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A B S T R A C T

The temporal structure of human sleep changes across development as it consolidates from the polyphasic
sleep of infants to the single nighttime sleep episode typical in adults. Experimental studies have shown
that changes in the dynamics of sleep need may mediate this developmental transition in sleep patterning,
however, it is unknown how sleep architecture interacts with these changes. We employ a physiologically-
based mathematical model that generates wake, rapid eye movement (REM) and non-REM (NREM) sleep
states to investigate how NREM–REM alternation affects the transition in sleep patterns as the dynamics of
the homeostatic sleep drive are varied. To study the mechanisms producing these transitions, we analyze
the bifurcations of numerically-computed circle maps that represent key dynamics of the full sleep–wake
network model by tracking the evolution of sleep onsets across different circadian (∼ 24 h) phases. The
maps are non-monotonic and discontinuous, being composed of branches that correspond to sleep–wake cycles
containing distinct numbers of REM bouts. As the rates of accumulation and decay of the homeostatic sleep
drive are varied, we identify the bifurcations that disrupt a period-adding-like behavior of sleep patterns
in the transition between biphasic and monophasic sleep. These bifurcations include border collision and
saddle–node bifurcations that initiate new sleep patterns, period-doubling bifurcations leading to higher-order
patterns of NREM–REM alternation, and intervals of bistability of sleep patterns with different NREM–REM
alternations. Furthermore, patterns of NREM–REM alternation exhibit variable behaviors in different regimes
of constant sleep–wake patterns. Overall, the sequence of sleep–wake behaviors, and underlying bifurcations,
in the transition from biphasic to monophasic sleep in this three-state model is more complex than behavior
observed in models of sleep–wake regulation that do not consider the dynamics of NREM–REM alternation.
These results suggest that interactions between the dynamics of the homeostatic sleep drive and the dynamics
of NREM–REM alternation may contribute to the wide interindividual variation observed when young children
transition from napping to non-napping behavior.
1. Introduction

In humans, rapid eye movement (REM) and non-REM (NREM) sleep
regularly alternate across the sleep episode [1]. Data indicate that this
ultradian (recurring with a period less than 24 h) NREM–REM alterna-
tion interacts with developmentally-mediated changes in sleep in early
childhood [2]. However, the dynamical mechanisms of these interac-
tions are not well understood. In this study, we use physiologically-
based mathematical modeling to determine how NREM–REM alterna-
tion affects the transition between polyphasic and monophasic sleep
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that represents a child’s transition from napping to non-napping be-
havior.

Sleep timing is primarily governed by interactions between cir-
cadian (∼24 h) and homeostatic sleep drives, and their actions on
neuronal sleep–wake regulatory networks, namely the networks of
brainstem and hypothalamic neuronal populations that produce distinct
states of wake, NREM sleep, and REM sleep [3,4]. Although the time
scales of circadian and homeostatic sleep processes may vary with
ontogeny or phylogeny, many features of these drives are conserved
across both developmental stages and mammalian species.
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The circadian regulation of sleep is driven by projections from the
ircadian pacemaker in the suprachiasmatic nucleus (SCN) to the sleep–
ake regulatory network [4,5]. In SCN neurons, intrinsic molecular
locks with periods of approximately 24 h are entrained to the 24 h
ight–dark cycle and produce daily oscillations in firing rate [6,7]. Pro-
ections from the SCN to downstream neuronal populations coordinate
iological rhythms throughout the body and rhythmically modify sleep
ropensity, producing nocturnal, diurnal, crepuscular, or other sleep
atterns (reviewed in [4]).
The homeostatic sleep drive increases with time awake, reflecting

leep need with a dependence on the past history of time spent in
leep and wakefulness. It is likely mediated by many mechanisms,
ncluding the somnogen adenosine [8–10]. Slow wave activity (SWA) in
he electroencephalogram (EEG) is an established marker of the homeo-
tatic sleep drive [11,12], and sleep deprivation experiments have been
sed to estimate the time constants associated with the homeostatic
leep drive in adults with typical sleep–wake behavior [13] as well
s in humans in other life stages [14–16], and in other mammalian
pecies [17,18].
The circadian and homeostatic sleep drives additionally influence

REM–REM alternation during a sleep episode. In adults, the circadian
hythm strongly modulates the occurrence of REM sleep, and there
s a lower propensity for entering the REM state at phases when the
ircadian waking drive is high [19,20]. Similarly, high homeostatic
leep drive affects REM sleep by preferentially promoting NREM sleep
ver REM sleep during initial recovery sleep following sleep depri-
ation [20,21]. Total amounts of REM and NREM sleep also differ
ith sleep duration as reported in studies of habitually short- and
ong-sleeping individuals [15,22,23].
Across the human lifespan, the sleep–wake regulatory network pro-

uces a range of sleep behaviors, including frequent transitions be-
ween sleep and wake states in infants, regular napping behavior
n early childhood, and a consolidated nighttime sleep episode in
dults [24]. These ontogenetic changes are likely driven by changing
ynamics of the homeostatic sleep drive, and experiments have identi-
ied differences in the rates of growth and decay of SWA in humans at
ifferent life stages [14,16,25].
Differences in homeostatic dynamics also contribute to the great

hylogenetic diversity of sleep–wake behavior [17,18,26,27]. This di-
ersity includes distinct sleep patterning (polyphasic or monophasic),
iming (nocturnal, diurnal, crepuscular), and sleep need. The physiol-
gy of neuronal sleep–wake regulatory networks is largely conserved
cross mammalian species, but modulation of these networks by home-
static and circadian inputs can produce a wide range of observed
leep–wake dynamics.
Mathematical modeling has contributed to our understanding of the

ffects of changing homeostatic dynamics on sleep patterns. Previous
odeling studies of sleep–wake regulation examined implications of
omeostatic variation for inter-species differences [26] and changes
n sleep from adolescence to old age [28]. These results support a
ey role for homeostatic time constants in producing distinct patterns
f sleep–wake behavior. In addition, previous studies have analyzed
he types and sequences of bifurcations produced as homeostatic time
onstants changed [28–30]. However, this previous work focused on
odels that simulate only two behavioral states, wake and sleep, and
o not account for NREM–REM alternation during the sleep episode.
As a first step in understanding the effects of NREM–REM alterna-

ion on homeostatically driven changes in sleep patterns, we present
computationally-based analysis of the bifurcations in sleep patterns
roduced by varying homeostatic time constants in a three-state sleep–
ake regulatory network model. This work provides novel insights
nto the potential role of NREM–REM alternation in the evolution
f sleep–wake behavior across development. To analyze the types of
ifurcations that occur in the piecewise smooth sleep–wake network
odel, we construct circle maps that represent key dynamics of the full

leep–wake network model [31]. By computing representative maps for

2

distinct intervals of homeostatic time constants, we gain insight into the
types of bifurcations that occur and elucidate the effects of NREM–REM
alternation on sequences of bifurcations in sleep patterns.

The paper is organized as follows: in Section 2 we briefly review
the three-state sleep–wake regulatory network model and describe
the numerically-constructed one-dimensional circle map that captures
the key dynamics of the full model; in Section 3 we describe the
bifurcations produced by varying the time constants of the homeostatic
sleep drive with a specific focus on the transition between biphasic and
monophasic daily sleep patterns; and in Section 4 we provide a brief
summary of our results, relate them to previous results in two-state
models of sleep–wake regulation, and discuss implications for sleep in
early childhood.

2. Model and methods

In this section we first describe our three-state sleep–wake regu-
latory network model and then discuss the methods to construct the
circle maps that are used to identify bifurcations of model solutions as
homeostatic time constants are varied.

2.1. Three-state sleep–wake network model

We utilize our previously developed, sleep–wake regulatory net-
work model to simulate sleep–wake behavior [22,32,33]. This model
is based on neurotransmitter-mediated interactions between neuronal
populations that promote the states of wake, NREM and REM sleep
(Fig. 1). Representative wake-promoting monoaminergic populations
include the locus coeruleus (LC) and the dorsal raphe (DR); NREM
sleep-promoting populations include GABAergic, sleep-active neurons
of the ventrolateral preoptic nucleus (VLPO); and REM-promoting pop-
ulations include the REM-active, cholinergic areas of the laterodor-
sal tegmental nucleus (LDT) and pedunculopontine tegmental nucleus
(PPT). In the model, mutual inhibition between the wake-promoting
and NREM sleep-promoting populations introduces a flip-flop switch
governing transitions between sleep and wake states. Transitions be-
tween NREM and REM sleep states are dictated according to the
reciprocal interaction hypothesis for REM sleep [34], in which the
wake-promoting population projects inhibitory synapses to the REM
sleep-promoting population, while the REM sleep-promoting popula-
tion projects excitatory synapses back to the wake-promoting popu-
lation. The model also represents the suprachiasmatic nucleus (SCN),
the hypothalamic region that acts as the central circadian rhythm
pacemaker, is entrained to the environmental light cycle, and displays
a 24-hour variation in neural firing. SCN projections to sleep/wake reg-
ulatory populations drive the 24 h timing of sleep and wake states. For
humans under normal light:dark conditions, the circadian rhythm and
the sleep–wake cycle are entrained such that sleep occurs when SCN
firing rates are low (typically during the dark period), and wake occurs
when SCN firing rates are high (typically during the light period). The
timing of sleep and wake episodes is additionally influenced by the
homeostatic sleep drive. The somnogen adenosine accumulates during
periods of wakefulness, decays during sleep, and likely represents a
biophysical substrate for the homeostatic sleep drive: high adenosine
concentrations increase the activity of VLPO neurons [4,35–38]. We
model this effect by letting the activation of the NREM-promoting
population depend on the level of the modeled homeostatic sleep drive.

Neuronal populations
Neuronal population activity is modeled using a firing rate formal-

ism. Instead of tracking the spiking of single neurons, the firing rate
model describes the averaged behavior of spike rates of the neuronal
populations, 𝑓𝑊 , 𝑓𝑁 , 𝑓𝑅, where𝑊 , 𝑁 , and 𝑅 denote Wake, NREM and
REM, respectively. The neurotransmitter concentration released as a
result of activity of the presynaptic neuronal population depends on the

mean firing rate of the presynaptic neuronal population. In particular,
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Fig. 1. A physiologically based, three-state model for sleep–wake regulation. A: Schema of the model network summarizing interactions among the wake-promoting, NREM-
promoting, REM-promoting and suprachiasmatic nucleus (𝑆𝐶𝑁) neuronal populations with circles denoting inhibitory and arrows denoting excitatory synaptic connections. The
epresentative neurotransmitters for each populat ion are also indicated (NE: noradrenaline, ACh: acetylcholine, GABA: gamma aminobutyric acid). B: Time traces showing the
volution of the model variables corresponding to the stable solution with one daily sleep episode. The top panel includes the firing rates 𝑓𝑊 (Wake), 𝑓𝑁 (NREM), 𝑓𝑅 (REM),
𝑆𝐶𝑁 . The middle panel shows the evolution of the sleep homeostat, ℎ, and the bottom panel shows the evolution of the circadian drive, 𝑐. The light blue and rose backgrounds
orrespond to the times at which the model is in wake and sleep, respectively.
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e assume that a firing rate 𝑓𝑋 induces instantaneous expression of
eurotransmitter concentration that is described by its steady state
unction: 𝐶𝑖(𝑓𝑋 ) = tanh

(

𝑓𝑋
𝛾𝑖

)

, where 𝑋 = 𝑊 ,𝑁,𝑅, 𝑆𝐶𝑁 and cor-
responding 𝑖 = NE (noradrenaline), G (GABA), ACh (acetylcholine),
S (GABA expressed by the SCN). The postsynaptic firing rates, 𝑓𝑋 (𝑡)
(in Hz), saturate to their steady state firing rate response functions
with time constants 𝜏𝑋 for 𝑋 = 𝑊 ,𝑁,𝑅, 𝑆𝐶𝑁 . The steady state firing
rate functions, 𝑋∞(⋅), have a sigmoidal profile that has been utilized in
many firing rate models [26,39–42]. In particular,

𝑋∞(𝑧) =
𝑋𝑚𝑎𝑥
2

[

1 + tanh
( 𝑧 − 𝛽𝑋

𝛼𝑋

)

]

(1)

Hence, in this formalism the firing rates 𝑓𝑋 for 𝑋 = 𝑊 ,𝑁,𝑅, 𝑆𝐶𝑁
are governed by the following equations:

𝑑𝑓𝑊
𝑑𝑡

=
𝑊∞

(

𝑔𝐴𝐶ℎ,𝑊 𝐶𝐴𝐶ℎ(𝑓𝑅) + 𝑔𝑆,𝑊 𝐶𝑆 (𝑓𝑆𝐶𝑁 ) − 𝑔𝐺,𝑊 𝐶𝐺(𝑓𝑁 )
)

− 𝑓𝑊
𝜏𝑊

(2)

