality by 2⌘j and noticing that ⌘j=
1
Lj

, we obtain

2⌘j [L(x
j+1

,s
j+1

,y)�L(x,s,uj+1)]kx
j
�xk

2
�kx

j+1
�xk

2+kŷ
j
�yk

2
�kŷ

j+1
�yk

2
.

Summing up this inequality from j :=0 to j :=k, and using ŷ
0=y

0, we get

kX

j=0

⌘j

⇥
L(xj+1

,s
j+1

,y)�L(x,s,uj+1)
⇤

1

2

⇥
kx

0
�xk

2+ky
0
�yk

2
⇤
.

Dividing it by
P

k

j=0⌘j , and using the convexity of L in x and s, the concavity of L

in y, {(x̄k
,ȳ

k)} defined by (18), and s̄
k :=

�P
k

j=0⌘j

��1Pk

j=0⌘js
j+1, we get

L(x̄k
,s̄

k
,y)�L(x,s,ȳk) 1

2
P

k

j=0⌘j

⇥
kx

0
�xk

2+ky
0
�yk

2
⇤
.

Moreover, (52) implies
P

k

j=0⌘j=
P

k

j=0
1
Lj

�
(k+1)

L̄
. Using this and ⇢0L0=2, we have

(63) L(x̄k
,s̄

k
,y)�L(x,s,ȳk)

L̄

4(k+1)
[⇢0L0kx

0
�xk

2+2ky0�yk
2].

By (6), we have eL(x̄k
,y)L(x̄k

,s̄
k
,y) and eL(x,ȳk)=L(x,s̆k,ȳk) for s̆

k
2@H

⇤(ȳk).
Hence, eL(x̄k

,y)� eL(x,ȳk)L(x̄k
,s̄

k
,y)�L(x,s̆k,ȳk). Substituting s:= s̆

k and this in-
equality into (63), we obtain eL(x̄k

,y)� eL(x,ȳk) L̄

4(k+1)

⇥
⇢0L0kx

0
�xk

2+2ky0�yk
2
⇤
.

Taking the supremum on both sides of this estimate over Z and using GZ from (4),
we prove (23).

C.4. Proof of Theorem 4. First, from (57) and the first line of (11), we have

⌘j

⇥
L(xj+1

,s
j+1

,y)�L(x,s,uj+1)
⇤


⌘j(Lj�µf )
2 kx

j
�xk

2
�

⌘j+1(Lj+1�µf )
2 kx

j+1
�xk

2

+ 1
2kŷ

j
�yk

2
�

1
2kŷ

j+1
�yk

2
.

Summing up this inequality from j :=0 to j :=k, and noting that ⇢0=2⌘0, we obtain

2
kX

j=0

⌘j [L(x
j+1

,s
j+1

,y)�L(x,s,uj+1)]⇢0(L0�µf )kx
0
�xk

2+ky
0
�yk

2 :=R
2
0(x,y),
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Dividing this estimate by
P

k

j=0⌘j , and using the convexity of L in x and s, the

concavity of L in y, {(x̄k
,ȳ

k)} defined by (18), and s̄
k :=

�P
k

j=0⌘j

��1Pk

j=0⌘js
j+1,

we get

L(x̄k
,s̄

k
,y)�L(x,s,ȳk) 

1P
k

j=0⌘j

kX

j=0

⌘j

⇥
L(xj+1

,s
j+1

,y)�L(x,s,uj+1)
⇤


R2
0(x,y)

2
P

k

j=0⇢j

.

Here, we have used ⌘k=
⇢k

2 .

Now, let us lower bound
P

k

j=0⇢j as follows. Suppose that we have run our

algorithm for k iterations. From Lemma 17, we have |J0|k̄0. Therefore, there exists

an interval [s,t]✓[0,k] such that [s,t]\J0=; and t�s�
k�k̄0

k̄0+1
. Using (62), we have

P
k

j=0⇢j�
P

t

j=s
⇢j

(62)
�

P
t

j=s
P0(j�s)� P0

2

�
k�k̄0

k̄0+1

�2
. Hence, it follows that

L(x̄k
,s̄

k
,y)�L(x,s,ȳk)

2(k̄0+1)2

P0(k�k̄0)2
·R

2
0(x,y).

