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Abstract—Due to the scarcity of anomalies, deep anomaly
detection models are predominately trained in an unsupervised
or semi-supervised manner depending on the availability of a
small number of labeled samples. Currently, most unsupervised
approaches detect anomalies by identifying the deviate patterns,
and some semi-supervised studies also use labeled anomalies
to improve performance. However, few studies have focused
on how to take advantage of potential anomalies in an easily
obtained and large-scale unlabeled dataset. Meanwhile, in a
semi-supervised setting, although we assume having a small
number of labeled anomalies, the task of anomaly classification
is under-exploited. In this work, considering the problem of
anomaly detection and classification by giving limited labeled
samples as well as a large number of unlabeled samples, we
propose a few-shot anomaly detection and classification model
through reinforced data selection (FADS), a novel framework
that iteratively improves the performance of anomaly detection
and classification by exploring the unlabeled dataset to augment
the training set. Experimental results show that FADS is able to
improve the performance of anomaly detection and classification
with only a few labeled samples initially.

Index Terms—anomaly detection, few-shot learning, reinforce-
ment learning

I. INTRODUCTION

Anomaly detection indicates the detection of data samples

that significantly deviate from the majority of data [1], [2]. Due

to the extensive demand in a wide spectrum of applications,

such as external and internal threats in cyberspace, anomaly

detection has become an increasingly important research task.

Due to the small number of anomalies, classical super-

vised learning algorithms cannot be employed. Currently,

the majority of approaches are trained in the unsupervised

or semi-supervised learning manner [1]–[3]. However, one

limitation of existing anomaly detection approaches is that

existing approaches cannot further classify anomalies into

specific anomaly categories. In many real-world scenarios,

understanding the types of anomalies is critical.

However, due to the scarcity of anomalies, the number

of anomalies of each class is even smaller. Hence, it is

extremely hard to train a multiclass classifier in a traditional

supervised manner. Recently, to learn from a limited number of

labeled samples, few-shot learning as a special type of machine

learning has become an emerging research topic, which aims to

learn classifiers given only a few labeled samples of each class

[4]. One common strategy of few-shot learning is to project

limited samples into a smaller embedding space so that similar

samples are grouped together while dissimilar samples are

separated [4]–[7]. However, in the anomaly detection scenario,

such a cluster assumption only holds for normal samples

since normal data are similar. For anomalies, by only having

a few samples, it is hard to build a cluster to represent a

class of anomalies, especially considering that anomalies are

much more diverse. As a result, current few-shot anomaly

detection approaches only work on distinguishing anomalies

from normal samples and cannot further divide the anomalies

into fine-grained classes [8]–[11]. Hence, how to leverage the

powerful few-shot learning models for anomaly detection and

classification is still under-exploited.

In this work, by following real-world scenarios, we assume

that we have plenty of labeled normal samples and limited

abnormal samples in each anomaly class, as well as large-scale

unlabeled samples. To achieve fine-grained anomaly detection

based on few-shot learning, we propose a framework, called

the Few-shot Anomaly detection and classification model with

reinforced Data Selection (FADS), to leverage the large-scale

unlabeled dataset to progressively improve the few-shot learner

for anomaly detection and classification.

We assume that the unlabeled dataset follows the data

distribution in the real world that consists of a large number

of normal samples and a few anomalies. Initially, we train a

few-shot learning model on a few labeled anomalies. Then, we

iteratively update the few-shot model by selecting potential

anomalies from unlabeled samples to augment the labeled

training set. Especially, each iteration consists of two steps,

data selection and model retraining. In the first step, we

apply the current few-shot model to predict anomalies on the

unlabeled dataset. The prediction outcomes can be considered

as weakly-labeled samples as their predicted labels can be

either accurate or inaccurate. We then apply our proposed

reinforcement learning-based data selection to identify the

weakly-labeled samples with high quality. The chosen samples

have a high chance to be correctly labeled and hence are

used to compose an augmentation set. After that, we build

a new augmented training dataset by combing the existing

labeled dataset with the newly generated augmentation set. In

the second step, we retrain the few-shot learning model on

the augmented training dataset to improve its performance.

We expect the performance of FADS keeps improving as the

training procedure moves forward.

The contributions of this work can be summarized as follow.
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First, we propose a novel framework to progressively improve

the few-shot model for anomaly detection and classification

through reinforced data selection from an unlabeled dataset.

