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Abstract. Differential equation-based physiological models of sleep-wake networks describe sleep-wake regula-
tion by simulating the activity of wake- and sleep-promoting neuronal populations and the mod-
ulation of these populations by homeostatic and circadian (\sim 24 h) drives. Here, we consider a
sleep-wake flip-flop network model consisting of mutually inhibitory interactions between wake- and
sleep-promoting neuronal populations. Motivated by changes in sleep behavior during early child-
hood as babies transition from napping to nonnapping behavior, we vary homeostatic and circadian
modulation and analyze effects on resulting sleep-wake patterns. To identify the types and sequences
of bifurcations leading to changes in stable sleep-wake patterns in this piecewise-smooth model, we
employ multiple mathematical methods, including fast-slow decomposition and numerical compu-
tation of circle maps. We find that the average daily number of sleeps exhibits a period adding
sequence as the homeostatic time constants are reduced, and that the temporal circadian profile
influences the number of observed solutions in the sequence. These solutions emerge through se-
quences of saddle-node and border collision bifurcations, where the particular sequence depends on
parameter values. When the temporal circadian profile is steep, as may occur with long day lengths,
some sleep patterns are lost and bistability of other sleep patterns can be observed. We analyze a
limiting case of the temporal circadian waveform, a circadian hard switch model, to understand this
loss of solutions. Generally, our multipronged approach provides an alternative analysis method for
describing bifurcations in high-dimensional, nonautonomous piecewise-smooth systems.

Key words. circle maps, sleep-wake models, piecewise-smooth dynamical systems, saddle-node bifurcation,
border collision bifurcation
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1. Introduction. Sleep timing is governed by interactions between circadian (\sim 24 h) and
homeostatic sleep drives and the action of these drives on the networks of brainstem and hy-
pothalamic neurons that promote states of wake and sleep [54, 55]. Early models of sleep-wake
behavior described this system with coupled oscillators representing interactions between sleep
cycles driven by the homeostatic sleep drive and a periodic circadian rhythm [42, 39, 16, 45,
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1894 ATHANASOULI, PILTZ, DINIZ BEHN, AND BOOTH

62, 58]. The classic Two Process model quantified this relationship in the form of a threshold
system consisting of an exponentially increasing and decreasing homeostatic sleep drive that
switches direction at thresholds modulated by the periodic circadian rhythm [9, 16, 10].

Circle maps have long been employed to study various biological systems consisting of
coupled oscillators in which one oscillator drives another [1, 26, 19]. In addition, there exists
a vast literature on the analysis of functions of the circle to itself describing circle maps (e.g.,
[38, 28, 40, 11, 30]). As reduced models for coupled oscillator systems, these results provide a
powerful framework for understanding the dynamics of relative frequencies of coupled oscilla-
tors, including identifying types of phase-locked or entrained solutions [34, 41, 3], bifurcations
between these solutions [47, 57], and chaotic dynamics [27, 32, 63]. Circle maps can be ex-
plicitly formulated for some model systems, such as threshold systems [26, 47, 12, 19, 30] or
integrate-and-fire models [1, 4]. For example, circle maps of the Two Process model for the
timing of sleep onset relative to the circadian rhythm can be explicitly computed, and recent
work has analyzed these circle maps under several conditions [57, 4]. These circle maps can be
monotonic or nonmonotonic and may exhibit a vertical discontinuity or gap which introduces
additional types of bifurcations between phase-locked solutions compared to continuous circle
maps [31, 2, 20].

However, using circle maps to understand solutions and their bifurcations in high-
dimensional, differential equations--based, coupled oscillator models of biological processes
is generally difficult since explicit computation of an underlying circle map is not straightfor-
ward. In this study, we numerically compute circle maps to identify the types of bifurcations
in a model of a sleep-wake network under homeostatic and circadian variation.

Physiologically based models of sleep-wake networks are based on the interactions of neu-
ronal populations that promote wake and sleep states, with the suprachiasmatic nucleus (SCN)
that generates the circadian rhythm [48, 23, 22, 29, 50, 43, 6]. The simplest of such models
based on ordinary differential equations (ODEs) consists of mutually inhibitory interactions
between wake- and sleep-promoting populations, i.e., a sleep-wake flip-flop, with transitions
dictated by homeostatic sleep and circadian rhythm drives [48]. One such model [48] has
been formally reduced to the same form as the Two Process model [57] and a numerical study
suggests that similar types of phase-locked solutions are obtained as the time constants of
the homeostatic sleep drive and amplitude of circadian drive are varied [49]. However, to our
knowledge, the types of bifurcations governing the gain and loss of stability of the phase-locked
solutions in the ODE model have not been reported.

Here, we draw on multiple mathematical methods, including computation of circle maps,
to analyze the bifurcations of phase-locked solutions in an ODE-based sleep-wake flip-flop
(SWFF) model. In this model, interactions between neuronal populations are modulated by
both homeostatic sleep and circadian drives. Motivated by changes in these drives that have
been documented in the experimental literature, we consider the effects of variation in both the
homeostatic sleep and the circadian drives on the types of bifurcations leading to changes in
the number of daily sleep episodes. To our knowledge, this has not been thoroughly analyzed
in a physiologically based sleep-wake model previously.

Specifically, we consider varying the time constants of the homeostatic sleep drive and
the temporal profile of the circadian drive. Several experimental studies have shown that
characteristics of sleep homeostasis depend on individual traits such as age and sex [21, 52, 35]D

ow
nl

oa
de

d 
08

/1
0/

22
 to

 3
5.

2.
24

5.
47

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BIFURCATIONS IN A SLEEP-WAKE FLIP-FLOP MODEL 1895

and may vary with development [51]. For example, the transition from polyphasic (multiple
sleeps per day) to monophasic (one sleep per day) sleep behavior that occurs in infancy/early
childhood is thought to result from differences in the time constants of the homeostatic sleep
drive dictating the accumulation and dissipation of sleep pressure [37, 53, 36]. The temporal
profile of the circadian drive, reflecting the firing rate of neurons in the SCN, can also vary
with age [15], as well as in response to differences in day length due to seasonality or global
location. In particular, the mean duration of high SCN firing activity was shorter in animals
entrained to a short photoperiod (i.e., daily illumination) (Light:Dark 8 h:16 h) and longer
in those entrained to a long photoperiod (Light:Dark 14 h:10 h) [46]. Similar results were
reported in [44, 60], finding longer intervals of peak firing activity of the SCN during long
days and shorter peak firing intervals during short days. Smoothed, normalized multiunit
recordings in mice suggest that this difference in duration of peak firing activity may reflect a
difference in circadian waveforms with steeper waveforms associated with longer photoperiods
[60].

Previous analysis of mathematical models of sleep-wake regulation has considered the
effects of changing homeostatic time constants in the transition from polyphasic to monophasic
sleep [49, 57, 4]. However, these studies have not taken into account the effects of the steepness
of the circadian waveform and how this interacts with changing homeostatic time constants.
Therefore, we extend these previous findings by additionally considering how the temporal
profile of the circadian drive affects the bifurcation sequences of entrained sleep-wake patterns
that are observed in the transition from polyphasic to monophasic sleep behavior and driven
by changing homeostatic time constants.

To identify types of bifurcations and understand how they arise in the SWFF model, we
employ multiple methods to analyze model dynamics and numerically compile a two-parameter
bifurcation diagram. First, we show that the model is a piecewise-smooth dynamical system
of Filippov type with one switching boundary. Second, we take advantage of the separation
of time scales between neuronal population activity (fast) and the homeostatic sleep and
circadian drives (slow) to reveal stable and unstable manifolds that dictate the trajectory
flows. Third, based on these fast-slow manifolds, we define and numerically compute circle
maps for the timing of sleep onsets relative to the phase of the circadian rhythm.

Similarly to the maps explicitly derived from the Two Process model, SWFF circle maps
are discontinuous with an infinite slope on one side of the vertical discontinuity. Tracking fixed
points of the circle maps as the homeostatic and circadian drives are varied allows us to char-
acterize the types and sequences of bifurcations when different phase-locked solutions lose and
gain stability. Finally, to explain changes observed with increasing steepness of the circadian
drive waveform, we consider the limit of the circadian drive as a step function which we call
the circadian hard switch (CHS) model. This limit introduces a second switching boundary
to the piecewise smooth model, and we analyze its bifurcation sequence as the homeostatic
sleep drive is varied to verify the trends observed in the original SWFF model. Thus, with
these multiple techniques and numerical simulations, we obtain a complete understanding of
the dynamics of the SWFF model, and detect and classify the types of bifurcations that occur
as two key parameters are varied.

The paper is organized as follows. In section 2 we introduce the SWFF model and the
different mathematical approaches that we employ to describe and analyze model dynamics.D
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1896 ATHANASOULI, PILTZ, DINIZ BEHN, AND BOOTH

In section 3 we analyze the bifurcations of entrained sleep-wake patterns under variation of the
time constants of the homeostatic sleep drive and the duration of peak activity of the circadian
drive waveform. In section 4 we formulate the CHS model and describe the bifurcations in
this case. In section 5, we provide a brief discussion of our results.

2. SWFF model.

2.1. Model equations. The SWFF model includes two neuronal populations that govern
the transitions between the states of wake and sleep: a wake-promoting (W ) and a sleep-
promoting (S) population are coupled by mutual inhibition, and their interaction is modu-
lated by homeostatic sleep and circadian drives. In our SWFF model, the circadian input
is mediated by a third neuronal population representing the suprachiasmatic nucleus (SCN),
a group of cells in the hypothalamus that acts as the circadian pacemaker and displays a
24-hour variation in neural firing. For humans under typical conditions, the circadian rhythm
and the sleep-wake cycle are entrained with lower SCN firing rates during sleep and higher
SCN firing rates during wake.

We use a firing rate formalism to model the neuronal population activity. Instead of
tracking the spiking of single neurons, standard firing rate models describe the averaged
behavior of spike rates of neuronal populations (fW , fS , fSCN ) [61, 17]. In particular, the
mean postsynaptic firing rates are driven by the weighted mean firing rates of the presynaptic
populations.

Neuronal populations. The equations for the neuronal populations are as follows:

(2.1)
dfW
dt

=
(W\infty (gscnwfSCN  - gswfS) - fW )

\tau W
,

(2.2)
dfS
dt

=
(S\infty ( - gwsfW  - gscnsfSCN ) - fS)

\tau S
,

(2.3)
dfSCN

dt
=

(SCN\infty (c(t)) - fSCN )

\tau SCN
.

The postsynaptic firing rates, fX(t) (in Hz), saturate to their steady state firing rate
response functions X\infty (\cdot ) with time constants \tau X for X = W,S, SCN . The steady state
firing rate functions, X\infty (\cdot ), have a sigmoidal profile that has been utilized in many firing rate
models [61, 7, 48, 17]:

(2.4) W\infty (x) = Wmax \cdot 0.5 \cdot 
\biggl( 
1 + tanh

\Bigl( x - \beta W
\alpha W

\Bigr) \biggr) 
,

(2.5) S\infty (x) = Smax \cdot 0.5 \cdot 
\biggl( 
1 + tanh

\Bigl( x - \beta S(h)

\alpha S

\Bigr) \biggr) 
,

(2.6) SCN\infty (x) = SCNmax \cdot 0.5 \cdot 

\left(  1 +
tanh

\Bigl( 
1
0.7

\Bigr) 
tanh

\Bigl( 
1

\alpha SCN

\Bigr) tanh
\Bigl( x - \beta SCN

\alpha SCN

\Bigr) \right)  .
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BIFURCATIONS IN A SLEEP-WAKE FLIP-FLOP MODEL 1897

Homeostatic sleep drive. The homeostatic sleep drive (h) regulates sleep propensity and
is based on experimentally observed variation in the power of slow wave (0.75--4.5 Hz) fluctu-
ations in electroencephalogram (EEG) recordings during sleep [51, 16, 8, 9]. The levels of the
homeostatic sleep drive increase exponentially with the time constant \tau hw while in wake and
decrease exponentially with the time constant \tau hs during sleep according to

(2.7)
dh

dt
=

\scrH (fW  - \theta W ) \cdot (hmax  - h)

\tau hw
+

\scrH (\theta W  - fW ) \cdot (hmin  - h)

\tau hs
,

where \scrH represents a Heaviside function and h is in units of percent slow wave activity
(SWA) power. The time constants \tau hw and \tau hs are set to experimentally estimated values
for typical adult human sleep behavior [51]. The sleep drive h modulates the activity of the
sleep-promoting population through the h-dependent activation threshold \beta S(h) as follows:

(2.8) \beta S(h) = k2 \cdot h+ k1 .

