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Abstract—Due to the scarcity of anomalies, deep anomaly
detection models are predominately trained in an unsupervised
or semi-supervised manner depending on the availability of a
small number of labeled samples. Currently, most unsupervised
approaches detect anomalies by identifying the deviate patterns,
and some semi-supervised studies also use labeled anomalies
to improve performance. However, few studies have focused
on how to take advantage of potential anomalies in an easily
obtained and large-scale unlabeled dataset. Meanwhile, in a
semi-supervised setting, although we assume having a small
number of labeled anomalies, the task of anomaly classification
is under-exploited. In this work, considering the problem of
anomaly detection and classification by giving limited labeled
samples as well as a large number of unlabeled samples, we
propose a few-shot anomaly detection and classification model
through reinforced data selection (FADS), a novel framework
that iteratively improves the performance of anomaly detection
and classification by exploring the unlabeled dataset to augment
the training set. Experimental results show that FADS is able to
improve the performance of anomaly detection and classification
with only a few labeled samples initially.

Index Terms—anomaly detection, few-shot learning, reinforce-
ment learning

1. INTRODUCTION

Anomaly detection indicates the detection of data samples
that significantly deviate from the majority of data [1], [2]. Due
to the extensive demand in a wide spectrum of applications,
such as external and internal threats in cyberspace, anomaly
detection has become an increasingly important research task.

Due to the small number of anomalies, classical super-
vised learning algorithms cannot be employed. Currently,
the majority of approaches are trained in the unsupervised
or semi-supervised learning manner [1]-[3]. However, one
limitation of existing anomaly detection approaches is that
existing approaches cannot further classify anomalies into
specific anomaly categories. In many real-world scenarios,
understanding the types of anomalies is critical.

However, due to the scarcity of anomalies, the number
of anomalies of each class is even smaller. Hence, it is
extremely hard to train a multiclass classifier in a traditional
supervised manner. Recently, to learn from a limited number of
labeled samples, few-shot learning as a special type of machine
learning has become an emerging research topic, which aims to
learn classifiers given only a few labeled samples of each class
[4]. One common strategy of few-shot learning is to project
limited samples into a smaller embedding space so that similar
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samples are grouped together while dissimilar samples are
separated [4]-[7]. However, in the anomaly detection scenario,
such a cluster assumption only holds for normal samples
since normal data are similar. For anomalies, by only having
a few samples, it is hard to build a cluster to represent a
class of anomalies, especially considering that anomalies are
much more diverse. As a result, current few-shot anomaly
detection approaches only work on distinguishing anomalies
from normal samples and cannot further divide the anomalies
into fine-grained classes [8]-[11]. Hence, how to leverage the
powerful few-shot learning models for anomaly detection and
classification is still under-exploited.

In this work, by following real-world scenarios, we assume
that we have plenty of labeled normal samples and limited
abnormal samples in each anomaly class, as well as large-scale
unlabeled samples. To achieve fine-grained anomaly detection
based on few-shot learning, we propose a framework, called
the Few-shot Anomaly detection and classification model with
reinforced Data Selection (FADS), to leverage the large-scale
unlabeled dataset to progressively improve the few-shot learner
for anomaly detection and classification.

We assume that the unlabeled dataset follows the data
distribution in the real world that consists of a large number
of normal samples and a few anomalies. Initially, we train a
few-shot learning model on a few labeled anomalies. Then, we
iteratively update the few-shot model by selecting potential
anomalies from unlabeled samples to augment the labeled
training set. Especially, each iteration consists of two steps,
data selection and model retraining. In the first step, we
apply the current few-shot model to predict anomalies on the
unlabeled dataset. The prediction outcomes can be considered
as weakly-labeled samples as their predicted labels can be
either accurate or inaccurate. We then apply our proposed
reinforcement learning-based data selection to identify the
weakly-labeled samples with high quality. The chosen samples
have a high chance to be correctly labeled and hence are
used to compose an augmentation set. After that, we build
a new augmented training dataset by combing the existing
labeled dataset with the newly generated augmentation set. In
the second step, we retrain the few-shot learning model on
the augmented training dataset to improve its performance.
We expect the performance of FADS keeps improving as the
training procedure moves forward.

