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A Mean-Field Firing-Rate Model for the Suprachiasmatic Nucleus\ast 

Alexander G. Ginsberg\dagger and Victoria Booth\ddagger 

Abstract. We present a mean-field formalism for modeling firing-rate statistics of brain regions whose neurons
exhibit atypical firing patterns and heterogeneous electrophysiological properties. We apply the
formalism to the suprachiasmatic nucleus (SCN)---the human circadian pacemaker---whose neurons
can intrinsically exhibit depolarized low-amplitude membrane oscillations (DLAMOs), depolariza-
tion block (DB), and standard action potential firing at different times of day. Further, gamma-
aminobutyric acid reversal potentials and molecular circadian phases of SCN neurons, among other
properties, vary across the network and/or slowly over time. Our formalism consists of a system of
integro-differential equations describing the time evolution of the mean and standard deviation of
synaptic conductances across the network. Electrophysiological properties of SCN neurons are in-
corporated by computing responses to synaptic conductance inputs of a Hodgkin--Huxley-type SCN
neuron model that exhibits DLAMOs and DB. Such responses are then averaged over distributions
of relevant quantities and included in the differential equations. Results suggest mechanisms by
which physiologically relevant changes to firing activities may arise, highlighting means by which
the amplitude of firing rates may shrink, the standard deviation of firing rates may grow, and by
which a mid-day dip in firing rates may appear. For instance, results show that a large spread in
circadian phases across SCN neurons reduces the size of oscillations in SCN network firing activity
across the 24-hour day, identifying a mechanism by which heterogeneities in neuron electrophysiology
could influence circadian rhythms.

Key words. population firing rates, neural mass models, SCN, circadian rhythms, ensemble statistics, integro-
differential equations
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1. Introduction. Firing-rate, neural-mass, and mean-field models are successful mathe-
matical reductions for the high-dimensional nonlinear systems representing neuronal networks
and their activity. These models describe average neural firing activity levels across a network.
Thus, they are particularly relevant for networks of neurons where the assumed pertinent in-
formation is carried in the neural firing rate, rather than in the timing of individual neuron
spikes relative to each other. The suprachiasmatic nucleus (SCN) in the hypothalamus, the
central circadian pacemaker in mammals, is an example of a rate-coding neural population.
Indeed, its 24-hour variation in average neuron firing rates is assumed to be the primary driver
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SCN MEAN-FIELD FIRING-RATE MODEL 91

for transmission of daily circadian timing information to downstream targets [26]. There is
evidence for this transmission to occur via synaptic signaling and humoral signaling [32].

Perhaps the most well-known class of firing-rate models are ``convolutional models,"" which
assume that a network of neurons may be reduced to several interacting populations. The
firing activity of each population is modeled as a deterministic, often sigmoidal, gain function
of the population's inputs. The time evolution of such firing activity is then typically modeled
using differential equations whose solutions are convolution integrals over time. The most
well known among such models is the Wilson--Cowan neural mass [53]. It models a cortical
brain area with interacting excitatory and inhibitory populations and outputs the proportion
of neurons which are firing in each population over time. Next-generation firing-rate models
seek to improve upon these models by replacing the logistic gain functions with more accurate
functions of neural responses (such as frequency-current curves) [55] or of network population
activity [10].

In classic firing-rate models, state variables represent averages of important quantities
across the network, such as average membrane voltages and average firing rates. Thus, they
do not account for variability of network properties, as may be caused by heterogeneity in
neural responses, synaptic signals or connectivity, and can lead to variations in neural activity
across the network. Population density approaches account for variability by starting with a
simple model of a spiking neuron and deriving a Fokker--Plank equation for the time-evolution
of a probability density function of membrane voltages (see, e.g., [15, 20]). However, obtain-
ing expressions for such probability densities is often computationally intensive. Furthermore,
obtaining resulting average firing rates can be complex, especially for more biophysically ac-
curate neural responses. An alternate neural mass model formalism was proposed by Zandt
et al. [55] that accounts for the time evolution of distributions of synaptic currents by as-
suming a normal distribution of currents and firing rates across the network. This results in
integro-differential equations that model the time evolution of approximations of the mean
and standard deviation of synaptic currents and firing rates across the network.