𝑑𝑓𝑁
𝑑𝑡

=
𝑁∞

(

−𝑔𝑁𝐸,𝑁𝐶𝑁𝐸 (𝑓𝑊 ) − 𝑔𝑆,𝑁𝐶𝑆 (𝑓𝑆𝐶𝑁 ) − 𝑔𝐺,𝑁𝐶𝐺(𝑓𝑁 )
)

− 𝑓𝑁
𝜏𝑁

(3)

𝑑𝑓𝑅
𝑑𝑡

=
𝑅∞

(

𝑔𝐴𝐶ℎ,𝑅𝐶𝐴𝐶ℎ(𝑓𝑅) − 𝑔𝑁𝐸,𝑅𝐶𝑁𝐸 (𝑓𝑊 ) − 𝑔𝑆,𝑅𝐶𝑆 (𝑓𝑆𝐶𝑁 ) − 𝑔𝐺,𝑅𝐶𝐺(𝑓𝑁 )
)

− 𝑓𝑅
𝜏𝑅

(4)

𝑑𝑓𝑆𝐶𝑁
𝑑𝑡

=
𝑆𝐶𝑁∞

(

𝑐(𝑡)
)

− 𝑓𝑆𝐶𝑁

𝜏𝑆𝐶𝑁
(5)

The parameters 𝑋𝑚𝑎𝑥, 𝛼𝑋 , and 𝛽𝑋 represent the maximum firing
ate, sensitivity of response, and half-activation threshold, respectively.
ote that 𝛽𝑋 is a constant for 𝑋 = 𝑊 ,𝑅, 𝑆𝐶𝑁 , whereas 𝛽𝑁 is a function
hat depends on the homeostatic sleep drive described below (see
q. (7)). The weights 𝑔𝑖,𝑋 convert the concentrations 𝐶𝑖 into effective
ynaptic input. A positive sign in front of 𝑔𝑖,𝑋 denotes excitation of the
ostsynaptic population 𝑋 due to release of the neurotransmitter 𝑖; a
egative sign denotes inhibition.
 p

3

Circadian drive
The argument of the steady state response function for the SCN

firing rate is a fixed circadian drive 𝑐(𝑡) as described by a human
circadian clock model developed by Forger and colleagues and based
on a modified van der Pol oscillator [43,44]. The circadian drive 𝑐(𝑡)
represents the phase of core body temperature and is influenced by light
intensity, which is an explicit input to the model. Here, we assume the
circadian oscillator is entrained to a 24 h environmental light schedule
which is simulated by a 14:10 Light:Dark cycle with a light input of 500
lux during the light period and 0 lux during the dark period. A time
trace of the circadian drive 𝑐(𝑡) is shown in Fig. 1B (bottom panel). For
more detailed description of this model, see Appendix A.

omeostatic sleep drive
The modeled homeostatic sleep drive (ℎ) regulates sleep propensity,

nd its dynamics are based on experimentally observed variation in the
ower of slow wave (0.75–4.5 Hz) activity in electroencephalogram
EEG) recordings during sleep. The levels of the homeostatic drive
ncrease exponentially with the time constant 𝜏ℎ𝑤 during wake and de-
rease exponentially with the time constant 𝜏ℎ𝑠 during sleep according
o
𝑑ℎ
𝑑𝑡

=
(𝑓𝑊 − 𝜃𝑊 ) ⋅ (ℎ𝑚𝑎𝑥 − ℎ)

𝜒𝜏ℎ𝑤
+

(𝜃𝑊 − 𝑓𝑊 ) ⋅ (ℎ𝑚𝑖𝑛 − ℎ)
𝜒𝜏ℎ𝑠

(6)

where  represents a Heaviside function, 𝜃𝑊 is the threshold demar-
cating states of wake and sleep, and ℎ is in units of percent Slow
Wave Activity (SWA) power. The parameter 𝜒 is used to scale the time
constants in our bifurcation analysis. The values of the time constants
𝜏ℎ𝑤 and 𝜏ℎ𝑠, namely when 𝜒 = 1, are set to experimentally determined
values for typical adult human sleep behavior [13].

It is important to note that ℎ is a piecewise smooth variable which
makes the model system piecewise smooth. As discussed below, this
affects the methods available to analyze model solutions.

The mechanism of action of the sleep drive ℎ is based on adeno-
ine [4,35–38] and is implemented as modulation of the activity of the
REM-promoting population through 𝛽𝑁 (ℎ) as follows:

𝑁 (ℎ) = 𝑘2 ⋅ ℎ + 𝑘1. (7)

The parameters 𝑘1 and 𝑘2 are measured in effective synaptic input
nd effective synaptic input/(% mean SWA), respectively, and together
etermine the contribution of ℎ to the response of the NREM-promoting
opulation. Thus, as ℎ increases during wake, the sleep promoting
opulation will eventually activate to inhibit the wake population and
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Table 1
Default parameter values for the network model for human monophasic sleep. For
𝑋 = 𝑊 ,𝑁,𝑅, 𝑆𝐶𝑁 , 𝛼𝑋 and 𝛽𝑋 are in units of effective synaptic input. 𝛽𝑁 is not
included here because it is a function (Eq. (7)). Additionally, for 𝑖 = 𝑁𝐸,𝐺,𝐴𝐶ℎ, 𝑆,
𝑔𝑖𝑋 has units of (effective synaptic input/Hz). Units for ℎ𝑚𝑎𝑥 and ℎ𝑚𝑖𝑛 are percentage
mean SWA. The parameters 𝑘1 and 𝑘2 are measured in effective synaptic input and
ffective synaptic input/(% mean SWA), respectively. The remaining units are included
n the table.
Firing rate parameters (Eqs. (1)–(5))

𝑊𝑚𝑎𝑥 = 6 Hz 𝜏𝑊 = 23 min 𝛼𝑊 = 0.4 𝛽𝑊 = −0.4
𝑁𝑚𝑎𝑥 = 5 Hz 𝜏𝑁 = 10 min 𝛼𝑁 = 0.2
𝑅𝑚𝑎𝑥 = 5 Hz 𝜏𝑅 = 1 min 𝛼𝑅 = 0.1 𝛽𝑅 = −0.8
𝑆𝐶𝑁𝑚𝑎𝑥 = 7 Hz 𝜏𝑆𝐶𝑁 = 0.5 min 𝛼𝑆𝐶𝑁 = 0.7 𝛽𝑆𝐶𝑁 = −0.1

Synaptic weights (Eqs. (2)–(4))

𝑔𝐴𝐶ℎ,𝑊 = 0.8 𝑔𝑆,𝑊 = 0.1911 𝑔𝐺,𝑊 = 1.4928
𝑔𝑁𝐸,𝑁 = 1.5 𝑔𝑆,𝑁 = 0.2141 𝑔𝐺,𝑁 = 0
𝑔𝐴𝐶ℎ,𝑅 = 2.2 𝑔𝑁𝐸,𝑅 = 10.7473 𝑔𝑆,𝑅 = 0.8 𝑔𝐺,𝑅 = 1.07

Homeostatic parameters (Eqs. (6), (7))

ℎ𝑚𝑎𝑥 = 323.88 ℎ𝑚𝑖𝑛 = 0 𝜏ℎ𝑤 = 946.8 min 𝜏ℎ𝑠 = 202.2 min
𝑘1 = −0.1 𝑘2 = −0.0045 𝜃𝑊 = 2 Hz 𝜒 = 1

cause the model to transition to sleep. Conversely, as ℎ decreases during
sleep, the sleep population will eventually inactivate and allow the
wake population to activate. We define sleep onset to occur when 𝑓𝑊
decreases below 𝜃𝑊 (and ℎ starts to decrease) and wake onset to occur
when 𝑓𝑊 increases above 𝜃𝑊 (and ℎ starts to increase).

Default monophasic sleep–wake behavior in the three-state model
All default model parameter values are given in Table 1. For these

parameter values, the model produces a stable solution representing a
monophasic sleep pattern consistent with sleep–wake behavior in adult
humans. In particular, this solution is characterized by 16.11 h of wake
and 7.89 h of sleep including 6.58 and 1.31 h of NREM and REM sleep,
respectively (Fig. 1). During each sleep episode, alternation between
NREM and REM sleep produces four distinct REM bouts. The sleep onset
circadian phase, 𝛷, is defined as the time difference between sleep
onset (𝑡𝑠𝑜) and the preceding minimum of the circadian drive variable
𝑐 (𝑡𝑐𝑚𝑖𝑛), divided by the period of the circadian oscillator entrained to
the light/dark cycle (24 h). That is:

𝛷 =
𝑡𝑠𝑜 − 𝑡𝑐𝑚𝑖𝑛

24
. (8)

Thus, we have 𝑓𝑊 (𝑡𝑠𝑜) = 𝜃𝑊 . In addition, if 𝐷 is a 24 h interval
uch that 𝑡𝑐𝑚𝑖𝑛 ∈ 𝐷, then we have 𝑐(𝑡𝑐𝑚𝑖𝑛) = min𝑡∈𝐷{𝑐(𝑡)} and 0 ≤
𝑡𝑠𝑜 − 𝑡𝑐𝑚𝑖𝑛 < 24. For example, 𝛷 = 0 corresponds to the sleep onset
occurring at the minimum 𝑐(𝑡) value, and 𝛷 = 0.5 corresponds to the
sleep onset occurring at the maximum 𝑐(𝑡) value. For the stable default
solution, 𝛷 = 0.829, so the sleep onset occurs on the decreasing phase
of 𝑐. This is consistent with the relationship between sleep onset and
the phase of core body temperature in typical adult human monophasic
sleep behavior.

In the following section, we describe the techniques used to analyze
the dynamics of our three-state model. Note that in previous work
involving a two-state model of sleep–wake regulation we proposed the
same mathematical framework [29]. We provide a detailed discussion
of this framework and highlight similarities and differences in the
dynamics of the two- and three-state models.

2.2. One-dimensional circle map

To analyze model solutions and their bifurcations, we construct
circle maps that describe the relationship between the circadian phases
of successive sleep onsets [29,31,45]. As described above, we define
sleep onset to be the time at which 𝑓𝑊 decreases through the threshold
𝜃𝑊 . To construct the map, we numerically integrate the model forward
in time from initial conditions with 𝑓𝑊 = 𝜃𝑊 across the full range
of circadian phases (dictated by values of 𝑐) and track the circadian
4

phases at which the trajectories next cross the 𝑓𝑊 = 𝜃𝑊 section. To
set such initial conditions, we need to determine appropriate values
for the other model variables, namely 𝑓𝑁 , 𝑓𝑅, 𝑓𝑆𝐶𝑁 , ℎ as well as the
additional variables for the circadian clock model, that satisfy model
equations on the 𝑓𝑊 = 𝜃𝑊 section at different circadian phases. To do
that, we consider a fast–slow decomposition of the model to identify
variable values at sleep–wake transitions, as described in Section 2.2.1.
In Section 2.2.2, we describe the details of map computation and show
the map for the default parameter set (Table 1).

2.2.1. Fast–slow decomposition
To understand model dynamics, we consider a fast–slow decompo-

sition of the model system. The decomposition exploits the slow time
scales of the circadian oscillator and homeostatic sleep drive compared
to the faster firing rates of the neuronal populations. As in [31], we
consider the fast subsystem to consist of the firing rates of all neuronal
populations by defining 𝐅(𝑡) = {𝑓𝑊 (𝑡), 𝑓𝑁 (𝑡), 𝑓𝑅(𝑡), 𝑓𝑆𝐶𝑁 (𝑡)}. The slow
subsystem then consists of the circadian and homeostatic sleep drives
defined by 𝐒(𝑡) = {ℎ(𝑡), 𝐜(𝑡)} where 𝐜(𝑡) consists of the three variables
for the circadian clock model, including 𝑐(𝑡) (see Appendix A). In
particular, the full model system can be written as follows:
𝑑𝐅
𝑑𝑡

= 𝐌(𝐅,𝐒) (9)

𝑑𝐒
𝑑𝑡

= 𝜖𝐍(𝐅,𝐒) (10)

where 𝐌 consists of Eqs. (2)–(5) and 𝐍 consists of Eq. (6) and Eqs.
(A.1)–(A.3). We assume 0 < 𝜖 ≪ 1. Coupling of the fast and slow
subsystems occurs due to the dependence of 𝑓𝑁 (𝑡) on ℎ(𝑡) in Eq. (7),
and of 𝑓𝑆𝐶𝑁 (𝑡) on 𝑐(𝑡) in Eq. (5).