The contributions of this work can be summarized as follow.
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First, we propose a novel framework to progressively improve
the few-shot model for anomaly detection and classification
through reinforced data selection from an unlabeled dataset.
The few-shot model can achieve fine-grained prediction given
a small number of labeled anomalies in each class. Second, we
propose a reinforcement learning-based data selection strategy
that can select correctly-labeled samples from a weakly-
labeled set to augment the training set and further improve
the performance of the few-shot model. Third, experimental re-
sults show that FADS can achieve state-of-the-art performance
on anomaly detection and few-shot anomaly classification.

II. PROPOSED APPROACH

Training Framework of FADS

u Unlabeled
Few-shot Rataser
Anomaly Prediction
Detector Weakly-labeled
"l “/ Dataset
(Re-)Train Reinforced
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Initializing : l .
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Fig. 1: The training framework of FADS

A. Problem Definition

Let £ = {(x;,5:)}5 be a labeled dataset, where x;
indicates the i-th sample, while y; € {0, 1, ..., K'} indicates the
corresponding label. Particularly, y; = O indicates a normal
sample while y; € {1,..., K} denotes a class of anomalies.
Considering that it is usually feasible to have a large number
of normal samples in the anomaly detection scenario, the
labeled dataset can be decomposed as £ = Ly |J L4 with
|Ln| > |L4|, where Ly only consists of normal samples and
L 4 includes few samples in each anomaly class.

With such a small amount of abnormal samples, it is hard to
train an accurate anomaly detection and classification model.
To tackle this challenge, in this work, besides a labeled dataset
L, we further leverage an unlabeled dataset i = {x; };V:Ul. The
goal is to learn a few-shot anomaly detection and classification
model that can leverage the knowledge of the unlabeled dataset
U, especially the potential anomalies in I/, to maximally
improve the performance of the model on anomaly detection
and classification.

B. Framework Overview

In this work, we propose a few-shot anomaly detection and
classification model through reinforced data selection (FADS),
which is able to gradually enhance the performance of the few-
shot learning model by exploiting the unlabeled dataset /.
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FADS first trains a few-shot learning model on an initial
training dataset with only labeled samples D = L. Then,
FADS iteratively improves the model by selecting samples
from unlabeled dataset ¢/ to augment the training dataset.
We employ the reinforcement learning technique for data
selection. In each training iteration, we first use the current
few-shot model to predict the label §J; for each sample z; in U,
thus producing a weakly-labeled dataset W = {(z;, g])}j\’gl
Then, we train a reinforcement learning agent to select the
weakly-labeled samples that have high chances to be accurate
into an augmentation set A = {(z;,9;)|a; = 1}?;“1, where
a; € {0,1} indicates whether the sample (z;,¢;) is selected
by the agent or not. We combine the augmentation dataset .4
with the existing training dataset to compose the new training
dataset, i.e., D = DU A, and then re-train the few-shot model
on the new training dataset. We expect that the performance
of the few-shot model will be improved with those augmented
samples. As the training iteration moves forward, the few-shot
anomaly detection model can be improved progressively. The
overview of FADS is shown in Figure 1.

C. Prototypical Network

In this work, we adopt the prototypical network [5] as our
base few-shot learning model. Following the typical process
for training the few-shot learning model, we first randomly
select Ng and Ng samples from the training dataset D to
compose the support set S and query set Q, respectively.