In this way as h increases during wake, the sleep promoting population will activate to inhibit
the wake population and cause the transition to sleep. Conversely, as h decreases during sleep,
the sleep population will inactivate and allow the wake population to activate. We define sleep
onset to occur when fW decreases through \theta W (and h starts to decrease) and wake onset to
occur when fW increases through \theta W (and h starts to increase).

Circadian drive. The input to the SCN population is the circadian drive c(t) which induces
a 24-hour periodic variation of fSCN . The input c(t) is modeled by a simple sinusoidal function
and is assumed to be entrained to the 24-hour day.

(2.9)
dc

dt
=  - \omega sin \theta ,

(2.10)
d\theta 

dt
= \omega , where \omega =

2\pi 

24
,

which for an initial condition
\bigl( 
c(0), \theta (0)

\bigr) 
=
\bigl( 
cos( - \phi 2\pi 

24 ), \phi 
\bigr) 
gives the stable solution:

(2.11) c(t) = cos
\Bigl( 
(t - \phi ) \cdot 2\pi 

24

\Bigr) 
.

Model parameters. We have chosen our default parameter set (see Table 1) to generate
typical human sleep behavior similar to previous work [7]. In Figure 1B the time traces of the
stable solution of the model are displayed. The wake and sleep durations, dictated by the time
intervals when fW is above or below the threshold value \theta W , respectively, are approximately
15.33 and 8.67 hours. As is typical for entrained adult human sleep, wake onset occurs at
the early rise of the circadian cycle, while sleep onset occurs as SCN activity approaches its
minimum.

2.2. Summary of the model dynamics. In this section, we analyze the model equations
(Equations (2.1)--(2.10)) with the default parameter values (see Table 1) and introduce the
relevant techniques employed to understand the model dynamics.D

ow
nl

oa
de

d 
08

/1
0/

22
 to

 3
5.

2.
24

5.
47

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1898 ATHANASOULI, PILTZ, DINIZ BEHN, AND BOOTH

Table 1
Parameter values for the SWFF model. For X = W,S, SCN , \alpha X and \beta X are in units of effective synaptic

input. Additionally, for Y = W,S, gXY (where X \not = Y ) has units of (effective synaptic input / Hz). Units
for hmax and hmin are percentage mean SWA. The parameters k1 and k2 are measured in effective synaptic
input and effective synaptic input/(percentage mean SWA), respectively. The remaining units are included in
the table.

Wmax = 6 Hz \tau W = 0.1 hr \alpha W = 0.5 \beta W =  - 0.37

Smax = 6 Hz \tau S = 0.1 hr \alpha S = 0.175

SCNmax = 7 Hz \tau SCN = 0.05 hr \alpha SCN = 0.7 \beta SCN = 0

gsw = 0.3 gscnw = 0.06 gws = 0.28 gscns = 0.0825

hmax = 323.88 hmin = 0 \tau hw = 15.78 hr \tau hs = 3.37 hr

k1 =  - 0.1 k2 =  - 0.006 \theta W = 4 Hz

Figure 1. A SWFF model for sleep-wake regulation. A: Schematic of the model network summarizing
interactions among the wake-promoting (W ), sleep-promoting (S), and SCN neuronal populations with circles
denoting inhibitory and arrows denoting excitatory synaptic connections. The homeostatic sleep drive (h)
modulates activity of the sleep-promoting population and the circadian drive (c) modulates activity of both the
sleep- and wake-promoting populations through SCN. B: Time traces of the stable solution of the model for
the default parameter set that resembles stereotypical adult human sleep. The firing rates for wake-promoting
(fW , blue), sleep-promoting (fS, red), and SCN (fSCN , green) populations are shown in the top panel. The
middle and bottom panels include the profiles of the homeostatic sleep drive (h) and the circadian drive (c),
respectively.

Piecewise smooth dynamical system. Switching in the homeostatic sleep drive from
increasing during wake to decreasing during sleep introduces a discontinuity in the derivative
of h. On either side of this discontinuity, model dynamics are smooth, but the presence of
the discontinuity can influence model trajectories at the boundary of the smooth regions. In
our system, the switching boundary is \Gamma = \{ fW = \theta W \} , where \theta W = 4 Hz, that separates the
system into two smooth vector fields.

To formally define the model as a piecewise smooth system, let X = [fW , fS , fSCN , h, c, \theta ].
Define \Gamma + = \{ fW > \theta W \} and \Gamma  - = \{ fW < \theta W \} as the regions on either side of \Gamma where F1(X),
F2(X), respectively, are the corresponding vector fields dictating model dynamics. Then we
can rewrite our model system as follows:

dX

dt
=

\Biggl\{ 
F1(X), X \in \Gamma +,

F2(X), X \in \Gamma  - .D
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BIFURCATIONS IN A SLEEP-WAKE FLIP-FLOP MODEL 1899

On \Gamma +, dh
dt = hmax - h

\tau hw
, and on \Gamma  - , dh

dt = hmin - h
\tau hs

, while the rest of the differential equations
are defined as above. Since the vector fields are discontinuous across the switching boundary
\Gamma , we have a Filippov system (see [20]).

Generally, in Filippov systems as model trajectories approach the switching boundary,
they may move along or ``slide"" on the switching boundary depending on the directions of
the vector fields on either side of the boundary. If this occurs, then sliding dynamics on the
switching boundary have to be taken into account in the numerical simulations. Sliding along
\Gamma never occurs in our system, because \Gamma is never simultaneously attracting (or repelling) for
the flows in the vector fields on both sides [20]. For the sliding condition, let us consider
g(X) = fW  - \theta W = 0 to define the boundary \Gamma . Then, \nabla g = [1, 0, 0, 0, 0, 0] and on \Gamma :\bigl( 

\nabla g(X)T \cdot F1(X)
\bigr) \bigl( 
\nabla g(X)T \cdot F2(X)

\bigr) 

(2.12) =

\Biggl( Wmax \cdot 0.5 \cdot 
\Bigl( 
1 + tanh

\Bigl( gscnwfSCN  - gswfS  - \beta W
\alpha W

\Bigr) \Bigr) 
 - fW

\tau W

\Biggr) 2

\geq 0

for X = [\theta W , fS , fSCN , h, c, \theta ].
Condition (2.12) implies that the directions of the vector fields at the switching boundary

\Gamma are the same on either side. Thus, model trajectories cross \Gamma when transitioning from one
vector field to the other and no sliding along \Gamma occurs. It is important to note that for all X
on \Gamma where \nabla g(X)T \cdot F1(X) is equal to zero, then \nabla g(X)T \cdot F2(X) is also zero. Therefore,
their product will remain positive even if both quantities change sign.

Fast and slow subsystems in the model. In our model, the homeostatic sleep drive h,
the circadian input c, and the circadian phase \theta vary much more slowly compared to the firing
rates fW , fS , and fSCN . Hence, there is a separation of time scales which allows us to divide
our system into a fast and a slow subsystem, consisting of neuronal firing rates (fW , fS , and
fSCN ) and the variables h, c, and \theta , respectively. Following a similar analysis as in [5, 7, 57],
we define \tau = max \{ \tau W , \tau S , \tau SCN\} << min \{ \tau hw, \tau hs, 1/\omega \} = \chi . These time scales introduce
the parameter \epsilon = \tau 

\chi , where \epsilon has small magnitude. Moreover, min \{ \tau W , \tau S , \tau SCN\} = \mu \tau and

max \{ \tau hw, \tau hs, 1/\omega \} = \lambda \chi , where \lambda = O(1) and \mu = O(1). Let us call \~t = t
\tau the time variable

of the fast subsystem and T = t
\chi the time variable of the slow subsystem, such that

\~t
T = 1

\epsilon .
Making the change of variables in (2.1)--(2.7) and (2.9) leads to

(2.13)
dX\bff \bfa \bfs \bft 

d\~t
= M(X\bff \bfa \bfs \bft ,X\bfs \bfl \bfo \bfw ),

(2.14)
dX\bfs \bfl \bfo \bfw 

d\~t
= \epsilon N(X\bff \bfa \bfs \bft ,X\bfs \bfl \bfo \bfw ),

where X\bff \bfa \bfs \bft = [fW , fS , fSCN ], X\bfs \bfl \bfo \bfw = [h, c, \theta ], and M and N are mapped to R3. Coupling
between X\bff \bfa \bfs \bft and X\bfs \bfl \bfo \bfw occurs due to the dependence of the steady state functions S\infty (\cdot )
on h and SCN\infty (\cdot ) on c. We note that the separation of time scales is valid in both vector
fields on either side of the switching boundary \Gamma .D
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Figure 2. Fast-slow decomposition of the SWFF model. A: Bifurcation diagrams of the steady state solutions
of the fast subsystem (equation (2.13)) with respect to bifurcation parameter h in the h  - fW plane for fixed
values of c and \theta : c =  - 1, \theta = 12 (green), c = 0, \theta = 6 (red), and c = 1, \theta = 0 (blue). The upper and lower
branches (in green, red, and blue) represent the stable steady wake and sleep states, respectively. The middle
branch (dashed) represents an unstable state that separates the basins of attractions of the stable steady states.
Notice that each curve has different upper and lower saddle-node points that eventually will define a curve in
the c  - h  - fW space. B: Obtaining the Z-shaped curves for all values of c \in [ - 1, 1] defines a surface that
maintains the general Z-shape. The upper and lower saddle-node points of each Z-shaped curve define upper
and lower saddle-node curves (curves in black).

To analyze solution dynamics, we implement the fast-slow decomposition of our system by
setting X\bfs \bfl \bfo \bfw = X\bfs \bfl \bfo \bfw to time-fixed parameters and considering equilibrium solutions of the
fast subsystem (d\bfX \bff \bfa \bfs \bft 

d\~t
= 0). We represent the solutions of M(X\bff \bfa \bfs \bft ,X\bfs \bfl \bfo \bfw ) = 0 in terms of

the firing rate, fW , of the wake-promoting population. Specifically, setting c and \theta constant
and computing solutions with respect to the bifurcation parameter h yields a Z-shaped curve
of steady states (Figure 2A). The upper and lower branches of the Z-curve represent stable
steady states corresponding to the wake and sleep states, respectively. The middle branch
represents an unstable steady state that separates the basins of attraction of the stable steady
states. Finally, the folds of each Z-curve are saddle-node bifurcation points where the unstable
steady state collides with one of the stable steady states.

For different (fixed) values of c and \theta , the Z-shape of the curve is preserved, but the
locations of the saddle-node bifurcation points with respect to h change (Figure 2A). Thus, as
the circadian drive c varies slowly, it affects the bifurcation structure of the fast subsystem. By
definition, c varies periodically between  - 1 and 1, and \theta is such that c = cos( - \pi 

12\theta ). Hence, a
Z-shaped surface is defined between these two extremes of the circadian cycle for the steady
state solutions of the fast subsystem as a function of h and c (Figure 2B).

When h, c, and \theta vary slowly, model trajectories traverse the upper plane of the Z-surface
during wake and the lower plane during sleep. Transitions between states occur when the
trajectory reaches the curve of saddle-node points on either plane and evolves to the other
plane. Note that the switching boundary \Gamma lies between the upper (wake) and lower (sleep)
planes of the Z-surface and trajectories cross it during the transition. At \Gamma crossing, h changes
direction leading to trajectory flows that follow a hysteresis loop around the Z-shaped surface.D
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BIFURCATIONS IN A SLEEP-WAKE FLIP-FLOP MODEL 1901

In this way, sleep (wake) onset is initiated when the model trajectory passes over the upper
(lower) curve of saddle-nodes.

Bifurcation diagrams were computed numerically using the software AUTO XPPAUT [24],
and the fast-slow Z-shaped surfaces were created using Mathematica.

Sleep onset circle map. To analyze model dynamics and predict solution trajectories, we
compute circle maps for the circadian phases of successive sleep onsets as in previous work
[7]. Specifically, we define a Poincar\'e section for sleep onset as the firing rate of the wake-
promoting population, fW , decreasing through the switching boundary \Gamma = \{ fW = \theta W \} .
We define the circadian phase of the nth sleep onset, \Phi n, as the time difference between the
intersection of the model trajectory with the section (sleep onset) and the preceding minimum
of the fSCN variable divided by the period of the circadian drive c(t):

\Phi n =
1

24
(time of sleep onset section crossing  - time of preceding circadian minimum).