In the limit 𝜖 → 0 when ℎ and 𝑐 are constants, we compute
he steady state solutions of the fast subsystem, 𝐌(𝐅,𝐒) = 0, with
espect to the bifurcation parameter ℎ for different values of 𝑐 (using
PP/XPPAUT [46]). The resulting bifurcation diagram, when repre-
ented in terms of the firing rate 𝑓𝑊 of the wake-promoting popu-
ation, forms a 𝑍-shaped curve with respect to ℎ at each value of 𝑐
Fig. 2A). The upper branch of the 𝑍-shaped curve comprises stable
teady state solutions corresponding to the wake state. The middle
nd lower branches correspond to unstable fixed points of the fast
ubsystem, and the folds of the 𝑍 are saddle–node bifurcation points
here two steady states coalesce. Associated with the lower branch
f unstable solutions are stable periodic solutions corresponding to
REM–REM alternation or cycling in which the REM firing rate 𝑓𝑅
isplays high amplitude oscillations and 𝑓𝑊 displays low amplitude
oscillations. The unstable fixed points of the fast subsystem separate
the basins of attraction for the stable fixed point and the stable periodic
solution. For each fixed 𝑐 value, we obtain similar solutions with respect
to ℎ which collectively form a 𝑍-shaped fast–slow surface on which
trajectories of the full system (𝜖 > 0) evolve (Fig. 2B).

Solution trajectories of the full model traverse the lower manifold
of this surface during the sleep state with the periodic solutions corre-
sponding to NREM–REM cycling which occurs at different frequencies
depending on the strength of the circadian drive 𝑐 (Fig. 2C). Lower
values of 𝑐 lead to lower frequency NREM–REM cycling with longer
REM bouts, while higher values of 𝑐 yield higher frequency cycling with
shorter REM bouts. Additionally, NREM–REM cycling is more sensitive
to changes in the strength of the circadian drive than in the strength of
the homeostatic sleep drive.

In the full model, transitions between sleep and wake states occur
when solution trajectories traverse over the curves of saddle–node
points forming the folds of the 𝑍-surface. Sleep onset is initiated when
solution trajectories cross over the upper saddle–node curve and is
defined when the trajectory decreases through the 𝑓𝑊 = 𝜃𝑊 section.
Wake onset occurs when trajectories pass near the lower saddle–node
curve and increase to the upper manifold of the 𝑍-surface. Thus, by
considering the fast–slow decomposition, we obtain steady state values
of all model variables near the transition from wake to sleep.
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Fig. 2. Fast–slow decomposition of the three-state sleep–wake model. A. The 𝑍-shaped curve obtained by the fast–slow decomposition for 𝑐 = 0 illustrates the steady state solutions
of the variable 𝑓𝑊 as a function of the varying parameter, ℎ. The red solid and black dashed curves correspond to stable and unstable steady state solutions of the fast subsystem,
respectively. The light blue circles correspond to the periodic solution representing the NREM–REM cycling occurring during the sleep state. B. The fast–slow 𝑍-shaped surface for
varying ℎ and 𝑐 values and the stable orbit (blue curve) of the model for the default parameter set. C. Frequency plot of NREM–REM cycling for various values of the parameters
𝑐 and ℎ, corresponding to the periodic solutions in the fast subsystem during the sleep state. The black curve corresponds to the lower saddle–node points of the 𝑍-shaped surface.
The darkest blue region (to the left of the saddle–node curve) corresponds to (ℎ, 𝑐) values for which the stable solution of the fast subsystem is not periodic and corresponds to
the wake state.
In previous work, we have shown that a two-state sleep–wake
network model has a similar 𝑍-shaped bifurcation diagram for each
fixed value of the circadian drive and varying homeostatic sleep drive
[29,47]. In that case, the lower branch of the 𝑍-shaped curve is stable,
and the mechanism for transition from sleep to wake is the passage
through the lower saddle–node curve. In contrast, transitions from sleep
to wake in the three-state model are influenced by the interaction of
the lower saddle–node curve with the periodic solutions representing
NREM–REM cycling [47].

2.2.2. Constructing the circle map
As described above, to construct the circle map we need to specify

initial conditions for all model variables corresponding to solutions
on the section 𝑓𝑊 = 𝜃𝑊 at each circadian phase. From the fast–
slow decomposition, we know that trajectories decreasing through the
𝑓𝑊 = 𝜃𝑊 section would have previously passed across the upper curve
of saddle–node points of the 𝑍-surface. Thus, to obtain the appropriate
initial conditions, we numerically integrate the full model from values
on or near the upper saddle–node curve of the 𝑍-surface and set the
initial conditions for the map to the solution at the first crossing of
the 𝑓𝑊 = 𝜃𝑊 section. Specifically, to initiate the model integration,
the values of the neuronal population firing rates, 𝑓𝑊 , 𝑓𝑁 , 𝑓𝑅 and the
homeostatic sleep drive, ℎ, are set to values on or near the upper
saddle–node curve at a fixed value of 𝑐, and the circadian clock-related
variables, namely the SCN firing rate 𝑓𝑆𝐶𝑁 and the other clock model
variables, are set to values determined by the stable solution of the
circadian clock model associated with the same fixed value of 𝑐. The
values of the upper saddle–node curve were computed using two-
parameter numerical continuation of the saddle–node bifurcation in the
ℎ− 𝑐 plane (implemented in AUTO on XPPAUT [46] with adaptive step
5

size in 𝑐). From these points, model trajectories typically immediately
decreased through the 𝑓𝑊 = 𝜃𝑊 section. To obtain a full set of
initial conditions for the map, we considered 𝑐 over one circadian cycle
(approximately −1.115 < 𝑐 < 1.115). To construct the map, 𝛱 , we
plot the circadian phase of the (𝑛 + 1)st sleep onset, 𝛷𝑛+1 = 𝛷(𝑡𝑛+1𝑠𝑜 ),
as a function of the 𝑛th sleep onset circadian phase, 𝛷𝑛 = 𝛷(𝑡𝑛𝑠𝑜), both
obtained by numerical integration of the full model. Thus,

𝛱 ∶ 𝛷𝑛 ↦ 𝛷𝑛+1 . (11)

Assumption of a fixed light:dark schedule is required for the map com-
putation to maintain a rigorous definition of circadian phase, but, based
on previous work, we expect that similar results would be obtained
if light intensity was allowed to vary with behavioral state (see [45]
and Discussion for more details). All map computations were performed
in MATLAB (MathWorks Inc., Natick, MA). More details regarding the
construction of the map can be found in [31].

2.2.3. Features of the circle map
The map for the three-state sleep–wake model is piecewise smooth

and non-monotonic. The non-monotonic nature of individual map
branches renders it noninvertible. Furthermore, it exhibits both large
vertical discontinuities or gaps, and smaller gaps occurring at cusps
that separate distinct branches of the map (Fig. 3). The separate
branches of the map correspond to sleep–wake cycles with distinct sleep
and wake bout durations, and numbers of REM bouts. Note that the
number of REM bouts associated with each branch of the circle map is
determined separately by simulating the model from the same initial
conditions used to derive the map. For default parameter values, the
map has one stable fixed point at 𝛷𝑛 = 0.829 corresponding to the
stable periodic solution displayed in Fig. 1. This solution has one sleep
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Fig. 3. One dimensional circle map illustrating the circadian phase of the 𝑛+1st sleep
onset, 𝛷𝑛+1 as a function of circadian phase of the 𝑛th sleep onset, 𝛷𝑛. For each branch
of the map we indicate the distinct number of REM bouts occurring in sleep episodes
initiated at the associated circadian phase. We distinguish the branches representing
4 REM bouts (green), 5 REM bouts (red) and 6 REM bouts (light blue), as these are
significant for our later analysis. Note that the number of REM bouts associated with
each branch of the circle map is determined separately.

episode per circadian day with a duration of 7.89 h; each sleep episode
contains four REM bouts. Using the cobwebbing method on the map
(see e.g. [48] for an explanation of the method), we can track the
reentrainment process from initial phases of sleep onsets distinct from
the fixed point back to the stable periodic behavior.

The map exhibits a large vertical gap close to the phase associated
with the peak of the circadian drive (𝛷𝑛 = 0.5). The left branch at the
discontinuity has an infinite slope which is a consequence of trajectories
starting from these initial conditions approaching a tangent intersection
with the saddle–node curves of the 𝑍-shaped surface, referred to as a
grazing bifurcation [49]. In particular, trajectories on either side of the
gap represent sleep onsets at similar phases (when the circadian drive is
very close to its peak), and these trajectories evolve close to each other
through the sleep episode and transition to wake at similar phases.
However, the trajectory initiated on the infinite slope of the map branch
at the left of the gap exhibits a short wake episode as it jumps down
from the upper saddle–node curve and transitions to sleep, thereby
resulting in the next sleep onset phase of about 𝛷𝑛+1 = 0.1773. By
contrast, the trajectory initiated on the map branch at the right of the
gap approaches the upper saddle–node curve tangentially, resulting in a
longer wake episode. As this trajectory evolves further, the subsequent
sleep onset occurs at a phase of about 𝛷𝑛+1 = 0.4667.

Similar grazing bifurcations characterize discontinuities in maps
constructed from two-state sleep–wake models [29,30]. In a two-state
model similar to the three-state model presented here, transitions to
sleep and wake occur by passage through saddle–node curves and
opportunities for trajectories to evolve tangentially to these curves
occur at both state transitions [29]. We note that for the simpler Two-
Process model, the upper and lower circadian threshold curves play
a similar role to the saddle–node curves in our higher-dimensional
models [30].

However, maps of the three-state model are characterized by ad-
ditional discontinuities. Indeed, the unique features of maps for the
three-state model are the cusp gaps between map branches for trajec-
tories with distinct numbers of REM bouts. The number of REM bouts
during a sleep episode depends on how the trajectory traverses the
periodic solutions on the lower manifold of the 𝑍-surface, especially
as it approaches the lower curve of saddle nodes. These periodic
solutions exist due to the reciprocal interactions between the REM-
and wake- promoting populations of the three-state model. Trajectories
that are initiated at similar sleep onset phases may approach the lower
saddle–node curve at slightly different circadian phases resulting in
a difference of one REM bout and thus different subsequent sleep
6

onset phases, placing their corresponding phase points on distinct map
branches. As we illustrate below, these cusp gaps significantly affect
the model’s stable orbits as homeostatic time constants are varied,
introducing additional bifurcations that are not observed in two-state
sleep–wake network models.

2.3. Varying the dynamics of the homeostatic sleep drive: our framework

In this work, we investigate the effects of NREM–REM alternation on
bifurcations occurring in the transition between polyphasic (multiple
sleeps per day) and monophasic (one sleep per day) sleep behavior.
For our analysis purposes, we start with default parameters generating
monophasic sleep and induce polyphasic sleep by decreasing the time
constants of the homeostatic sleep drive ℎ. We scale the time constants
𝜏ℎ𝑤 and 𝜏ℎ𝑠 by the parameter 0 < 𝜒 ≤ 1 (see Eq. (6)). Thus, as 𝜒
decreases, ℎ grows and decays more quickly causing sleep propensity
to accumulate and dissipate faster, respectively.

We will use the following notation to indicate the numbers of sleep
episodes per circadian cycle and REM bouts per sleep episode in stable
solutions. A stable sleep pattern that repeats after 𝑛 circadian cycles is
represented as

{𝑝1𝑟1, 𝑝
2
𝑟2,… , 𝑝𝑛𝑟𝑛}

∞ , (12)

where the number 𝑝𝑖 gives the number of sleep episodes on the 𝑖th
circadian cycle and 𝑟𝑖 is a 𝑝𝑖-tuple whose entries represent the number
of REM bouts in each sleep episode represented in 𝑝𝑖. For example, the
default solution at 𝜒 = 1, consisting of one sleep episode with 4 REM
bouts in each circadian cycle, is represented as {14}∞. At 𝜒 = 0.8625,
a stable 2-cycle in which two distinct sleep episodes with 4 REM bouts
occurring on alternating circadian cycles is represented as {14, 14}∞.
At 𝜒 = 0.649, a pattern that alternates between 1 and 2 sleeps per
circadian cycle is represented as {13, 2(4,3)}∞. On the first circadian
cycle one sleep episode involving 3 REM bouts (13) occurs. On the
second circadian cycle, two sleep episodes occur: one involves 4 REM
bouts, and the other involves 3 REM bouts (2(4,3)).

To quantify the sleep episode patterns generated as 𝜒 is decreased,
we define a ‘rotation number’ of sleep episodes,

𝜌 =
𝑞
𝑝
, (13)

where 𝑝 is the number of sleep episodes in the pattern occurring over 𝑞
circadian days [50]. If a stable pattern is not detected, we approximate
𝜌 to be the average number of the total circadian days divided by the
total sleep episodes in a 120 day simulation.

Similarly, to quantify NREM–REM alternation or cycling patterns
during sleep episodes, we define a ‘REM rotation number’ as 𝜌̃𝑅𝐸𝑀 = 𝑝

𝑟 ,
here 𝑟 is the number of REM bouts occurring during the 𝑝 sleeps in the
attern. If a stable pattern cannot be detected, we approximate 𝜌̃𝑅𝐸𝑀
y the total number of sleep episodes divided by the total number of
EM bouts in a 120 day simulation. 𝜌̃𝑅𝐸𝑀 takes on values less than
in physiologically-relevant parameter regimes. However, since it is
ore intuitive to talk about REM episodes per sleep, we will use the
eciprocal of the REM-rotation number for the rest of this study. We
ill denote that as 𝜌𝑅𝐸𝑀 and refer to it as the ‘REM rotation number’
or simplicity. Thus,

𝑅𝐸𝑀 = 𝑟
𝑝
. (14)

Based on these definitions, 𝜌 = 1 and 𝜌𝑅𝐸𝑀 = 4 for both of the
distinct stable sleep patterns for 𝜒 = 1 and 𝜒 = 0.8625 discussed above.
The sleep pattern for 𝜒 = 0.649 is associated with 𝜌 = 1

2 and 𝜌𝑅𝐸𝑀 = 10
3 .