The few-shot model can achieve fine-grained prediction given

a small number of labeled anomalies in each class. Second, we

propose a reinforcement learning-based data selection strategy

that can select correctly-labeled samples from a weakly-

labeled set to augment the training set and further improve

the performance of the few-shot model. Third, experimental re-

sults show that FADS can achieve state-of-the-art performance

on anomaly detection and few-shot anomaly classification.

II. PROPOSED APPROACH

Fig. 1: The training framework of FADS

A. Problem Definition

Let L = {(xi, yi)}NL
i=1 be a labeled dataset, where xi

indicates the i-th sample, while yi ∈ {0, 1, ...,K} indicates the

corresponding label. Particularly, yi = 0 indicates a normal

sample while yi ∈ {1, ...,K} denotes a class of anomalies.

Considering that it is usually feasible to have a large number

of normal samples in the anomaly detection scenario, the

labeled dataset can be decomposed as L = LN

⋃LA with

|LN | > |LA|, where LN only consists of normal samples and

LA includes few samples in each anomaly class.

With such a small amount of abnormal samples, it is hard to

train an accurate anomaly detection and classification model.

To tackle this challenge, in this work, besides a labeled dataset

L, we further leverage an unlabeled dataset U = {xj}NU
j=1. The

goal is to learn a few-shot anomaly detection and classification

model that can leverage the knowledge of the unlabeled dataset

U , especially the potential anomalies in U , to maximally

improve the performance of the model on anomaly detection

and classification.

B. Framework Overview

In this work, we propose a few-shot anomaly detection and

classification model through reinforced data selection (FADS),

which is able to gradually enhance the performance of the few-

shot learning model by exploiting the unlabeled dataset U .

FADS first trains a few-shot learning model on an initial

training dataset with only labeled samples D = L. Then,

FADS iteratively improves the model by selecting samples

from unlabeled dataset U to augment the training dataset.

We employ the reinforcement learning technique for data

selection. In each training iteration, we first use the current

few-shot model to predict the label ŷj for each sample xj in U ,

thus producing a weakly-labeled dataset W = {(xj , ŷj)}NU
j=1.

Then, we train a reinforcement learning agent to select the

weakly-labeled samples that have high chances to be accurate

into an augmentation set A = {(xj , ŷj)|aj = 1}NU
j=1, where

aj ∈ {0, 1} indicates whether the sample (xj , ŷj) is selected

by the agent or not. We combine the augmentation dataset A
with the existing training dataset to compose the new training

dataset, i.e., D = D∪A, and then re-train the few-shot model

on the new training dataset. We expect that the performance

of the few-shot model will be improved with those augmented

samples. As the training iteration moves forward, the few-shot

anomaly detection model can be improved progressively. The

overview of FADS is shown in Figure 1.

C. Prototypical Network

In this work, we adopt the prototypical network [5] as our

base few-shot learning model. Following the typical process

for training the few-shot learning model, we first randomly

select NS and NQ samples from the training dataset D to

compose the support set S and query set Q, respectively.

The prototypical network learns an embedding function g(·)
to map each sample xi to an embedding space, denoted as

xi = g(xi). Based on the support set, the prototype represen-

tation for each class can be derived by a mean operation:

ck =
1

|Sk|
∑

(xi,yi)∈Sk

g(xi), (1)

where Sk indicates the subset of samples in the support set

S with the class k. Then, given a distance function d(·), the

prototypical network predicts the distribution of classes for a

query point x ∈ Q based on a softmax over distances to the

prototypes:

p(y = k|x) = exp(−d(g(x), ck))∑
k′ exp(−d(g(x), ck′))

. (2)

The objective function of the prototypical network is the

negative log-probability L = − log p(y = k|x) of the true

class k. The training objective is to make the samples from

the same class have small distances to the class prototype ck.

A test sample can be labeled based on the label of its nearest

prototype in the embedding space.

D. Reinforced Data Selection

As the labeled dataset L only has a very small number of

anomalies, the performance of the initial prototypical network

trained on L still has room for improvement if more training

samples can be incorporated. To this end, we propose to

exploit the unlabeled dataset U . We first use the current proto-

typical network to predict the labels of samples in U and get
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a weakly-labeled dataset W , which consists of both correctly

and incorrectly labeled samples. If we simply adopt W to

augment the training set, due to the noisy supervised signals,

the performance of the prototypical network could be worse.