While such formalisms have expanded the accuracy and range of applications of firing-rate
models, recent results have identified properties of SCN neurons and their network that are
not easily accounted for by these models. For example, while SCN population firing rates
display a \sim 24-hour cycle with higher rates during the day (light period) and lower rates
during the night (dark period), recordings of individual SCN neurons have identified atypical
firing patterns across the circadian cycle [5]. Specifically, one class of SCN neurons displays
the familiar action potential firing at varying rates throughout most of the 24-hour day, but
during mid-day hours they enter electrically excited states. These states include depolarization
block (DB) or a state characterized by low-amplitude oscillatory fluctuations in membrane
potential, referred to as depolarized low-amplitude membrane oscillations (DLAMOs) [4, 5,
29, 46]. In the DLAMO state, membrane voltages oscillate nearly sinusoidally with a minimum
well above resting membrane potential and peak well below the maximum voltage in typical
action potential firing.

Another property of SCN population activity that challenges firing-rate reductions is het-
erogeneity of neural responses across the network. A primary facet of such heterogeneity lies
in the ``molecular clocks"" contained in SCN neurons. Namely, the daily variations in SCN
neuron firing patterns are generated by the intracellular transcription-translation feedback
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92 ALEXANDER G. GINSBERG AND VICTORIA BOOTH

loops (TTFLs) of circadian clock genes and proteins. These molecular clocks modulate the
responses of SCN neurons to synaptic signalling, so that for some clock states the neuron never
fires and in others the neuron fires spontaneously or exhibits DLAMOs given strong synaptic
signaling. Under normal conditions, when circadian rhythms are entrained to the 24-hour
environmental light cycle, cellular TTFL circadian clocks are approximately synchronized. As
a result, SCN neurons may be assumed to be exhibiting oscillating firing patterns synchro-
nized to the circadian clocks. However, this synchronization can be degraded by disruptions
in light schedules as occurs in shift work and jet lag [42]. Additionally, degradation of clock
cell synchrony may occur during aging [43]. This desynchrony of intracellular clocks presum-
ably results in a wide variation in neural firing patterns and responses, i.e., action potential
spiking, DLAMOs, or DB, across the SCN network. Physiologically, the resulting variation
of the firing activity in the SCN has important consequences as it has been correlated with
reduced amplitude of circadian signaling [23].

A further facet of heterogeneity in the SCN network lies in the function of gamma-
aminobutyric acid (GABA), the primary synaptic neurotransmitter in the SCN [40]. GABA
plays a somewhat unusual role in the SCN [16], wherein GABA-elicited postsynaptic currents
(PSCs) can be either excitatory or inhibitory. This variability in GABA-mediated PSCs is due
to variations in intracellular chloride concentrations which alter the synaptic current reversal
potential in post-synaptic cells [16]. As a result, neuronal responses to synaptic currents can
vary across the network leading to more variation in neural firing activity.

Thus, the rate code of circadian signaling by the SCN network is influenced by multiple
factors not typically accounted for in firing-rate models: atypical neuron firing states as well
as variations in neuron firing states and synaptic currents across the network.

In this paper, we derive a firing-rate model framework for the average network synaptic
and firing activity, and their standard deviations, of a network of SCN neurons that exhibit
diverse firing patterns across the circadian cycle. A strength of our approach is that it accounts
for atypical neuron firing patterns and incorporates distributions of neuron firing properties
and PSCs. While we derive the model for an SCN network, the formalism can be applied
generally to other neural populations with unique and variable neural firing properties.

The paper is organized as follows. We derive and describe our firing-rate model framework
in the most general context in section 2. We apply our model to the SCN network in section 3
and show the results of the application to the SCN in section 4. Finally, we provide concluding
remarks that contextualize our formalism within the firing-rate model literature and highlight
predictions made by our model about the SCN in section 5.

