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various attacks, the global explanation is to group the abnormal
entries to represent each type of attack.

In this work, we aim to equip the deep anomaly de-
tection approach with an explainable component, which is
able to not only detect anomalies but also provide local
and global explanations for detection results. To this end,
we propose a Globally and Locally Explainable Anomaly
Detection (GLEAD) framework. Especially, considering that
in real cases, the sequential anomalies can be diverse, GLEAD
adopt the multi-head self-attention technique [3], [4] to derive
representations of sequences, where each head learns to focus
on one type of pattern. Therefore, the multi-head model is
expected to capture different abnormal patterns. Meanwhile,
GLEAD further derives the prototypes of normal and abnormal
sequences and ensures the normal sequences close to the
normal prototypes while abnormal sequences close to the
abnormal prototypes. For the detected abnormal sequence,
based on the head of its closest abnormal prototype, its
representation and attention under this head best provide the
information for global and local explanations. For the local
explanation, GLEAD highlights the abnormal entries in the
abnormal sequence resulting in the predicted label. For the
global explanation, GLEAD picks out a list of top entries for
each abnormal prototype that describes the common pattern
of the abnormal sequences under that head. Experimental
evaluation shows that our approach is able to detect abnormal
sequences and provide local and global explanations.

II. RELATED WORK

A. Anomaly Detection for Sequential Data

Because of the rarity of anomalies, it is difficult to obtain a
large amount of well-labeled abnormal sequences for training
a supervised model. Current anomaly detection approaches are
usually trained in an unsupervised or semi-supervised manner,
where only normal samples or a few labeled normal and
abnormal samples, as well as a large number of unlabeled
samples, are available [5]–[7]. These approaches share the
same fundamental idea which is to learn patterns from normal
data, so sequences that deviate from normal patterns can be
labeled as abnormal ones. However, these approaches can
make accurate predictions on abnormal sequence detection,
but do not provide explanations of the decision results, which
limits the wide application in the real world.

Abstract—Sequential anomaly detection has been studied for 
decades because of its wide spectrum of applications and obtained 
significant improvement in recent years by utilizing deep learning 
techniques. As an increasing number of anomaly detection models 
are applied to high-stake tasks involving human beings, it is 
critical to understand the reasons why the samples are labeled 
as anomalies. In this work, we propose a Globally and Locally 
Explainable Anomaly Detection (GLEAD) framework targeting 
sequential data. Especially, considering that the anomalies are 
usually diverse, we make use of the multi-head self-attention 
techniques to derive representations for sequences as well as 
prototypes, which capture a variety of patterns in anomalies. 
The attention mechanism highlights the abnormal entries with 
high attention weights in the abnormal sequences for the local 
explanation. Moreover, the prototypes of anomalies encoding the 
common patterns of abnormal sequences are derived to achieve 
the global explanation. Experimental results on two sequential 
anomaly detection datasets show that our approach can detect 
abnormal sequences and provide local and global explanations.
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I. INTRODUCTION

Anomaly detection on sequential data is an important 
subfield o f a nomaly d etection b ecause s equential d ata are
ubiquitous in various applications. For example, detecting 
anomalies in log messages plays a critical role to build robust 
and reliable computer systems [1]. Recently, deep learning-
based approaches have been developed and made big progress 
in sequential anomaly detection [2]. However, one limitation 
of the existing deep anomaly detection approaches is that
as black-box models, they cannot provide explanations for 
why samples are labeled as anomalies. On the other hand,
in practice, understanding why sequences are classified as 
abnormal is important and useful, which can help domain
experts quickly locate the exact issue.

Explanations for sequential anomaly detection can be con-
ducted at two levels, the local and global levels. The local 
explanation focuses on each individual sequence and aims to
highlight the abnormal entries in the abnormal sequence. The
global explanation shows the general patterns of abnormal se-
quence over the whole dataset. In our scenario, we consider the
general patterns as types of abnormal behaviors represented by
abnormal entries. For example, if a computer system is under

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 B

ig
 D

at
a 

(B
ig

 D
at

a)
 | 

97
8-

1-
66

54
-8

04
5-

1/
22

/$
31

.0
0 

©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
B

ig
D

at
a5

56
60

.2
02

2.
10

02
09

90

Authorized licensed use limited to: USU - Space Dynamics Laboratory. Downloaded on March 03,2023 at 04:39:58 UTC from IEEE Xplore.  Restrictions apply. 