In the analysis below, we investigate whether there is an underlying
structure in 𝜌 and 𝜌𝑅𝐸𝑀 as 𝜒 is reduced.

For example, one such structure in the rotation number emerges
from a period-adding cascade triggered by a border collision bifur-
cation, as occurs in two-state sleep–wake models [28–30]. A border
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collision in the 𝑘th return map occurs when the border at a discon-
tinuity of the map curve intersects the diagonal, 𝛷𝑛+𝑘 = 𝛷𝑛, and results
in the creation or destruction of a fixed point (stable or unstable). This
border collision bifurcation in the map corresponds to a grazing bifur-
cation when an orbit (stable or unstable) makes a tangent intersection
with the saddle–node curves of the 𝑍-shaped surface (Fig. 2B).

A resulting period-adding bifurcation sequence dictates that the
average number of sleep episodes per circadian cycle, i.e. the reciprocal
of the rotation number as defined above, follows a predictable sequence
that can be characterized by a Farey sequence. Elements of the Farey
sequence obey the Farey addition. Namely, in between neighboring
intervals of the varying parameter displaying solutions with rotation
numbers 𝜌1 = 𝑞

𝑝 and 𝜌2 = 𝑞′

𝑝′ , where gcd(𝑞, 𝑝) = 1, gcd(𝑞′, 𝑝′) = 1 and
|𝑞𝑝′ − 𝑝𝑞′| = 1, there exists an interval of the parameter with rotation
number 𝜌 = 𝑞+𝑞′

𝑝+𝑝′ . For example, in a period adding bifurcation, in the
parameter intervals between those producing stable monophasic and
biphasic sleep patterns, one finds stable patterns involving combina-
tions of circadian cycles with 1 or 2 sleep episodes per cycle such that
there are more cycles with 1 sleep per day as the parameter approaches
the monophasic sleep regime and more cycles with 2 sleeps per day as
the parameter approaches the biphasic sleep regime.

When a period-adding bifurcation sequence occurs, the rotation
number is a Cantor function or a Devil’s staircase in terms of the
varying parameter (namely a monotonic, continuous function that has
derivative equal to 0 almost everywhere that attains every rational
number in the Farey sequence).

2.4. Motivation from results in two-state models of sleep–wake regulation

In two-state sleep–wake models including the Two Process model
and simple sinusoidal threshold systems under similar parameter vari-
ations, numerical simulations have detected this underlying Devil’s
staircase-like structure in 𝜌 as homeostatic time constants or other
parameters are varied [29,30]. These findings suggest that although
higher-order patterns of napping/non-napping behavior may occur dur-
ing this transition, unique behavior is associated with each parameter
combination and the progression to consolidated sleep is monotonic.
In [29] we employed similarly constructed circle maps and identified
sequences of border collision and saddle–node bifurcations leading to
the loss or birth of stable solutions. We also showed that the tran-
sition between polyphasic and monophasic sleep can be influenced
by features of the SCN firing rate (Eq. (5)), such as its steepness
and peak activity duration. In particular, longer duration of the peak
activity of the SCN firing rate promotes the existence of the biphasic
and monophasic pattern, but fewer intermediate patterns. Therefore,
interactions between the homeostatic and circadian components can
lead to an easier or more challenging transition from napping to non-
napping behavior. Here, we investigate how NREM–REM alternation
or cycling may affect sleep patterning under developmentally-mediated
changes in homeostatic dynamics. In particular, we focus on identifying
features characterizing the transition from napping to non-napping
behavior that two-state models fail to capture.

3. Results

In the three-state sleep–wake model representing wake and NREM–
REM alternation, we find complex sequences in the transitions of
solutions as the homeostatic sleep drive time constants are decreased.
In contrast, previous work in two-state sleep–wake models showed that
similar changes in homeostatic dynamics produced well-structured,
period-adding bifurcation sequences during the transition between
polyphasic and monophasic sleep [28–30].

In the three-state model, while the Farey sequence in sleep episodes
per circadian cycle is overall generally retained, bifurcations in NREM–
7

REM cycling disrupt the period-adding structure and introduce
additional features including apparent period-doubling cascades and
intervals of bistability. More complex bifurcation sequences can be ex-
pected in the three-state model since the circle maps are non-invertible
which can lead to non-uniqueness of solutions [51] and, thus, of the ro-
tation number of either sleep or REM episodes. However, the additional
complexity associated with the occurrence of NREM–REM cycling in
the three-state model suggests that sleep architecture interacts with
developmentally-mediated changes in sleep and may contribute to
toddler sleep variations [52], and potential problems [53].

For default homeostatic time constants, when the scaling parameter
𝜒 = 1, the model produces a stable solution corresponding to the typical
adult sleep pattern of one consolidated nocturnal sleep episode per
day. As 𝜒 is decreased, we find 𝜒 intervals that generate polyphasic
sleep solutions consisting of regular daily sleep patterns involving more
than one sleep episode per day. For example, an average of two sleep
episodes per day occurred for 𝜒 ∈ [0.41, 0.542], and three sleep episodes
per day occurred for 𝜒 ∈ [0.264, 0.29] (Fig. 4). Between the 𝜒-intervals
associated with fixed 𝑛 and 𝑛 + 1 sleep episodes per day, there are
𝜒 values associated with higher order sleep patterns that occur over
several circadian days and involve some days with 𝑛 sleeps and some
days with 𝑛 + 1 sleeps. For example, 𝜒 = 0.65 falls between 𝜒 = 1
(with one sleep per day) and 𝜒 = 0.542 (with two sleeps per day) and
is associated with a pattern that alternates between one and two sleeps
per day. This pattern would correspond to a child napping every other
day.

As described in the Methods, these sleep patterns may be quantified
with a ‘rotation number’ of sleep episodes, 𝜌 (see Eq. (13)). The bifur-
cation diagram of 𝜌 as a function of the scaling parameter 𝜒 (Fig. 4B)
depicts stable solutions (black points) and approximate solutions (gray
points) obtained after simulating the model for 120 days. In contrast to
the two-state models that produce a strict Farey sequence of rotation
numbers, we numerically detect rotation numbers that form a subset of
the full Farey sequence in the three-state model.

Furthermore, in contrast to the two-state model, rotation numbers in
the three-state model do not decrease monotonically with 𝜒 and are not
unique. For example, within the 𝜌 = 2

3 interval there are 𝜒 values that
generate a 𝜌 = 7

10 stable solution indicating bistability of solutions. Lack
of monotonicity in rotation number implies that napping frequency
may not decrease monotonically with decreasing homeostatic sleep
need.

Additionally, in the three-state model, NREM–REM cycling varies
with 𝜒 . As described in the Methods, we quantify NREM–REM cycling
patterns during sleep episodes using a ‘REM rotation number’ 𝜌𝑅𝐸𝑀
(see Eq. (14)). Stable patterns of NREM–REM cycling are indicated in
blue in Fig. 4C. If a stable pattern is not detected, an approximate 𝜌𝑅𝐸𝑀
s computed (gray points).
As 𝜒 decreases below 1, 𝜌𝑅𝐸𝑀 changes even across 𝜒 intervals

f constant 𝜌 indicating that the number of REM bouts during sleep
pisodes changed while the number of sleep episodes per circadian
ycle did not. Additionally, bistability is exhibited in the bifurcation
iagram of 𝜌𝑅𝐸𝑀 , as there are 𝜒− values in which two stable REM
otation numbers were found (Fig. 5).
In the following subsections we describe representative examples of

hese phenomena focusing on features of the variation in 𝜌 and 𝜌𝑅𝐸𝑀 as
𝜒 is decreased and identifying the underlying bifurcations of solutions.
We particularly consider the monophasic sleep regime, the transition
from monophasic to biphasic sleep, the biphasic sleep regime, and the
polyphasic sleep limit.

3.1. Bifurcations associated with NREM-REM cycling during monophasic
sleep

In this section we focus on the 𝜒 interval associated with monopha-
sic sleep where 𝜌 = 1 (𝜒 ∈ [0.7235, 1]). Changes in NREM–REM cycling
are particularly notable over this interval with 𝜌 increasing from
𝑅𝐸𝑀



C. Athanasouli, K. Kalmbach, V. Booth et al. Mathematical Biosciences 355 (2023) 108929

h
p

u

Fig. 4. Summary of sleep patterns and bifurcation diagrams of 𝜌 and 𝜌𝑅𝐸𝑀 as the
omeostatic sleep drive time constants are decreased with respect to the scaling
arameter 𝜒 . The pink shaded regions correspond to 𝜒-intervals of 𝜌 = 1, 2∕3, 1∕2
solutions. A. Patterning of sleep–wake behavior varies with scaling parameter 𝜒 . Sleep
episodes over 6 days (𝑦-axis) are shown as a function of 𝜒 (𝑥-axis). As 𝜒 decreases, sleep
patterns transition from one sleep episode per day near 𝜒 = 1 to two sleep episodes
per day near 𝜒 = 0.542 to three sleep episodes per day near 𝜒 = 0.29. B. Bifurcation
diagram of the rotation number, 𝜌, denoting stable (black dots) and quasi-periodic (gray
dots) solutions with respect to 𝜒 . The parameter 𝜒 is on the 𝑥-axis and the rotation
number 𝜌, defined as the number of circadian days over the number of sleep episodes
in the stable sleep pattern is on the 𝑦-axis. C. Bifurcation diagram of the REM rotation
number, 𝜌𝑅𝐸𝑀 , denoting stable (blue dots) and quasi-periodic (gray dots) solutions with
respect to 𝜒 . The REM rotation number, 𝜌𝑅𝐸𝑀 , is defined as the number of REM bouts
over the number of sleep episodes in the sleep pattern. For all panels, the step size for
𝜒 was 0.0005.

4 to 6 (Fig. 5). This reflects potential changes in ultradian cycling
during sleep after sleep has been consolidated to a single nocturnal
sleep episode but before an individual demonstrates the specific timing,
duration, and number of REM bouts characteristic of a typical adult
sleep pattern. In addition, we show that 𝜌𝑅𝐸𝑀 values of stable solutions
(in blue) in neighboring 𝜒 intervals are related by Farey addition
with apparent period-doubling cascades in intervals of constant 𝜌𝑅𝐸𝑀
and bistability of 𝜌𝑅𝐸𝑀 between some 𝜒 intervals. To understand
the bifurcations that generate the changes in NREM–REM alternation
as well as the occurrence of bistability, we employ our sleep onset
circle maps. The types of bifurcations observed include saddle–node,
period-doubling and border collision bifurcations.
8

Fig. 5. The bifurcation diagram of 𝜌𝑅𝐸𝑀 in the range of 𝜒 for which 𝜌 = 1. There is an
nderlying, but not strict, period-adding structure in the sequence of 𝜌𝑅𝐸𝑀 values as 𝜒
is decreased. In addition, there are intervals of 𝜒 in which bistability occurs (denoted
by the yellow shaded regions).

We explain the bifurcations in the maps and the evolution of sleep
patterns as 𝜒 decreases from 1, and we follow the bifurcation diagram
of 𝜌𝑅𝐸𝑀 (Fig. 5) from 𝜌𝑅𝐸𝑀 = 4 to 𝜌𝑅𝐸𝑀 = 6.