Using the same arguments as in the proof of Theorem 3, we can prove (27). We omit
repeating this derivation here.

C.5. Proof of Corollary 5. It is su�cient to prove (28) and (29) for Theorem 2.
The results for Theorems 3 and 4 are proven similarly. Let Sk be defined as in
Corollary 5.

Let us take ūk

⇤ such thatry�(x̄k
,ū

k

⇤)2@H
⇤(ūk

⇤). Using this fact, we can derive that

P(x̄k)�P
?

(P)
= F (x̄k)+maxy

�
�(x̄k

,y)�H
⇤(y)

 
�P

?=F (x̄k)+�(x̄k
,ū

k

⇤)�H
⇤(ūk

⇤)�P
?

(7)
 F (x̄k)+�(x̄k

,ū
k

⇤)�H
⇤(ūk

⇤)� eL(x?
,ȳ

k)= eL(x̄k
,ū

k

⇤)� eL(x?
,ȳ

k)
(50)


1
Sk

⇥
⇢0(L0�µf )kx0

�x
?
k
2+2kūk

⇤�y
0
k
2
⇤
.

If H is MH -Lipschitz continuous, then since ū
k

⇤2@H(ry�(x̄k
,ū

k

⇤)), we have kū
k

⇤k

MH . This condition leads to ky
0
�ū

k

⇤k
2
(ky0k+kū

k

⇤k)
2=(ky0k+MH)

2
. Using this

bound in the above estimate, we obtain (28).
Alternatively, let �rx�(x̄k

⇤,ȳ
k)2@F (x̄k

⇤) (or x̄
k

⇤2@F (�rx�(x̄k

⇤,ȳ
k))). Then

D
?
�D(ȳk)

(D)
= D

?+H
⇤(ȳk)�minx

�
�(x,ȳk)+F (x)

 
=D

?+H
⇤(ȳk)��(x̄k

⇤,ȳ
k)�F (x̄k

⇤)
(7)
 eL(x̄k

,y
?)�

⇥
F (x̄k

⇤)+�(x̄k

⇤,ȳ
k)�H

⇤(ȳk)
⇤
= eL(x̄k

,y
?)� eL(x̄k

⇤,ȳ
k)

(50)


1
Sk

⇥
⇢0(L0�µf )kx̄k

⇤�x
0
k
2+2ky0�y

?
k
2
⇤
.

If F ⇤ isMF⇤ -Lipschitz continuous, then since x̄k

⇤2@F
⇤(�rx�(x̄k

⇤,ȳ
k)), we have kx̄k

⇤k

MF⇤ . This condition leads to kx
0
�x̄

k

⇤k
2
(kx0

k+kx̄
k

⇤k)
2=(kx0

k+MF⇤)
2
. Using this

bound in the above estimate, we obtain (29).

Appendix D. Semi-ergodic convergence of Algorithm 1. This appendix
provides the full proof of Theorems 6 and 8.

D.1. Technical lemmas. In order to prove Theorems 6 and 8, we need the
following results.
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Lemma 18. Let ẏ2@H(g(ẋ)) for a given ẋ2dom(F ) and either H is MH-Lipschitz

continuous or kg(x)�g(ẋ)kBg for all x2dom(F )\dom(g). Then the following hold:

(a) If u
k+1 :=prox

⇢kH
⇤
�
y
0+⇢kg(x̂k)

�
as in (30), then ku

k+1
kMH if H is MH-

Lipschitz continuous, and ku
k+1

kkẏk+ky
0
�ẏk+⇢kBg otherwise.

(b) If u
k+1 :=prox

⇢kH
⇤
�
ŷ
k+⇢kg(x̂k)

�
as in (33) and y

0 :=ẏ, then ku
k+1

kMH

if H is MH-Lipschitz continuous, and ku
k+1

kky
0
k+3⇢kBg otherwise.