The prototypical network learns an embedding function g(-)
to map each sample z; to an embedding space, denoted as
x; = g(x;). Based on the support set, the prototype represen-
tation for each class can be derived by a mean operation:

1
>

S
| k| (zi,yi)ESk

¢, = g(x), M
where Sy, indicates the subset of samples in the support set
S with the class k. Then, given a distance function d(-), the
prototypical network predicts the distribution of classes for a
query point € Q based on a softmax over distances to the

prototypes:

_enp(-d(g(x), )

> exp(—d(g(x), cx))’
The objective function of the prototypical network is the
negative log-probability L = —logp(y = k|x) of the true
class k. The training objective is to make the samples from
the same class have small distances to the class prototype cy.
A test sample can be labeled based on the label of its nearest
prototype in the embedding space.

p(y = k[x) )

D. Reinforced Data Selection

As the labeled dataset £ only has a very small number of
anomalies, the performance of the initial prototypical network
trained on L still has room for improvement if more training
samples can be incorporated. To this end, we propose to
exploit the unlabeled dataset I/. We first use the current proto-
typical network to predict the labels of samples in ¢/ and get
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a weakly-labeled dataset ¥V, which consists of both correctly
and incorrectly labeled samples. If we simply adopt W to
augment the training set, due to the noisy supervised signals,
the performance of the prototypical network could be worse.
Hence, we propose a reinforcement learning-based data selec-
tion method to select samples from }V based on their reliability
to compose an augmentation set 4. Once the reinforced data
selection agent is capable of selecting the correctly labeled
samples to augment the training set, the performance of the
few-shot learner can be improved. Therefore, the reward to
the data selection agent is designed based on the performance
of the few-shot learner on an unobserved validation set. The
key components of the reinforcement learning framework are
described below.

State. For each state s; with weakly-labeled sample (z;, ;) €
W, its state representation s; is defined as the concatenation
of the embedding vector x; = g(z;) and the distance value
d; to the closest prototype, i.e., s; = [x;,d;].

Action. The data selection agent then needs to take an action
on whether to select this sample (x;,7;) into the augmenta-
tion set .4 based on the state representation s;. In specific,
a; = 0 means the sample (x;,¢;) will be rejected, while
a; = 1 indicates the sample will be selected and added to the
augmentation set A.

Policy Network. The data selection agent makes decisions
about whether to select a weakly-labeled sample based on a
policy network 7y (). We adopt a neural network to param-
eterize the policy network that takes the state representation
as input and outputs the probability of the action, p(a;|s;) =
mg(s;). The action a; is then sampled based on p(a;|s;).
Rewards. The policy network is trained with guidance from
the reward function. We define the reward based on the perfor-
mance of the few-shot learning model on an unseen validation
set. As in our task, we aim to detect anomalies as well as
classify abnormal samples into different classes. Therefore
we design the reward function based on the performance of
anomaly detection and classification, i.e., an anomaly detection
reward r¢ and a classification reward r¢. Specifically, we adopt
the F1 score as the metric to evaluate the performance of
anomaly detection and the macro F1 score over all classes
to evaluate the performance of classification.

In our scenario, if wrongly-labeled samples are selected to
compose the training dataset, we can expect that the perfor-
mance of the few-shot learning model will be damaged. On
the other hand, if the samples with correct labels are selected,
the performance of the model can be improved. Hence, the
reward is designed based on the performance change after the
model is trained on an augmentation set.

Specifically, in each episode, we first calculate the F1 and
macro F1 scores of the current prototypical network. We
denote the prototypical network at the beginning of each
episode as go(-) and the corresponding F1 and macro F1 scores
achieved by go(+) as F'1p and MarcoF1y. Then, we work on
improving ¢o(-) by composing an augmentation set. To this
end, first, we randomly sample a set of batches B = {B;}L,
from W, where each batch B; consists of a number of samples.
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Given a batch By, for each sample in B;, we sample an action
a; (select to the augmentation set or not) based on the policy
p(alsj) = mp(s;). Then, we can compose the augmentation
set A; from the batch B;. After combining 4; with D, we
update the prototypical network, denoted as g;(-), and further
evaluate ¢;(-) on a validation set to derive F1 and macro F1
scores, denoted as F'1; and MacroF'1;. Finally, the reward for
the agent in a batch can be calculated as the difference of F1
scores, ! = F1; — Flg and r{ = MacroF1; — MacroF1,.
The overall reward function in a batch is formulated as:

3

where « is a hyperparameter to balance anomaly detection and
classification tasks. In the experiments, we set o = 1.
Optimization. The data selection agent is trained based on
the actor-critic algorithm [12]. The output of the actor is the
probability of two actions (select or not), while the output of
the critic is the predicted reward value based on the current
state. Both actor and critic are parameterized by feed-forward
neural networks. The goal of the agent is to maximize the
rewards, which is defined as:

j(@) =Er, [rl]' “4)

The parameter 6 in policy network my is trained based on
policy gradient [13]:

0« 0+n0T7(0), )

where n indicates the learning rate. The gradient for a batch
of weakly-labeled samples can be approximated by [12]

rm=rit+a-rf

|Bi]
VoJ (0) = 1Bl > Velogmo(s;)(r = Vy(s;)),  (6)
j=1

where |B| indicates the number of samples in a batch Bj;
Vi(s;) is the expected reward from a critic network V(-
parameterized by . The structure of the critic network is
similar to the policy network with the last layer as a regression
function. The critic network is designed to estimate the ex-
pected reward and hence updated according to the cumulative
difference between the real reward r; and the predicted value

Vw(sj)’

| Bi|
1
L(p) = @Zlm — Vio(s)]- )
j=1
The parameters ¢ in V,,(s;) can be optimized by:
p=0-1 Ve L), ®

where 7 indicates the learning rate for updating the critic
network.

III. EXPERIMENTS

A. Experimental Setup

Datasets. We apply FADS to detect and classify anomalies on
the following three datasets.

o UNSW-NBI15 [14]. The UNSW-NB15 dataset was gen-
erated by the IXIA PerfectStorm tool in the Cyber Range
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TABLE I: Statistics of datasets in experiments

Dataset Class £Tramm;i Testing
Normal 100 | 30,000 | 20,000
Fuzzers 10 3,000 2,000
UNSW-NB15 DoS 10 3,000 2,000
(293 features) Exploits 10 3,000 2,000
Generic 10 3,000 2,000
Reconnaissance 10 3,000 2,000
Normal 100 | 30,000 | 20,000
IDS2018 Bot 10 3,000 2,000
(77 features) DoS 10 3,000 2,000
Bruteforce 10 3,000 2,000
Normal 100 | 2,000 2,000
DataUploading 10 27 28
(variSERlanth) DataStealing | 10 | 201 201
MassEmail 10 10 10
UnauthdLogin 10 21 21

Lab of UNSW Canberra. It consists of normal and five syn-
thetic attacks including suspension caused by feeding random
data (Fuzzers), denial-of-services by overloading the server
or network (DoS), attacks with known security problems
(Exploits), attack block-ciphers without information about the
structure (Generic), and attacks for collecting information
(Reconnaissance).

e IDS2018 [15]. IDS2018 contains detailed network traffic
and log files. It consists of normal network traffic and three
different types of attacking traffic including automatically
synthesized requests of upload, download, screenshots, and
keylogging (Bot), denial-of-service by overloading the server
or network (DoS), and password crack by brute-force (Brute-
force).