𝜌𝑅𝐸𝑀 = 4
As described above, for the default value 𝜒 = 1, the sleep onset map

exhibits a stable fixed point on the map branch corresponding to 4 REM
bouts per sleep episode (green branch in Fig. 3). As 𝜒 decreases, the
map evolves, and the location and stability of the fixed point changes
(Fig. 6). For 1 > 𝜒 > 0.87, the fixed point persists on the same map
branch and occurs at a slightly earlier circadian phase corresponding
to a regular schedule with an earlier habitual bedtime than the default
sleep pattern (𝜒 = 1). As 𝜒 continues to decrease, the fixed point
persists; however, at 𝜒 = 0.867 the slope of the map curve at the fixed
point has decreased below −1 (Fig. 6A), indicating a loss of stability of
the fixed point. For 𝜒 values in this regime, stable solutions correspond
to higher order cycles, and there is no longer a habitual sleep schedule
that repeats daily. For example, for 𝜒 = 0.8625 we observe a two day
pattern in which one sleep episode occurs on each day, but the sleep
onset phases of these sleep episodes are distinct. Both sleep episodes in
the pattern contain four REM bouts, however, the REM bouts in each
sleep episode occur at distinct circadian phases. This pattern consists
of two sleep episodes per two days with 4 REM bouts per sleep episode
which yields rotation numbers 𝜌 = 2

2 = 1 and 𝜌𝑅𝐸𝑀 = 8
2 = 4. Thus, the

loss of stability of the fixed point leads to a period-doubling bifurcation.
In this regime, the period of the pattern described by higher order
cycles is a power of 2, and all sleep episodes in the pattern contain
four REM bouts. These higher order cycles can be illustrated on the
map through the method of cobwebbing [48]. In particular, one can
determine which map branches are visited and the order in which they
are visited by cobwebbing from one of the phases in the stable pattern.
For example, for 𝜒 = 0.8625 a cobwebbing cycle of order two exists that
alternates between two values on the four-REM-branch on either side
of the unstable fixed point (Fig. 6B, two-cycle shown in black). We also
include the stable cycle produced by simulating the full model (Fig. 6B,
two-cycle shown in purple). The two cycles are close, but exhibit slight
differences in phase values, and therefore, a difference of about 8 min
in sleep onset times. Such differences are expected, as model variables
may have slightly different values under model simulations compared
to the ones obtained from map initial conditions. In the remaining
maps, we only include the cycles obtained from model simulations, as
the phasepoints lie very close to the map curves.

As 𝜒 decreases slightly further, we find a {14, 14, 14, 14}∞ pattern
(see expression (12) for an explanation of the notation describing the
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Fig. 6. Maps in the 𝜌 = 1, 𝜌𝑅𝐸𝑀 = 4 regime showing a period doubling bifurcation. The green, red and light blue map branches correspond to circadian phases of sleep episodes
nvolving 4, 5, and 6 REM bouts, respectively. A. The first return map for 𝜒 = 0.867 has one stable fixed point on the green branch involving sleep episodes with 4 REM bouts.
The slope of the map at the fixed point is −1 designating the loss of stability of the fixed point at a period doubling bifurcation. B. The first return map for 𝜒 = 0.8625 has one
unstable fixed point and a higher (second) order cycle detected by cobwebbing (cycle shown in black in the inset) involving two phase points on the green branch representing
sleep episodes with 4 REM bouts. The black arrows in the inset show the direction of the cobweb. Note that the purple cycle shown is computed by simulating the full model.
In that case, model variables may have slightly different values compared to the ones obtained from map initial conditions, thus, leading to slight differences in computed phase
values.
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pattern), corresponding to another period doubling. Across the interval
𝜒 ∈ [0.8585, 0.866] we numerically detect an apparent period doubling
cascade. As shown in Fig. 5, the 𝜌𝑅𝐸𝑀 = 4 regime ends at 𝜒 = 0.8545
with a {14, 14, 14}∞ solution.

With the decrease in 𝜒 , changes to the sleep onset circle maps reflect
changes in potential transient solutions as well as the stable solutions.
In addition to the shifts of the map that drive many of the changes
in stable solutions, the shapes of the map branches change and some
branches are lost which can affect the transient solutions that may
occur in the model. Since sleep need accumulates and dissipates at a
higher rate with lower 𝜒 , the duration of sleep episodes is shorter and
the total number of REM bouts that can occur during the sleep episode
decreases. For example, for 𝜒 ∼ 0.86, the branch associated with eight
REM bouts no longer exists. This reflects the loss of transient solutions
that involve sleep episodes with eight REM bouts.

𝜌𝑅𝐸𝑀 ∈ (4, 5)
As 𝜒 continues to decrease, the map evolves further such that stable

orbits visit the map branch involving sleep episodes with five REM
bouts (Fig. 7, red branch). Stable solutions consist of higher order cycles
where sleep onset phases alternate between points on the four-REM-
and five-REM-branches of the map. For example, at 𝜒 = 0.8535 the
stable solution {14, 14, 14, 14, 15}∞ is detected. These higher order cycles
follow a period-adding-type sequence as 𝜒 decreases with the number
of sleep episodes with 4 REM bouts decreasing incrementally with each
stable solution. In the interval 𝜒 ∈ [0.811, 0.8375], the stable solution
is {14, 15}∞ with 𝜌𝑅𝐸𝑀 = 4.5, and for lower 𝜒 values the number of
sleep episodes with 5 REM bouts in the pattern increases incrementally
as 𝜌𝑅𝐸𝑀 approaches 5. Within this period-adding-type sequence, we
detected some period-doubling transitions where the same pattern of
sleep episodes and REM bouts is repeated twice with slight variation in
the phases of sleep and REM onsets.

As shown in the 𝜌𝑅𝐸𝑀 bifurcation diagram (Fig. 5), the {15}∞

solution with 𝜌𝑅𝐸𝑀 = 5 gains stability at 𝜒 ≈ 0.786 where higher
order cycles also are stable, leading to an interval of bistability in the
system. Interestingly, the structure of the map predicts the existence
of the two stable solutions that are associated with distinct sets of
stable and unstable fixed points on the map (Fig. 7A). Specifically,
the higher order cycles {14,… , 14, 15,… , 15}∞ manifest on the map
as an orbit that moves between the left side of the four-REM-branch
(green) and the right side of the five-REM-branch (red). In contrast,
the {15}∞ solution first appears when the left side of the five-REM-
branch (red) makes a tangent intersection with the 𝛷 = 𝛷 diagonal,
𝑛+1 𝑛

9

resulting in a saddle–node bifurcation. At 𝜒 = 0.786 (Fig. 7A), there
are 4 fixed points on the map. The higher order cycle {14, 15, 15, 15}∞

ccurs near unstable fixed points on the four-REM-branch and the right
ide of the five-REM-branch. The {15}∞ solution is associated with
he stable fixed point of the stable-unstable fixed point pair on the
eft side of the five-REM-branch. Bistability with the {15}∞ solution
nd higher order cycles is also found at 𝜒 = 0.785 and 0.7795 where
he respective 𝜌𝑅𝐸𝑀 values for the higher order cycles are 58

12 = 29
6

and 59
12 and the solutions are {14, 15, 15, 15, 15, 15, 14, 15, 15, 15, 15, 15}

∞ (a
eriod-doubling solution) and {14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15}∞,
espectively.

𝑅𝐸𝑀 = 5
The {15}∞ solution is stable in the interval 𝜒 ∈ [0.773, 0.786] (Fig. 5).

The stable fixed point associated with this solution corresponds to sleep
onset phases on the left side of the five-REM-branch that represent
earlier phases compared to the phases that participate in the higher
order cycle. The {15}∞ solution loses stability when the slope of the
branch at this fixed point decreases below −1. In the narrow interval
𝜒 ∈ [0.7805, 0.7815], we found numerical evidence for a period-doubling
cascade involving {15,… , 15}∞ solutions.

𝜌𝑅𝐸𝑀 ∈ (5, 6]
The bifurcation sequence associated with the appearance of sleep

episodes with 6 REM bouts is similar to the sequence described for
the sleep episodes with 5 REM bouts. Specifically, as 𝜒 decreases
from 0.773, we find stable higher order cycles with sleep onset phases
alternating between the 5-REM- (red branch) and 6-REM-branches
(light blue branch) of the map (Fig. 7B). These stable orbits form a
period-adding-type sequence as 𝜒 decreases with the number of sleep
episodes containing 5 REM bouts decreasing until the {15, 16}∞ solution
is obtained at 𝜒 = 0.7595. At the higher value 𝜒 = 0.765, the stable
solution {16}∞ with 𝜌𝑅𝐸𝑀 = 6 appears for the first time when the
six-REM-branch of the map intersects the diagonal 𝛷𝑛+1 = 𝛷𝑛 at a
saddle–node bifurcation. As above, the bistable solutions correspond to
different sets of stable and unstable fixed points on the map. The stable
fixed point of the stable-unstable fixed point pair on the left side of the
six-REM-branch is associated with the {16}∞ solution, while the sleep
onset phases of the higher order orbits alternate between the right side
of the six-REM-branch and the left side of the five-REM-branch (Fig. 7B,
inset). There are also 2 unstable fixed points near the right end of the
five-REM-branch and the left end of the four-REM branch, however,
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Fig. 7. First return maps in the 𝜌 = 1 regime designating the onset of the 𝜌𝑅𝐸𝑀 = 5 and 𝜌𝑅𝐸𝑀 = 6 solutions. The green, red and light blue map branches correspond to circadian
phases of sleep episodes involving 4, 5, and 6 REM bouts, respectively. A. First return map for 𝜒 = 0.786 showing bistability of solutions with 4 < 𝜌𝑅𝐸𝑀 < 5 and 𝜌𝑅𝐸𝑀 = 5. The
ight blue asterisk (at (𝛷𝑛 , 𝛷𝑛+1) = (0.71, 0.71) on the red branch) indicates the onset of the stable 𝜌𝑅𝐸𝑀 = 5 solution in a saddle–node bifurcation. This solution coexists with a
igher order cycle of 𝜌𝑅𝐸𝑀 = 19

4
illustrated on the map (inset, black arrows indicate the direction of the cycle through a point (asterisk) that lies above the diagonal). Cobwebbing

n the map produces approximately the same cycle. B. The first return map for 𝜒 = 0.765 showing bistability of solutions with 5 < 𝜌𝑅𝐸𝑀 < 6 and 𝜌𝑅𝐸𝑀 = 6. The red asterisk (at
𝛷𝑛 , 𝛷𝑛+1) = (0.6379, 0.6379) on the light blue branch) indicates the onset of the stable 𝜌𝑅𝐸𝑀 = 6 solution in a saddle–node bifurcation. This solution coexists with a higher order
ycle of 𝜌𝑅𝐸𝑀 = 11

2
illustrated on the map (inset, black arrows indicate the direction of the cycle through a map point (asterisk) that lies above the diagonal). Cobwebbing on the

map produces approximately the same cycle.
t
r
R

we did not numerically detect any stable higher order orbits near those
points.

Summary
In summary, we have shown that in the 𝜌 = 1 regime of monophasic

leep in the three-state model, NREM–REM alternation introduces a
equence of bifurcations as 𝜒 is reduced. These bifurcations correspond
o changes in the timing and number of REM bouts during the single
octurnal sleep episode and reflect interactions between NREM–REM
lternation and sleep–wake dynamics. These results suggest the poten-
ial for developmental changes in ultradian alternation during sleep
fter consolidation to a single nocturnal sleep episode.
The sequence of bifurcations is initiated by a loss of stability in the

14}∞ solution and include period-adding-type patterns in the numbers
f REM bouts and bistability at the transitions to the {15}∞ and {16}∞

olutions. Specifically, the {1𝑛}∞ (𝑛 = 4, 5) solutions lose stability in
eriod-doubling bifurcations when the slope of the map at the stable
ixed point decreases below −1 because of the non-monotonic shape
f the map branches. For 𝑛 = 4, 5, period-doubling solutions with 𝑛
EM bouts are replaced by solutions involving daily sleep episodes
ith 𝑛 and 𝑛 + 1 REM bouts that follow a period-adding sequence.
hese higher order stable orbits display sleep onset phases near an
nstable fixed point on the map. The stable solutions {1𝑛}∞ (𝑛 =
, 6) are initiated at saddle–node bifurcations which introduce stable
nd unstable fixed points on the map. These saddle–node bifurcations
ccur at 𝜒 values where the higher-order cycle solutions retain stability
eading to intervals of bistability near these bifurcations. The unstable
ixed point associated with higher order cycling between {14}∞ and
15}∞ solutions is eventually lost through a border collision bifurcation.
Interestingly, this same sequence of bifurcations is not followed

n the evolution and finally disappearance of the {16}∞ solution at
= 0.7235. As 𝜒 is reduced from 0.765 (where the {16}∞ solution gains
tability in a saddle–node bifurcation), the six-REM-branch shrinks to
over a narrower interval of circadian phases but the stable and unsta-
le fixed points remain on the branch. At 𝜒 = 0.7235, the lowest 𝜒 value
here the 𝜌 = 1 solution exists, the stable and unstable fixed points
n the six-REM-branch coalesce in a saddle–node bifurcation leading
o the loss of the {16}∞ solution (Fig. 8B). Additional occurrences of
istability appear near this bifurcation where at the slightly higher
value of 𝜒 = 0.726 we find a stable higher order orbit with 𝜌 =

4
5 , 𝜌𝑅𝐸𝑀 = 20

5 = 4, and a pattern of {15, 15, 13, 2(4,3)}∞ (Fig. 8A).
Thus, near where the 𝜌 = 1 solutions lose stability, the period-adding
 m

10
solutions in the number of sleep episodes per circadian cycle start to
appear. Such bistability between these types of solutions has not been
observed in two-state sleep–wake models (see Discussion). The first
return map eventually deforms so that the six-REM-branch vanishes,
as at 𝜒 = 0.7165 (Figure 14B in Supplementary Material), while the
wo neighboring five-REM branches merge into a single branch. As a
esult, stable or transient solutions involving sleep episodes with six
EM bouts are not predicted by the map for this value of 𝜒 .