Proof. (a) If H is MH -Lipschitz continuous, then dom(H⇤) is bounded by MH .
Since uk+1

2dom(H⇤) due to (30), we get kuk+1
kMH . Otherwise, since ẏ2@H(g(ẋ)),

we have ẏ=prox
⇢kH

⇤(ẏ+⇢kg(ẋ)). Hence, we have ku
k+1

k=kprox
⇢kH

⇤(ẏ+⇢kg(ẋ))�

prox
⇢kH

⇤
�
y
0+⇢kg(x̂k)

�
�ẏkkẏk+ky

0
�ẏk+⇢kkg(x̂k)�g(ẋ)kkẏk+ky

0
�ẏk+⇢kBg.

(b) From (33), we have ŷk+1=ŷ
k+⌘k[⇥k+1�(1�⌧k)⇥k]

(34)
= ŷ

k+⌘k⇥k+1�⌘k�1⇥k.
By induction, we obtain

(64) ŷ
k+1

�⌘k⇥k+1=ŷ
k
�⌘k�1⇥k=ŷ

1
�⌘0⇥1=y

0
�(1�⌧0)⌘0⇥0=y

0
8k�0.

Next, from g(ẋ)2@H⇤(ẏ), we get g(ẋ)=prox
H/⇢k

(g(ẋ)+ẏ/⇢k). By (13), we have

k⇥k+1k = kg(xk+1)�s
k+1

k=kg(xk+1)�prox
H/⇢k

(g(x̂k)+ ŷ
k

⇢k

)k

 kg(xk+1)�g(ẋ)+prox
H/⇢k

(g(ẋ)+ ẏ

⇢k

)�prox
H/⇢k

(g(x̂k)+ ŷ
k

⇢k

)k

 kg(xk+1)�g(ẋ)k+kg(x̂k)�g(ẋ)k+ 1
⇢k

kŷ
k
�ẏk

Combining this estimate and (64) and noting that ⌘k=
⇢k

2 and y
0 :=ẏ, we obtain

kŷ
k+1

�y
0
k  ⌘k[kg(xk+1)�g(ẋ)k+kg(x̂k)�g(ẋ)k]+ 1

2kŷ
k
�y

0
k⇢kBg+

1
2kŷ

k
�y

0
k.

Since 0<⇢k⇢k+1, by induction, we can prove that kŷ
k
�y

0
k2⇢kBg. Using this

bound, we can show that kuk+1
k=kprox

⇢kH
⇤(ẏ+⇢kg(ẋ))�prox

⇢kH
⇤
�
ŷ
k+⇢kg(x̂k)

�
�

ẏkkẏk+kŷ
k
�y

0
k+⇢kkg(x̂k)�g(ẋ)kky

0
k+3⇢kBg.

Lemma 19. Given two constants µf and µh such that µf+µh>0, let {⌧k}⇢

(0,1] and {Lk}⇢(0,+1) be two sequences such that ⌧0 :=1 and ⌧
2
k
=(1�⌧k)⌧2k�1.

Let {x
k
} be a given sequence in Rp

. We define x̂
k :=x

k+�k(xk
�x

k�1) with �k :=
(Lk�1+µh)⌧k(1�⌧k�1)

(Lk�µf )⌧k�1
. Then if µf+µhLk�Lk�1

µf+µh

⌧k
, then for any x2Rp

, we have

(65)
⌧
2
k
(Lk�µf )k

1
⌧k
[x̂k

�(1�⌧k)xk]�xk
2
�(µf+µh)⌧k(1�⌧k)kxk

�xk
2

 (1�⌧k)⌧2k�1 (Lk�1+µh)k
1

⌧k�1
[xk

�(1�⌧k�1)xk�1]�xk
2
.

Proof. Let x̃
k := 1

⌧k
[x̂k

�(1�⌧k)xk] and x̆
k := 1

⌧k�1
[xk

�(1�⌧k�1)xk�1]. Combin-

ing these expressions and x̂
k=x

k+�k(xk
�x

k�1), we can easily show that x̃
k=(1�

tk)xk+tkx̆
k with tk :=

⌧k�1�k

⌧k(1�⌧k�1)
. Assuming that tk2[0,1]. By convexity of k·�xk

2,

we have

(66) kx̃
k
�xk

2
tkkx̆

k
�xk

2+(1�tk)kx
k
�xk

2
.