2. Firing-rate model derivation and description. Our firing-rate model formalism con-
sists of a system of integro-differential equations describing the time evolution of the means
and standard deviations of the firing rates and synaptic conductances across a single popu-
lation of neurons, similar to [55]. In the model, the synaptic conductance statistics are the
``model variables,"" in the sense that integrating the differential equations explicitly yields the
synaptic conductance statistics as a function of time. The firing-rate means and standard
deviations, on the other hand, are computed implicitly during numerical integration of the
model.
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SCN MEAN-FIELD FIRING-RATE MODEL 93

While the statistics of the firing rates and synaptic conductances are the main variables in
the model, a variety of other parameters play an important role. Foremost are the parameters
whose values vary across the network. One such varying parameter is the number of incoming
synaptic connections to each neuron, Nsyn. Other such parameters, which we collectively refer

to with the parameter vector \vec{}P (t) of dimension m, may include synaptic reversal potentials,
such as the varying GABA reversal potential in the SCN, or parameters that influence the
firing states of neurons, such as the time-varying phases of molecular clocks in the SCN.
Notably, our model allows for time dependence in the vector of parameters \vec{}P (t), so long as
\vec{}P (t) varies on a much slower time scale than the time scale of synaptic integration.

To explain the derivation of the model, we first describe the postsynaptic response of a
single neuron to synaptic input from multiple presynaptic cells (Figure 1 and section 2.1). We
then describe the calculation of means and standard deviations of the neural responses across
the network (Figure 2 and section 2.2). But first, we briefly summarize the derivation.

Consider the response of a postsynaptic cell i, at time t, that receives synaptic input
from cell j. As described in section 2.1, we compute the synaptic conductance gji(t) which
depends on two factors. One is the firing rate of presynaptic cell j just prior to time t, fj(s),
and the other factor is the synaptic response function H\alpha which describes the time-varying
postsynaptic response to a presynaptic spike. To account for modulation of synaptic current
when a presynaptic cell is in an altered firing state, such as the DLAMO or DB states, we
scale H\alpha by a synaptic gating variable yj(s) that depends on membrane voltage of presynaptic
cell j and represents the fraction of activated PSC receptors, as is frequently used in spiking
neuron networks [20].

From the synaptic conductances gji(t) from all presynaptic neurons j to neuron i, we
calculate the total synaptic conductance Gi(s) received by the postsynaptic neuron i. The
resulting firing frequency of postsynaptic cell i may depend on some or all of the parameters in
\vec{}P (t), in addition to Gi(t). The firing rate fi(Gi(t), \vec{}Pi(t)) is then computed from a biophysical,
conductance-based single-neuron model. We additionally compute the synaptic gating variable
yi(Gi(t), \vec{}Pi(t)) based on the membrane voltage predicted from the biophysical SCN neuron
model. These variables then feed back into the model to compute model variables at the next
time step.

To arrive at a time-evolving, mean-field model as described in section 2.2, we compute
the means and standard deviations of the quantities described above at each time step. In
particular, we compute mean synaptic conductance g(t) and its standard deviation \sigma g(t) from
mean population firing rate f(t) and its standard deviation \sigma f (t), as well as from the synaptic
response function H\alpha scaled by the mean synaptic gating variable y(t). From g(t) and \sigma g(t),
we use network connectivity statistics to compute the mean and standard deviation of total
synaptic conductance, G(t) and \sigma G(t), respectively. Assuming the form of distributions of
parameters in \vec{}P across the network as well as a Gaussian distribution for total synaptic
conductance Gi(t), we compute the means and standard deviations of firing frequency (f(t),
\sigma f (t)) and synaptic gating (y(t), \sigma y(t)) from the frequency and voltage responses of the
biophysical model for individual neurons in the network.

2.1. Computing neural firing rates. To model the postsynaptic response of a neuron to
a presynaptic spike, we let g0 be the maximum synaptic conductance and assume synaptic
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94 ALEXANDER G. GINSBERG AND VICTORIA BOOTH

Figure 1. Schematic of model algorithm for computing the postsynaptic neuron response. Postsynaptic
neuron i (large rectangle) receives synaptic inputs from multiple presynaptic neurons j as determined by the
network structure. The conductance of the postsynaptic current gj,i(t) induced by presynaptic cell j firing fj(t)
is modeled by its convolution with the synaptic response function H\alpha scaled by the synaptic current gating
variable yj(t). We assume linear temporal summation of synaptic conductances. Postsynaptic firing rate and
maximum synaptic gating variable of neuron i at time tk, fi(tk) and yi(tk), respectively, are computed from
a biophysical SCN neuron model and synaptic gating functions which depend on parameters \vec{}P (tk). Illustrated
here in the case of the SCN, \vec{}P consists of a circadian phase proxy parameter called R (see section 3) and
GABA reversal potential EGABA.

