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Abstract. If X is an almost transitive Banach space with amenable isometry
group (for example, if X = Lp([0, 1]) with 1 6 p < ∞) and X admits a

uniformly continuous map X
φ−→ E into a Banach space E satisfying

inf
‖x−y‖=r

∥∥φ(x)− φ(y)
∥∥ > 0

for some r > 0 (that is, φ is almost uncollapsed), then X admits a simulta-

neously uniform and coarse embedding into a Banach space V that is finitely

representable in L2(E).

The aim of the present paper is to prove a rigidity result regarding a priori very
weak notions of embeddings between Banach spaces assuming that the domain
space satisfies additional analytical assumptions. The general motivating problem
for our study is the following still unresolved question.1

Question 1. Are the following two properties equivalent for all Banach spaces X
and E?

(a) X uniformly embeds into E,
(b) X coarsely embeds into E.

Let us recall that a map X
φ−→ E is a uniform embedding if, for all sequences

(xn)n∈N and (yn)n∈N in X, we have

lim
n
‖xn − yn‖ = 0 ⇔ lim

n
‖φ(xn)− φ(yn)‖ = 0,

whereas it is a coarse embedding if, for all sequences (xn)n∈N and (yn)n∈N, we have

lim
n
‖xn − yn‖ =∞ ⇔ lim

n
‖φ(xn)− φ(yn)‖ =∞.

Alternatively, these notions may be expressed in terms of certain moduli of the map

φ. Namely, for a map X
φ−→ E, let us define its compression modulus κφ by

κφ(r) = inf
‖x−y‖>r

‖φ(x)− φ(y)‖

and its expansion modulus θφ by

θφ(r) = sup
‖x−y‖6r

‖φ(x)− φ(y)‖.

Key words and phrases. Uniform embeddings, Coarse geometry, Banach spaces.
The research was partially supported by the NSF through the award DMS 2204849. The author

is also very thankful for the detailed criticisms from Bruno Braga and the anonymous referee that
greatly improved the presentation in the paper.

1The origin of the question is not quite clear, but the lacking understanding of the relationship
between uniform and coarse embeddings of Banach spaces was already pointed out in N. J. Kalton’s
survey paper [6].
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Then φ is a uniform embedding if and only if limr→0+
θφ(r) = 0 and κφ(r) > 0 for

all r > 0. Similarly, φ is a coarse embedding if and only if limr→∞ κφ(r) =∞ and
θφ(r) <∞ for all r <∞.2

As noted, Question 1 remains open in general, but the strongest result to date is
that (a) implies (b) provided that E⊕E is isomorphic to a closed subspace of E [11]
(see also [10, 2] for related results). In fact, in [11] a stronger result is obtained,

which states that, with the same assumption on E, if X
φ−→ E is a uniformly

continuous map satisfying just that

(1) κφ(r) > 0

for some r < ∞, then X admits a simultaneously coarse and uniform embedding
into E. Maps satisfying (1) for some r <∞ are called uncollapsed in [10] and that
paper also introduces the even weaker property that

(2) inf
‖x−y‖=r

∥∥φ(x)− φ(y)
∥∥ > 0

for some r < ∞, which, in turn, is termed almost uncollapsed in [3].3 Observe
that both coarse and uniform embeddings are uncollapsed and a fortiori almost
uncollapsed. Note also that, for example, the exponential map

t ∈ R 7→ eit ∈ C
is almost uncollapsed, but not uncollapsed. Furthermore, building on work of
Kalton [5], Corollary 11 of [10] states that there is no uniformly continuous al-
most uncollapsed map from c0 into a reflexive Banach space. In [3], B. Braga takes

these issues further and shows that, if X
φ−→ E is a uniformly continuous almost

uncollapsed map and E has nontrivial type, then qX 6 qE , where

qX = inf{q ∈ [2,∞[
∣∣ X has cotype q}

and similarly for E (see Theorem 1.3 [3]). Braga’s theorem is a variation of earlier
breakthrough results by M. Mendel and A. Naor (Theorem 1.9 and Theorem 1.11
[7]) giving the same conclusion provided that X embeds either uniformly or coarsely
in E.

Our main result, Theorem 2, instead aims more directly at Question 1 by pro-
ducing a simultaneously uniform and coarse embedding of X into a new space with
local properties similar to those of E. For example, note that cotype is preserved
under both finite representability and under the passage from E to L2(E). However,
this comes at the cost of imposing a significant restriction on X that is satisfied,
for example, by X = Lp([0, 1]), 1 6 p <∞, and G = Isom(X).