On the other hand, using ⌧2
k
=(1�⌧k)⌧2k�1, (65) is equivalent to

(67) kx̃
k
�xk

2


Lk�1+µh

Lk�µf

kx̆
k
�xk

2+ (1�⌧k)(µf+µh)
(Lk�µf )⌧k

kx
k
�xk

2
.

Let us choose �k such that Lk�1+µh

Lk�µf

=tk=
⌧k�1�k

⌧k(1�⌧k�1)
, leading to �k=

(Lk�1+µh)⌧k(1�⌧k�1)
(Lk+1�µf )⌧k�1

.

Then the condition µf+µhLk�Lk�1 guarantees that tk2[0,1]. To guarantee 1�

tk
(1�⌧k)(µf+µh)

(Lk�µf )⌧k
, we need Lk�Lk�1

µf+µh

⌧k
. These two conditions show that (66)

implies (67). Consequently, (65) holds.
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D.2. Proof of Theorem 6. Since L22=0 and �⇢k :=
⇢k�⇢k�1

⇢k

due to �(x,y)=

hg(x),yi, and ŷ
k :=ẏ is fixed, for (x,s)2dom(F )⇥dom(H), we obtain from (45) that

(68)

L⇢k
(xk+1

,s
k+1

,ẏ)�L(x,s,ỹk+1)(1�⌧k)
⇥
L⇢k�1(x

k
,s

k
,ẏ)�L(x,s,ỹk)

⇤

+ ⌧
2
k
(Lk�µf )

2 k
1
⌧k
[x̂k

�(1�⌧k)xk]�xk
2
�

⌧
2
k
(Lk+µh)

2 k
1
⌧k
[xk+1

�(1�⌧k)xk]�xk
2

�
(Lk�Lk

11�Lf�⇢kL
2
21)

2 kx
k+1

�x̂
k
k
2
�

(1�⌧k)[⇢k�1�⇢k(1�⌧k)]
2⇢2

k

kū
k
�ŷ

k
k
2

�
(µf+µh)⌧k(1�⌧k)

2 kx
k
�xk

2
.

Since Lk

11=L11ku
k+1

k, using Lemma 18(a) and y
0 :=ẏ, we obtain

Lk

11

(
L11MH , H is MH -Lipschitz continuous,

L11(kẏk+⇢kBg) otherwise.

Hence, if we choose Lk as in (31), then Lk�Lf�Lk

11�⇢kL
2
21�0.

Now, let us consider the case where kg(x)�g(ẋ)kBg for all x2dom(F )\dom(g),
but H is not necessarily Lipschitz continuous. The case when H is MH -Lipschitz
continuous is proven similarly. We divide the proof into two cases as follows.

Case 1 (µF :=µf+µh=0). Since �k+1 :=
(1�⌧k)⌧k+1

⌧k
, if we define x̃

k := 1
⌧k
[x̂k

�(1�

⌧k)xk], then we can easily show that x̃
k+1= 1

⌧k
[xk+1

�(1�⌧k)xk]. Moreover, since

⇢k=
⇢k�1

1�⌧k
and ⌧k=

1
k+1 , we have ⌧2

k
Lk(1�⌧k)⌧2k�1Lk�1.

Case 2 (µF :=µf+µh>0). From (31) and ⇢k=
⇢k�1

1�⌧k
= ⇢0

⌧
2
k

, we get Lk�Lk�1=

⌧k⇢k(L2
21+L11Bg). The condition µf+µhLk�Lk�1

µf+µh

⌧k
in Lemma 19 becomes

µf+µh⌧k⇢k(L2
21+L11Bg)

µf+µh

⌧k
. This condition holds if µF ⌧1

L
2
21+L11Bg

⇢0
µF

L
2
21+L11Bg

.

In both cases, using x̃
k := 1

⌧k
[x̂k

�(1�⌧k)xk], Lk�Lf�Lk

11�⇢kL
2
21�0, and ⇢k(1�

⌧k)�⇢k�1=0, we can deduce from (68) that

L⇢k
(xk+1

,s
k+1

,ẏ)�L(x,s,ỹk+1)+ ⌧
2
k
(Lk+µh)

2 kx̃
k+1

�xk
2

(1�⌧k)
⇥
L⇢k�1(x

k
,s

k
,ẏ)�L(x,s,ỹk)

⇤
+

⌧
2
k�1(Lk�1+µh)

2 kx̃
k
�xk

2
.