1213

B. Explainable Machine Learning

Based on the scope of explainability, the approaches for
explainable machine learning models can be categorized into
local and global explanation approaches.
Local Explanation. Local explanation aims to explain in-
dividual predictions. A common idea to achieve the local
explanation is the perturbation-based strategy, which provides
post-hoc explanation to the prediction outcome by checking
the performance change after perturbing the input features
[8], [9]. For example, Anchors [9] aims to find a decision
rule that can sufficiently make the same prediction as the
original input. However, most of the existing explainable
models are developed in a supervised setting, while anomaly
detection models are usually trained in an unsupervised or
semi-supervised setting.
Global Explanation. Global explanation methods mainly de-
scribe the behavior of a specific model or give explanations
over an entire set of data instances. One typical approach is
to detect a set of prototypes that can be used to represent the
behaviors of a model [10], [11]. Meanwhile, another type of
approach is to train a global surrogate model to imitate the
behaviors of the black-box model [12]–[14], where the surro-
gate model is an explainable model, such as linear regression
or logistic regression. Global explanation methods can explain
the behaviors of black-box models, but the explanations can
not always work for any single data instance.

III. METHODOLOGY

A. Overview

We aim to detect abnormal sequences with local and
global explanations in a semi-supervised setting. Let S =
(e1, . . . , el, . . . , eL) be a sequence consisting of L entries. We
assume the availability of a small set of labeled sequences
S = S+ ∪ S−, where S+ = {(S+

i , yi = 0)}|S
+|

i=1 indicates a
small set of normal sequences and S− = {(S−

i , yi = 1)}|S
−|

i=1

indicates a small set of abnormal sequences. Meanwhile, there
is a large number of unlabeled sequences U = {Sj}|U|

j=1.
Following the basic assumption in anomaly detection, we
assume a majority of sequences in U are normal.

Given S and U , we aim to build a sequential anomaly
detection model with local and global explanations. The goal
of the local explanation is to highlight the suspicious entries in
each abnormal sequence, while the global explanation is to find
the abnormal entries that represent the common pattern of a
group of anomalies. To achieve local and global explanations,
we develop a Globally and Locally Explainable Anomaly
Detection (GLEAD) framework which simultaneously learns
the individual representation of each sequence as well as the
prototype representations, where the prototype representations
encode hidden patterns of a group of sequences that are
similar. Considering the diversity of sequences, especially the
abnormal sequences, we use multiple prototypes to capture
various hidden patterns. Specifically, we leverage the multi-
head self-attention network to derive the representation matrix
of each individual sample and also to train prototype matrices

Fig. 1: Illustration of the Globally and Locally Explainable Anomaly
Detection (GLEAD) framework by leveraging multiple prototypes for
anomaly detection.

to capture the globally normal and abnormal patterns. Each
column in the prototype matrices represents a channel for
one prototype. The attention of each sequence weights on
which channel the sequence is closer to. First, we compare
the individual sequence representations to each channel of the
prototype matrices to detect abnormal sequences. If a sequence
is closer to the abnormal prototypes, the sequence will be
labeled as abnormal. Then, the entry-level attention of the
sequence and prototype representations are used to achieve
local and global explanations, respectively. The key idea is to
use an attention mechanism to highlight the abnormal entries
with high attention weights in an abnormal sequence for the
local explanation and to further use the prototypes of abnor-
mal sequences to derive the common patterns of abnormal
sequences for the global explanation. Figure 1 illustrates the
GLEAD framework.

B. Sequence Representation

The first component of GLEAD is to derive the sequence
representations. Traditionally, a sequence is usually repre-
sented by a vector in a hidden space derived from a neural
network. However, considering the diversity of sequential data,
representing a sequence as one vector could not sufficiently
capture the variety of underlying patterns. Therefore, we de-
velop a multi-head self-attention model to derive the represen-
tations of a sequence as a matrix, where each column (head)
captures one aspect of common patterns that may be closely
related to a group of sequences. Meanwhile, the corresponding
attention matrix can be used for refining important entries in
a sequence, where each attention weight vector highlights the
entries related to one underlying pattern.