e CERT [16]. CERT is an insider threat dataset that contains

a collection of synthetic normal and malicious user activities.
We use CERT V5.2, which consists of four types of insider
threats including unauthorized uploading data (DataUpload-
ing), using a thumb drive to steal data (DataStealing), sending
out mass emails causing panic (MassEmail), unauthorized
logging into other computers (UnauthdLogin). Due to the
extremely small number of insiders, the number of samples
for each anomaly class is small.
Data Preprocessing. Both UNSW-NB15 and IDS2018 are
multidimensional datasets, where each instance consists of
multiple features to describe the basic information. After typi-
cal preprocessing steps, each sample in UNSW-NB15 consists
of 293 features, while each sample in IDS2018 consists of
77 features. We randomly select 100 normal samples as Ly
and 10 samples from each anomaly class as £ 4. To construct
an unlabeled dataset ¢/, we randomly select 30,000 normal
samples and 3,000 abnormal samples from each anomaly class.
The testing dataset contains 20,000 normal samples and 2,000
abnormal samples from each anomaly class.

CERT is a sequential dataset, where each entry indicates
one user activity. For CERT V5.2, there are 23 different types
of activities, such as logon, logoff, web visiting, and file
editing. We group user activities into sessions as data samples,
and each session consists of all user activities between logon

966

and logoff operations on a computer. Similarly, we randomly
select 100 normal samples as Ly and 10 samples from each
anomaly class as £ 4. The unlabeled dataset I/ is composed
of randomly selected 2,000 normal sessions and half of the
remaining abnormal sessions (excluding the 10 sessions used
in £4) from each anomaly class. The testing dataset consists
of 2,000 normal sessions and the other half of the remaining
data in each anomalous class. Table I summarizes the statistics
of datasets used in our experiments.

Baselines. We use two sets of baselines to evaluate the
performance of FADS for anomaly detection and classification,
respectively.

Baselines for anomaly detection. We adopt the following six
baselines to evaluate the performance of anomaly detection: 1)
One-Class SVM (OCSVM) [17], is a one-class classification
model; 2) Isolation Forest (iForest) [18] is a tree-based
anomaly detection model; 3) Label Random PU Learning
(LRPU) [19] is a positive-unlabeled learning approach; 4) PU
learning with a Selection Bias (PUSB) [20] is an advanced
positive-unlabeled learning approach; 5) Deep Support Vec-
tor Data Description (DeepSVDD) [21] is a deep learning-
based one-class anomaly detection method; 6) Deep Semi-
Supervised Anomaly Detection (Deep SAD) [22] is a semi-
supervised anomaly detection model.

OCSVM, iForest, and DeepSVDD as one-class models are
trained on the normal set £y. LRPU and PUSB as positive-
unlabeled models are trained on the anomalous set £,4 and
unlabeled set /. Deep SAD as a semi-supervised model is
trained on the labeled set £ and unlabeled set I{.

Baselines for anomaly classification. We adopt the following
two baselines to evaluate the performance of anomaly classifi-
cation, Support Vector Machine (SVM) [23] and Multilayer
Perceptron (MLP) [24].

We train both baselines on the labeled set £ and also adopt

the synthetic minority oversampling technique (SMOTE) [25]
for oversampling the data in anomaly classes.
Evaluation Metrics. For anomaly detection, we consider all
anomaly classes as one anomaly class and adopt the Area
Under Precision-Recall Curve (AUC-PR), the Area Under
Receiver Operating Characteristic Curve (AUC-ROC), and
False Positive Rate (FPR) at 95% True Positive Rate (TPR) to
measure the performance of FADS. Especially, FPR at 95%
TPR can be considered as the probability that an anomaly is
misclassified as normal when the true positive rate is 95%.
For anomaly classification, F1 score is used to evaluate the
performance of FADS on each abnormal class. We also derive
the Macro-F1 score to evaluate the performance over all
classes. In our experiments, we report the results over 10
runs. The paired t-test is adopted to examine the statistical
significance of FADS over the best baseline.