We then define \Pi : [0, 1] \rightarrow [0, 1] as the circle map with \Phi n+1 = \Pi (\Phi n).
To compute the map \Pi , we simulate the model from initial conditions corresponding to

sleep onset occurring at each circadian phase. Recall that the transition to sleep is initiated
when the model trajectory passes over the curve of saddle-node points on the upper plane of
the Z-shaped surface of steady state solutions of the fast subsystem. Thus, we select points on
the upper saddle-node curve as a stable solution of the sleep-wake network that is near sleep
onset and use those values for initial conditions for the sleep-wake network variables in the
map construction. We compute these values on the upper saddle-node curve for all c values
over one circadian cycle by two-parameter numerical continuation, implemented in AUTO
using XPPAUT [24]. By numerically integrating the model from these initial conditions, the
circadian phases of sleep onsets are computed as the trajectories pass through the switching
boundary \Gamma . From the majority of these initial conditions, model trajectories immediately
transition down to the lower plane of the Z-shaped surface crossing \Gamma on the way. However,
there is an interval of circadian phase values (where \Phi n is between approximately 0.2 and 0.4)
for which the model trajectory does not immediately transition to sleep but instead continues
to move along the upper plane until eventually transitioning at a later circadian phase. This
produces a horizontal gap in the map. This phenomenon occurs during the rising phase of c
that promotes the waking state at higher values of the homeostatic sleep drive h. Dynamically
speaking, the variables c and h vary on similar time scales at these moments, and the drive to
sleep associated with increasing h is balanced by a drive to wake associated with increasing c.
To overcome this issue and fill in the horizontal gap in the map, for this interval of circadian
phases, we substituted initial condition values that lie on the unstable manifold associated
with the saddle of the upper saddle-node point that are closer to the switching boundary \Gamma 
(purple points in Figure 3A).

Figure 3A illustrates the circle map; the circadian phase of the nth crossing of the section
defined by \Gamma , \Phi n, is on the x-axis, and the circadian phase of the n + 1st section crossing
\Phi n+1 is on the y-axis. This first return sleep onset map is periodic in phase, consists of two
branches, and has one stable fixed point at approximately (0.824,0.824), indicating that sleep
onset of the stable solution occurs close to the trough of the circadian cycle. The stableD
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1902 ATHANASOULI, PILTZ, DINIZ BEHN, AND BOOTH

Figure 3. Circle map and model trajectories relative to the fast-slow decomposition of the SWFF model.
A: First return circle map for circadian phase of n + 1st sleep onset, \Phi n+1 as a function of circadian phase
of nth sleep onset, \Phi n. Purple points indicate circadian phases obtained by integrating the model from initial
conditions ``forced"" to lie on the unstable manifold. The blue diamond corresponds to the stable orbit shown in
panel B (in blue). The green and red asterisks correspond to circadian phases associated with the trajectories in
panel C (red and green, respectively). B: The stable trajectory for the default parameter set (blue curve) plotted
on the Z-surface computed from equilibrium solutions of the fast subsystem in (2.13). Sleep is initiated when
the trajectory falls off the upper saddle-node curve. Sleep onset is defined as the time the trajectory crosses the
switching boundary \Gamma = \{ fW = 4\} (yellow plane) and h starts decreasing. C: Trajectories with initial conditions
on either side of the gap in the sleep onset map exhibit distinct behavior. The green trajectory becomes tangent
to the lower saddle-node curve, resulting in a longer sleep episode, while the red one passes over the saddle-node
curve and transitions to the wake state.

solution trajectory is shown relative to the Z-shaped surface in Figure 3B. The map exhibits
a discontinuity or gap around \Phi n = 0.5. The left branch of the discontinuity has an infinite
slope which is a consequence of trajectories approaching a tangent intersection with the saddle-
node curve of the Z-shaped surface (Figure 3C). To see this, consider trajectories initiated
on either side of the gap with sleep onsets very close to the peak of the circadian drive
(c = 1, red and green curves). The trajectory initiated on the infinite slope to the left of
the gap (red curve) exhibits a short sleep episode, as it jumps up from the lower saddle-
node curve and transitions to the wake plane resulting in the next sleep onset phase of about
\Phi n+1 = 0.0722. By contrast, the trajectory initiated on the right of the gap (green curve)
becomes tangent to the lower saddle-node curve, resulting in a longer sleep episode. As the
green trajectory evolves further, wake onset occurs close to the circadian minimum (that is,
c =  - 1), followed by a long wake episode resulting in the next sleep onset at a phase of about
\Phi n+1 = 0.8033.D
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3. Analysis of bifurcation sequences in the SWFF model. For our analysis of bifur-
cations in the SWFF model, we first identify the bifurcation sequences associated with the
emergence and change of stable, phase-locked solutions as the time constants of the homeo-
static sleep drive are varied. We then consider how the steepness of the circadian waveform
affects the bifurcations of stable, phase-locked solutions and the associated bifurcation se-
quences as homeostatic time constants vary. We end this section by examining how the
bifurcation sequences change in the regime of the fastest homeostatic time constants when
sleep onset circle maps may be continuous.

3.1. Varying time constants of the homeostatic sleep drive. To examine how decreasing
the homeostatic time constants \tau hs and \tau hw affects model solutions, we introduce a scaling
constant k \in (0, 1] that multiplies both \tau hs and \tau hw in (2.7). This is a simple scaling that
preserves the ratio between time constants and is consistent with approaches in previous work
[57, 4]. We numerically computed model solutions (Figure 4A) with respect to the bifurcation
parameter k to understand the change in the types of stable phase-locked solutions obtained
as we decrease k from 1. Specifically, we tracked the timing and duration of the sleep episodes
of the stable solutions (black intervals) over the course of 10 days.

We found that the number of sleep episodes per day increased as the time constants for
the homeostatic drive decreased. At the default value k = 1, the model produces one sleep
episode per day (which we define here as a 24-hour cycle measured between two minima of
the circadian variable (c(t)). As we reduce k, the stability of solutions with one sleep episode
per day is lost, and higher order patterns in which some days contain two sleep episodes may
occur. In the interval (k \in [0.317, 0.403]) a stable solution with two sleep episodes per day
emerges. For smaller values of k, higher order patterns in which some days contain three sleep

Figure 4. Multiple sleep episodes per day occur as time constants for the homeostatic sleep drive are
decreased. A: Simulated sleep periods (dark intervals) over the course of 10 days as the homeostatic sleep drive
time constants are decreased by the scaling parameter k (x-axis). B: Bifurcation diagram of stable solutions in
terms of the rotation number \rho for the default parameter set. The parameter k is on the x-axis and the rotation
number \rho , defined as the number of circadian days over the number of sleep episodes in the stable sleep pattern,
is on the y-axis. The step size for k was 0.001.D
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1904 ATHANASOULI, PILTZ, DINIZ BEHN, AND BOOTH

episodes appear, eventually resulting in the stable solution with three sleep episodes per day,
and so on.

To quantify the sleep patterns associated with the attracting periodic orbits obtained for
each value of k, we define the rotation number, \rho , to be the number of circadian days q over
the number of sleep episodes p occurring in one period of the stable orbit, i.e., \rho = q

p . Tracking
\rho as k is decreased from 1 to 0 (Figure 4B), we find that the rotation numbers vary as dictated
by a Farey sequence [31, 2]. In between neighboring intervals of k displaying solutions with
rotation numbers \rho 1 = a

b and \rho 2 = c
d , where the greatest common divisor gcd(a, b) = 1,

gcd(c, d) = 1, and | ad - bc| = 1 is a k interval with rotation number \rho = a+c
b+d . Such a Farey

sequence of rotation numbers will generate a devil's staircase--like structure for the rotation
number as a function of k. This suggests that the stable solutions follow a period-adding
bifurcation sequence that is consistent with previous work on systems governed by monotonic
circle maps with discontinuities [31, 4, 19]. Here, we numerically detect a subset of a Farey
sequence of rotation numbers.

Interestingly, for small values of k (0 < k \leq 0.18), we obtain a denser set of rotation
numbers from the computed solutions compared to the rotation numbers observed for larger
values of k. For small k, the numerical results suggest that solutions with rotation numbers
for all rational numbers less than about 1

4 may exist. This is expected as sufficiently fast
homeostatic time constants will result in continuous sleep onset circle maps. This occurs
because fast time constants will prevent model trajectories from making tangent intersections
with the saddle-node curves of the Z-shaped surface. In this case, the theory for monotonic,
continuous circle maps guarantees that solutions exist with rotation numbers for all rational
numbers [31, 2].

3.1.1. Bifurcation sequences for emergence of stable solutions. To identify the types of
bifurcations leading to the gain (or loss) of stability of different sleep patterns for decreasing
k, we track how the stable model trajectories and sleep onset maps evolve as we reduce k
for representative solutions associated with \rho = 1, 23 , and

1
2 . Our analysis suggests that other

stable solutions with \rho \in [12 , 1] will show the same bifurcation sequences. Solutions with
smaller \rho values may show different bifurcation sequences and are considered in section 3.4.

For k = 1, the associated solution has rotation number \rho = 1. As k decreases, we de-
scribe the bifurcations associated with the loss of the \rho = 1 solution. Similarly, we identify
k-intervals associated with the existence of solutions with \rho = 2

3 and 1
2 and observe the bifur-

cation sequences associated with the emergence and loss of these solutions. These bifurcation
sequences will include saddle-node (SN) bifurcations and border collision bifurcations of both
stable (BC-S) and unstable (BC-U) fixed points of the maps. A border collision bifurcation
in the map occurs when the border of a map curve intersects the diagonal, and therefore, a
fixed point is created or destroyed. In the listing of the sequences, for all cases except \rho = 1,
the leftmost and rightmost bifurcations create and destroy, respectively, the stable solution
with rotation number \rho = q

p as k is decreased.

Border collision \rightarrow saddle-node. We first consider the loss of stability of the \rho = 1
solution as k is decreased from 1. The smallest value of k for which this solution is stable is
k = 0.503 (Figures 5A, B). As k is decreased toward this value, the stable periodic orbit shifts
on the Z-shaped surface such that sleep onset occurs at earlier phases. The sleep onset mapD
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BIFURCATIONS IN A SLEEP-WAKE FLIP-FLOP MODEL 1905

Figure 5. Sleep onset circle maps reveal the types of bifurcations at the emergence and disappearance of
stable solutions as k is varied. Distinct branches of the circle maps are labeled by numbers 1, 2, and 3 as
needed. A: The first return sleep onset map for k = 0.503, the smallest value where the one sleep episode per
day solution (\rho = 1) is stable, shows a saddle-node bifurcation. B: Evolution of stable \rho = 1 periodic orbits
plotted in relation to the Z-shaped surface in the c  - h  - fW space as k approaches k = 0.503. Each closed
orbit corresponds to the stable solution for a particular value of the parameter k: k = 1 (red), k = 0.8 (green),
k = 0.7 (magenta), k = 0.6 (orange), k = 0.503 (blue). C, D: Third return sleep onset maps for k = 0.4663 (C)
and k = 0.434 (D). For this range of k values the stable solution alternates between one and two sleep episodes
per circadian cycle (\rho = 2

3
). The map has three branches (modulo 1) with a saddle-node bifurcation occurring at

the right branch end at k = 0.4663 (C) and a border collision occurring at the left branch end at k = 0.434 (D).
E, F: The second return sleep onset maps for k = 0.403 (E) and k = 0.317 (F) between which exists the stable
solution with two sleep episodes per circadian cycle. The map has two branches (modulo 1) with a saddle-node
bifurcation occurring at the right branch end at k = 0.403 (E) and a border collision occurring at the left branch
end at k = 0.317 (F).D
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1906 ATHANASOULI, PILTZ, DINIZ BEHN, AND BOOTH

for k = 0.503 reveals a saddle-node bifurcation to the right of the discontinuity (Figure 5A).
The unstable fixed point associated with the saddle-node bifurcation was created at a higher
value of k (k = 0.504) in a border collision bifurcation on the right side of the discontinuity
(referred to as a Type I border collision in [4, 19]). Numerical simulations suggest that at
the border collision bifurcation of the map the unstable orbit makes a tangent intersection
with the curve of saddle-node points on the upper plane of the Z-shaped surface, also called
a grazing bifurcation of the flow [20]. Thus, as k decreases, the \rho = 1 solution loses stability
in the bifurcation sequence of

BC-U \rightarrow SN.