In particular, given a sequence S, we first represent each
entry el in the sequence as an embedding vector, and then the
sequence can be represented as S = [e1, . . . , eL] ∈ Rd×L,
where d is the hidden dimension of the embedding vector.
Then, the multi-head self-attention network takes the initial
sequence representation S as the input and outputs an attention
weight matrix A ∈ RL×r, which refines the importance of
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each entry in the sequence and the closeness to each head.
Specifically, the embedding matrix S is fed into a multi-layer
perceptron (MLP) with one hidden layer by using tanh as the
activation function. After that, a softmax function is adopted
to derive the attention weights. Formally, the attention matrix
A is computed as

A = softmax(tanh(STW1)W2), (1)

where W1 ∈ Rd×h and W2 ∈ Rh×r are trainable parameters,
and h indicates the hidden dimension and r is the number of
attention heads. The softmax function is applied column-wise
so that each column vector in A has the attention weight vector
sum up to 1. Then, the transformed sequence representations
matrix M ∈ Rd×r can be derived as

M = SA. (2)

Based on Equation 2, each column vector, i.e., an aspect
representation of the sequence, is computed as a weighted
linear combination of L entries in the sequence. For example,
the k-th representation vector is computed as mk = Sak.

We denoted the multi-head self-attention model as M =
fθ(S) with trainable parameters θ = {W1,W2}. The trans-
formed representation M takes the attention into account, so
it provides intuitive explanations to anomaly detection.

C. Prototypes of Normal and Abnormal Sequences

By using the multi-head self-attention model, we can encode
a sequence S into a sequence embedding matrix M. To further
capture the global patterns of normal and abnormal sequences,
we define prototype representations for normal sequences
P ∈ Rd×r and abnormal sequences N ∈ Rd×r as matrices,
respectively. Both prototype matrices are randomly initialized
and will be updated during training.

The purpose of defining prototype matrices is that there
could be various patterns in normal or abnormal sequences.
We encode each prototype as a d-dimensional representation.
Each prototype captures one type of hidden patterns in the
normal or abnormal sequences. The sequences that are similar
to the prototype devote high attention onto this dimension.
We use r representation vectors to capture up to r different
types of hidden patterns for normal or abnormal sequences.
Note there are likely new types of anomalies unseen in the
training set due to the rarity of anomaly sequences. We assume
the model is agnostic to how many types and what kinds of
anomalies are out there. We set r at a sufficient number to
provide enough placeholders for all potential anomaly types.
We expect that by decoding the prototype representations of
abnormal sequences, we can provide global explanations for
each type of anomaly.

D. Objective Function

The training objective consists of two parts. The first
objective is to make the normal samples close to the normal
prototypes while the abnormal samples close to the abnormal
prototypes. The second objective is to ensure that the learned
prototype representations are diverse.

Weighted Triplet Loss. The triplet loss minimizes the distance
from an anchor to a positive sample and maximizes the
distance from the anchor to a negative sample. We leverage
the idea of triplet loss to ensure a sample close to the
corresponding prototype and far away from the counterpart
prototype. However, one limitation of the vanilla triplet loss is
that both positive and negative samples as well as the anchor
should be represented as a vector in order to calculate the
distance. As we represent the sequences and prototypes as a
set of vectors, we cannot directly apply the triplet loss.

To extend the triplet loss to handle multiple dimensions and
to leverage multiple sets of anchors, we develop a weighted
triplet loss function. Given an abnormal sequence S−, after
obtaining the sequence representation as M− = fθ(S

−), the
weighted triplet loss is defined as

T (N,P,M−) =
r∑

k=1

max{αk(nk,M
−)t(nk,m

−
k )

− βk(pk,M
−)t(pk,m

−
k ) + µ, 0},

(3)

where t(u, v) = 1
2 (1−cos (u, v)) indicates the cosine distance

between u and v, µ indicates the margin, and αk(nk,M
−) and

βk(pk,M
−) indicates two weight functions, defined as

αk(nk,M
−) =

exp(−t(nk,m
−
k ))

r∑
k′=1

exp(−t(nk′ ,m−
k′))

,

βk(pk,M
−) =

exp(t(pk,m
−
k ))

r∑
k′=1

exp(t(pk′ ,m−
k′))

.