currents are governed by an \alpha function (see [20]). We define the synaptic response function
H\alpha (t) as

H\alpha (t) =

\Biggl\{ 
g0

t
\tau e

1 - t/\tau , t \geq 0,

0, t < 0,
(2.1)
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SCN MEAN-FIELD FIRING-RATE MODEL 95

where time constant \tau determines the duration of the synaptic response. However, to allow for
variations in synaptic conductance based on potentially altered presynaptic cell firing states,
we scale g0 by a synaptic gating variable. This synaptic gating variable for presynaptic cell
j, yj(t), depends on cell j's firing rate fj(t) which, in turn, depends on the total synaptic

conductance Gj(t) that cell j receives as well as the parameter values for cell j, \vec{}Pj(t). Thus,
PSC conductance due to firing activity in presynaptic cell j is described by

yj(Gj(t), \vec{}Pj(t)) \cdot H\alpha (t).

2.1.1. Synaptic conductance (\bfitg ). Continuing from above, for postsynaptic cell i, the
time-dependent conductance of synaptic current induced by presynaptic cell j firing at time
s is modeled as

gji(t) = yj(Gj(s), \vec{}Pj(s)) \cdot H\alpha (t - s).

Assuming linear temporal summation of conductances due to multiple presynaptic spikes, the
synaptic conductance due to all spikes from presynaptic neuron j in the small time interval
(s, s+\Delta s) is

gji(t) \approx yj(Gj(s), \vec{}Pj(s)) \cdot H\alpha (t - s) \cdot \#spikes fired

= yj(Gj(s), \vec{}Pj(s)) \cdot H\alpha (t - s) \cdot fj(Gj(s), \vec{}Pj(s))\Delta s.

Dividing [0, t] into n equal intervals with left endpoints s0, s1, . . . , sn - 1, we obtain that

gji(t) \approx 
n - 1\sum 
k=0

yj(Gj(sk), \vec{}Pj(sk)) \cdot H\alpha (t - sk) \cdot fj(Gj(sk), \vec{}Pj(sk))\Delta s.

Letting \Delta s \rightarrow 0 gives the synaptic conductance gji(t) in postsynaptic neuron i induced from
firing of presynaptic neuron j as

gji(t) \approx 
\int t

0
H\alpha (t - s) \cdot yj(Gj(s), \vec{}Pj(s)) \cdot fj(Gj(s), \vec{}Pj(s))ds.(2.2)

= (H\alpha  \star yjfj) (t).(2.3)

2.1.2. Total synaptic conductance (\bfitG ) in a postsynaptic neuron. To obtain the total
synaptic conductance, we treat the system of synaptic inputs to a postsynaptic neuron i as
a parallel circuit. Hence, we have linear summation of conductances, and the total synaptic
conductance Gi in postsynaptic neuron i is

Gi(t) =

n\sum 
j=1

gji(t),(2.4)

where n is the total number of presynaptic cells.

2.1.3. Neuron firing rate (\bfitf ) and synaptic gating (\bfity ). From the total synaptic conduc-
tance Gi(t), along with the neuron-dependent parameters \vec{}Pi(t), we model the neuronal firing
rate of postsynaptic neuron i as a deterministic function F of (Gi(t), \vec{}Pi(t)):

fi(t) = F (Gi(t), \vec{}Pi(t)).(2.5)
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96 ALEXANDER G. GINSBERG AND VICTORIA BOOTH

F is computed from a biophysical conductance-based model for the individual neurons in
the network of the form

Ci
dVi

dt
= Isyn,i  - Iion,i,(2.6)

where Ci, Vi, Isyn,i, and Iion,i describe the capacitance of the cell membrane, the voltage across
the cell membrane, the incoming current via synapses with other neurons, and the membrane
ionic currents, respectively, for the ith neuron (see section 3 for SCN neuron model). Synaptic
input is modeled by the synaptic current Isyn,i which for postsynaptic cell i is given by

Isyn,i(t) = Gi(t) \cdot (Esyn,i  - Vi(t)).(2.7)

To compute the function F , the neuron model is numerically integrated across appropriate
ranges of G and \vec{}P values, and the value of F is set to the firing frequency of the stationary
solution (obtained when numerical integration reaches a periodic orbit or steady state). We
note that since the firing rate is assigned based on the stationary response to Gi(t), there is
the underlying assumption that Gi(t) varies sufficiently slowly so that any transient behavior
is negligible.