Saddle-node \rightarrow border collision \rightarrow border collision. Next we describe the bifurcation
sequences associated with the emergence and loss of a stable solution with alternating 1 and
2 sleeps per 24-hour circadian cycle (\rho = 2

3). This solution gains stability at k = 0.4663 and
loses stability at k = 0.434. Fixed points associated with this solution appear in the third
return sleep onset map (Figures 5C, D). These maps consist of three separate branches, each
showing an infinite slope at its right end and a finite slope at its left end (see Appendix A).
Note that the two segments for lower \Phi n+3 values form one connected branch (modulo 1) due
to periodicity of the circle map. At k = 0.4663, the map shows a saddle-node bifurcation
near the infinite slope end of the map branches (numbered 1--3 in Figure 5C). The unstable
fixed points are destroyed in a border collision (referred to as a Type II border collision in
[4, 19]) at a slightly lower value of k (k = 0.466). Numerical solutions suggest that this
border collision is associated with the unstable orbit making a tangent intersection with the
upper curve of saddle-node points of the Z-shaped surface. As k decreases to k = 0.434,
the map transitions so the stable fixed points move toward the left end of the map branches
and disappear in a border collision bifurcation (Figure 5D). Numerical simulations indicate
that this border collision bifurcation occurs due to a tangent intersection with the upper
curve of saddle-node points of the Z-shaped surface (Figure 13A in Appendix D). Thus, as
k is decreased, the emergence and disappearance of the \rho = 2

3 stable solution occur in the
bifurcation sequence

SN \rightarrow BC-U \rightarrow BC-S.

We find that other stable solutions for lower values of k also emerge through this same
bifurcation sequence. For example, the \rho = 1

2 solution with two sleep episodes per circadian
cycle is stable in the interval k \in [0.317, 0.403]. Fixed points for this solution appear in the
second return sleep onset maps which in this regime consist of two separate branches, each
with an infinite slope at the right end and a finite slope at the left end (Figures 5E, F). Again,
as k decreases the solution gains stability in a saddle-node bifurcation at the right end of the
map branches where the unstable fixed points are destroyed in a border collision at k = 0.401.
Numerical simulations suggest that the unstable orbit makes a tangent intersection with the
upper curve of saddle-node points of the Z-shaped surface. The fixed points disappear in a
border collision with the left end of the map branches (Figure 5F), where again the stable
orbit makes a tangent intersection with the upper curve of saddle-node points of the Z-shaped
surface (Figure 13B in Appendix D).D
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We have demonstrated that as k varies, the appearance of tangent intersections of model
trajectories with the curves of saddle-node points of the Z-shaped surface influence the
occurrence of the bifurcations and, thereby, the emergence of stable orbits. The presence
of tangent intersections depends, in part, on the circadian waveform and highlights the im-
portance of the circadian drive on the bifurcation sequences.

3.2. Varying the circadian waveform. The circadian waveform reflects the time-varying
profile of the firing rate of the SCN population. The properties of the SCN waveform are
determined by interindividual differences, as well as differences in environmental light sched-
ules due to seasonality [60] or global location. To investigate the effect of this waveform on
the stable sleep-wake patterns, we varied the firing rate profile of the SCN population and
tracked the existence of tangent intersections between model trajectories and the curves of
saddle-node points of the Z-shaped surface.

Specifically, we modulated the circadian waveform such that its ``steepness"" (the transi-
tion region between low and high values of the SCN firing rate) varies without affecting the
amplitude of the waveform. This is achieved by allowing the parameter \alpha SCN in the steady
state response function of the SCN firing rate (equation (2.3)) to vary from its default value
\alpha SCN = 0.7 (Table 1). We consider \alpha SCN \in (0, 3]. Decreasing or increasing \alpha SCN results
in longer or shorter intervals, respectively, of high SCN firing rate activity (Figure 6A) con-
sistent with the response of SCN activity to longer or shorter environmental light periods
[46, 60].

To illustrate the effects of changing the profile of the SCN\infty (c(t)) function on solutions
with k = 1, we consider sleep onset maps and fast-slow decompositions for representative \alpha SCN

values, \alpha SCN = 0.3 and 1.5 (Figures 6B--D). In the Z-shaped surface, the curves of saddle-node
points have smaller (larger) curvature for larger (smaller) values of \alpha SCN . Stable trajectories
trace out similar hysteresis loops over the Z-surface. In addition, the sleep onset first return
maps have the same general shape as the default case, displaying a similar discontinuity with
an infinite slope on its left side. The fixed points also occur at similar phases for \alpha SCN equal
to 0.3, 0.7, and 1.5, namely (\Phi n,\Phi n+1) = (0.8057, 0.8057), (0.8242, 0.8242), and (0.833, 0.833),
respectively.

The map for \alpha SCN = 1.5 exhibits a second discontinuity resulting in a small map branch
near \Phi n = 0.5 (Figure 6C). This discontinuity is caused by tangent intersections for trajectories
associated with \Phi n values near 0.5: one initial phase produces a trajectory that makes a
tangent intersection with the lower saddle-node curve, and a slightly higher initial phase
produces the trajectory that makes a tangent intersection with the upper saddle-node curve.

3.3. Varying both homeostatic time constants and circadian waveform. We study the
combined effect of the parameter \alpha SCN \in (0, 3] on the stable sleep-wake patterns obtained
and bifurcation sequences arising as the homeostatic sleep drive time constants are scaled by
k. To that end, we first consider the stable, phase-locked solutions obtained as k is decreased
for representative \alpha SCN values greater (\alpha SCN = 1.5) and less (\alpha SCN = 0.3) than the default
value (\alpha SCN = 0.7). We initially analyze the \alpha SCN effect on the bifurcation sequence for
the loss of stability of the \rho = 1 solution. Next, we compute the (k, \alpha SCN ) two-parameter
bifurcation diagram to illustrate the evolution of bifurcation sequences over ranges of k and
\alpha SCN values.D
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1908 ATHANASOULI, PILTZ, DINIZ BEHN, AND BOOTH

Figure 6. Effect of the parameter \alpha SCN on the circadian waveform, fast-slow decomposition surfaces, and
first return circle maps. A: Profile of SCN\infty (c(t)) over 24 h for \alpha SCN = 0.7 (default value, blue), \alpha SCN = 1.5
(gray), \alpha SCN = 0.3 (red), and the limiting case \alpha SCN \rightarrow 0+ (dashed green). B: The Z-shaped surface of steady
state solutions of the model fast subsystem showing the variation in the curve of saddle-node points with \alpha SCN

(\alpha SCN = 1.5 (black), 0.7 (dashed blue), and 0.3 (dashed red)) with stable trajectories for k = 1 (\alpha SCN = 1.5
(gray), 0.7 (blue), and 0.3 (red)). C, D: First return sleep onset circle maps for k = 1 and \alpha SCN = 1.5 (C)
and 0.3 (D). Distinct branches of the circle maps are labeled by the number 1 or 2 as needed.

As we describe below, for lower values of \alpha SCN , numerical simulations detect many fewer
stable solutions associated with rotation numbers \rho \in [12 , 1]. To verify this trend for the lowest
values of \alpha SCN , we additionally consider the limiting case of \alpha SCN \rightarrow 0+ corresponding to
the SCN firing rate changing as a step function (see section 4).
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3.3.1. Stable solutions for shallow and steep circadian waveforms (i.e., \bfitalpha \bfitS \bfitC \bfitN = 1.5
and 0.3). One key effect of changing the circadian waveform is that as k is decreased from
1, the \rho = 1 solution corresponding to one sleep episode per circadian cycle loses stability
earlier for larger values of \alpha SCN (shallower waveforms) (Figure 7). For example, the \rho = 1
solution loses stability at k = 0.556, k = 0.503, and k = 0.455 for \alpha SCN = 1.5, 0.7, and 0.3,
respectively. As discussed above, the creation of tangencies of trajectories with the upper
saddle-node curves of the Z-shaped surface is important in order for bifurcations to occur.
Both parameters k and \alpha SCN influence the creation of such tangent trajectories since the
latter dictates the shape of the saddle-node curve and together they determine the angle
at which a trajectory approaches it. As the upper saddle-node curve becomes steeper (for
lower values of \alpha SCN ), h must evolve faster for a trajectory orbit (stable or unstable) to
become tangent to it, thus leading to the lower k values when the \rho = 1 solution loses
stability.

Additionally, for larger values of \alpha SCN , numerical simulations detect more stable solutions
(than in the default \alpha SCN = 0.7 case) corresponding to distinct values of the rotation num-
ber, particularly types of \rho = q

p periodic solutions within the intervals between \rho = 1
p periodic

solutions (Figures 7 (top) and 4B). Conversely, for smaller \alpha SCN values, a winnowing (i.e.,
shrinking of the k-distance) of stable solutions with \rho \in [12 , 1] is observed (Figure 7 (bottom)).
While the arithmetic precision and the step size of the parameter k in our numerical simu-
lations could account for the inability to detect more solutions, we can conclude that stable
solutions in this \rho range exist over shorter k intervals.

Figure 7. Comparison of the bifurcation diagrams of the rotation number \rho for \alpha SCN = 1.5 (top) and
\alpha SCN = 0.3 (bottom). Using a numerical approach to construct these diagrams, we obtained more types of
periodic solutions with \rho \in [ 1

2
, 1] for larger \alpha SCN (shallower circadian waveform) compared to the solutions for

smaller \alpha SCN (steeper circadian waveform).D
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1910 ATHANASOULI, PILTZ, DINIZ BEHN, AND BOOTH

3.3.2. Bifurcations sequences for \bfitrho = 1 solutions for representative \bfitalpha \bfitS \bfitC \bfitN values.

Border collision \rightarrow saddle-node. To understand the bifurcation leading to the loss of
stability of the \rho = 1 solution as k decreases when \alpha SCN=1.5, Figure 8A displays the evolution
of the stable periodic orbits for various values of k ranging from k = 1 to k = 0.556, the k value
just before the loss of stability of the \rho = 1 solution. As suggested by the absence of a tangent
intersection of the trajectory with the saddle-node curve, the sleep-onset map demonstrates
a saddle-node bifurcation near the right side of the discontinuity for the bifurcation value of
k = 0.556 (Figure 8B).

The unstable fixed point associated with the saddle-node bifurcation was created at a
higher value of k (k = 0.56) in a border collision bifurcation on the map branch on the
right side of the discontinuity. The associated unstable orbit makes a tangent intersection
with the upper curve of saddle-node points of the Z-shaped surface. Similarly to the default
\alpha SCN = 0.7 case, the \rho = 1 solution for \alpha SCN > 0.7 loses stability in the bifurcation sequence
of BC-U \rightarrow SN as k is decreased.

Figure 8. Bifurcations at the loss of stability of the \rho = 1 solution for representative large (A, B) and small
(C, D) \alpha SCN values. A: Stable trajectories for \alpha SCN = 1.5 and k = 1 (red), k = 0.8 (green), k = 0.6 (orange),
and k = 0.556 (blue). B: First return sleep onset map for \alpha SCN = 1.5 and k = 0.556 indicates the loss of
stability of the \rho = 1 solution occurs due to a saddle-node bifurcation. C: Stable trajectories for \alpha SCN = 0.3
and k = 1 (red), k = 0.8 (green), k = 0.6 (magenta), k = 0.55 (orange), and k = 0.506 (blue). D: First
return map for \alpha SCN = 0.3 and k = 0.445 indicates the \rho = 1 solution loses stability due to a border collision
bifurcation.D
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BIFURCATIONS IN A SLEEP-WAKE FLIP-FLOP MODEL 1911

Border collision. For \alpha SCN = 0.3, we observe a different bifurcation sequence when the
\rho = 1 solution loses stability at k = 0.445. At this bifurcation point, the associated sleep-
onset map continues to show two discontinuities as observed for the map for k = 1. The map
demonstrates that the bifurcation occurs due to a border collision on the right side of the
discontinuity (Figure 8D). This border collision corresponds to the stable trajectory (Figure
8C, blue curve) creating a tangency at the upper saddle-node curve of the Z-shaped surface
(Figure 8C). This suggests that for smaller \alpha SCN values, the \rho = 1 solution ceases to exist
due to a BC-S bifurcation.