By induction, and using x̃
0 :=x

0 and ⌧0 :=1, we obtain from the last estimate that

L⇢k�1(x
k
,s

k
,ẏ)�L(x,s,ỹk)+

⌧
2
k�1(Lk�1+µh)

2 kx̃
k
�xk

2


!k(L0�µf )
2 kx

0
�xk

2
,

where !k :=
Q

k�1
i=1 (1�⌧i). Using the first line of (11), we have L(xk

,s
k
,y)L⇢k�1(x

k
,

s
k
,ẏ)+ 1

2⇢k�1
ky�ẏk

2. Substituting this estimate into the last one, for s2@H
⇤(y),

we get

(69) eL(xk
,y)� eL(x,ỹk)

(6)
L(xk

,s
k
,y)�L(x,s,ỹk) !k(L0�µf )

2 kx
0
�xk

2+ 1
2⇢k�1

ky�ẏk
2
.

For Case 1 with µf+µh=0, using ⌧k=
1

k+1 , it is obvious to show that !k :=
1
k
and

⇢k�1 :=⇢0k. Plugging these values into (69) and taking the supremum both sides of
(69) over (x,y)2Z, we obtain (32) with Sk :=⇢0k.

For Case 2 with µf+µh>0, the condition ⌧k=(1�⌧k)⌧2k�1 from Lemma 19 leads

to ⌧k :=
⌧k�1

2

⇥
(⌧2

k�1+4)1/2�⌧k�1

⇤
with ⌧0 :=1. Hence, we can show that !k=

⌧
2
k�1

⌧
2
0

=

⌧
2
k�1

4
(k+1)2 and ⇢k�1=

⇢0

⌧
2
k�1

�
⇢0(k+1)2

4 . Substituting them into (69) and taking the

supremum both sides of (69) over (x,y)2Z, we obtain (32) with Sk :=
⇢0

4 (k+1)2.
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D.3. Proof of Theorem 8. Let us denote vk :=(g(xk+1)�s
k+1)�(1�⌧k)(g(xk)

�s
k). Then, from (33), we have ŷ

k+1=ŷ
k+⌘kvk. Since �(x,y)=hg(x),yi, for any

y2dom(H⇤), we have

T3 :=L⇢k
(xk+1

,s
k+1

,y)�(1�⌧k)L⇢k�1(x
k
,s

k
,y)

= L⇢k
(xk+1

,s
k+1

, ŷ
k)�(1�⌧k)L⇢k�1(x

k
,s

k
, ŷ

k)+hv
k
,y� ŷ

k
i

= L⇢k
(xk+1

,s
k+1

, ŷ
k)�(1�⌧k)L⇢k�1(x

k
,s

k
, ŷ

k)+ 1
2⌘k

ky� ŷ
k
k

�
1

2⌘k

ky� ŷ
k+1

k
2+ ⌘k

2 kv
k
k
2
.

Note that, for �(x,y)=hg(x),yi, we have uk+1=u
⇤
⇢k
(x̂k

,s
k+1

,ŷ
k)=ŷ

k+⇢k(g(x̂k)�s
k+1)

and ū
k :=u

⇤
⇢k
(xk

,s
k
,ŷ

k)=ŷ
k+⇢k(g(xk)�s

k). Since ⇢k>⌘k>0, utilizing an elemen-
tary inequality ⌘kkvk

2
⇢kkzk

2+ ⇢k⌘k

⇢k�⌘k

kv�zk
2 and the second line of (2), we can

derive that

⌘k

2 kv
k
k
2


⇢k

2 kg(x̂k)�s
k+1

�(1�⌧k)(g(xk)�s
k)k2+ ⇢k⌘k

2(⇢k�⌘k)
kg(xk+1)�g(x̂k)k2

(2)


1
2⇢k

k(uk+1
�ŷ

k)�(1�⌧k)(ūk
�ŷ

k)k2+ ⇢k⌘kL
2
21

2(⇢k�⌘k)
kx

k+1
�x̂

k
k
2
.