The synaptic gating variable yi(t) for neuron i is defined by the deterministic function Y
that depends on the same variables and parameters that affect firing rate

yi(t) = Y (Gi(t), \vec{}Pi(t)).(2.8)

To compute Y , the model equations for the synaptic gating variable \^y(t) are numerically
integrated in conjunction with the neuron model across the ranges of G and \vec{}P values (see
section 3 for the model used in the SCN network). The synaptic gating function Y is then set
to the maximum value of \^y(t) obtained in the stable solution:

Y (G, \vec{}P ) = max
V

\{ \^y(V (t);G, \vec{}P )\} .(2.9)

2.2. Computing statistics of network firing rate. To construct the model for the popu-
lation firing rate of the network, we calculate averages and standard deviations for synaptic
conductance and firing rate variables across all neurons in the network, accounting for dis-
tributions in the parameters \vec{}P (t). To do so, we treat these variables, such as g, G, \vec{}P , Nsyn

f , and yf , as random quantities drawn from (potentially time-varying) distributions. The
distributions for each variable are fixed across all synapses and neurons in the network.

2.2.1. Statistics for firing rate (\bfitf ) and synaptic gating (\bfity ). Since firing rate depends
on total synaptic conductance G as well as \vec{}P , its mean across the SCN network and its
standard deviation depend on the distributions of those variables and parameters in the net-
work. Viewing G, \vec{}P together as a (1 + m)-dimensional stochastic process (G(t), \vec{}P ), denote
the joint distribution at time t of G(t) and \vec{}P by \gamma t(\vec{}x), where \vec{}x represents a particular value
of (G(t), \vec{}P (t)). Letting U = R1+m, the mean firing rate f(t) and its standard deviation \sigma f (t)
are computed as

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Figure 2. Schematic of model algorithm for computing network averages and standard deviations of synaptic
conductances and firing rate variables. Mean firing rate scaled by synaptic gating yf(tk - 1) and its standard
deviation \sigma yf (tk - 1) at the (k - 1)th step are convolved with the synaptic kernel H\alpha to yield the mean synaptic
conductance g(tk) and standard deviation \sigma g(tk) at the kth time step. Applying network connectivity statistics
yields the mean total synaptic conductance G(tk) and its standard deviation \sigma G(tk). A uniform distribution
for G along with the defined distributions for \vec{}P form the joint distribution for (G, \vec{}P ). This joint distribution
is then used to calculate the expectations f(tk), y(tk) of the firing rate and the synaptic gating, respectively, as
well as their standard deviations \sigma f (tk) and \sigma y(tk). To provide a concrete example, here we take \vec{}P to represent
the parameters constituting \vec{}P in the SCN model (see section 3): the circadian proxy R and the GABA reversal
potential EGABA.

f(t) =

\int 
U
F (\vec{}x)\gamma t(\vec{}x)d\vec{}x,(2.10)

\sigma 2
f (t) =

\int 
U
[F (x, y, z) - f(t)]2\gamma t(\vec{}x)d\vec{}x.(2.11)
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98 ALEXANDER G. GINSBERG AND VICTORIA BOOTH

Similarly, the mean and standard deviation of the product, yf(t), of firing rate f(t) and
synaptic gating y(t), is computed as

yf(t) =

\int 
U
Y F (\vec{}x)\gamma t(\vec{}x)d\vec{}x,(2.12)

\sigma 2
yf (t) =

\int 
U
[Y F (\vec{}x) - yf(t)]2\gamma t(\vec{}x)d\vec{}x.(2.13)