3.3.3. Bifurcation sequences in (\bfitk , \bfitalpha \bfitS \bfitC \bfitN ) parameter space. To illustrate the evolution
of bifurcation sequences over a range of homeostatic time constants and circadian waveforms,
we constructed a two-parameter bifurcation diagram with respect to k and \alpha SCN (Figure 9).
The \rho = 1 entrainment region (cyan) is bordered on the left by a curve of (k, \alpha SCN ) values

Figure 9. Two-parameter bifurcation diagram with respect to k and \alpha SCN . Colored areas indicate pa-
rameter regions (or tongues) where the following stable, phase-locked solutions exist (from left to right):
\rho = 1

4
, 1
3
, 1
2
, 2
3
, 3
4
, 1. Line type indicates bifurcation type: saddle-node (dashed black), border collision of a

stable fixed point (solid red), border collision of an unstable fixed point (solid yellow). Diamond indicates tran-
sition between bifurcation sequences governing loss of stability of the \rho = 1 solution (see Figure 8). Arrows
indicate the default \alpha SCN value of 0.7. The green line is the set of (k, \alpha SCN ) points that forms the boundary
between regions where maps are discontinuous and continuous, and the light green shaded region indicates the
(k, \alpha SCN ) values for which the map is continuous. The black dotted rectangle indicates a zoomed-in version of
the two-parameter bifurcation diagram shown in Figure 10. The three light purple bullets indicate the (k, \alpha SCN )
values of the maps shown in Figure 11. The resolution of the diagram is not uniform, with the modes in \alpha SCN

and k step sizes being 0.02 and 0.002, respectively.D
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1912 ATHANASOULI, PILTZ, DINIZ BEHN, AND BOOTH

associated with stable fixed points at which a saddle-node bifurcation (dashed black) or a
border collision (solid red) occurs.

The transition from the regime where the stable \rho = 1 solution is lost due to the BC-U
\rightarrow SN bifurcation sequence to the regime where it is lost due to a BC-S bifurcation occurs
continuously as \alpha SCN decreases. In the BC-U\rightarrow SN regime, at the k value associated with the
border collision the slope of the map at the created fixed point is greater than 1 (but finite),
resulting in an unstable fixed point. As \alpha SCN decreases, the slope of the map curve at the
unstable fixed point created in this bifurcation also decreases.

The two regimes are separated at (k, \alpha SCN ) = (0.486, 0.6), which is marked with a di-
amond. At this point, the curve of stable fixed points (solid red) merges with the curve of
unstable fixed points (solid yellow). For \alpha SCN > 0.6, the unstable fixed points are created
in a border collision bifurcation occurring at a higher k value than the k value associated
with the saddle-node bifurcation that forms the boundary of the \rho = 1 entrainment region.
The transition between bifurcation regimes occurs at (k, \alpha SCN ) = (0.486, 0.6). Here, the fixed
point of the map coincides with the end point (border) of the map curve, and the slope of the
map curve at that point is equal to 1. For \alpha SCN < 0.6, the stable fixed point associated with
the \rho = 1 solution is lost directly due to a border collision bifurcation.

The two-parameter bifurcation diagram of Figure 9 also shows the entrainment regions
(or tongues) in (k, \alpha SCN ) space for stable solutions with \rho = 3

4 ,
2
3 , and

1
2 . For \alpha SCN \geq 0.2,

each of these solutions gains stability, as k is decreased, through a saddle-node bifurcation
(dashed black curve) that is followed by a border collision (solid yellow curve) that eliminates
an unstable fixed point. For the \rho = 3

4 ,
2
3 solutions as k is further decreased, stability is

lost through a border collision (solid red curve) resulting in the bifurcation sequence SN \rightarrow 
BC-U \rightarrow BC-S, similar to the bifurcation sequence observed for these solutions for the default
\alpha SCN = 0.7.

While not computed explicitly, we argue that this bifurcation sequence delimits the en-
trainment regions of all solutions with \rho \in (12 , 1) and \alpha SCN \geq 0.2. Specifically, for a stable
solution with rotation number \rho = q

p we consider the pth order return map. As explained in
Appendix A, the pth order map retains similar structure as the first return map. For exam-
ple, for values of (k, \alpha SCN ) where the first return map is discontinuous, the pth return map is
likewise discontinuous. Furthermore, the pth return map has p discontinuities corresponding
to each discontinuity in the first return map. For \alpha SCN \geq 0.2 and all the k values where
solutions with these \rho values exist, first return maps display an infinite slope at the left of a
discontinuity and a finite slope on the right. The pth return map similarly shows this structure
in each of the branches of the map. Computing maps at the k values where these solutions
gain and lose stability reveals that stable fixed points are created on map branches to the left
of a discontinuity and are lost on map branches to the right of a discontinuity.

Specifically, for fixed \alpha SCN , we consider the pth return map at the highest value of k for
which \rho = q

p exists. On the p branches associated with this map, there are p saddle-node
points formed by the infinite slope end of the map branches. As k is decreased, p unstable
fixed points are eliminated in a border collision bifurcation on the infinite slope ends of the
p map branches. As k is decreased further, the p stable fixed points for the \rho = q

p solution
disappear in a border collision bifurcation at the finite slope end of the p map branches. Since,
for decreasing k, the bifurcation sequence SN \rightarrow BC-U \rightarrow BC-S is predicted by the structureD
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BIFURCATIONS IN A SLEEP-WAKE FLIP-FLOP MODEL 1913

of the map, we expect that all solutions with \rho \in (12 , 1] and \alpha SCN \geq 0.2 will show a similar
bifurcation sequence.

The bifurcations bounding the \rho = 1
2 entrainment region are the same for \alpha SCN > 0.42.

However, the bifurcation governing the loss of stability of the \rho = 1
2 solution changes to a

saddle-node for \alpha SCN < 0.42 (Figure 9). This exchange in the bifurcations is a result of a
small region or ``island"" of bistability emerging in the interior of the \rho = 1

2 entrainment tongue
(Figure 10E). The ``bistability island"" exists for \alpha SCN \in [0.25, 0.48]. It is bounded by curves
of saddle-node bifurcations for high k values, while for lower k, it is bounded by a saddle-node
curve for \alpha SCN \in (0.42, 0.48) and a curve of border collisions for \alpha SCN \in [0.25, 0.42). As
described below, at \alpha SCN = 0.42, both bifurcations occur at the same value of k, enabling
the switch in bifurcation type eliminating the stable \rho = 1

2 solution.
The region of bistability occurs due to the curves of the second return map becoming

S-shaped, which allows for multiple intersections with the diagonal \Phi n+2 = \Phi n, and thus
multiple fixed points. Specifically, in this \alpha SCN interval, as k decreases within the \rho = 1

2
entrainment interval, the second pair of stable fixed points (and a pair of unstable fixed

Figure 10. Bifurcations creating a bistability island in the \rho = 1
2
stable entrainment region. A--C: Evolution

of the second return map for \alpha SCN = 0.45. Here only one branch of the map is shown. For k = 0.341 (C)
a saddle-node bifurcation occurs at the lower part of the map curve. This gives birth to a new pair of stable
and unstable fixed points. At k = 0.335 (B) another saddle-node bifurcation leads to the collision of the new
unstable and original stable fixed points. Complete loss of stability of the \rho = 1

2
solution occurs at k = 0.327

(A) in a border collision. D: At \alpha SCN = 0.42, the loss of bistability coincides with the loss of stability of the
\rho = 1

2
solution. At k = 0.329 a saddle-node and a border collision eliminate two stable and one unstable fixed

points. E: Close-up of the two-parameter bifurcation diagram in (k, \alpha SCN ) space shown in Figure 9 shows the
bistability island within the \rho = 1

2
stable entrainment region. Letters in panel E correspond to maps shown

in panels A--D and F. F: Second return map curve showing a ``sharp cornered S"" shape for \alpha SCN = 0.3 and
k = 0.338 where a saddle-node bifurcation initiates the interval of bistability.D
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1914 ATHANASOULI, PILTZ, DINIZ BEHN, AND BOOTH

points) are created in the second return map due to a saddle-node bifurcation at the lower
knees of the S-shaped map curves (Figure 10C shows one of the map branches). On the map
branch shown in Figure 10C, the original \rho = 1

2 solution corresponds to the stable fixed point
at higher sleep onset phase and the newly created solution with the stable fixed point at lower
sleep onset phase. The newly created unstable solution has a sleep onset phase between those
of the stable fixed points. For \alpha SCN \in (0.42, 0.48], as k decreases further, the new unstable
fixed points and the original stable fixed points approach each other and eventually collide
in a saddle-node bifurcation at the upper knees of the S-shaped map curves (Figure 10B).
This bifurcation marks the end of the interval of bistability and the newly created stable
fixed points remain. These fixed points are eliminated, and the \rho = 1

2 solution loses stability,
in a border collision at the left ends of the map branches (Figure 10A). Thus, the complete
bifurcation sequence for \alpha SCN \in (0.42, 0.48] is

SN \rightarrow BC-U \rightarrow SN \rightarrow SN \rightarrow BC-S.

At \alpha SCN = 0.42, the end of the bistability interval coincides with the loss of stability of
the \rho = 1

2 solution as the saddle-node bifurcation at the upper knees of the S-shaped map
curves occurs at the same k value as the border collision at the left ends of the map branches
(Figure 10D, k = 0.329). At this value of k, the two pairs of stable fixed points (one on
each map branch of the second return map) lose stability simultaneously. The fixed points
corresponding to the original stable solution that initiated the \rho = 1

2 tongue (at higher sleep
onset phase in Figure 10D) lose stability due to a saddle-node bifurcation with the unstable
fixed points. The other stable fixed points (at lower sleep onset phase in Figure 10D) lose
stability due to a border collision. This causes the exchange of the bifurcation dictating the
loss of stability of the \rho = 1

2 solution from a border collision to a saddle node. Thus, at
\alpha SCN = 0.42 the full bifurcation sequence is

SN \rightarrow BC-U \rightarrow SN \rightarrow BC-S + SN.

For \alpha SCN \in [0.25, 0.42), the shape of the map branches in the second return map transi-
tions to a ``sharp cornered S"" (Figure 10F). When the map is continuous in this sharp cornered
S shape, the following bifurcation sequence takes place:

SN \rightarrow BC-U \rightarrow SN \rightarrow BC-S \rightarrow SN.

Here, the stable fixed points that introduced bistability (at a lower phase in the figure) lose
stability first in a border collision at the left end of the map curves. For lower k values, the
unstable and original stable fixed points collide in a saddle-node bifurcation which eliminates
the stable \rho = 1

2 solution.
As \alpha SCN approaches 0.25, a discontinuity can occur in the map in this sharp cornered S

shape, where the slope of the map branches are infinite from the left and finite from the right.
In this case, the complete bifurcation sequence is

SN \rightarrow BC-U \rightarrow SN \rightarrow BC-S \rightarrow BC-U \rightarrow SN.

The last border collision bifurcation creates another pair of unstable fixed points (one on each
of the associated branches of the second return map), as the sharp cornered S shape of the
map curves starts deforming as k is decreased.D
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BIFURCATIONS IN A SLEEP-WAKE FLIP-FLOP MODEL 1915

3.4. Bifurcation sequences for small \bfitk . As noted previously, for small values of k, the
homeostatic sleep drive varies more quickly relative to the SCN firing rate especially for high
values of \alpha SCN , thereby making tangent intersections of the solution trajectory with the
curve of saddle-node points on the Z-surface less likely. As a result, the associated sleep onset
maps can be continuous. This affects the bifurcation sequence delimiting stability of solutions
with rotation numbers \rho \leq 1

3 . The two-parameter bifurcation diagram can be separated into
regimes associated with continuous or discontinuous sleep onset maps. There exists a curve of
(k, \alpha SCN ) points (Figure 9, solid green curve) above which the map is continuous (Figure 9,
light green area). We will refer to this (green) curve as the transition zone.

We note that bifurcation sequences closer to the continuous regime, and hence across the
transition zone, may not involve border collision bifurcations associated with the creation or
destruction of stable fixed points (BC-S). As the maps obtain larger discontinuities, we observe
bifurcation sequences similar to the ones delimiting the entrainment regions we have encoun-
tered so far. We describe representative examples of the bifurcations across the transition
zone with the \rho = 1

4 solutions for different values of \alpha SCN .