(4)

We adopt r heads to capture variant patterns of abnormal
samples and further develop prototypes with r representa-
tions to encode the common patterns. The weight function
αk(nk,M

−) computes the weights between the sequence
representations M− and abnormal prototype representations
N based on their vector-wise distances. The idea is that one
abnormal sequence usually contains one type of abnormal
pattern, which means it should be close to one prototype
representation, say nk. Then, the weight function would set
a high weight between the sequence representation m−

k and
the prototype representation nk. By training in this way, one
head of self-attention in fθ(S

−) should focus on one pattern.
Meanwhile, as the prototype matrix N is a trainable parameter,
one prototype representation nk would be also trained to
capture one pattern of abnormal samples. On the other hand,
the abnormal sequence should have large distances to the nor-
mal prototype representations. Therefore, the weight function
βk(pk,M

−) sets a high weight if the abnormal sequence has
a large distance to one normal prototype representation.

Similarly, for the normal sequence S+, we can define the
weighted triplet loss as T (P,N,M+), which is to make the
representations of the normal sequence close to the normal
prototypes and far from the abnormal prototypes. Then, the

Authorized licensed use limited to: USU - Space Dynamics Laboratory. Downloaded on March 03,2023 at 04:39:58 UTC from IEEE Xplore.  Restrictions apply. 



1215

final objective function is

Lt =
1

|U|+ |S+|

|U|+|S+|∑
i=1

T (P,N,M+
i )+

1

|S−|

|S−|∑
j=1

T (N,P,M−
j ),

(5)
Diversity Constraint. To better capture the diversity of normal
and abnormal patterns, we regularize the prototypes N and P
to orthogonality:

LD = ∥concat(N,P)T concat(N,P)− Ir∥2F , (6)

where concat(N,P) indicates the concatenation of two pro-
totype matrices, and Ir is the identity matrix. The diversity
constraint ensures the prototype representations are different
from each other so that different patterns can be encoded.

Then by combining Equations 5 and 6, our overall objective
function can be defined as:

L = Lt + λLD, (7)

where λ is a hyperparameter.
After training, each sample should be close to one prototype

representation of the same class but far from the prototypes of
the other class. Meanwhile, the prototype representations are
diverse in the hidden space.
Abnormal Sequence Detection. Given a testing sequence S
with its representation M, we derive the anomaly score of the
sequence by comparing the distance between M and P as well
as the distance between M and N, which is defined as:

s(M) =
1

r

r∑
k=1

(
t(pk,mk)− t(nk,mk)

)
. (8)

If the sequence representation M is closer to abnormal
prototypes N, i.e., s(M) > 0, we will report it as abnormal.

E. Explanation

One advantage of our framework is that it can provide local
and global explanations. The local explanation is to explain
a single prediction, while the global explanation can be a
description of a set of sequences, such as the common pattern
of a group of sequences. In the scenario of anomaly detection,
it is more critical to explain the abnormal outcomes compared
with the normal ones. Therefore, we focus on deriving the
local explanation for a sequence predicted as abnormal and
the global explanation of abnormal patterns.
Local Explanation (Abnormal Entry Detection). Given a
sequence detected as abnormal, the local explanation is to
identify the abnormal entries in the sequence leading to its
anomaly. We leverage the attention weights as the contribution
indicators of all the entries, where a high attention weight
could indicate a suspicious entry. In the training phase, we
represent an abnormal sequence with r vectors and force one
representation vector mk close to one prototype representation
nk. Each nk captures a type of hidden pattern which is
shared by the sequences close to nk. Therefore, if a sequence
is detected as abnormal, we only use the attention weights
from the “best” head that is the closest to one prototype