3.2. Effects of NREM-REM cycling on the monophasic to biphasic sleep
transition

The loss of existence of the 𝜌 = 1 solution designates the appearance
of circadian cycles with two sleep episodes (e.g., nap and nighttime
sleep). As 𝜒 decreases through the transition from stable monophasic
to stable biphasic sleep, the 𝜌 bifurcation diagram reflects an underlying
period adding structure (Figs. 4B and 9A). However, in some 𝜒 intervals
the monotonic change in 𝜌 characterizing the period adding structure
is disrupted (Fig. 9A). Specifically, the sequence of rotation numbers
𝜌 is irregular and non-monotonic at high values of 𝜒 in this region
(𝜒 ∈ (0.7015, 0.7235)) and exhibits jumps within particular 𝜌-intervals
resulting in bistability. For example, at 𝜒 = 0.6305 stable solutions
𝜌 = 2

3 and 𝜌 = 13
19 both exist. Additionally, bistability is observed at the

transition between distinct 𝜌 values. For example, for 𝜒 ∈ [0.659, 0.661]
stable solutions with 𝜌 = 7

10 (with 𝜌𝑅𝐸𝑀 = 3.4) and 𝜌 = 2
3 (with

𝜌𝑅𝐸𝑀 = 3) coexist (right end of pink shaded region in Fig. 9A). Such
irregularity in sleep pattern changes in this regime suggests that the
developmental change from a napping to a non-napping sleep schedule
in young children can involve a wide range of multi-day sleep patterns
before consistent monophasic sleep is achieved.

Variations in NREM–REM cycling contribute to the irregularity of
variation in 𝜌 as 𝜒 decreases, as illustrated in the 𝜌𝑅𝐸𝑀 bifurcation
diagram (Fig. 9B). In this section, we qualitatively describe character-
istics of the diversity of solutions in the transition from monophasic to
biphasic sleep since stable solutions with 𝜌 ∈ ( 12 , 1) are represented in
higher order return maps that are quite complex. In the next section,
we discuss bifurcation sequences more quantitatively and show second
return maps for the 𝜌 = 1

2 solutions.

Diversity of NREM-REM cycling for solutions with constant 𝜌
In 𝜒 intervals of constant 𝜌 for 𝜌 ∈ ( 12 , 1), changes in 𝜌𝑅𝐸𝑀
ay or may not follow a monotonic period-adding-type sequence with
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Fig. 8. First return maps toward the end of the 𝜒 range for the stable 𝜌 = 1 solution. The green, red, light blue map, and purple branches correspond to circadian phases of sleep
episodes involving 4, 5, 6, and 5 REM bouts, respectively. A. The first return map for 𝜒 = 0.726 showing the stable solution with 𝜌 < 1 ({15 , 15 , 13 , 2(4,3)}∞) in a bistable regime
with the {16}∞ solution (stable fixed point on the light blue branch). The stable solution with 𝜌 < 1 visits the five-REM (purple and red), four-REM (green) and three-REM (dark
blue) branches. Black arrows along the dashed lines indicate the direction of the cycle. Cobwebbing on the map produces approximately the same cycle. B. The first return map
for 𝜒 = 0.7235. The 𝜌 = 1 solution ceases to exist in a saddle–node bifurcation on the six-REM branch (light blue).
Fig. 9. Bifurcation diagrams of 𝜌 and 𝜌𝑅𝐸𝑀 in the transition from monophasic to polyphasic sleep. A,B: Bifurcation diagram of 𝜌 (A) and 𝜌𝑅𝐸𝑀 (B) with 𝜌 ∈ ( 1
2
, 1). Pink shaded

egions indicate the 𝜒 interval where the majority of solutions have 𝜌 = 2
3
. Green and red boxes correspond to stable solutions with 𝜌 = 3

4
for 𝜒 ∈ [0.6875, 0.7015] and with

𝜌 = 3
5
for 𝜒 ∈ [0.5685, 0.5875], respectively. These 𝜒 intervals illustrate the diversity of 𝜌 and 𝜌𝑅𝐸𝑀 variations as 𝜒 decreases caused by variations in NREM–REM cycling. C: 𝜌𝑅𝐸𝑀

ifurcation diagram for 𝜒 ∈ [0.606, 0.6605] corresponding to an average sleep pattern of three sleeps per two days (i.e. 𝜌 = 2
3
). The light yellow shaded region indicates an interval

of bistability of stable solutions with 𝜌 = 7
10
and 𝜌 = 2

3
. Intervals of constant 𝜌𝑅𝐸𝑀 are colored and labeled appropriately with the particular sleep pattern. Each subinterval may

nvolve a period doubling bifurcation which is not labeled.
ecreasing 𝜒 as observed for 𝜌 = 1 solutions. For example, for 𝜒 ∈
[0.5685, 0.5875] (red box in Fig. 9A,B) all stable solutions have 𝜌 = 3

5
and 𝜌 = 3 corresponding to the pattern {1 , 2 , 2 }∞. Similarly,
𝑅𝐸𝑀 3 (2,4) (3,3)

11
for all solutions in 𝜒 ∈ (0.542, 0.606), solutions with the same 𝜌 value
have a consistent 𝜌𝑅𝐸𝑀 value. In contrast, for solutions with 𝜌 = 3

4 , for
𝜒 ∈ [0.6875, 0.7015] (green box in Fig. 9A,B), 𝜌 jumps from 3.75 to
𝑅𝐸𝑀
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Fig. 10. The biphasic sleep (𝜌 = 1
2
) regime. A. The bifurcation diagram of 𝜌𝑅𝐸𝑀 in the 𝜌 = 1

2
regime. B. The second return map for 𝜒 = 0.542 introducing the 𝜌 = 1

2
solution

n a saddle–node bifurcation. The stable solution has 𝜌𝑅𝐸𝑀 = 2.5. The map branches are colored and labeled according to the number of REM bouts involved in the sleep onsets
ith phase 𝛷𝑛 and 𝛷𝑛+1. The dark blue and light blue branches correspond to model solutions having 2 and 3 REM bouts during the two sleep episodes, respectively. The black
ranches correspond to solutions with 2 and 4 REM bouts during the two sleep episodes, respectively.
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for 𝜒 ∈ [0.6935, 0.695] indicating a difference in NREM–REM cycling
atterns in solutions with the same 𝜌.

= 2
3
As a further example, the bifurcation diagram of 𝜌𝑅𝐸𝑀 over the

nterval 𝜒 ∈ [0.606, 0.6605] (Fig. 9C) illustrates the diversity of NREM–
EM cycling patterns that occur in 𝜌 = 2

3 solutions. Here, 𝜌𝑅𝐸𝑀
values generally increase in a period-adding-type sequence. In the
range 𝜒 ∈ [0.617, 0.649], 𝜌𝑅𝐸𝑀 = 10

3 and reflects a stable pattern with
an average number of 10 REM bouts per 3 sleep episodes. However,
the distribution of REM bouts across the 3 sleep episodes varies with
𝜒 and results in four distinct stable sleep patterns across this range.
At 𝜒 = 0.649, the stable sleep pattern is {13, 2(4,3)}∞, but at 𝜒 = 0.645
the pattern changes to {14, 2(3,3)}∞. This change occurs due to a phase
advance of the second sleep episode with 3 REM bouts that eventually
shifts it to the previous circadian day. For lower 𝜒 values, NREM–REM
cycling patterns change, leading to variable 𝜌𝑅𝐸𝑀 that then re-stabilizes
at 𝜒 = 0.6235 where the stable sleep pattern is {15, 14, 2(4,2), 2(3,3)}∞.
Period doubling bifurcations take place for 𝜒 ∈ [0.6235, 0.6245] and
t 𝜒 = 0.6225 the pattern becomes {14, 2(3,3)}∞ (no stable solutions
ere detected for 𝜒 ∈ (0.6225, 0.6235)). This representative example

emphasizes the great range of NREM–REM cycling patterns predicted
by the three-state model.

An additional example of this range of patterns is highlighted
by the re-occurrence of some 𝜌𝑅𝐸𝑀 values over distinct 𝜒 intervals
e.g., 𝜌𝑅𝐸𝑀 = 3 for 𝜒 ∈ [0.5685, 0.5875] ∪ [0.656, 0.6605]). In this
xample, the 𝜒 intervals correspond to distinct sleep patterns that are
haracterized by different 𝜌 values despite having the same average
number of REM bouts per sleep episode. However, re-occurrence of
𝜌𝑅𝐸𝑀 values can take place even within the same 𝜌 interval. This
phenomenon, as well as the map structure leading to it, is illustrated
in the next section.

3.3. NREM-REM cycling bifurcations in biphasic sleep

Stable biphasic sleep (𝜌 = 1
2 ) solutions occur for 𝜒 ∈ [0.41, 0.542].

NREM–REM cycling changes across this regime, with 𝜌𝑅𝐸𝑀 varying
non-monotonically in 𝜌𝑅𝐸𝑀 ∈ [2, 2.5] (Fig. 10A). This non-monotonic
variation in 𝜌𝑅𝐸𝑀 with 𝜒 is due to more variability in NREM–REM
cycling patterns across the two daily sleep episodes, as described in
the previous section for 𝜌 = 2 solutions. Such variability suggests
3

12
that the biphasic sleep pattern can accommodate changes in NREM–
REM alternation that alter the specific timing, duration, and REM sleep
content of naps and nighttime sleep without affecting the number of
daily sleep episodes. To analyze the bifurcation sequences occurring
in this regime, we employ second return maps and follow the 𝜌𝑅𝐸𝑀
ifurcation diagram (Fig. 10A) as 𝜒 is reduced from 0.542.
Note that the second return map can be thought of as consisting

f two similar copies of the map branches (Fig. 10B). Each pair of
ssociated branches involves the same set of model trajectories that
roduce two sleep episodes. One branch represents the sleep onset
hases of the first sleep episode of the day, while the associated branch
epresents the sleep onset phase of the second sleep episode of the
ay.

𝑅𝐸𝑀 = 2.5
The 𝜌 = 1

2 regime is initiated at 𝜒 = 0.542 in a saddle–node
ifurcation illustrated in the second return map (Fig. 10B). This map
as two fixed points at phases about 𝛷𝑛 = 𝛷𝑛+2 = 0.0857 and 𝛷𝑛 =
𝑛+2 = 0.6641 formed by map branches (light blue) making tangential
ntersections with the diagonal. Thus, at the start of the 𝜌 = 1∕2 regime,
he stable periodic orbit consists of a sleep episode with two REM bouts
ccurring at the early rise of the circadian rhythm (near 𝛷𝑛 = 0.0857)
ollowed by a sleep episode with three REM bouts occurring a little after
he peak of the circadian rhythm (near 𝛷𝑛 = 0.6641). This results in a
EM rotation number, 𝜌𝑅𝐸𝑀 = 2.5. We refer to the branches on which
the fixed points lie as the (2, 3)𝐴 (near 𝛷𝑛 = 0.0857) and (3, 2)𝐴 (near
𝛷𝑛 = 0.6641) branches. The first number in the 2−tuple of a map branch
refers to the number of REM bouts occurring in the sleep episode with
onset phase, 𝛷𝑛. The second number refers to the number of REM bouts
in the subsequent sleep episode with onset phase, 𝛷𝑛+1. The subscripted
letters distinguish between distinct, map branches corresponding to
model solutions exhibiting the same numbers of NREM–REM cycles.

As 𝜒 decreases from the value 𝜒 = 0.542 associated with the saddle–
node point, the second return map attains two pairs of fixed points,
one pair from each saddle–node with a stable and an unstable fixed
point in each pair. The slope of the map branches at the stable fixed
points is initially positive and less than 1, but as 𝜒 decreases, it becomes
negative and eventually decreases through −1 at approximately 𝜒 =
0.503, indicating a period-doubling bifurcation. When the stable fixed
points lose stability at 𝜒 = 0.5025, a stable 4-cycle emerges with
the pattern {2(2,3), 2(2,3)}∞. On the second return map (Fig. 11A), the
4-cycle appears as two 2-cycles, one with sleep onset phases on the
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Fig. 11. Higher order cycling solutions in the 𝜌 = 1
2
regime represented in the second return maps. The two insets in panels A and B show the 2-cycles associated with the sleep

onsets in the stable solution occurring at earlier and later circadian phases. The behavior is qualitatively the same, thus we show only one inset in the remaining figures. Black
arrows in the insets of panel B indicate the direction of the cycle through a point (asterisk) that lies above the diagonal. Cobwebbing on the map produces approximately the
same cycle. The map branches are labeled according to the number of REM bouts involved in the sleep onsets with phase 𝛷𝑛 and 𝛷𝑛+1 in panel C. The light and dark blue, black
nd green branches correspond to model solutions involving 2 and 3, 2 and 4, and 2 and 2 REM bouts during their first two sleep episodes, respectively. A. Second return map
or 𝜒 = 0.5025 in the 𝜌𝑅𝐸𝑀 = 2.5 regime. The stable solution is characterized by higher order cycles after a period doubling bifurcation. B. Second return map for 𝜒 = 0.5005 in the
𝑅𝐸𝑀 = 2.25 regime. The stable solution participates in a higher order cycle involving neighboring map branches. C. Second return map for 𝜒 = 0.4995 in the 𝜌𝑅𝐸𝑀 = 2 regime. A
addle–node bifurcation introduces the stable solution with pattern {2(2,2)}∞.
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2, 3)𝐴 branch (light blue) near 𝛷𝑛 ≈ 0 and the other with phases on
he (3, 2)𝐴 branch (light blue) near 𝛷𝑛 ≈ 0.6. The sleep onset phases of
he sleep episodes are almost equal. Note that the unstable fixed points
till exist on the right side of these map branches.