Hence, we propose a reinforcement learning-based data selec-

tion method to select samples from W based on their reliability

to compose an augmentation set A. Once the reinforced data

selection agent is capable of selecting the correctly labeled

samples to augment the training set, the performance of the

few-shot learner can be improved. Therefore, the reward to

the data selection agent is designed based on the performance

of the few-shot learner on an unobserved validation set. The

key components of the reinforcement learning framework are

described below.

State. For each state sj with weakly-labeled sample (xj , ŷj) ∈
W , its state representation sj is defined as the concatenation

of the embedding vector xj = g(xj) and the distance value

dj to the closest prototype, i.e., sj = [xj , dj ].
Action. The data selection agent then needs to take an action

on whether to select this sample (xj , ŷj) into the augmenta-

tion set A based on the state representation sj . In specific,

aj = 0 means the sample (xj , ŷj) will be rejected, while

aj = 1 indicates the sample will be selected and added to the

augmentation set A.

Policy Network. The data selection agent makes decisions

about whether to select a weakly-labeled sample based on a

policy network πθ(·). We adopt a neural network to param-

eterize the policy network that takes the state representation

as input and outputs the probability of the action, p(aj |sj) =
πθ(sj). The action aj is then sampled based on p(aj |sj).
Rewards. The policy network is trained with guidance from

the reward function. We define the reward based on the perfor-

mance of the few-shot learning model on an unseen validation

set. As in our task, we aim to detect anomalies as well as

classify abnormal samples into different classes. Therefore

we design the reward function based on the performance of

anomaly detection and classification, i.e., an anomaly detection

reward rd and a classification reward rc. Specifically, we adopt

the F1 score as the metric to evaluate the performance of

anomaly detection and the macro F1 score over all classes

to evaluate the performance of classification.

In our scenario, if wrongly-labeled samples are selected to

compose the training dataset, we can expect that the perfor-

mance of the few-shot learning model will be damaged. On

the other hand, if the samples with correct labels are selected,

the performance of the model can be improved. Hence, the

reward is designed based on the performance change after the

model is trained on an augmentation set.

Specifically, in each episode, we first calculate the F1 and

macro F1 scores of the current prototypical network. We

denote the prototypical network at the beginning of each

episode as g0(·) and the corresponding F1 and macro F1 scores

achieved by g0(·) as F10 and MarcoF10. Then, we work on

improving g0(·) by composing an augmentation set. To this

end, first, we randomly sample a set of batches B = {Bl}Ll=1

from W , where each batch Bl consists of a number of samples.

Given a batch Bl, for each sample in Bl, we sample an action

aj (select to the augmentation set or not) based on the policy

p(a|sj) = πθ(sj). Then, we can compose the augmentation

set Al from the batch Bl. After combining Al with D, we

update the prototypical network, denoted as gl(·), and further

evaluate gl(·) on a validation set to derive F1 and macro F1

scores, denoted as F1l and MacroF1l. Finally, the reward for

the agent in a batch can be calculated as the difference of F1

scores, rdl = F1l − F10 and rcl = MacroF1l −MacroF10.

The overall reward function in a batch is formulated as:

rl = rdl + α · rcl , (3)

where α is a hyperparameter to balance anomaly detection and

classification tasks. In the experiments, we set α = 1.

Optimization. The data selection agent is trained based on

the actor-critic algorithm [12]. The output of the actor is the

probability of two actions (select or not), while the output of

the critic is the predicted reward value based on the current

state. Both actor and critic are parameterized by feed-forward

neural networks. The goal of the agent is to maximize the

rewards, which is defined as:

J (θ) = Eπθ
[rl]. (4)

The parameter θ in policy network πθ is trained based on

policy gradient [13]:

θ ← θ + η �θ J (θ), (5)

where η indicates the learning rate. The gradient for a batch

of weakly-labeled samples can be approximated by [12]

�θJ (θ) =
1

|Bl|
|Bl|∑

j=1

�θlogπθ(sj)(rl − Vϕ(sj)), (6)

where |Bl| indicates the number of samples in a batch Bl;

Vϕ(sj) is the expected reward from a critic network Vϕ(·)
parameterized by ϕ. The structure of the critic network is

similar to the policy network with the last layer as a regression

function. The critic network is designed to estimate the ex-

pected reward and hence updated according to the cumulative

difference between the real reward rl and the predicted value

Vϕ(sj),

L(ϕ) = 1

|Bl|
|Bl|∑

j=1

|rl − Vϕ(sj)|. (7)

The parameters ϕ in Vϕ(sj) can be optimized by:

ϕ = ϕ− η′ �ϕ L(ϕ), (8)

where η′ indicates the learning rate for updating the critic

network.