Saddle-node \rightarrow saddle-node. For pairs of (k, \alpha SCN ) values above the transition zone
(see light green area), the first and fourth return sleep onset maps are continuous, and hence
saddle-node bifurcations lead to loss of stability of the \rho = 1

4 periodic solution (Figure 11A).
The fourth return map has four pairs of stable and unstable fixed points, and the unstable
fixed points remain over the k interval where the solution is stable, i.e., the unstable fixed
point is not lost through a border collision. Thus, the stability of the \rho = 1

4 periodic solution
in this regime occurs in the bifurcation sequence

SN \rightarrow SN.

Figure 11. Transition from a continuous to a discontinuous sleep onset map within the \rho = 1
4
entrainment

region. Fourth return sleep onset maps are shown at smallest k values where the \rho = 1
4
solution is stable for

different \alpha SCN values. A: For \alpha SCN = 1 the map is continuous and loss of the stable \rho = 1
4
solution is due

to a saddle-node bifurcation. B: For \alpha SCN = 0.55 the map is discontinuous, but the slope of the map branches
on the right of each discontinuity is greater than 1 in magnitude, leading to a border collision that generates
an unstable fixed point followed by a saddle-node bifurcation as k decreases. C: For \alpha SCN = 0.3 the map
is discontinuous. A border collision on the right of each discontinuity leads to loss of the stable fixed points
associated with the \rho = 1

4
solution.D
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1916 ATHANASOULI, PILTZ, DINIZ BEHN, AND BOOTH

Saddle-node \rightarrow border collision \rightarrow border collision [\rightarrow saddle-node]. For (k, \alpha SCN )
pairs below the transition zone, the first and fourth return maps are discontinuous with
infinite slopes to the left of the discontinuity and finite slopes to the right of the discontinuity.
A saddle-node bifurcation leads to gain of stability of the \rho = 1

4 periodic solution as k is
decreased. This is followed by a border collision bifurcation at a slightly lower value of k.

For larger \alpha SCN values, right below the transition zone, the slope of the discontinuous map
is greater than 1 at the right of the discontinuity (Figure 11B). Therefore, for decreasing k
there is first a border collision bifurcation that generates an unstable fixed point, and then this
unstable fixed point eventually collides with the stable fixed point in a saddle-node bifurcation
as k decreases. Thus, stability of the \rho = 1

4 solution in this regime occurs in the bifurcation
sequence of

SN \rightarrow BC-U \rightarrow BC-U \rightarrow SN.

As \alpha SCN is reduced, the slope of the map decreases smoothly to values less than 1. Then
the stable fixed point ceases to exist due to a border collision bifurcation as k decreases. In
particular, the full bifurcation sequence is SN \rightarrow BC-U \rightarrow BC-S.

Transitions between these bifurcation sequences occurred smoothly. Specifically, for the
\rho = 1

4 solution at the transition zone, the unstable fixed points associated with the border
collisions appear at the same k value and their k values diverge for smaller \alpha SCN . Additionally,
for the \rho = 1

4 and 1
3 solutions, as the bifurcation at the loss of stability as k decreases

changes, the k values at the border collisions associated with the creation of unstable fixed
points (solid yellow curve) merges with the values associated with the destruction of the
stable fixed points (solid red curve) as \alpha SCN decreases, as we have observed with solutions
of \rho > 1

3 . We expect that similar bifurcation sequences delimit other stable solutions with
\rho < 1

3 across the transition zone, as the associated maps are expected to maintain a similar
structure.

4. Circadian hard switch model in limit \bfitalpha \bfitS \bfitC \bfitN \rightarrow 0+. As shown in the k-\alpha SCN bifur-
cation diagram (Figure 9), as \alpha SCN decreases, the widths of the k intervals associated with
each stable entrainment regime change in the following way: For some rotation numbers, such
as \rho = 1, 12 , and

1
4 , the k intervals expand for low \alpha SCN values, while for \rho = 3

4 ,
2
3 , and

1
3 , the

k intervals contract. In the limit \alpha SCN \rightarrow 0+, this leads to the loss of stable solutions with
\rho \in (12 , 1) and \rho \in (14 ,

1
3), and a change in the bifurcation sequence bordering the \rho = 1

2 and
\rho = 1

4 stable solutions. To analyze this change in the size of k-intervals for a small \alpha SCN , we
consider the model in the limit \alpha SCN \rightarrow 0+. We refer to this model as the circadian hard
switch or CHS model.

In this section, we first formally define the CHS model and then describe the stable
solutions obtained as k decreases from 1 with a particular focus on the bifurcations delimiting
the stable \rho = 1

2 ,
1
3 , and

1
4 solutions. Based on how the \rho = 1 (and \rho = 1

3) solutions directly
transition to the \rho = 1

2 (and \rho = 1
4) solutions in the CHS model, we can explain why the k

intervals for stable solutions with \rho \in (12 , 1) (and \rho \in (14 ,
1
3)) shrink for small \alpha SCN .

4.1. Definition of the Filippov system with two switching boundaries. In the limit as
\alpha SCN \rightarrow 0+, the firing rate response function of the SCN population can be approximated byD
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BIFURCATIONS IN A SLEEP-WAKE FLIP-FLOP MODEL 1917

a step function. This introduces a second discontinuity in the fSCN derivative, when c crosses
\beta SCN :

(4.1)
dfSCN

dt
=

SCNmax \cdot 0.5 \cdot 
\biggl( 
1 + tanh

\Bigl( 
1
0.7

\Bigr) 
(2\scrH (c - \beta SCN ) - 1)

\biggr) 
 - fSCN

\tau SCN
,

where \scrH is the Heaviside function. Then, our model becomes a Filippov system with two
switching boundaries [25]: one represents the switch between sleep and wake, and the other
represents a switch between high and low activity in the circadian drive c(t) as occurs in SCN
firing rate over the 24-hour day [60].

To define the CHS model, we introduce the new switching boundary \Sigma in addition to
the original switching boundary \Gamma where \Sigma is defined as \Sigma = \{ c = \beta SCN\} , where \beta SCN = 0
(Figure 12A).

Figure 12. Dynamics and bifurcation structure in the CHS model. A: The CHS model is a Filippov system
with two boundaries, \Gamma (yellow plane) and \Sigma (green plane). Therefore, in the c - h - fW space we can visualize
the fast-slow surface being divided into four regions, \Gamma +\cap \Sigma +, \Gamma +\cap \Sigma  - , \Gamma  - \cap \Sigma  - , and \Gamma  - \cap \Sigma +. We have plotted
the individual fast-slow surfaces for the dynamical system when c > \beta SCN (corresponds to \Sigma +) and c < \beta SCN

(corresponds to \Sigma  - ). In each of these regions, the system is smooth, but a discontinuity in the derivative occurs
as the system crosses a boundary. B: The bifurcation diagram of the rotation number \rho for the CHS model. C:
The evolution of the stable solutions leading to the loss of stability of the \rho = 1 solution. In this regime, a sleep
onset always occurs at the same circadian phase when the trajectory crosses the boundary \Sigma . D: Decreasing
the value of the scaling parameter k leads to loss of stability of the \rho = 1 solution and emergence of the stable
\rho = 1

2
solution.
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1918 ATHANASOULI, PILTZ, DINIZ BEHN, AND BOOTH

The regions lying on either side of each boundary are then defined as

\bullet \Sigma + = \{ c > \beta SCN\} and \Sigma  - = \{ c < \beta SCN\} ,
\bullet \Gamma + = \{ fW > \theta W \} and \Gamma  - = \{ fW < \theta W \} .

These boundaries divide the domain of the model into the following four subregions:

1. \Sigma + \cap \Gamma + = \{ c > \beta SCN and fW > \theta W \} (wake state with increasing h and high fSCN ),
2. \Sigma  - \cap \Gamma + = \{ c < \beta SCN and fW > \theta W \} (wake state with increasing h and low fSCN ),
3. \Sigma  - \cap \Gamma  - = \{ c < \beta SCN and fW < \theta W \} (sleep state with decreasing h and low fSCN ),
4. \Sigma + \cap \Gamma  - = \{ c > \beta SCN and fW < \theta W \} (sleep state with decreasing h and high fSCN ).

In each of these subregions, the model has smooth dynamics dictated by subsets of (2.1)--
(2.10), while on the boundaries \Sigma and \Gamma one way to define the dynamics is Filippov's convex
method. In Appendix C, we show that the model flow is transversal across the boundaries of
these four subregions, and thus, a solution of this piecewise smooth system can be concatenated
from trajectories in its four subregions.

4.2. Bifurcations in the CHS model. Using a numerical algorithm by Calvo, Montijano,
and R\'andez [13] to integrate the CHS model, we numerically computed the bifurcation diagram
of the rotation number \rho for k \in (0, 1] (Figure 12B). The bifurcation diagram maintains a
period-adding-like structure, as well as trends similar to those observed for small \alpha SCN values.
As k was decreased from 1, the \rho = 1 solution in the CHS model lost stability at k = 0.45,
a similar value as found for \alpha SCN = 0.3. As suggested by the shrinking of k intervals for
solutions with \rho \in (12 , 1) for small \alpha SCN , \rho = 1

2 was the next stable solution detected as
k was decreased. Specifically, we did not detect any intermediate \rho = q

p solutions between

the \rho = 1 and \rho = 1
2 solutions in the CHS model. As k decreased further, there were fewer

stable solutions between the \rho = 1
2 and \rho = 1

3 solutions in the CHS model than for solutions
associated with larger \alpha SCN values. Between the \rho = 1

3 and \rho = 1
4 solutions, no intermediate

solutions were detected in the CHS model.
Below, we explain why we detect many or few types of intermediate solutions between

certain \rho values using the fast-slow surface associated with the CHS model.

Winnowing of entrainment regions. In the CHS model, the smoothly varying Z-shaped
surface associated with continuous c(t) is split into two connected Z-shaped surfaces corre-
sponding to the positive and negative c(t) of the CHS model. By considering model trajectories
on this double Z-shaped surface, we identify a change in the bifurcation sequence delimiting
the \rho = 1

2 and \rho = 1
4 stable solutions. We note that the switching boundary \Sigma constrains sleep

onset phases for stable \rho = 1 solutions. Namely, as k is decreased from 1, sleep onset phases
remain at \Phi = 0.75 due to trajectories falling off the upper wake manifold of the Z-shaped
surface at \Sigma during decreasing circadian drive c(t) (Figure 12C). At k = 0.45 where the \rho = 1
solution loses stability, the trajectory additionally approaches \Sigma during increasing circadian
drive at h values where a transition off the upper manifold is possible (Figure 12D). For
slightly smaller k = 0.449, the \rho = 1

2 solution gains stability in a border collision bifurcation
due to sleep onsets occurring at \Sigma for \Phi = 0.25 and \Phi = 0.75.

The absence of solutions with \rho \in (12 , 1) is due to the trajectory intersecting \Sigma as c(t)
increases and falling off the upper wake manifold at every circadian cycle. A stable solu-D
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tion with \rho \in (12 , 1) requires that sleep onset phases slightly shift on successive circadian
cycles such that some cycles only have one sleep episode and some cycles have two sleep
episodes. Here, since one sleep onset always occurs at \Phi = 0.75 and the trajectory dur-
ing the sleep episode is similar even if the h value at sleep onset is different (Figure 12D),
trajectories do not shift to avoid falling off the upper wake manifold at \Phi = 0.25 at the \Sigma 
boundary.

In contrast, stable solutions with \rho \in (13 ,
1
2) were obtained. The existence of stable \rho \in 

(13 ,
1
2) solutions can be understood by considering the sleep onset phases of the multiple sleep

episodes in those solutions. When the \rho = 1
2 solution loses stability at k = 0.28, sleep onsets

occur near \Phi \approx 0 near the minimum of c and at \Phi = 0.75. Thus, the switching boundary \Sigma 
constrains the phase of only one of the sleep episodes. For k slightly smaller, i.e., h slightly
faster, sleep onsets will occur at earlier phases. For the sleep onset occurring near \Phi \approx 0,
the phase is not constrained by the boundary \Sigma and can shift such that a third sleep onset
may occur in a circadian cycle resulting in a solution with \rho \in (13 ,

1
2). The evolution of sleep

onset phases and sleep patterns as the period-adding structure progresses with decreasing
k introduces the beginning of the stable \rho = 1

3 solution with sleep onset phases close to 0,
smaller and larger than 0.75.