B. Implementation Details

For UNSW-NB15 and IDS2018 datasets, we adopt a feed-
forward neural network with three fully connected layers as
the implementation of the prototypical network g(-). For the
CERT dataset, we adopt a GRU neural network [26] to map
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sequences into an embedding space with the dimension of 64.
For all three datasets, as we only have 10 labeled samples in
each anomaly class in the initial training set £ 4, we initially
assign 6 samples to D" to train the prototypical network with
3 samples as the support set S and 3 samples as the query
set Q and the rest 4 samples to Dval for evaluation. With the
training episode increasing, we assign more samples selected
by the policy network to D" and DV with a fixed ratio of
30% of samples in S, 30% of samples in Q, and 40% of
samples in DY to retrain the prototypical network.

In the implementation of actor-critic reinforcement learn-
ing, both actor and critic are three-layer feedforward neural
networks. In the training stage, we set the number of training
episodes 17" = 20, while in each episode, we generate a set
of sample batches {B;}%, with L = 50. For each batch B,
we randomly select samples from each predicted class in W
and compose a balanced set for the actor to select. Especially,
for UNSW-NB15 and IDS2018 datasets, we randomly select
10 samples from each class, so the sizes of each batch are
| B;| = 60 for the UNSW-NB15 dataset and |B;| = 40 for the
IDS2018 dataset. For the CERT dataset, we select 2 samples
from each class with the batch size |B;| = 10. The code and
datasets used in the experiments are available online .

C. Experimental Results

TABLE II: Results on anomaly detection (mean =+ std.). 1
indicates larger value is better; | indicates lower value is better.

UNSW-NBI15 IDS2018 CERT

OCSVM 0.5001 =+ 0.0020 0.3026 £ 0.0137 0.1233 £ 0.0199

iForest 0.7564 £ 0.0321 0.2936 £ 0.0093 0.1331 £ 0.0218

AUC-PR LRPU 6542 + 0.0049 =+ 0.0689 0.1395 £ 0.0362
PUSB 8 £ 0.0372 =+ 0.0155 0.1147 £ 0.0000

T DeepSVDD 0.6334 £ 0.0163 5 £ 0.0759 0.1149 £ 0.0087
DeepSAD 0.8203 £ 0.1976 0.5959 =+ 0.0905 0.1269 £ 0.0103

FADS 0.9178 £0.0214 | 0.6791 + 0.0279" | 0.2480 + 0.0260

OCSVM 0.7501 £ 0.0020 0.6447 £ 0.0202 0.5122 £+ 0.0910

iForest 0.9131 £ 0.0181 +0.0233 0.5751 £ 0.0827

AUC-ROC LRPU 0.7407 £ 0.0037 =+ 0.0894 0.5404 £ 0.0623
+ PUSB 0.7081 £ 0.0279 £ 0.0101 0.5000 £ 0.0000
DeepSVDD 0.7932 £ 0.0298 0.6235 £ 0.0709 0.5032 £ 0.0409

DeepSAD 0.9042 £0.1219 0.8310 £ 0.0553 0.5510 £ 0.0419

FADS 0.9751 £0.0080" | 0.9249 £ 0.0134™ | 0.7286 £ 0.0286

OCSVM 0.9938 £ 0.0007 0.9819 £ 0.0031 0.9046 £ 0.0484

iForest 0.1941 £ 0.0459 0.9796 £ 0.0228 0.7732 £ 0.1477

FPR LRPU 0.4557 £ 0.1765 0.6235 £ 0.0776 0.8872 £ 0.0489
(95% TPR) PUSB 0.9923 £ 0.0041 0.8291 £ 0.2636 0.9532 £ 0.0070
3 DeepSVDD 0.7081 £ 0.1564 0.8515 £ 0.1457 0.8694 £ 0.0572
DeepSAD 0.2884 £ 0.4027 0.4002 £ 0.3597 0.7645 £ 0.1141
FADS 0.0375 £ 0.0180" 0.2380 £ 0.1108 0.7036 £ 0.1119

ignificantly outperforms DeepSAD at the: ¥ 0.05 and *¥ 0.0T Ievel, paired
t-test.