III. EXPERIMENTS

A. Experimental Setup

Datasets. We apply FADS to detect and classify anomalies on

the following three datasets.

• UNSW-NB15 [14]. The UNSW-NB15 dataset was gen-

erated by the IXIA PerfectStorm tool in the Cyber Range
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TABLE I: Statistics of datasets in experiments

Dataset Class
Training

TestingL U

UNSW-NB15
(293 features)

Normal 100 30,000 20,000
Fuzzers 10 3,000 2,000

DoS 10 3,000 2,000
Exploits 10 3,000 2,000
Generic 10 3,000 2,000

Reconnaissance 10 3,000 2,000

IDS2018
(77 features)

Normal 100 30,000 20,000
Bot 10 3,000 2,000
DoS 10 3,000 2,000

Bruteforce 10 3,000 2,000

CERT
(various length)

Normal 100 2,000 2,000
DataUploading 10 27 28
DataStealing 10 201 201
MassEmail 10 10 10

UnauthdLogin 10 21 21

Lab of UNSW Canberra. It consists of normal and five syn-

thetic attacks including suspension caused by feeding random

data (Fuzzers), denial-of-services by overloading the server

or network (DoS), attacks with known security problems

(Exploits), attack block-ciphers without information about the

structure (Generic), and attacks for collecting information

(Reconnaissance).

• IDS2018 [15]. IDS2018 contains detailed network traffic

and log files. It consists of normal network traffic and three

different types of attacking traffic including automatically

synthesized requests of upload, download, screenshots, and

keylogging (Bot), denial-of-service by overloading the server

or network (DoS), and password crack by brute-force (Brute-

force).

• CERT [16]. CERT is an insider threat dataset that contains

a collection of synthetic normal and malicious user activities.

We use CERT V5.2, which consists of four types of insider

threats including unauthorized uploading data (DataUpload-

ing), using a thumb drive to steal data (DataStealing), sending

out mass emails causing panic (MassEmail), unauthorized

logging into other computers (UnauthdLogin). Due to the

extremely small number of insiders, the number of samples

for each anomaly class is small.

Data Preprocessing. Both UNSW-NB15 and IDS2018 are

multidimensional datasets, where each instance consists of

multiple features to describe the basic information. After typi-

cal preprocessing steps, each sample in UNSW-NB15 consists

of 293 features, while each sample in IDS2018 consists of

77 features. We randomly select 100 normal samples as LN

and 10 samples from each anomaly class as LA. To construct

an unlabeled dataset U , we randomly select 30,000 normal

samples and 3,000 abnormal samples from each anomaly class.

The testing dataset contains 20,000 normal samples and 2,000

abnormal samples from each anomaly class.

CERT is a sequential dataset, where each entry indicates

one user activity. For CERT V5.2, there are 23 different types

of activities, such as logon, logoff, web visiting, and file

editing. We group user activities into sessions as data samples,

and each session consists of all user activities between logon

and logoff operations on a computer. Similarly, we randomly

select 100 normal samples as LN and 10 samples from each

anomaly class as LA. The unlabeled dataset U is composed

of randomly selected 2,000 normal sessions and half of the

remaining abnormal sessions (excluding the 10 sessions used

in LA) from each anomaly class. The testing dataset consists

of 2,000 normal sessions and the other half of the remaining

data in each anomalous class. Table I summarizes the statistics

of datasets used in our experiments.

Baselines. We use two sets of baselines to evaluate the

performance of FADS for anomaly detection and classification,

respectively.

Baselines for anomaly detection. We adopt the following six

baselines to evaluate the performance of anomaly detection: 1)

One-Class SVM (OCSVM) [17], is a one-class classification

model; 2) Isolation Forest (iForest) [18] is a tree-based

anomaly detection model; 3) Label Random PU Learning
(LRPU) [19] is a positive-unlabeled learning approach; 4) PU
learning with a Selection Bias (PUSB) [20] is an advanced

positive-unlabeled learning approach; 5) Deep Support Vec-
tor Data Description (DeepSVDD) [21] is a deep learning-

based one-class anomaly detection method; 6) Deep Semi-
Supervised Anomaly Detection (Deep SAD) [22] is a semi-

supervised anomaly detection model.