TABLE I: Statistics of Two Datasets

Dataset BGL Thunderbird

Training
Normal 20 20

Abnormal 20 20
Unlabeled 2000 2000

Validation Normal 200 200
Abnormal 20 20

Test Normal 20000 20000
Abnormal 2000 2000

representation. Formally, the “best” head from r heads is
b = argmink t(nk,mk). Then, we use b-th vector of A,
i.e., ab, as the attention weights to highlight the entries in S.
The attention under this head captures the abnormal behavior
to identify the abnormal entries. The entries with attention
weights higher than a threshold will be labeled as abnormal
entries. The high attentions indicate that the corresponding
entries best explain the closeness to the abnormal prototype,
i.e., the reason why S is labeled as an anomaly.
Global Explanation. In order to achieve the global explana-
tion for anomalies, we make use of the prototype of abnormal
sequences N to decipher the hidden patterns of different types
of anomalies. We assume that the same type of anomalous
sequences shares a common pattern in terms of the anomalous
entries they include. Therefore, abnormal sequences captured
by each diversified attention head (along with its abnormal
prototype) should contain the same or similar abnormal entries.
To study what type of anomalies the attention heads capture,
we create a top entry list for each attention head by counting
the abnormal entries in the abnormal sequences captured
by attention heads. Specifically, for each abnormal prototype
nk, we first choose the abnormal sequences with the “best”
head representations that are closest to nk. Then, given each
abnormal sequence closest to nk, we pick top-z entries with
the highest attention weights in ak. Finally, by combining
these entries, we can derive a list of the high-frequency
entries with high attention weights, which decodes the hidden
pattern of abnormal sequences in nk. Because the prototype
N consists of r representation vectors, we can get r lists of
entries showing r different patterns in abnormal sequences.

IV. EXPERIMENTS

A. Experimental Setup

Datasets. We evaluate the performance of GLEAD for sequen-
tial anomaly detection on two datasets: BlueGene/L (BGL)
and Thunderbird [15], which are datasets consisting of sys-
tem logs from BlueGene/L and Thunderbird supercomputer
systems, respectively.

We use a log parser, Drain [16], to transfer raw log messages
to log templates and then we apply the sliding window
technique on these log templates to obtain log sequences.
Table I shows the statistics of the labeled set S and the
unlabeled set U of training data. The labeled sets consist
of 20 normal sequences and 20 abnormal sequences. The
unlabeled sets consist of 2000 sequences. We also build a small
validation set for each dataset to tune the hyper-parameters and
derive thresholds for identifying abnormal entries. For a fair
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comparison, for all models, we keep the models with the best
performance on the validation set and then apply these models
on the test set to identify abnormal sequences and entries.
Baselines. We compare our approach with the following
baselines for sequential anomaly detection.

• Isolation Forest (iForest) is an unsupervised anomaly
detection algorithm that is built using decision trees [17].

• One Class Support Vector Machine (OCSVM) is a one-
class novelty detection algorithm that focuses on learning
the pattern of known normal data samples [18].

• LSTM with Attention (LSTM-Attention). We train
an LSTM model with an attention layer using labeled
sequences in a supervised manner.

• DeepSAD is a semi-supervised anomaly detection
method that leverages both labeled and unlabeled samples
to improve the performance of anomaly detection [7].

For iForest and OCSVM, we build a count vector to represent
a sequence, where each dimension indicates a unique entry and
the value indicates the frequency of the entry in the sequence.
Therefore, iForest and OCSVM cannot capture the temporal
information of the sequences.

Our approach can also provide local explanations for the
abnormal sequences by detecting the abnormal entries. We
further compare our approach with baselines that can achieve
entry-level anomaly detection.

• iForest and OCSVM. We use iForest and OCSVM for
abnormal entry detection. The input to both models for
abnormal entry detection is the count vector derived from
the log message, where each dimension indicates a unique
word and the value indicates the word frequency.

• LSTM-Attention. After training the LSTM with the
attention model, we also use the attention weights to
predict abnormal entries.

• Shapley is widely used to explain individual predictions.
Shapley values are calculated as contributions that fea-
tures make for predictions. As a post-hoc explanation
model, we train an LSTM for sequential anomaly de-
tection and use Shapley to identify abnormal entries.