Theorem 2. Suppose X is a Banach space admitting a strongly continuous linear
isometric action G y X by an amenable topological group so that G induces a
dense orbit on the unit sphere SX . Assume also there is a uniformly continuous

map X
φ−→ E into a Banach space E so that

inf
‖x−y‖=r

∥∥φ(x)− φ(y)
∥∥ > 0

2Observe that the condition limr→0+ θφ(r) = 0 simply expresses that φ is uniformly continu-

ous, in which case θφ is also known as the modulus of uniform continuity.
3The modulus κ̃φ(r) = inf‖x−y‖=r‖φ(x) − φ(y)‖ is called the exact compression modulus in

[10]. Thus, uncollapsed maps have non-trivial compression modulus, whereas almost uncollapsed

maps have non-trivial exact compression modulus.
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for some r > 0. Then X admits a simultaneously uniform and coarse embedding
into a Banach space V that is finitely representable in L2(E).

Proof. Without loss of generality, we may assume that dimX > 2. By Proposition

7 of [10], from φ we can construct another uniformly continuous map X
ψ−→ `2(E),

which, moreover, is solvent, i.e., so that, for some sequence (Rn)n∈N of positive
constants and all x, y ∈ X, we have

(3) Rn 6 ‖x− y‖ 6 Rn + n ⇒ ‖ψ(x)− ψ(y)‖ > n.

Consider now the semidirect product group XoG arising from the linear action
of G on X. For clarity of notation, elements x ∈ X are denoted by τx and the group
operation is written multiplicatively. Thus every element of X oG can be written
uniquely in the form τxg for some x ∈ X and g ∈ G. Moreover, for all x, y ∈ X
and g ∈ G, we have

τxτy = τx+y and gτx = τg(x)g.

Define a pseudometric d on X o G by d(τxg, τyf) = ‖x − y‖ and note that d is
left-invariant. Indeed, for all x, y, z ∈ X and g, f, h ∈ G, we have

d(τzh · τxg, τzh · τyf) = d(τz+h(x)hg, τz+h(y)hf)

=
∥∥(z + h(x))− (z + h(y))

∥∥
= ‖h(x)− h(y)‖
= ‖x− y‖
= d(τxg, τyf),

showing left-invariance. Note also that, if X o G is given the topology induced
by the identification with the cartesian product X ×G via (x, g) 7→ τxg, then d is
continuous. In other words, d is a continuous left-invariant pseudometric on the
topological semidirect product X oG.

Define now a map X oG
Ψ−→ `2(E) by setting Ψ(τxg) = ψ(x) and note that Ψ

is uniformly continuous with respect to the pseudometric d. For t > 0, let also

κ̃(t) = inf
d(τxg,τyf)=t

‖Ψ(τxg)−Ψ(τyf)‖ = inf
‖x−y‖=t

‖ψ(x)− ψ(y)‖

and

θ(t) = sup
d(τxg,τyf)6t

‖Ψ(τxg)−Ψ(τyf)‖ = sup
‖x−y‖6t

‖ψ(x)− ψ(y)‖.

As X is abelian and G amenable, also X o G is amenable (see, for example,
Theorem G.2.1 and Proposition G.2.2.(ii) in [1]). So, by Theorem 6.1 of [12],
which improves Theorem 16 of [10], there is a Banach space V , that is finitely
representable in L2(`2(E)) and thus also in L2(E), and a continuous linear isometric

action X oG
πy V with an associated continuous cocycle X oG

b−→ V satisfying
the bounds

(4) κ̃
(
d(τxg, τyf)

)
6

∥∥b(τxg)− b(τyf)
∥∥ 6 θ(d(τxg, τyf)

)
,

that is,

κ̃
(
‖x− y‖

)
6

∥∥b(τxg)− b(τyf)
∥∥ 6 θ(‖x− y‖)
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for all x, y ∈ X and g, f ∈ G. Here, that b is a cocycle simply means that it satisfies
the equation

(5) b(σγ) = π(σ)b(γ) + b(σ)

for all σ, γ ∈ X oG.
Observe that, by the solvency condition (3) on ψ, we have κ̃(t) > n whenever

Rn 6 t 6 Rn + n. It thus follows that

Rn 6 ‖x− y‖ 6 Rn + n ⇒
∥∥b(τxg)− b(τyf)

∥∥ > n
for all n > 1, x, y ∈ X and g, f ∈ G.