OCSVM, iForest, and DeepSVDD as one-class models are

trained on the normal set LN . LRPU and PUSB as positive-

unlabeled models are trained on the anomalous set LA and

unlabeled set U . Deep SAD as a semi-supervised model is

trained on the labeled set L and unlabeled set U .

Baselines for anomaly classification. We adopt the following

two baselines to evaluate the performance of anomaly classifi-

cation, Support Vector Machine (SVM) [23] and Multilayer
Perceptron (MLP) [24].

We train both baselines on the labeled set L and also adopt

the synthetic minority oversampling technique (SMOTE) [25]

for oversampling the data in anomaly classes.

Evaluation Metrics. For anomaly detection, we consider all

anomaly classes as one anomaly class and adopt the Area

Under Precision-Recall Curve (AUC-PR), the Area Under

Receiver Operating Characteristic Curve (AUC-ROC), and

False Positive Rate (FPR) at 95% True Positive Rate (TPR) to

measure the performance of FADS. Especially, FPR at 95%

TPR can be considered as the probability that an anomaly is

misclassified as normal when the true positive rate is 95%.

For anomaly classification, F1 score is used to evaluate the

performance of FADS on each abnormal class. We also derive

the Macro-F1 score to evaluate the performance over all

classes. In our experiments, we report the results over 10

runs. The paired t-test is adopted to examine the statistical

significance of FADS over the best baseline.

B. Implementation Details

For UNSW-NB15 and IDS2018 datasets, we adopt a feed-

forward neural network with three fully connected layers as

the implementation of the prototypical network g(·). For the

CERT dataset, we adopt a GRU neural network [26] to map
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sequences into an embedding space with the dimension of 64.

For all three datasets, as we only have 10 labeled samples in

each anomaly class in the initial training set LA, we initially

assign 6 samples to Dtr to train the prototypical network with

3 samples as the support set S and 3 samples as the query

set Q and the rest 4 samples to Dval for evaluation. With the

training episode increasing, we assign more samples selected

by the policy network to Dtr and Dval with a fixed ratio of

30% of samples in S , 30% of samples in Q, and 40% of

samples in Dval to retrain the prototypical network.

In the implementation of actor-critic reinforcement learn-

ing, both actor and critic are three-layer feedforward neural

networks. In the training stage, we set the number of training

episodes T = 20, while in each episode, we generate a set

of sample batches {Bl}Ll=1 with L = 50. For each batch Bl,

we randomly select samples from each predicted class in W
and compose a balanced set for the actor to select. Especially,

for UNSW-NB15 and IDS2018 datasets, we randomly select

10 samples from each class, so the sizes of each batch are

|Bl| = 60 for the UNSW-NB15 dataset and |Bl| = 40 for the

IDS2018 dataset. For the CERT dataset, we select 2 samples

from each class with the batch size |Bl| = 10. The code and
datasets used in the experiments are available online 1.

C. Experimental Results

TABLE II: Results on anomaly detection (mean ± std.). ↑
indicates larger value is better; ↓ indicates lower value is better.

UNSW-NB15 IDS2018 CERT

AUC-PR
↑

OCSVM 0.5001± 0.0020 0.3026± 0.0137 0.1233± 0.0199
iForest 0.7564± 0.0321 0.2936± 0.0093 0.1331± 0.0218
LRPU 0.6542± 0.0049 0.4393± 0.0689 0.1395± 0.0362
PUSB 0.6108± 0.0372 0.3741± 0.0155 0.1147± 0.0000

DeepSVDD 0.6334± 0.0163 0.3516± 0.0759 0.1149± 0.0087
DeepSAD 0.8203± 0.1976 0.5959± 0.0905 0.1269± 0.0103

FADS 0.9178± 0.0214 0.6791± 0.0279∗ 0.2480± 0.0260∗∗

AUC-ROC
↑

OCSVM 0.7501± 0.0020 0.6447± 0.0202 0.5122± 0.0910
iForest 0.9131± 0.0181 0.5513± 0.0233 0.5751± 0.0827
LRPU 0.7407± 0.0037 0.6828± 0.0894 0.5404± 0.0623
PUSB 0.7081± 0.0279 0.5932± 0.0101 0.5000± 0.0000