Implementation Details. In order to represent the entries in
sequences as embedding vectors, we randomly initialize the
embedding vectors of entries with a dimension of 150, i.e.,
d = 150. The embedding layer encodes the sequences with
initialized vectors and then updates them in the training period.
We set the number of attention heads as r = 5. . For both
datasets, we train GLEAD in 150 epochs with the diversity
constraint weight λ = 1.0. After training, we derive a thresh-
old from the validation set for detecting the abnormal entries.
An entry with an attention weight higher than the threshold
will be labeled as abnormal. The source code is available
online https://github.com/Serendipity618/GLEAD/.
Evaluation Metrics. We adopt precision, recall, F-1 score, and
Area Under Receiver Operating Characteristic Curve (AUC)
to evaluate the performance of abnormal sequence and entry
detection. We run all experiments 10 times by randomly
selecting 10 seeds and report the mean and standard deviation.

B. Experimental Results

TABLE II: Abnormal Sequence Detection
Dataset Metric iForest OCSVM LSTM-Attention DeepSAD GLEAD

BGL

Precision 31.09±6.63 24.68±13.35 75.00±28.52 99.28±0.45 97.86±2.67
Recall 77.84±11.62 94.44±0.60 93.21±1.47 93.87±4.20 94.08±2.99
F-1 score 44.30±8.52 37.44±16.91 79.52±22.64 96.45±2.26 95.91±2.39
AUC 80.03±7.08 75.42±16.00 92.87±6.12 96.90±2.10 96.93±1.55

Thunderbird

Precision 12.69±6.22 8.79±0.08 53.16±19.11 97.31±2.47 96.96±1.01
Recall 36.59±18.5 76.58±1.35 82.46±23.58 91.81±5.92 97.83±2.27
F-1 score 18.84±9.3 15.77±0.15 63.17±20.02 94.36±3.17 97.38±1.11
AUC 55.95±9.58 48.56±0.40 87.15±11.91 95.77±2.92 98.76±1.12

The Performance of Abnormal Sequence Detection. Table
II shows the performance of detecting abnormal sequences on
both datasets. First, GLEAD achieves very good performance
for abnormal sequence detection with a high F-1 score and
AUC. Second, the traditional one-class anomaly detection
models (iForest and OCSVM) cannot achieve reasonable
performance. This could be because using a count vector
to represent a sequence loses too much information. Third,
LSTM-Attention has much better performance compared with
iForest and OCSVM by using a deep learning model to
capture sequential information. However, as a supervised
model, due to the limited labeled samples, the performance
of LSTM-Attention is still worse than GLEAD, let alone its
lack of global explainability. Fourth, DeepSAD, as a semi-
supervised model, which also uses both labeled and unlabeled
datasets, achieves comparable performance with our approach,
especially on the BGL dataset. While on Thunderbird, our
approach is still better than DeepSAD with a large margin.
Meanwhile, compared with DeepSAD, GLEAD can further
achieve local and global explanations of detection results.

TABLE III: Abnormal Entry Detection
Dataset Metric iForest OCSVM LSTM-Attention Shapley GLEAD

BGL

Precision 18.39±6.48 21.66±0.55 75.50±27.85 98.24±1.13 97.62±2.96
Recall 75.33±28.33 99.19±0.57 76.89±2.10 89.87±4.66 96.71±1.90
F-1 score 29.55±10.52 35.56±0.74 72.98±19.48 93.79±2.26 97.14±1.96
AUC 71.36±14.16 81.65±0.61 85.72±5.29 94.86±2.29 98.25±0.99

Thunderbird

Precision 79.87±42.09 16.21±1.42 10.46±6.14 37.92±12.04 98.06±1.20
Recall 79.92±42.12 100.00±0.02 26.26±19.13 83.92±16.32 98.71±1.32
F-1 score 79.89±42.11 27.88±2.09 14.42±9.16 51.62±12.87 98.37±0.54
AUC 89.90±21.17 73.96±2.61 61.77±9.37 91.09±8.18 99.34±0.66