2.2.2. Statistics for synaptic conductance \bfitg . The mean synaptic conductance g and its
standard deviation \sigma g across all neurons are computed using the following equations with the
derivations given below:

g(t) = (H  \star yf)(t) :=

\int t

0
H(t - s)yf(s)ds,(2.14)

\sigma g(t) = (H  \star \sigma yf )(t) :=

\int t

0
H(t - s)\sigma yf (s)ds,(2.15)

where we assume each gi,j is drawn from the same distribution across all synapses. The g(t)
equation is derived by using the Tonelli--Fubini theorem [24] to pass the expectation through
the integral in (2.2):

g(t) = E
\biggl[ \int t

0
H(t - s) \cdot yf(s)ds

\biggr] 
=

\int t

0
H(t - s)E [yf(s)] ds

=

\int t

0
H(t - s) \cdot yf(s)ds.

The derivation of the \sigma g(t) equation, on the other hand, is more complicated. Namely, it is
true if the autocorrelation coefficient \rho yf (s1, s2) \approx 1, as shown by [55]. Indeed, following the
derivation from [55], rewriting the variance using the normalized autocorrelation coefficient of
yf(t) at times s1 and s2, \rho yf (s1, s2), we have that

V ar (H  \star yf) (t) = E
\biggl[ \int t

0
H(t - s) \cdot yf(s)ds - 

\int t

0
H(t - s) \cdot yf(s)ds

\biggr] 2
= E

\biggl[ \int t

0
H(t - s) \cdot (yf(s) - yf(s))ds

\biggr] 2
= E

\biggl[ \int t

0
H(t - s1)(yf(s1) - yf(s1))ds1

\int t

0
H(t - s2)(yf(s2) - yf(s2))ds2

\biggr] 
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SCN MEAN-FIELD FIRING-RATE MODEL 99

= E
\biggl[ \int t

0

\int t

0
H(t - s1)H(t - s2) \cdot (yf(s1) - yf(s1))(yf(s2) - yf(s2))ds1ds2

\biggr] 
=

\int t

0

\int t

0
H(t - s1)H(t - s2) \cdot E

\bigl[ 
(yf(s1) - yf(s1))(yf(s2) - yf(s2))

\bigr] 
ds1ds2

=

\int t

0

\int t

0
H(t - s1)H(t - s2) \cdot \rho yf (s1, s2)\sigma yf (s1)\sigma yf (s2)ds1ds2.

The convolution integral, however, only depends on the last few seconds because for t - s \geq 
2 seconds, H(t  - s) is on the order of machine precision. But, assuming circadian phase
varies slowly (on the scale of hours), yf should vary slowly enough that it is approximately
constant on the scale of the convolution integral. Therefore, the autocorrelation coefficient
\rho yf (s1, s2) \approx 1 for times s1, s2 within about 2 seconds of one another, and thus

V ar (H  \star yf) \approx 
\int t

0

\int t

0
H(t - s1)H(t - s2)\sigma yf (s1)\sigma yf (s2)ds1ds2

=

\int t

0
H(t - s1)\sigma yf (s1)ds1

\int t

0
H(t - s2)\sigma yf (s2)ds2

=

\biggl( \int t

0
H(t - s)\sigma yf (s)ds

\biggr) 
2,

which yields (2.15).
For computational simplicity, we rewrite the convolution integrals (2.14) and (2.15) as

differential equations:

g\prime \prime =  - 2\tau  - 1g\prime  - \tau  - 2g + \tau  - 1eg0yf(t),(2.16)

\sigma g
\prime \prime =  - 2\tau  - 1\sigma g

\prime  - \tau  - 2\sigma g + \tau  - 1eg0\sigma yf (t).(2.17)

The veracity of these differential equations is easily checked (see Appendix E).

2.2.3. Statistics for total synaptic conductance (\bfitG ). From the statistics for synaptic
conductance g, we calculate total synaptic conductance Gi of neuron i by treating it as
the compound random variable Gi =

\sum Nsyn,i

j=1 gj,i, where Nsyn,i is the number of incoming
synaptic connections and gj,i is the conductance induced at the synapse in neuron i by the jth
synaptic connection. Then, if we assume Nsyn,i and gj,i to be uncorrelated for all synapses
j = 1, . . . , Nsyn,i incoming into neuron i, we have

G(t) = N syng(t),(2.18)

where Nsyn is the average number of incoming synapses to a neuron across the network.
To compute the standard deviation, \sigma G(t), of the total synaptic conductance, we assume

that gj,i(t) for all j = 1, . . . , Nsyn,i are pairwise conditionally uncorrelated with one another
given Nsyn,i. This means that for all i, j, l,