DeepSVDD 0.7932± 0.0298 0.6235± 0.0709 0.5032± 0.0409
DeepSAD 0.9042± 0.1219 0.8310± 0.0553 0.5510± 0.0419

FADS 0.9751± 0.0080∗ 0.9249± 0.0134∗∗ 0.7286± 0.0286∗∗

FPR
(95% TPR)

↓

OCSVM 0.9938± 0.0007 0.9819± 0.0031 0.9046± 0.0484
iForest 0.1941± 0.0459 0.9796± 0.0228 0.7732± 0.1477
LRPU 0.4557± 0.1765 0.6235± 0.0776 0.8872± 0.0489
PUSB 0.9923± 0.0041 0.8291± 0.2636 0.9532± 0.0070

DeepSVDD 0.7081± 0.1564 0.8515± 0.1457 0.8694± 0.0572
DeepSAD 0.2884± 0.4027 0.4002± 0.3597 0.7645± 0.1141

FADS 0.0375± 0.0180∗ 0.2380± 0.1108 0.7036± 0.1119

Significantly outperforms DeepSAD at the: * 0.05 and ** 0.01 level, paired
t-test.

Anomaly Detection. We first evaluate the performance of

FADS for anomaly detection. In particular, after the prototyp-

ical network predicts each anomaly into a specific anomaly

class, we consider all detected samples in anomaly classes

as anomalies. We compare FADS for anomaly detection with

two traditional one-class classification models (OCSVM and

iForest), two positive-unlabeled learning models (LRPU and

PUSB), and two advanced deep anomaly detection models

(DeepSVDD and DeepSAD). As shown in Table II, FADS

achieves better performance than all baselines with a large

margin on all three datasets. Especially, although DeepSAD as

a semi-supervised model also uses both labeled and unlabeled

1https://github.com/hanxiao0607/FADS

TABLE III: Results on anomaly classification (mean ± std.)

Dataset Class
F1

SVM MLP FADS

UNSW-NB15

Normal 0.9356± 0.0219 0.9474± 0.0146 0.9766± 0.0070
Fuzzers 0.3369± 0.1012 0.4079± 0.0471 0.3808± 0.0530

DoS 0.4996± 0.1607 0.4797± 0.1040 0.4130± 0.1036
Exploits 0.1174± 0.1338 0.3809± 0.0835 0.3720± 0.0809
Generic 0.9752± 0.0049 0.7428± 0.0841 0.9478± 0.0362

Reconnaissance 0.2236± 0.1037 0.2663± 0.0683 0.3052± 0.0585
macro-average 0.5147± 0.0482 0.5375± 0.0353 0.5659± 0.0348∗

IDS2018

Normal 0.7150± 0.0331 0.8398± 0.0653 0.9246± 0.0102
Bot 0.5972± 0.0373 0.6298± 0.0303 0.6269± 0.0191
DoS 0.3126± 0.0525 0.4693± 0.1540 0.7817± 0.0668

Bruteforce 0.6684± 0.0813 0.7053± 0.0952 0.8371± 0.0465
macro-average 0.5733± 0.0292 0.6610± 0.0628 0.7926± 0.0197∗∗

CERT

Normal 0.9392± 0.0000 0.6397± 0.0653 0.8830± 0.0196
DataUploading 0.0000± 0.0000 0.3196± 0.1032 0.4440± 0.1228
DataStealing 0.0000± 0.0000 0.4023± 0.0382 0.4477± 0.0568
MassEmail 0.0000± 0.0000 0.0428± 0.0083 0.1179± 0.0553

UnauthdLogin 0.0000± 0.0000 0.1428± 0.0229 0.4755± 0.0860
macro-average 0.1787± 0.0000 0.3095± 0.0331 0.4736± 0.0344∗∗

Significantly outperforms MLP in terms of macro-F1 at the: * 0.05 and **
0.01 level, paired t-test.

datasets, FADS significantly outperforms DeepSAD in most

cases and has a much smaller standard deviation. It means

actively identifying the potential anomalies in the unlabeled

dataset can improve the performance of anomaly detection.

Meanwhile, DeepSAD still outperforms other baselines, which

shows the advantage of using a small set of labeled samples

for anomaly detection. LRPU as a PU learner achieve better

performance than three one-class models (OCSVM, iForest,

and DeepSVDD) on IDS2018 and CERT datasets, meaning

that in some cases, leveraging the unlabeled set can improve

the performance. However, due to the limited anomalies (pos-

itive samples), both LRPU and PUSB underperform FADS.