The Performance of Abnormal Entry Detection (Local
Explanation). Table III shows the performance of detecting
abnormal entries on the test sets. In short, by leveraging
the attention weights for abnormal entry detection, GLEAD
achieves very good performance. By using log messages for
abnormal entry detection, iForest and OCSVM can detect
some abnormal entries with explicit abnormal words, but can-
not detect the abnormal entries without explicit error messages.
LSTM-Attention also does not achieve good performance due
to the limited labeled samples to train the attention layer. As
a result, it is difficult to obtain meaningful attention weights
from the attention layer for abnormal entry detection. Shapley
as a post-hoc explanation approach gets good performance
among baselines but is still worse than our approach. By
leveraging multi-head self-attention, GLEAD can capture the
patterns in abnormal sequences even though the anomalies are
diverse and sparse.
Capturing Abnormal Patterns (Global Explanation).
GLEAD creates a top entry list for each attention head by
counting the abnormal entries in the abnormal sequences
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TABLE IV: Anomaly Types in Test Sets of BGL and Thunderbird

Dataset Representative abnormal entries for each abnormal type

BGL

H/KERNDTLB: data TLB error interrupt
H/KERNSTOR: data storage interrupt
S/APPREAD#: ciod: failed to read message prefix on control stream
S/KERNRTSP#: rts panic! - stopping execution

Thunderbird KERNEL_IB: Fatal error (Local Catastrophic Error)

TABLE V: Most Frequent Entries Related to Each Prototype Vector

Prototype BGL Thunderbird
n1 S/APPREAD#, S/KERNRTSP# KERNEL_IB
n2 * *
n3 H/KERNSTOR *
n4 * *
n5 H/KERNDTLB *

captured by the attention head. Since raw entries are encoded
in the data preprocessing period, here we only show the
corresponding abnormal content of the top entry of each head.

Table IV shows the ground truth of representative abnormal
entries for each abnormal type in test sets of BGL and
Thunderbird. There are four abnormal patterns on BGL and
only one abnormal pattern on Thunderbird. Meanwhile, on
both datasets, each pattern can be represented by one abnor-
mal entry. Note that on BGL, only two abnormal patterns,
H/KERNSTOR and H/KERNDTLB, are available in the train-
ing set, while the other two abnormal patterns, S/APPREAD
and S/KERNRTSP, are only observed in the test set. The
purpose of global explanation is to identify these representative
abnormal entries for all abnormal patterns.

Table V shows the most frequent entries in the abnormal
sequences captured by each vector in the abnormal proto-
type matrix N. The special symbol “*” indicates that the
prototype vector does not capture any abnormal patterns, i.e.,
no abnormal sequences are assigned to the vector. On BGL,
there are two types of abnormal patterns in the training set,
H/KERNSTOR and H/KERNDTLB. Then, GLEAD can suc-
cessfully capture both abnormal patterns by two prototype vec-
tors (n3 and n5). Meanwhile, for the new abnormal patterns,
S/APPREAD and S/KERNRTSP, GLEAD can still detect the
abnormal sequences with unknown types of anomalies by one
prototype vector (n1). However, because the model does not
observe them in the training, these two types of abnormal
patterns are assigned to one head. On Thunderbird, there
is only one abnormal pattern in the test set. The prototype
vector n1 captures this abnormal pattern, which is caused by
KERNEL_IB, while the top entry list related to other prototype
vectors is empty.

Therefore, from Table V, we notice that each prototype
encodes one type of abnormal pattern. It also works for new
anomaly types that are unseen in the training set. Meanwhile,
if the number of abnormal patterns is less than the number
of pre-defined prototypes, some heads remain empty as the
prototypes do not have any sequences close to them.

V. CONCLUSIONS

In this paper, we have developed GLEAD, a sequential
anomaly detection model that can achieve local and global ex-

planations in a semi-supervised setting. GLEAD leverages the
multi-head self-attention technique to capture different aspects
of information of sequences. The local explanation, which
aims to detect abnormal entries in the abnormal sequences,
can be achieved based on the attention weights in the attention
model. Meanwhile, two prototype matrices are developed to
encode the global patterns of normal and abnormal sequences.
By decoding the prototype representations by using abnormal
entries, we can explain why a group of sequences is detected as
abnormal. Experiments on two datasets show that our approach
can achieve high accuracy on abnormal sequence detection,
and the attention weights can provide precise local expla-
nations for each individual sample. The identified abnormal
entries represent the global patterns of abnormal sequences. A
potential future direction is to extend our approach to a one-
class setting, which can provide local and global explanations
for anomaly detection results by only using normal samples.
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