The \rho = 1
3 solution loses stability in a border collision bifurcation and directly transitions

to the stable \rho = 1
4 solution similarly to the way in which the \rho = 1 solution transitions to

the \rho = 1
2 solution. At the loss of stability of the \rho = 1

3 solution at k = 0.208, the three sleep
onset phases occur near the extrema of the circadian drive (i.e., \Phi \approx 0 and \Phi \approx 0.5) and at
\Phi = 0.75 at the \Sigma boundary with decreasing c(t). For k = 0.207, the \rho = 1

4 solution gains
stability as a fourth sleep onset occurs at \Phi = 0.25 at the \Sigma boundary with increasing c(t).
The constraint that the trajectory always intersects \Sigma as c(t) increases, causing the border
collision, does not permit the slight shifting of sleep onset phases on successive circadian
cycles necessary to result in a solution with \rho \in (14 ,

1
3). Instead, the trajectory falls off the

upper wake manifold at \Phi = 0.25 on every circadian cycle resulting in the stable \rho = 1
4

solution.

Understanding the small \bfitalpha \bfitS \bfitC \bfitN > 0 case. For small \alpha SCN > 0, similar constraints on
sleep onset phases near \Phi = 0.75 and 0.25 also explain the shrinking k intervals for stable
solutions with \rho \in (12 , 1) and \rho \in (14 ,

1
3). Sleep onset phases in these solutions have slightly

different values on successive circadian cycles that can result in different numbers of sleep
episodes per cycle. For small \alpha SCN , the steep fSCN profile similarly constrains sleep onset
phases to be near \Phi = 0.75 and \Phi = 0.25 as observed in the CHS model. This restricts
the ability to sustain differences between trajectory orbits on successive circadian cycles and
prevents the slight shifts in sleep onset phases necessary for the stability of these solutions.
The solutions in these particular \rho intervals are affected because the additional sleep episode
occurring in a circadian cycle (the second sleep episode for \rho \in (12 , 1) and the fourth sleep
episode for \rho \in (14 ,

1
3)) occurs at phases near \Phi = 0.25. These constraints do not affect the

newly obtained sleep onset phase in the stable \rho = 1
3 solution (\Phi \approx 0), and therefore more

types of solutions with \rho \in (13 ,
1
2) are detected in this regime. The \rho = 1

2 ,
1
4 stable solutions

are delimited by a BC-S \rightarrow BC-U \rightarrow SN bifurcation sequence, while the \rho = 1
3 solution is

characterized by the sequence SN \rightarrow BC-U \rightarrow BC-S.D
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5. Discussion. In this study, we analyzed the bifurcations in an ODE-based SWFF model
under circadian rhythm modulation. Our study highlights how applying multiple techniques
that reveal model solution structures and their dependence on parameters can facilitate a full
bifurcation analysis for a nonautonomous, high-dimensional piecewise smooth dynamical sys-
tem. We applied fast-slow decomposition to reveal an underlying Z-shaped solution manifold
that supported the orbits of stable solutions. Tracking stable orbits on the Z-shaped surface
as homeostatic sleep drive time constants were varied showed how the profile of the folds of the
surface dictated and participated in border collision bifurcations of solutions when solution
trajectories made tangent intersections with the folds. For border collision bifurcations of
stable solutions, we were able to visualize the tangent intersection of the trajectory with the
folds of the Z-shaped surface, which informed understanding of border collision bifurcations
of unstable solutions. Importantly, knowledge of the Z-shaped surface enabled the numerical
computation of circle maps for model dynamics, as initial conditions were chosen at the upper
fold (saddle-node) curves. The circle maps allowed tracking of fixed point solutions, represent-
ing periodic solutions in the model, as parameters varied, and identification of saddle-node
bifurcations as well as border collision bifurcations of unstable periodic solutions. The value of
using circle maps to identify and track bifurcations was previously demonstrated in the Two
Process model [4, 47] (see below) for which the maps can be computed analytically. Here, we
extended this approach using numerically computed maps from an ODE-based system. Over-
all, our multipronged approach may be applied to other nonautonomous, piecewise-smooth
ODE systems that may be challenging to study analytically.

Bifurcations in piecewise-smooth dynamical systems may also be detected numerically
using continuation algorithms (e.g., SlideCont [18], TC-HAT [59], COCO [56], PyDSTool
[14]). These tools have been designed to handle specific types of piecewise-smooth systems.
For example, SlideCont is designed for detecting bifurcations in autonomous Filippov systems
that incorporate sliding and TC-HAT can be used for hybrid systems that have a degree of
smoothness zero, i.e., they include jumps in the state variables of the system. Such numerical
tools can complement our multipronged analysis in identifying bifurcations in high-dimensional
piecewise-smooth ODE systems. However, our construction of sleep onset circle maps can
provide further insight into transient as well as stable model solutions.

Our analysis focused on the effects of varying two physiologically motivated factors that
affect timing and duration of sleep episodes: The time constants of the homeostatic sleep
drive and the profile of the SCN firing rate. The primary bifurcation sequence delimiting
stable solutions as the homeostatic drive time constants were decreased (by decreasing the
scaling parameter k) was SN \rightarrow BC-U \rightarrow BC-S. This sequence was dictated by the shape
of the circle maps which exhibit discontinuities with infinitely increasing slopes on one side
and finite slopes on the other side. The SN \rightarrow BC-U sequence reflects the gain and loss
of fixed points on the map branch(es) near the infinite slope(s) while the BC-S bifurcation
reflects the loss of the stable solution on the other end of the map branch(es). This primary
bifurcation sequence was modulated by variation of the profile of the SCN firing rate, through
the parameter \alpha SCN .

One such modified sequence observed for stable solutions displaying multiple sleep episodes
per circadian cycle at smaller values of k, for example, \rho \leq 1

3 for some \alpha SCN values, was SN \rightarrow 
BC-U \rightarrow BC-U \rightarrow SN. This sequence occurred due to deformation of circle maps such that theD
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finite slope at the discontinuity was less than  - 1. Our analysis of the loss of stability of the
\rho = 1 solution as \alpha SCN was decreased provided a clear illustration of how this modification
can occur as the finite slope at the discontinuity passes through 1.

Another modified sequence observed for multiple sleep episode solutions at small k values
and larger \alpha SCN values was SN \rightarrow SN. This sequence occurred when circle maps were contin-
uous and tangent intersections of trajectories with the folds of the Z-shaped surface did not
occur. This was because the homeostatic sleep drive varied sufficiently fast (small k) and the
SCN firing rate profile varied sufficiently slowly (large \alpha SCN ).

These bifurcation sequences obtained in the SWFF model are similar to those identified
in the classic Two Process model under similar parameter variation. Specifically, Bailey,
Derks, and Skeldon [4] performed an analytic bifurcation analysis of the Two Process model
using circle maps as the level of the lower circadian threshold was varied, leading to similar
transitions between monophasic and polyphasic sleep patterns as obtained when homeostatic
time constants are varied. In regimes where the amplitude of the circadian thresholds were
sufficiently large, they found SN \rightarrow BC-U \rightarrow BC-S bifurcation sequences delimiting the stable
regimes of solutions that followed a period adding sequence. In this regime, the analytically
computed circle maps were monotonic and discontinuous with an infinite slope on one side
of the gap, similar to the computed circle maps for the SWFF model. In regimes where
the circadian threshold amplitudes were small, the circle maps became continuous due to the
absence of tangent intersections of the homeostatic sleep process with the circadian thresholds
and bifurcation sequences as circadian threshold levels were varied changed to SN \rightarrow SN.

In our analysis, we found that that the complexity of bifurcations increased for small
values of \alpha SCN , as may be expected with steeper profiles of the folds of the Z-shaped surface.
This was especially true for \rho = 1

2 solutions which displayed intervals of bistability for some
\alpha SCN values. Interestingly, the evolution of the two stable \rho = 1

2 solutions as k decreased
changed for different values of \alpha SCN . For the highest \alpha SCN values in this region of bistability,
the second stable solution gained stability in a saddle-node and then a subsequent saddle-node
bifurcation destroyed the original stable solution, thus the solutions replaced one another as k
decreased. For lower \alpha SCN values in the bistability region, the second stable solution gained
stability in a saddle-node bifurcation and then was destroyed in a border collision (stable)
bifurcation, leaving the original solution as the only stable solution. For an intermediate
value of \alpha SCN , both solutions lost stability at the same k value in a coincident saddle-node
and border collision (stable) bifurcation, each bifurcation involving one of the stable fixed
points.

Coexistence of stable solutions can occur in piecewise smooth maps with discontinuities
[2, 40]. In many such maps showing coexistence of stable solutions, such as bistability, the
values of the map branches across the discontinuity cover an overlapping interval. In our maps,
there is no overlap of values of the map branches across the discontinuities; instead bistability
emerges due to a deformation of the shape of map branches that introduces multiple fixed
points. Given the similarity in its dynamics with the SWFF model, the Two Process model
may be a good reduced system to formally analyze this mechanism for bistability, since it is
analytically tractable. While bistability has not been previously reported in the Two Process
model, an analysis in which the profile of Process C is varied as done here has not been
conducted to our knowledge.D
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In this study, we changed the profile of the SCN firing rate by varying the steepness of
the transition between high and low firing rates without affecting the amplitude. Steeper
transitions led to longer intervals of high firing rates and shorter intervals of low firing rates.
A similar effect on the duration of high/low firing rates could be implemented by modifying
the duty cycle of the circadian drive. We note that this change may affect the amplitude of the
firing rates and further influence the bifurcations that occur with changing the dynamics of
the homeostatic drive [4]. Future work is needed to determine which features of the circadian
and SCN waveforms contribute to changing sleep patterns under different environmental and
physiological conditions.

The striking effect of steeper profiles of the SCN firing rate (small \alpha SCN ) was the win-
nowing of certain stable solutions, namely the \rho \in (12 , 1) and the \rho \in (14 ,

1
3) solutions. Solu-

tions that persisted in these \rho intervals as \alpha SCN decreased had rotation numbers of the form
n/(n+ 1). A similar winnowing of solutions has been observed in threshold models when the
profile of the threshold is a square wave [1]. By analyzing the CHS model, where the SCN
firing rate profile is a square wave, we found that solution winnowing was due to constraints
on sleep onset phases near \Phi = 0.75 and \Phi = 0.25, at the edges of the square wave. Specifi-
cally, the steep slope of the SCN profile limited the slight variation in sleep onset phases on
successive circadian cycles necessary for \rho \in (12 , 1) and the \rho \in (14 ,

1
3) solutions. In addition

to providing an explanation for winnowing of entrainment regions exhibited by the SWFF
model, the CHS model brings up an interesting avenue for future work. Namely, the CHS
model incorporates two intersecting switching manifolds (yellow and green planes in Figure
12D) that are an active line of research in the field of piecewise smooth systems. For example,
two intersecting switching manifolds play a role in the dynamics exhibited by a nonsmooth
approximation of the Wilson--Cowan equations [33]. The question of what happens at the in-
tersection of the two switching planes of the CHS model (and whether it is of special interest
or not) we leave for future work.

Our work demonstrates that the combined effects of the sleep homeostat and circadian
waveform modulate the timing, duration, and number of sleep episodes in complex ways.
These findings suggest that interindividual differences manifested in the time constants dictat-
ing the variation of the homeostatic sleep drive [52] affect the transition from early childhood
sleep schedules that include naps to monophasic nighttime sleep that characterizes adult sleep
schedules [37, 53, 36]. This transition process could be further modulated by the circadian
rhythm. Future work is needed to connect the changes observed in the theoretical context
of this simplified model to behavior observed in early childhood development. However, our
results suggest a pertinent role of SCN activity profile, which is affected by seasonality and
light conditions [60], in modulating the effects of homeostatic sleep drive variations.

Appendix A. The structure of the map as \bfitk and \bfitalpha \bfitS \bfitC \bfitN vary. The first return circle
maps we have presented are characterized by at least one discontinuity. The discontinuity
associated with the bifurcations leading to loss of stability of (p, q) periodic solutions is the
one caused by tangencies on the upper saddle-node curve of the fast-slow surface. In this
appendix we explain that in the regime of rotation number \rho = q

p , the pth return map has
p discontinuities associated with the appropriate discontinuity of the first return map. Let
\Pi : [0, 1] \rightarrow [0, 1] represent the first return map that demonstrates a discontinuity becauseD
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of a tangency on a saddle-node curve. Then \Pi ([0, 1]) = [0, 1] \setminus I, where I is some interval
and the backslash, \setminus , indicates that I is excluded from the interval [0, 1]. According to our
results, the discontinuity occurs close to the peak of the circadian oscillator for k = 1 and
starts shifting toward later phases as k decreases. The interval I that is excluded from the
range of the map is associated with the rising phase of the circadian oscillator. As mentioned
in [7], during the rising phase of c, and hence fSCN , the dynamics close to the upper-saddle
node curve strongly promote the consolidation of wake. This leads to a horizontal gap in the
map, where we force sleep onset by following the eigenvector associated with the unstable
manifold at those saddle-node points. This is extensively analyzed in [7]. This horizontal gap
overlaps in large part with the interval I.