Anomaly Detection. We first evaluate the performance of
FADS for anomaly detection. In particular, after the prototyp-
ical network predicts each anomaly into a specific anomaly
class, we consider all detected samples in anomaly classes
as anomalies. We compare FADS for anomaly detection with
two traditional one-class classification models (OCSVM and
iForest), two positive-unlabeled learning models (LRPU and
PUSB), and two advanced deep anomaly detection models
(DeepSVDD and DeepSAD). As shown in Table II, FADS
achieves better performance than all baselines with a large
margin on all three datasets. Especially, although DeepSAD as
a semi-supervised model also uses both labeled and unlabeled

Uhttps://github.com/hanxiac0607/FADS
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TABLE III: Results on anomaly classification (mean =+ std.)
Dataset Class Fl
SVM MLP FADS
Normal 0.9356 = 0.0219 0.9474 £ 0.0146 0.9766 = 0.0070
Fuzzers 0.3369 + 0.1012 0.4079 £ 0.0471 0.3808 £ 0.0530
DoS 0.4996 + 0.1607 0.4797 4 0.1040 0.4130 £ 0.1036
UNSW-NB15 Exploits 0.1174 +£0.1338 0.3809 £+ 0.0835 0.3720 £ 0.0809
Generic 0.9752 £ 0.0049 0.7428 £+ 0.0841 0.9478 + 0.0362
R i 0.2236 + 0.1037 0.2663 £ 0.0683 0.3052 + 0.0585
macro-average 0.5147 £ 0.0482 0.5375 £ 0.0353 0.5659 + 0.0348"
Normal 0.7150 £ 0.0331 0.8398 £+ 0.0653 0.9246 = 0.0102
Bot 0.5972 + 0.0373 0.6298 £+ 0.0303 0.6269 + 0.0191
IDS2018 DoS 0.3126 £ 0.0525 0.4693 £ 0.1540 0.7817 +0.0668
Bruteforce 0.6684 + 0.0813 0.7053 £ 0.0952 0.8371 + 0.0465
macro-average 0.5733 £ 0.0292 0.6610 £ 0.0628 0.7926 £ 0.0197™
Normal 0.9392 + 0.0000 0.6397 £ 0.0653 0.8830 & 0.0196
DataUploading 0.0000 = 0.0000 0.3196 £+ 0.1032 0.4440 +£0.1228
CERT DataStealing 0.0000 = 0.0000 0.4023 £ 0.0382 0.4477 £ 0.0568
MassEmail 0.0000 + 0.0000 0.0428 £ 0.0083 0.1179 + 0.0553
UnauthdLogin 0.0000 + 0.0000 0.1428 + 0.0229 0.4755 + 0.0860
macro-average 0.1787 £ 0.0000 0.3095 £ 0.0331 0.4736 £ 0.0344™

Significantly outperforms MLP in terms of macro-FI at the: * 0.05 and **
0.01 level, paired t-test.

datasets, FADS significantly outperforms DeepSAD in most
cases and has a much smaller standard deviation. It means
actively identifying the potential anomalies in the unlabeled
dataset can improve the performance of anomaly detection.
Meanwhile, DeepSAD still outperforms other baselines, which
shows the advantage of using a small set of labeled samples
for anomaly detection. LRPU as a PU learner achieve better
performance than three one-class models (OCSVM, iForest,
and DeepSVDD) on IDS2018 and CERT datasets, meaning
that in some cases, leveraging the unlabeled set can improve
the performance. However, due to the limited anomalies (pos-
itive samples), both LRPU and PUSB underperform FADS.
Anomaly Classification. FADS can achieve fine-grained
anomaly classification based on the prototypical networks, so
we further evaluate FADS for the anomaly classification task.
We compare FADS with two classification models, SVM and
MLP. Table III shows the results on anomaly classification.
In short, FADS achieves the highest macro-F1 score over all
classes, meaning that FADS can achieve the best performance
for anomaly classification. Meanwhile, on the UNSW-NB15
and IDS2018 datasets, FADS achieves the best performance
in most classes in terms of F1 score compared with SVM
and MLP. CERT is the most challenging dataset because of
extremely limited labeled samples. On the CERT dataset, SVM
predicts all anomalies as normal, while MLP has a low recall in
the normal set indicating a high misclassification rate on nor-
mal samples. On the other hand, FADS achieves a significant
improvement compared with baselines on CERT. It indicates
for the challenging anomaly detection task with extremely
limited samples, leveraging anomalies in the unlabeled dataset
is critical to boosting performance.