𝑅𝐸𝑀 = 2.25
As 𝜒 decreases a little further to 𝜒 ∈ [0.5005, 0.501], 𝜌𝑅𝐸𝑀 decreases

o 2.25, and the stable solution transitions to the pattern {2(2,2), 2(2,3)}∞.
n this solution, sleep onset phases alternate between neighboring
ap branches (2, 3)𝐴 (or (3, 2)𝐴, light blue) and (2, 2) (green) which
ppeared during the evolution of the map with 𝜒 (Fig. 11B). Unlike
he bifurcation sequences seen in the 𝜌 = 1 regime, where higher
rder cycle solutions consisting of sleep onset phases on two distinct
ap branches follow a period-adding-type sequence, here only the
2(2,2), 2(2,3)}∞ pattern (𝜌𝑅𝐸𝑀 = 2.25) persists with an abrupt transition
o the {2(2,2)}∞ solution (𝜌𝑅𝐸𝑀 = 2) (Fig. 10A). This abrupt transition
ccurs in a border collision bifurcation at 𝜒 = 0.5005 when the (2, 3)𝐴
nd (3, 2)𝐴 (light blue) map branches intersect the diagonal, 𝛷𝑛+2 = 𝛷𝑛,
t the unstable fixed points lying on their leftmost side (Fig. 11B).

𝑅𝐸𝑀 = 2
The stable {2(2,2)}∞ solution is found at approximately 𝜒 = 0.4995 as

result of a pair of saddle–node bifurcations via a tangent intersection
f both (2, 2) (green) map curves with the diagonal (Fig. 11C). The
addle–node bifurcation creates two pairs of stable and unstable fixed
oints, one pair on each (2, 2) map branch. As before, as 𝜒 decreases
urther, the slope of map branches at the stable fixed points eventually
13
ecreases through −1 at 𝜒 = 0.462 leading to a period-doubling
ifurcation.

volution of map branches
Note that during this evolution of decreasing 𝜒 , the shape of the

econd return map has significantly changed compared to its structure
t 𝜒 = 0.542 (Fig. 10B). In particular, for 𝜒 = 0.542 the (2,4) and (4,2)
ranches existing on phase intervals 𝛷𝑛 ∈ (0.1242, 0.2624) and 𝛷𝑛 ∈
0.6778, 0.764), respectively, correspond to trajectories that generate
leep episodes involving four REM bouts (Fig. 10B, black curves). As 𝜒
s reduced, and the faster variation in homeostatic sleep drive decreases
he duration of sleep episodes, the total number of REM bouts during
sleep episode decreases as well. The map reflects this phenomenon
s the (2,4) and (4,2) branches exist over narrower 𝛷𝑛 intervals for
ecreasing 𝜒 . These branches are eventually annihilated, while their
eighboring (2, 3)𝐴, (2, 3)𝐵 , (3, 2)𝐴, (3, 2)𝐵 branches on either side merge
nto continuous S-shaped (2,3) and (3,2) curves (Fig. 12).

eoccurrence of solutions with 𝜌𝑅𝐸𝑀 > 2
For 𝜒 <≈ 0.4875, the second return map comprises curves that

orrespond to sleep cycles that involve only two or three REM bouts
Fig. 12A). Stable period doubling orbits are obtained on the (2,2)
green) branches of the map for 𝜒 ∈ [0.4595, 0.462] (Fig. 12B). For lower
values, we obtain more stable higher order cycle solutions with sleep
nset phases alternating between distinct map branches. Specifically,
t 𝜒 = 0.4565, a stable 6-cycle with the pattern of {2(2,3), 2(2,2), 2(2,2)}∞
s observed with sleep onset phases on the (2, 2) (green) and on the
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Fig. 12. Second return maps capturing 𝜌 = 1
2
solutions with only two or three REM bouts per sleep episode. The maps deform and comprise only four branches corresponding

to a distinct number of REM bouts. The map branches are labeled and colored according to the number of REM bouts involved in the sleep onsets with phase 𝛷𝑛 and 𝛷𝑛+1 in
panel B. The light blue and green branches correspond to model solutions involving 2 and 3, and 2 and 2 REM bouts during the two sleep episodes, respectively. Black arrows in
the insets of panels indicate the direction of the cycle through a point (asterisk) that lies above the diagonal. Cobwebbing on the map produces approximately the same cycle. A.
Second return map for 𝜒 = 0.4875 exhibiting the annihilation of the branches involving sleep onset phases with four REM bouts. B. Second return map for 𝜒 = 0.4595. The stable
solution has 𝜌𝑅𝐸𝑀 = 2 and follows a period-doubling bifurcation. C. Second return map for 𝜒 = 0.4565. The stable solution has 𝜌𝑅𝐸𝑀 = 13

6
manifesting the monotonic increase of

𝜌𝑅𝐸𝑀 as 𝜒 is reduced. D. Second return map for 𝜒 = 0.4435. The stable solution has 𝜌𝑅𝐸𝑀 = 9
4
and alternates between the (2, 3) (or (3, 2)) and (2, 2) map branches.
o
b
l
o
f

c
p
o

-shaped (2, 3) (or (3,2)) (blue) branches (Fig. 12C). This pattern cor-
esponds to 𝜌𝑅𝐸𝑀 = 13

6 and loses stability at 𝜒 = 0.453 where the
higher order pattern {2(2,3), 2(2,2), 2(2,2), 2(2,3), 2(2,2), 2(2,2)}∞ occurs. As 𝜒
decreases further, the stable sleep patterns visit the (2,2) (green) map
branches less frequently and visit the (2,3) (or (3,2), blue) branches
more frequently. Thus, the REM rotation number starts increasing
incrementally from 2 in a period-adding type fashion.

As 𝜒 values approach the lower end of the 𝜌 = 1
2 regime, the

𝜌𝑅𝐸𝑀 = 2.25 solution with pattern {2(2,3), 2(2,2)}∞ is introduced once
more for 𝜒 ∈ [0.43, 0.4435] (Fig. 12D). In this occurrence of the solution,
the phases of sleep episodes have shifted to the second half of the
circadian day. That is, the earlier sleep onsets occur close the peak of
the circadian rhythm and the later ones occur close to the trough of
the circadian rhythm. As 𝜒 decreases further, we numerically detect
a period doubling cascade from the {2(2,3), 2(2,2)}∞ pattern for 𝜒 ∈
[0.43, 0.431] (Figure 15A in Supplementary Material).

Finally, as 𝜒 decreases out of the 𝜌 = 1
2 regime, the REM rotation

number, 𝜌𝑅𝐸𝑀 , keeps increasing incrementally reflecting a period-
adding-type sequence as more days with 2(2,3) sleep cycles are added
to the pattern with 2(2,2) days. In the map, this translates to more phase
onsets in the higher order cycles lying on the S-shaped (2,3) and (3,2)
(blue) branches. At 𝜒 = 0.41, a border collision at the unstable fixed
points on each of the (2,2) (green) map branches designates the loss of
stability of the 𝜌 = 1

2 solution (Figure 15B in Supplementary Material).
iven the structure of the map branches, no stable fixed points exist in
he second return map and no higher order cycles can be created. As a
esult, sleep patterns with days involving three sleep episodes emerge.
 s

14
Summary
In summary, the bifurcation sequence in the 𝜌 = 1

2 regime displays
similarities with the 𝜌 = 1 regime, including period doubling when
fixed points lose stability due to a change in the slope of the map branch
at the fixed point, creation of stable fixed points through saddle–node
bifurcations, and higher order cycling solutions with period-adding-
type patterns in 𝜌𝑅𝐸𝑀 involving sleep onset phases on distinct map
branches. However, by contrast with the 𝜌 = 1 regime, a large portion of
the 𝜌 = 1

2 regime involves solutions that are higher order cycles around
unstable fixed points. Thus, this regime shows many occurrences of the
loss of unstable fixed points through border collision bifurcations gov-
erning the transitions in solution patterns. The presence of stable higher
order cycles, rather than stable fixed points, may have implications for
re-entrainment dynamics for regularly napping children experiencing a
perturbation to their typical schedule.

Additionally, certain 𝜌𝑅𝐸𝑀 solutions in the interval [2,2.5] re-occur
at different 𝜒 values. However, the size of the 𝜒-interval for each
ccurrence of 𝜌𝑅𝐸𝑀 differs due to the asymmetrical shape of the map
ranches. Specifically, the higher order cycling solutions exist over
arger 𝜒 values when the unstable fixed point that they surround lies
n the left side of the map branch that has a longer vertical distance
rom its border associated with the cusp.
The stable solutions generated for smaller 𝜒 values in this regime

apture the sleep patterns and timing observed in napping children. In
articular, the phase of the earlier sleep onset occurs close to the peak
f the circadian drive (midday nap, Fig. 12) as reported in experimental
tudies [54]. Additionally, the values of the homeostatic time constants
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Fig. 13. Maps showing the transition from a continuous to a discontinuous regime for small 𝜒 . A. The fourth return map for 𝜒 = 0.2185 designates the beginning of the 𝜌 = 1
4

olution. The map is continuous in this regime, and thus, the stable solution emerges in a saddle–node bifurcation. B. The fourth return map for 𝜒 = 0.205 demonstrating the
oss of existence of the 𝜌 = 1

4
solution. The map remains continuous and thus, the stable solution ceases to exist in a saddle–node bifurcation. C. The first return map for

= 0.097. Occurrence of solutions with one or no REM bouts due to the fast time scales of the homeostatic sleep drive lead to the reappearance of discontinuities in the map.
ach discontinuity exists to differentiate between map branches that correspond to sleep episodes with different number of REM bouts. The branches are labeled according to the
umber of REM bouts involved in the initial sleep occurring at phase, 𝛷𝑛.
a

are consistent with experimentally estimated values [55]. Further data
on typical REM sleep timing and patterns observed in young children
as they transition from napping to non-napping sleep schedules is
needed to validate and constrain model predictions for other ranges of
𝜒 values. Such data will help to more accurately understand the effect
of changing properties of the sleep homeostat on sleep patterns in early
childhood.

3.4. Loss of NREM-REM cycling in the polyphasic sleep limit

The loss of existence of the 𝜌 = 1
2 solution initiates the appearance of

circadian cycles with three sleep episodes (e.g., morning nap, afternoon
nap, nighttime sleep). As 𝜒 decreases through these regimes (𝜒 ∈
[0.2, 0.41]), similar bifurcations, bistability regimes and disruptions of
the 𝜌𝑅𝐸𝑀 period-adding structure take place leading up to the 𝜌 = 1

4
solution regime (Fig. 4C). We note that NREM–REM cycling is restricted
in the small 𝜒 limit because the timings of REM activation and REM
out duration do not scale with 𝜒 and the homeostatic sleep drive
ime constants, like the timing and duration of sleep episodes in our
odel. For completeness we discuss how model dynamics and map
tructure evolve for the three-state model in the small 𝜒 limit when
he growth and decay of sleep need is very fast. However, we do not
xpect these theoretical results to be representative of actual polyphasic
leep patterns in infants or in other species where REM episodes can be
ery short.
As 𝜒 decreases and sleep episodes become shorter, the number of

REM–REM cycles per sleep episode also decreases. The loss of mul-
iple NREM–REM cycles weakens the influence of ultradian cycling on
leep–wake dynamics. For example, the average number of REM bouts
15
per sleep episode reduces to 1 for 𝜒 ∈ [0.099, 0.226]. This encompasses
the regime where 𝜌 = 1

4 solutions are stable (𝜒 ∈ [0.205, 0.2185])
suggesting that whenever there are four daily sleep episodes there will
be an average of one REM bout per sleep episode. When solutions have
only one REM bout per sleep episode, it always occurs at the end of
the sleep episode at the transition from the sleep to the wake state.
In this way, the timing of the REM bout is constrained within the sleep
episode, and the occurrence of REM sleep is influenced primarily by the
timing of wake onset. In this 𝜒 regime, the map becomes continuous,
nd the gain and loss of stability of the 𝜌 = 1

4 solution occurs due
to saddle–node bifurcations at 𝜒 = 0.2185 and 0.205, respectively
(Fig. 13A,B).