E[gj,igl,i| Nsyn,i] = E[gl,i| Nsyn,i]E[gj,i| Nsyn,i].(2.19)
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100 ALEXANDER G. GINSBERG AND VICTORIA BOOTH

We further need to assume that gj,i(t) for all j = 1, . . . , Nsyn,i are independent of Nsyn,i.
Or, more simply we could replace these two assumptions with the stronger assumption that
gj,i(t) for all j = 1, . . . , Nsyn,i and Nsyn,i form a mutually independent collection of random
variables. In either case, it suffices to calculate the mean and variance of G for a single neuron,
and we have from the law of total variance that

V ar[G] = E [V ar(Gi| Nsyn,i)] + V ar (E [Gi| Nsyn,i])

= E

\left[  V ar

\left(  Nsyni\sum 
j=1

gj,i| Nsyn,i

\right)  \right]  + V ar

\left(  E

\left[  Nsyn,i\sum 
j=1

gj,i| Nsyn,i

\right]  \right)  
= E

\left[  Nsyn,i\sum 
j=1

V ar (gj,i| Nsyn,i) +

Nsyn,i\sum 
j=1;j \not =l

(E[gj,igl,i| Nsyn,i] - E[gl,i| Nsyn,i]E[gj,i| Nsyn,i])

\right]  
+ V ar

\left(  Nsyn,i\sum 
j=1

E [gj,i| Nsyn,i]

\right)  ,

where we use the definition of the variance to expand and simply the first term on the right-
hand side. Using (2.19) to further simplify the first term on the right-hand side above, and
using the independence of gj,i(t) and Nsyn,i for all j = 1, . . . , Nsyn,i to remove the condition-
ality, we have that

V ar[G] = E

\left[  Nsyn,i\sum 
j=1

V ar (gj,i| Nsyn,i)

\right]  + V ar

\left(  Nsyn,i\sum 
j=1

E [gj,i| Nsyn,i]

\right)  
= E

\left[  Nsyn,i\sum 
j=1

V ar (gj,i)

\right]  + V ar

\left(  Nsyn,i\sum 
j=1

E [gj,i]

\right)  .

Assuming that each Nsyn,i is drawn from the same distribution, just as we have assumed for
each gj,i, we can drop the subscripts from the preceding calculation, obtaining that

V ar[G] = E
\bigl[ 
Nsyn\sigma 

2
g

\bigr] 
+ V ar (Nsyng)

= \sigma 2
gE [Nsyn] + g2V ar (Nsyn) ,

and thus obtaining the expression for the variance of G as appears in [55]:

\sigma 2
G(t) = V ar(Nsyn)(g(t))

2 +Nsyn\sigma 
2
g(t).(2.20)

While (2.18) and (2.20) give the statistics needed for our model algorithm, the preceding
discussion does not specify the shape of the distribution beyond its first and second moments.
However, if Nsyn is large and V ar(Nsyn) is small, then Nsyn,i \approx N >> 0, some large constant
for all neurons i, and we can invoke the central limit theorem to conclude that G is roughly
normally distributed. If, on the other hand, such conditions fail to hold, yet the distributions
of g and Nsyn are known, one may instead obtain the shape of the distribution of G in terms
of its characteristic function \phi G (see Appendix C).
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SCN MEAN-FIELD FIRING-RATE MODEL 101

2.2.4. Joint distribution of (\bfitG , \vec{}\bfitP ). We have now discussed how one may find the mar-
ginal distribution of (G, \vec{}P ) with respect to G, but to define (2.10)--(2.13), one must determine
the full joint distribution \gamma t(\vec{}x) of the stochastic process (G(t), \vec{}P (t)) at time t. To do so,
we assume that G, and the parameters P1, P2, . . . , PM constituting \vec{}P , are independent (see
further comments in the Discussion). Hence, the joint probability distribution function \gamma t at
time t is

\gamma t(\vec{}x) = PDFG(t)(x1) \cdot PDFP1(t)(x2) . . . PDFPm
(xm+1),(2.21)

where PDFX(t)(\cdot ) represents the probability density function at time t of a stochastic process

X(t) for which the random variable Xt is defined by Xt = X(t) with mean X(t) and standard
deviation \sigma X(t) at time t.

A summary of our mean-field firing-rate model is given in section 2.3, below.