The discontinuity in terms of our discrete circle map can be described as follows: As-
sume that the discontinuity of the map occurs between the points (x1,\Pi (x1)) and (y1,\Pi (y1)).
Then \forall \delta > 0, \exists \epsilon > 0 such that for | x - y| < \delta for x, y around the discontinuity, then
| \Pi (x) - \Pi (y)| > \epsilon . In the regime close to the occurrence of a bifurcation, there is one stable
periodic orbit of period p and the map is increasing on either side of the discontinuity.

If the first return map has a discontinuity between x1 and y1, with x1 < y1, then by a
``backward"" cobwebbing on the map we can find x2, y2, so that x1 = \Pi (x2) and y1 = \Pi (y2).
Since the map is continuous everywhere else and invertible, x2 and y2 are sufficiently close. We
can now repeat the same process, and find x3 and y3 sufficiently close, so that x2 = \Pi (x3) and
y2 = \Pi (y3). Finally, when we do this p - 1 times the first return map contains two sequences
\{ x2, . . . , xp\} and \{ y2, . . . , yp\} that satisfy xj - 1 = \Pi (xj) and yj - 1 = \Pi (yj) for j = 2, . . . , p,
respectively. Therefore, the pth iteration of the map, \Pi p, has p - 1 discontinuities, each across
xj , yj , for j = 2, . . . , p. The idea is that the map provides approximate initial conditions xj , yj
on the same two trajectories that will lead to the discontinuity x1, y1 after j iterations, for
j = 2, . . . , p. So, we are approximately looking at the same two trajectories when they crossed
the section at a ``past"" time that will eventually lead them to crossing the section again at
phases x1 and y1 after j  - 1 more times.

Additionally, \Pi p has another discontinuity across x1 and y1 leading to p total discontinu-
ities. The discontinuity of the first return map persists in the pth iteration, since it takes at
least q circadian days for the trajectories across the discontinuity to entrain, i.e., to converge
to the stable pth-order cycle of the map. In other words, if one sleeps at a circadian phase
corresponding to the infinite slope branch of the map, it will take a few days to converge to
the stable sleep pattern. Hence, \Pi p is divided into p branches bordered by two pairs from
elements of the sequences \{ x1, . . . , xp\} and \{ y1, . . . , yp\} . Each branch is increasing and maps
a subinterval of [0, 1] to an other interval in the range of \Pi p.

Since we compute the maps numerically, it is important to note that the values we obtain
from this process might not agree exactly with the computed data points of the map. However,
in any case we can predict where the discontinuities in the pth return map will occur within
some error and how many should exist coming from the discontinuity of the first return map.

Recall that discontinuities due to a tangency at the saddle-node curves are characterized
by an infinite slope in the left branch of the map curve and a finite slope in the right branch.
Hence, in the appropriate regime of the k  - \alpha SCN parameter space and with k decreasing,
when we first enter the \{ \rho = q

p\} -regime, the branches with infinite slope intersect the diagonal
\Phi n+p = \Phi n at a saddle-node bifurcation. As k further decreases, the finite slope part of eachD
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branch approaches the diagonal which leads to the loss of stability of the (p, q) periodic solution
due to a border collision or a saddle-node bifurcation. For higher values of k we observe
border collisions, but for lower values the finite parts start curving downward, introducing
more saddle-node bifurcations.

When k is sufficiently small, the map becomes continuous, so only saddle-node bifurcations
occur. The homeostatic sleep drive h is fast enough now that it can counteract the wake-
promoting effect of fSCN . In this transition the vertical gap shrinks and interestingly the
length of the horizontal gap also reduces accordingly. For values of k and \alpha SCN that the map
is continuous, we see that the bifurcation diagram of the rotation number, \rho , becomes more
dense and continuous as well.

Appendix B. Computation of the bifurcation diagram of the rotation number \bfitrho . The
rotation number \rho = q

p describes the number of circadian days over the number of sleep
episodes. To compute the rotation number numerically, we have created an algorithm that
detects the repeating pattern of sleep episodes from the model trajectory.

The algorithm works as follows. For each value of k we simulate the model for 100 days
to ensure that it has converged to its stable solution. Simultaneously, we keep track of the
sleep onsets and their corresponding preceding circadian minima, i.e., the local minima of the
variable c, using a detection of the event fW = 4 during the decrease of the variable fW . This
allows us to compute the circadian phase of each sleep onset in the simulation.

Starting at the last sleep onset phase recorded, we check the preceding sleep onset phases
to detect the previous occurrence of the same phase. Since, all of our results are obtained
numerically, we allow for an error of 0.0003 for two phases to be considered ``equal."" If the
length of the subsequence that involves the two ``equal"" phases and all intermediate sleep
onset phases is p+1, then the number of sleep episodes in the pattern is defined to be p (this
avoids double counting the first/last phase).

To determine the number of circadian days, q, we count the distinct number of circadian
minima that correspond to the sleep onset phases of the pattern.

For some values of k, this algorithm did not detect a stable repeating pattern. In that
case, we computed an average \rho as the total number of days divided by the total number of
sleep cycles in a simulation lasting 120 days.

Appendix C. CHS model. In the CHS model, model dynamics are smooth in the four
subregions (\Sigma + \cup \Gamma +, \Sigma + \cup \Gamma  - , \Sigma  - \cup \Gamma +, \Sigma  - \cup \Gamma  - ) and dynamics on the boundaries \Sigma and
\Gamma are defined by Filippov's convex method. Specifically, for X = \{ fW , fS , fSCN , h, c, \theta \} we
represent the model system as follows:

dX

dt
=

\left\{                               

F11(X), X \in \Sigma + \cap \Gamma +,

\=co\{ F11, F12\} , X \in \Gamma + \cap \Sigma ,

F12(X), X \in \Sigma  - \cap \Gamma +,

\=co\{ F12, F21\} , X \in \Sigma  - \cap \Gamma ,

F21(X), X \in \Sigma  - \cap \Gamma  - ,

\=co\{ F21, F22\} , X \in \Gamma  - \cap \Sigma ,

F22(X), X \in \Sigma + \cap \Gamma  - ,

\=co\{ F22, F11\} , X \in \Sigma + \cap \Gamma ,
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where \=co\{ Fij , Fkl\} = \{ Fij,kl = \alpha Fij+(1 - \alpha )Fkl, \alpha \in [0, 1]\} is a convex combination of the flows
on either side of a switching boundary. The vector fields Fij(X) in the different subregions
are defined as follows:

\bullet The following differential equations regarding the variables fW , fS , c, \theta are true for all
Fij(X) in their corresponding subregions:

dfW
dt

=

Wmax \cdot 0.5 \cdot 
\biggl( 
1 + tanh

\Bigl( gscnwfSCN  - gswfS  - \beta W
\alpha W

\Bigr) \biggr) 
 - fW

\tau W
,(C.1)

dfS
dt

=

Smax \cdot 0.5 \cdot 
\biggl( 
1 + tanh

\Bigl(  - gscnsfSCN  - gwsfW  - (k2h+ k1)

\alpha S

\Bigr) \biggr) 
 - fS

\tau S
,(C.2)

dc

dt
=  - \omega sin \theta ,(C.3)

d\theta 

dt
= \omega .(C.4)

\bullet In F11(X) and F22(X) fSCN , where c > 0, the differential equation of fSCN is

dfSCN

dt
=

SCNmax \cdot 0.5 \cdot 
\biggl( 
1 + tanh

\Bigl( 
1
0.7

\Bigr) \biggr) 
 - fSCN

\tau SCN
,(C.5)

dh

dt
=

hmax  - h

\tau hw
.(C.6)

On the other hand, in F12(X) and F21(X) the differential equation for fSCN is

dfSCN

dt
=

SCNmax \cdot 0.5 \cdot 
\biggl( 
1 - tanh

\Bigl( 
1
0.7

\Bigr) \biggr) 
 - fSCN

\tau SCN
.(C.7)

\bullet Similarly, in F11(X) and F12(X), h is increasing and its differential equation is

dh

dt
=

hmax  - h

\tau hw
.(C.8)

In F21(X) and F22(X), h is decreasing and its differential equation is

(C.9)
dh

dt
=

hmin  - h

\tau hs
.

Ruling out sliding motions. To check whether the model flow does not permit the occur-
rence of sliding motion on the switching boundaries \Sigma or \Gamma , we need to determine whether tra-
jectories will always cross \Sigma or \Gamma transversally. To this end, let g(X) = fW  - \theta W = 0 define the
boundary \Gamma and v(X) = c - \beta SCN = 0 define the boundary \Sigma . Then, \nabla g =< 1, 0, 0, 0, 0, 0 >
and \nabla v =< 0, 0, 0, 0, 1, 0 >. For each boundary subregion, the conditions verifying that the
flow directions on either side of a switching boundary \Sigma and \Gamma are in the same direction are
as follows:D
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\bullet On \Sigma + \cap \Gamma ,\bigl( 
\nabla g(X)T \cdot F22

\bigr) \bigl( 
\nabla g(X)T \cdot F11

\bigr) 
=

\Biggl( Wmax \cdot 0.5 \cdot 
\Bigl( 
1 + tanh

\Bigl( gscnwfSCN  - gswfS  - \beta W
\alpha W

\Bigr) \Bigr) 
 - fW

\tau W

\Biggr) 2

\geq 0.

\bullet Similarly, on \Sigma  - \cap \Gamma ,\bigl( 
\nabla g(X)T \cdot F12

\bigr) \bigl( 
\nabla g(X)T \cdot F21

\bigr) 
=

\Biggl( Wmax \cdot 0.5 \cdot 
\Bigl( 
1 + tanh

\Bigl( gscnwfSCN  - gswfS  - \beta W
\alpha W

\Bigr) \Bigr) 
 - fW

\tau W

\Biggr) 2

\geq 0.

\bullet On \Sigma \cap \Gamma +,
\bigl( 
\nabla v(X)T \cdot F1

\bigr) \bigl( 
\nabla v(X)T \cdot F2

\bigr) 
= ( - \omega sin(\theta ))2 \geq 0.

\bullet Similarly, on \Sigma \cap \Gamma  - ,
\bigl( 
\nabla v(X)T \cdot F3

\bigr) \bigl( 
\nabla v(X)T \cdot F4

\bigr) 
= ( - \omega sin(\theta ))2 \geq 0.

All four of these conditions are satisfied, indicating that the boundaries cannot be attract-
ing (or repelling) from both sides. This is sufficient to ensure that trajectories transversely
cross each of the switching manifolds \Sigma and \Gamma [20]. Thus, the possibility of sliding on \Sigma 
and \Gamma is eliminated, and the representation of the flow on these boundaries as a convex com-
bination of the flow on either side of the boundary is well-defined with an arbitrary choice
of \alpha .

Appendix D. Stable solutions for \bfitk =0.434 and \bfitk =0.317 with \bfitalpha \bfitS \bfitC \bfitN =0.7. The model
trajectories in Figure 13 graze the upper saddle-node curve of the Z-surface. The occurrence of
these tangent intersections (or grazing bifurcations of the flow) leads to loss of stability of the
\rho = 2

3 (Figure 13A) and \rho = 1
2 (Figure 13B) solutions. This is predicted in the corresponding

third and second return maps (Figures 5D, F), respectively, where border collision bifurcations
of the stable fixed points are observed.

Figure 13. The stable periodic orbits for k = 0.434 and k = 0.317 plotted in relation to the Z-shaped
surface in the c - h - fW space for the default value of \alpha SCN = 0.7. A: The \rho = 2

3
solution loses stability when

the periodic orbit makes a tangent intersection with the upper saddle-node curve of the Z-shaped curve. This
periodic orbit corresponds to the three stable fixed points of the third return map in Figure 5D in which a border
collision is observed. B: The \rho = 1

2
solution loses stability when the periodic orbit makes a tangent intersection

with the upper saddle-node curve of the Z-shaped curve. This periodic orbit corresponds to the two stable fixed
points of the second return map in Figure 5F in which a border collision is observed.D
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