FADS with and without Data Selection. We further evalu-
ate the performance improvement of FADS over the simple
prototypical networks without reinforced data selection. We
consider three settings as baselines. First, we train a proto-
typical network on the initially labeled dataset, denoted as
ProtoNet. Second, after we train the prototypical network on
the initial dataset, we apply the network to label the unlabeled
dataset U/ and use the whole weakly-labeled dataset W as
the augmentation set (A < W) to retrain the prototypical
network. We evaluate the performance of the prototypical
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TABLE IV: Performance of FADS with or without reinforced

data selection (mean =+ std.)

Anomaly Detection

Anomaly Classification

Dataset Approach AUCPR T FTF
ProtoNet 0.8639 + 0.0461 0.5307 + 0.0388
ProtoNet* 0.7868 + 0.0222 0.4819 + 0.0449
UNSW-NBI15 ProtoNet*(10%) 0.7578 + 0.0288 0.4384 + 0.0355
0.9178 + 0.0214 0.5659 + 0.0348
ProtoNet 0.6086 + 0.0643 0.7349 + 0.0431
IDS2018 ProtoNet* 0.5751 + 0.0713 0.7138 + 0.0523
ProtoNet*(10%) 0.4825 + 0.0818 0.5474 + 0.0880
FADS 0.6791 + 0.0279 0.7926 + 0.0197
ProtoNet 0.1818 + 0.0314 0.3595 + 0.0606
CERT ProtoNet* 0.1747 £ 0.0194 0.3525 + 0.0434
ProtoNet*(10%) 0.1892 + 0.0267 0.3905 + 0.0589
FADS 0.2480 + 0.0260 0.4736 + 0.0344

network after re-training on the test set, denoted as ProtoNet*.
The third one is similar to ProtoNet*, but we retrain the
prototypical network based on samples in W having top 10%
of the highest probabilities in each class, which means high
confidence belonging to a class, denoted as ProtoNet* (10%).

Table IV shows that FADS achieves unanimously better per-
formances over baselines on three datasets for both anomaly
detection and classification tasks. Meanwhile, we can notice
that in general, both ProtoNet* and ProtoNet* (10%) cannot
beat regular ProtoNet, which shows that simply using weakly
labeled samples for training will hurt the performance due
to incorrect labels. Furthermore, FADS still has the largest
performance gains on the CERT dataset in terms of macro-F1
for classification, which shows the criticalness of augmenting
the training set with reliable samples in the case of limited
samples. Another advantage of FADS is that it can have a
lower standard deviation compared with traditional prototypi-
cal networks that do not have the augmentation dataset from
the reinforced data selection.

IV. CONCLUSION

In this paper, we have developed FADS, a few-shot anomaly
detection and classification model through reinforced data
selection. The core idea of FADS is to improve a few-shot
learning model iteratively by selecting the potential anomalies
from an unlabeled dataset to augment the training dataset
through a reinforcement learning-based agent. Especially,
FADS trains the prototypical network with extremely limited
samples and applies the prototypical network to label an
unlabeled dataset to get a weakly-labeled dataset. A reinforced
data selection agent is then trained to identify the reliable
weakly-labeled samples to augment the training set for the
prototypical network. The training procedure is conducted as
a loop to iteratively improve the performance of the proto-
typical network for anomaly detection and classification. The
experimental results show the advantage of FADS.
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