Note also that, by the cocycle equation (5), we have for σ, γ ∈ X oG that

b(γ) = b(σσ−1γ) = π(σ)b(σ−1γ) + b(σ),

whereby
‖b(γ)− b(σ)‖ = ‖π(σ)b(σ−1γ)‖ = ‖b(σ−1γ)‖.

Observe also that, because τ0 = 1 = τ01 is the identity in XoG, we have b(τ01) = 0
and therefore, for all g ∈ G,

‖b(g)‖ = ‖b(τ0g)− b(τ01)‖ 6 θ
(
‖0− 0‖

)
= 0,

that is b(g) = 0.
Suppose now that x and y are two elements of X with ‖x‖ = ‖y‖. Then, because

some and hence every G-orbit on SX is dense, there are gn ∈ G so that gn(x) −→
n→∞

y.

It thus follows from continuity of b and the cocycle equation that∥∥b(τy)
∥∥ = lim

n→∞

∥∥b(τgn(x))
∥∥

= lim
n→∞

∥∥b(gnτxg−1
n )

∥∥
= lim
n→∞

∥∥π(gnτx)b(g−1
n ) + π(gn)b(τx) + b(gn)

∥∥
= lim
n→∞

∥∥π(gnτx)0 + π(gn)b(τx) + 0
∥∥

= lim
n→∞

∥∥b(τx)
∥∥

=
∥∥b(τx)

∥∥.
In other words,

∥∥b(τx)
∥∥ =

∥∥b(τy)
∥∥ whenever ‖x‖ = ‖y‖.

Let x ∈ X be any element with α = ‖x‖ > Rn. We claim that ‖b(τx)‖ > n
2 .

To see this, pick any y ∈ X with ‖y‖ = Rn. Because dimX > 2, y + αSX is a
path connected set containing both points of norm 6 α and points of norm > α.
Therefore, y + αSX must intersect αSX and thus y = z + u for some z, u with
‖z‖ = ‖u‖ = α = ‖x‖. Because Rn 6 ‖y − 0‖ 6 Rn + n, it follows that

n 6 ‖b(τy)− b(τ0)‖
= ‖b(τy)‖
= ‖b(τzτu)‖
= ‖π(τz)b(τu) + b(τz)‖
6 ‖π(τz)b(τu)‖+ ‖b(τz)‖
= ‖b(τu)‖+ ‖b(τz)‖
= 2‖b(τx)‖,

and so ‖b(τx)‖ > n
2 , as claimed.
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From this it follows that, for all n > 1 and x, y ∈ X,

‖x− y‖ > Rn ⇒ ‖b(τx)− b(τy)‖ = ‖b(τ−1
y τx)‖ = ‖b(τx−y)‖ > n

2
.

Thus, if we restrict X oG
b−→ V to the factor X, we obtain a continuous cocycle

X
b−→ V for the action X

πy V satisfying also

lim
n
‖xn − yn‖ =∞ ⇒ lim

n

∥∥b(xn)− b(yn)
∥∥ =∞.

Applying Proposition 1 [10], we see that X
b−→ V is uniformly continuous and that

there are constants c, C > 0 so that, for all x, y ∈ X,

c ·min{‖x− y‖, 1} 6 ‖b(x)− b(y)‖ 6 C‖x− y‖+ C.

From this it follows that b is simultaneously a uniform and coarse embedding of X
into V . �

For 1 6 p < ∞, the Banach space Lp([0, 1]) is almost transitive (Theorem 9.6.3
and Theorem 9.6.4 [9]), that is, has a dense orbit on the unit sphere under the
action of its linear isometry group Isom

(
Lp([0, 1])

)
. Furthermore, Isom

(
Lp([0, 1])

)
is amenable when equipped with the strong operator topology (in fact, by Theorem
6.6 of [4], it is extremely amenable). The following corollary is therefore immediate.

Corollary 3. Let 1 6 p < ∞ and suppose that there is a uniformly continuous

map Lp([0, 1])
φ−→ E into a Banach space so that

inf
‖x−y‖=r

∥∥φ(x)− φ(y)
∥∥ > 0

for some r > 0. Then Lp([0, 1]) admits a simultaneously uniform and coarse em-
bedding into a Banach space V that is finitely representable in L2(E).

This result also supports the view that uniform continuity is the most significant
requirement with regards to uniform embeddings, whereas uniform continuity of
the inverse is easier to obtain. In this connection, A. Naor [8] gives an example of
a bornologous map between two separable Banach spaces that is not close to any
uniformly continuous map.4
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