Anomaly Classification. FADS can achieve fine-grained

anomaly classification based on the prototypical networks, so

we further evaluate FADS for the anomaly classification task.

We compare FADS with two classification models, SVM and

MLP. Table III shows the results on anomaly classification.

In short, FADS achieves the highest macro-F1 score over all

classes, meaning that FADS can achieve the best performance

for anomaly classification. Meanwhile, on the UNSW-NB15

and IDS2018 datasets, FADS achieves the best performance

in most classes in terms of F1 score compared with SVM

and MLP. CERT is the most challenging dataset because of

extremely limited labeled samples. On the CERT dataset, SVM

predicts all anomalies as normal, while MLP has a low recall in

the normal set indicating a high misclassification rate on nor-

mal samples. On the other hand, FADS achieves a significant

improvement compared with baselines on CERT. It indicates

for the challenging anomaly detection task with extremely

limited samples, leveraging anomalies in the unlabeled dataset

is critical to boosting performance.

FADS with and without Data Selection. We further evalu-

ate the performance improvement of FADS over the simple

prototypical networks without reinforced data selection. We

consider three settings as baselines. First, we train a proto-

typical network on the initially labeled dataset, denoted as

ProtoNet. Second, after we train the prototypical network on

the initial dataset, we apply the network to label the unlabeled

dataset U and use the whole weakly-labeled dataset W as

the augmentation set (A ← W) to retrain the prototypical

network. We evaluate the performance of the prototypical
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TABLE IV: Performance of FADS with or without reinforced

data selection (mean ± std.)

Dataset Approach
Anomaly Detection Anomaly Classification

AUC-PR ↑ F1 ↑

UNSW-NB15

ProtoNet 0.8639± 0.0461 0.5307± 0.0388
ProtoNet* 0.7868± 0.0222 0.4819± 0.0449

ProtoNet*(10%) 0.7578± 0.0288 0.4384± 0.0355
FADS 0.9178± 0.0214 0.5659± 0.0348

IDS2018

ProtoNet 0.6086± 0.0643 0.7349± 0.0431
ProtoNet* 0.5751± 0.0713 0.7138± 0.0523

ProtoNet*(10%) 0.4825± 0.0818 0.5474± 0.0880
FADS 0.6791± 0.0279 0.7926± 0.0197

CERT

ProtoNet 0.1818± 0.0314 0.3595± 0.0606
ProtoNet* 0.1747± 0.0194 0.3525± 0.0434

ProtoNet*(10%) 0.1892± 0.0267 0.3905± 0.0589
FADS 0.2480± 0.0260 0.4736± 0.0344

network after re-training on the test set, denoted as ProtoNet*.

The third one is similar to ProtoNet*, but we retrain the

prototypical network based on samples in W having top 10%

of the highest probabilities in each class, which means high

confidence belonging to a class, denoted as ProtoNet* (10%).
Table IV shows that FADS achieves unanimously better per-

formances over baselines on three datasets for both anomaly

detection and classification tasks. Meanwhile, we can notice

that in general, both ProtoNet* and ProtoNet* (10%) cannot

beat regular ProtoNet, which shows that simply using weakly

labeled samples for training will hurt the performance due

to incorrect labels. Furthermore, FADS still has the largest

performance gains on the CERT dataset in terms of macro-F1

for classification, which shows the criticalness of augmenting

the training set with reliable samples in the case of limited

samples. Another advantage of FADS is that it can have a

lower standard deviation compared with traditional prototypi-

cal networks that do not have the augmentation dataset from

the reinforced data selection.

IV. CONCLUSION

In this paper, we have developed FADS, a few-shot anomaly

detection and classification model through reinforced data

selection. The core idea of FADS is to improve a few-shot

learning model iteratively by selecting the potential anomalies

from an unlabeled dataset to augment the training dataset

through a reinforcement learning-based agent. Especially,

FADS trains the prototypical network with extremely limited

samples and applies the prototypical network to label an

unlabeled dataset to get a weakly-labeled dataset. A reinforced

data selection agent is then trained to identify the reliable

weakly-labeled samples to augment the training set for the

prototypical network. The training procedure is conducted as

a loop to iteratively improve the performance of the proto-

typical network for anomaly detection and classification. The

experimental results show the advantage of FADS.
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