In the two-state model, a significant reduction in the homeostatic
time constants also leads to a regime where the map is continuous [29]
and no border collision bifurcations can occur. In this continuous
regime, the time scale of the homeostatic sleep drive is faster than the
time scale of the circadian drive at all phases. Thus, grazing bifurcations
that led to discontinuities in the map at phases when the circadian drive
was evolving faster than the sleep homeostat, no longer occur. In the
Two-Process model, continuous maps were obtained when amplitudes
of the circadian threshold curves were decreased [30]. Analysis of
these two-state models suggests that once the map becomes continuous,
continuity is preserved as model parameters are further varied.

In the three-state model, continuity of the map additionally requires
that the number of REM bouts per sleep episode does not differ be-
tween distinct sleep episodes. Therefore, although the map becomes
continuous at 𝜒 = 0.224, discontinuities can reappear in the map
as 𝜒 is decreased further if the number of REM bouts is no longer
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constant across sleep episodes. Here, the map becomes discontinuous
again due to the occurrence of sleep episodes with either 1 or 0 REM
bouts (Fig. 13C). The transience of the 𝜒 regime in which the map is
continuous in the three-state model contrasts with the preservation of
continuity in the maps of two-state models.

4. Discussion

In this work, we investigated the influence of NREM–REM alterna-
tion on sleep patterns generated by varying homeostatic sleep drive
time constants in a sleep–wake network model that simulates three
states: wake, NREM sleep, and REM sleep. We found that changing
the rates of growth and decay of homeostatic sleep need resulted in
a transition between polyphasic and monophasic sleep suggesting that
slower accumulation of sleep need is associated with consolidation of
sleep into fewer sleep episodes. This finding is consistent with the
experimental characterization of the time constants of the sleep home-
ostat in multiple mammalian species [18,26] and in different human
life stages [56–58]. In addition, we found that NREM–REM cycling
produced more complicated sequences of bifurcations in the transition
between polyphasic to monophasic sleep compared to models with only
one sleep state. These findings have implications for understanding the
consolidation of sleep in early childhood.

Since the rates of growth and decay of the homeostatic sleep drive
modulate the timing and duration of sleep episodes, changes in these
rates cause sleep onsets to occur at different circadian phases that then
affect the number and duration of REM bouts that occur during the
sleep episode. Thus, small differences in homeostatic and circadian
modulation can produce large variability in sleep–wake behavior. We
characterized this variability using rotation numbers 𝜌 and 𝜌𝑅𝐸𝑀 ;
identification of NREM–REM cycling patterns; and representative circle
maps of different orders computed from the sleep–wake network model.

We found that the monotonic change in 𝜌 observed in two-state
models of sleep–wake behavior as homeostatic time constants are var-
ied [26,28,29] is disrupted when the dynamics of NREM–REM cycling
are included. Specifically, the three-state model produces more com-
plicated transitions as solutions evolve from monophasic to biphasic
sleep patterns, including intervals of bistability, as well as diversity of
solutions with varied patterns of NREM–REM cycling across the same
number of daily sleep episodes. This suggests that ultradian cycling
may interact with developmentally-mediated changes in sleep need
to produce a wide range of multi-day sleep patterns and should be
considered as part of the underlying dynamics of sleep–wake regulation
in early childhood.

Bifurcations in sleep onset maps
We presented a computationally-based analysis of changes in sleep

patterning and investigated the bifurcations that produce these changes
using circle maps. Maps were constructed numerically from the high-
dimensional, physiologically-based sleep–wake regulatory network
model for human sleep [31,59]. The maps are non-monotonic and
are characterized by multiple discontinuities separating branches that
correspond to solutions with distinct NREM–REM cycling patterns. The
number of REM bouts associated with each branch was determined by
simulating the model from map initial conditions. The particular map
structure predicts the transitions in the numbers of average sleep cycles
per day as homeostatic time constants are varied. Simultaneously,
one can determine the number of REM bouts associated with stable
solutions by cobwebbing on the map and tracking which map branches
are visited by the solution. Changes in the average number of sleep
cycles per day and the associated NREM–REM cycling patterns result
from sequences of period doubling, saddle–node and border collision
bifurcations.

Specifically, we have shown that in the monophasic sleep (𝜌 = 1)
regime, decreasing the homeostatic time constants causes a stable fixed
point solution to first lose stability and then lose existence by moving
16
through a discontinuity of the map. The change in stability of the fixed
point occurs in a period-doubling bifurcation leading to the emergence
of higher-order periodic solutions with some sleep episodes containing
an increased number of REM bouts. As homeostatic time constants
are decreased further, saddle–node bifurcations initiate the existence
of new stable (and unstable) fixed points with increased numbers of
daily REM episodes, and border collisions lead to the destruction of
unstable fixed points and higher order cycles. The NREM–REM cycling
patterns in the resulting sequence of monophasic sleep solutions display
a monotonic period-adding-type increase in the number of daily REM
episodes, as quantified by 𝜌𝑅𝐸𝑀 . Additionally, intervals of bistability
exist between higher-order periodic solutions and stable fixed point
solutions created by saddle–node bifurcations.

Our results show that generally similar bifurcation sequences take
place in regimes with multiple sleeps per day (𝜌 < 1) as homeostatic
time constants decrease. However, NREM–REM cycling can be more
variable and the bifurcation sequence does not follow an incremental
period-adding type increase in the number of daily REM episodes, as
quantified by 𝜌𝑅𝐸𝑀 . Specifically, when multiple daily sleep episodes
occur the distribution of the number of REM bouts across the sleep
episodes can vary, leading to multiple patterns of NREM–REM cycling
exhibiting the same 𝜌𝑅𝐸𝑀 value. Additionally, as we analyzed in detail
for biphasic (𝜌 = 1

2 ) sleep, the number of daily REM bouts can show
incremental decreases and incremental increases in different ranges of
the homeostatic time constants caused by saddle–node bifurcations and
sequences of bifurcations in higher order cycling solutions. Changes in
the number of REM bouts produce discontinuous changes in the dura-
tion of the overall sleep episode consistent with longitudinal studies of
sleep in preschool children [2].

Contrast with results from two-state sleep–wake models
The Two-Process Model and other physiologically-based models

that simulate only two states, wake and sleep, without differentiat-
ing between REM and NREM sleep [26,28,29], have also been used
to analyze the transition between polyphasic and monophasic sleep
patterns, as the homeostatic time constants or an equivalent parameter
were varied. As this transition takes place, an underlying period adding
structure in the average number of sleep cycles per day was observed.
Results in the two-state models suggest a strict monotonic change
associated with this structure indicating that napping frequency should
decrease monotonically as homeostatic sleep need changes across early
childhood.

Circle maps have also been employed in these two-state models
to analyze the types of bifurcations associated with the transition
between monophasic and polyphasic sleep. In particular, the dynamics
of the Two-Process model have been analytically reduced to a one-
dimensional map that is piecewise smooth and may be monotonic or
non-monotonic depending on parameter regimes [28,30,60]. Similarly-
structured maps have been computed numerically for other two-state
models [29]. However, these maps mainly account for the circadian
effect on the timing of sleep onset, which may result in a large time
separation of nearby solutions. This phenomenon is reflected in a large
discontinuity close to peak values of the circadian rhythm, which is
also present in the maps computed for the three state model, e.g at
𝛷𝑛 ≈ 0.5 for 𝜒 = 1 (Fig. 3). In contrast, maps of the three-state model
exhibit additional cusp gaps between map branches for trajectories with
distinct numbers of REM bouts. These gaps occur due to the interaction
of NREM–REM cycling with the homeostatically regulated transition to
the wake state.

Studies in two-state models have reported border collision and
saddle–node bifurcations as a mechanism of creating or destroying sta-
ble and unstable fixed points in the map and thus, causing the transition
in sleep patterning. By contrast, in our three-state model, changes in
sleep patterning occur through a nested hierarchy of bifurcations that
take place as a result of NREM–REM cycling interacting with changing
homeostatic dynamics and include period doubling bifurcations as well
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as saddle–node and border collision bifurcations. To our knowledge, pe-
riod doubling solutions have not been reported in the two-state models.
In addition, bistability regularly occurred in the transition between sta-
ble solutions, in contrast to two-state models. In our three-state model,
the existence of period-doubling and bistability is associated with the
increased complexity of the map structure, including non-monotonicity
and non-invertibility, caused by differences in NREM–REM cycling at
distinct circadian phases.

For example, in the three-state model, a change in the number of
REM bouts leads to a change in the duration of the sleep episode
and its circadian onset phase. Additionally, the propensity for REM
bouts to occur varies with the circadian rhythm [59], consistent with
experimental characterizations of REM sleep propensity [19]. Thus, as
𝜒 varies, the interaction between circadian and homeostatic processes
leads to changes in the timing and duration of sleep episodes which, in
turn, interact with the NREM–REM cycling dynamics within the sleep
episode. The distribution of REM bouts in each sleep episode varies
for different values of 𝜒 , leading to patterns with different average
numbers of REM bouts per sleep episode (i.e., different 𝜌𝑅𝐸𝑀 values),
but the same average numbers of sleep cycles per day (i.e., the same 𝜌
values). Moreover, in some 𝜒 regimes, we found sleep patterns with the
same 𝜌 and 𝜌𝑅𝐸𝑀 values, but distinct NREM–REM cycling sequences.
These sleep patterns highlight developmentally-mediated changes in
sleep architecture that are not detected when considering 𝜌 values only
but that affect the underlying structure that governs transitions in 𝜌.
Future work may investigate how circle maps change as the occurrence
of REM bouts is reduced (e.g., when the activation threshold for the
REM-promoting population is increased [47]).

Napping, light exposure, and the circadian modulation of sleep
In our analysis, the map construction requires that we assume a

fixed light:dark schedule in order to maintain a rigorous definition of
circadian phase. However, the light exposure of most humans does
not occur at a constant intensity and is not strictly dependent on the
environmental light cycle. Instead, individuals experience a wide range
of light intensities, and artificial light enables a significant level of self-
selection in light exposure that may result in variable daily schedules
of both light exposure and sleep–wake behavior [61–63]. In addition,
the behavioral gating of light that occurs when eyes are closed during
sleep gives rise to feedback between sleep timing and light input to the
circadian clock, which may then affect circadian phase. Thus, as the
need for naps decreases and children start dropping naps, both their
sleep patterns and their patterns of light exposure are affected.

Our modeling approach can incorporate the effect of external light
schedules on sleep timing during the transition between polyphasic
and monophasic sleep through the light forcing term in the circadian
clock model component. Variable patterns of light exposure induce
variability in sleep timing reflected in quasi-stable model solutions.
However, regular changes in the pattern of light exposure may affect
the circadian waveform in a way that reinforces patterns of sleep–wake
behavior. In previous work we have shown that the map maintains
a good approximation of the dynamics of the full model even when
behaviorally-gated light input is included [45]. Thus, we expect that
results reported here are qualitatively similar to those that would be
obtained if light:dark schedules were allowed to vary with simulated
behavioral state. However, more work is needed to establish how in-
teractions between changes in light exposure associated with changing
sleep–wake patterns interact with the circadian system.

In addition, REM sleep may represent an indirect pathway for circa-
dian modulation of sleep–wake behavior. In adults, REM sleep is gated
by the circadian system [19], but circadian and other features of REM
sleep differ across species and in humans at different life stages [17,64–
66]. Developmentally-mediated changes in circadian regulation of REM
sleep may interact with other developmentally-mediated changes in

sleep in early childhood.

17
Implications and future considerations
REM sleep is a key feature of sleep architecture, and there is

evidence that ultradian alternation between NREM and REM sleep in-
teracts with developmental changes in sleep in preschool children [2].
Thus, the presence of unique features in the bifurcation patterns of
three-state models (e.g., higher order patterns and bistability) sug-
gests that there may be important aspects of the transition between
polyphasic and monophasic sleep that are not captured by two-state
models.

The reciprocal interaction hypothesis we incorporated to capture
the REM sleep dynamics is one of multiple proposed mechanisms for the
generation of NREM–REM alternation [67–71]. However, the interac-
tions between the limit cycle producing ultradian NREM–REM cycling
and the hysteresis loop driving transitions between sleep and wake
behavior are the distinguishing dynamical features of our three-state
model. Therefore, future work should consider the effects of NREM–
REM alternation on the transition from polyphasic to monophasic
sleep in models that incorporate alternative theories of REM sleep
regulation [70–72].

In addition, future experimental work is needed to assess model
predictions and provide physiological constraints for model parameters
by characterizing concurrent changes in REM sleep and the dynamics
of homeostatic sleep need across qualitative transitions in sleep–wake
behavior. Changes in homeostatic time constants may not occur uni-
formly for the increase and dissipation of sleep need [14], and the
effects of such non-uniform changes on the transition from polyphasic
to monophasic sleep are unknown. Future modeling work investigat-
ing the independent and relative contributions of homeostatic and
circadian factors in sleep consolidation would complement ongoing
experimental studies of sleep across development.
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