Substituting these expressions into (45) and using�⇢k=
⇢k�⇢k�1

⇢k

and L22=0, we obtain

(70)

L⇢k
(xk+1

,s
k+1

,y)�L(x,s,ỹk+1)(1�⌧k)
⇥
L⇢k�1(x

k
,s

k
,y)�L(x,s,ỹk)

⇤

+ ⌧
2
k
(Lk�µf )

2 k
1
⌧k
[x̂k

�(1�⌧k)xk]�xk
2
�

⌧
2
k
(Lk+µh)

2 k
1
⌧k
[xk+1

�(1�⌧k)xk]�xk
2

�
1
2

h
Lk�Lk

11�Lf�⇢kL
2
21�

L
2
21⇢k⌘k

⇢k�⌘k

i
kx

k+1
�x̂

k
k
2+ 1

2⌘k

⇥
ky�ŷ

k
k
2
�ky�ŷ

k+1
k
2
⇤

�
(1�⌧k)[⇢k�1�⇢k(1�⌧k)]

2⇢2
k

kū
k
�ŷ

k
k
2
�

(µf+µh)⌧k(1�⌧k)
2 kx

k
�xk

2
.

Since Lk is chosen the same as in Theorem 6, we have Lk�Lk

11�Lf�
⇢k⌘kL

2
21

⇢k�⌘k

�0.

Using this fact, (1�⌧k)⇢k=⇢k�1, and ⌘k=
⇢k

2 , (70) can be simplified as follows:

⇢k[L⇢k
(xk+1

,s
k+1

,y) � L(x,s,ỹk+1)
⇤
⇢k�1[L⇢k�1(x

k
,s

k
,y)�L(x,s,ỹk)]

+ ⇢k⌧
2
k
(Lk�µf )
2 k

1
⌧k
[x̂k

�(1�⌧k)xk]�xk
2

�
⇢k⌧

2
k
(Lk+µh)
2 k

1
⌧k
[xk+1

�(1�⌧k)xk]�xk
2

�
⇢k⌧k(1�⌧k)(µf+µh)

2 kx
k
�xk

2+kŷ
k
�yk

2
�kŷ

k+1
�yk

2
.

With this estimate, the proof of the remaining part of Theorem 8 follows an argument
very similar to that in the proof of Theorem 6 above. Therefore, we omit repeating
it here.

Appendix E. Proof of Theorem 11. We only prove statement (a) correspond-
ing to Theorem 3. Statements (b), (c), and (d) can be proven similarly but using the
results of Theorems 4, 6, and 8, respectively.

Since H(·)=��K(·) and �(x,y)=hg(x),yi, for any r>0, we have

(71) F (x̄k)�F
?+rkg(x̄k)� s̄

k
kmax

�
L(x̄k

,s̄
k
,y)�L(x?

,s
?
,ȳ

k) : kykr
 
.

On the other hand, by the saddle-point relation (7), we have F (x̄k)+hy
?
, g(x̄k)� s̄

k
i=

L(x̄k
,s̄

k
,y

?)�L(x?
,s

?
,y

?)=F
?. By the Cauchy–Schwarz inequality, this leads to

(72) F (x̄k)�F
?
��hy

?
, g(x̄k)� s̄

k
i��ky

?
kkg(x̄k)� s̄

k
k.
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Substituting (71) into (72), choosing r :=ky
?
k+1, and noting that s̄k2�K=dom(H)

due to (13), we can show that

dist�K
�
g(x̄k)

�
:= inf

s2�K
kg(x̄k)�skkg(x̄k)� s̄

k
k max

kykr

�
L(x̄k

,s̄
k
,y)�L(x?

,s
?
,ȳ

k)
 
.

Therefore, we can easily derive from this inequality and (71) that

|F (x̄k)�F
?
|max{1,ky?k}max

�
L(x̄k

,s̄
k
,y)�L(x?

,s
?
,ȳ

k) : kykr
 
.

Combining the last two estimates, and using (37), we eventually get

E(x̄k)max
�
L(x̄k

,s̄
k
,y)�L(x?

,s
?
,ȳ

k) : kykr
 
.

Utilizing this bound in (63), we arrive at the conclusion in statement (a).
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