2.3. Model summary. Evolve synaptic conductance statistics g(t) and \sigma g(t) as per
(2.16)--(2.17):

g\prime \prime =  - 2\tau  - 1g\prime  - \tau  - 2g + e\tau  - 1eg0yf(t),

\sigma g
\prime \prime =  - 2\tau  - 1\sigma g

\prime  - \tau  - 2\sigma g + \tau  - 1eg0\sigma yf (t),

where yf(t) and \sigma yf (t) are given by (2.12)--(2.13):

yf(t) =

\int 
U
Y F (\vec{}x)\gamma t(\vec{}x)d\vec{}x,

\sigma 2
yf (t) =

\int 
U
[Y F (\vec{}x) - yf(t)]2\gamma t(\vec{}x)d\vec{}x,

and \vec{}x represents values of (G(t), \vec{}P (t)). Firing-rate statistics are obtained at each time by
(2.10)--(2.11):

f(t) =

\int 
U
F (\vec{}x)\gamma t(\vec{}x)d\vec{}x,

\sigma f (t) =

\int 
U
[F (\vec{}x) - f(t)]\gamma t(\vec{}x)d\vec{}x.

Calculation of yf(t), \sigma yf (t), f(t), and \sigma f (t) requires previous identification of

1. the neuronal firing rate F and the product of F and the synaptic gating Y , Y F , as
functions of total synaptic conductance G and parameters \vec{}P
\bullet Computed by numerically integrating the single neuron model and synaptic gating

equation over relevant ranges of G and \vec{}P , and linearly interpolating or fitting a
polynomial to the data as appropriate.

2. the joint probability distribution \gamma t of (G(t), \vec{}P (t))
\bullet Assume that G and the components P1(t), . . . , Pm(t) of \vec{}P (t) are independent to

obtain (2.21):

\gamma t(\vec{}x) = PDFG(t)(x1) \cdot PDFP1(t)(x2) . . . PDFPm
(xm+1).
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102 ALEXANDER G. GINSBERG AND VICTORIA BOOTH

\bullet To calculate the statistics for G, make the simplifying assumptions (see section 2.2)
to obtain (2.18) and (2.20):

G(t) = N syng(t),

\sigma 2
G(t) = V ar(Nsyn)(g(t))

2 +Nsyn\sigma 
2
g(t).

3. Applying the firing-rate model to the SCN. We implement the mean-field firing-
rate model formalism described above to simulate time-varying circadian modulation of SCN
population activity. To do so, we must describe the following, as discussed below:

\bullet The parameters \vec{}P representing neural and synaptic characteristics that vary across
the network (excluding parameters that specify network connectivity).

\bullet The neuronal firing rate F and the synaptic gating Y , as functions of total synaptic
conductance G and parameters \vec{}P .

\bullet The joint distribution \gamma t of (G(t), \vec{}P (t))
Values for parameters and quantities used to apply the model to the SCN are given in

Table 2 in Appendix A, and Appendix B gives details of the numerical methods used.

3.1. Parameters \vec{}\bfitP which vary across the SCN network. As discussed in the introduc-
tion, we consider two sources of heterogeneity in the SCN network. One is heterogeneity in the
GABA reversal potential of SCN neurons (EGABA) which affects the response to GABAergic
synaptic input. For simplicity, we assume that all synaptic inputs in the SCN are GABAergic
and that EGABA is constant for each neuron across the circadian cycle. The other source
of heterogeneity in the SCN network is the circadian phase experienced by different neurons
across the SCN. To describe this circadian phase, we use the quantity R(t), which is a mea-
sure of the activity in the molecular clock of individual SCN neurons, and which varies with
a 24-hour period corresponding to the circadian cycle [17].

Hence, in applying the formalism to the SCN, we define \vec{}P (t) as

\vec{}P (t) = (R(t), EGABA).(3.1)

3.2. Neuron firing rate (\bfitF ) and synaptic gating (\bfitY ) functions for the SCN network.
To compute the neuron firing rate function F , we use the conductance-based SCN neuron
model of Diekman et al. [17] governed by

C
dV

dt
= Isyn  - INa  - IK  - ICaL  - ICaNonL  - IKCa(R) - IK - leak(R) - INa - leak.(3.2)

This Hodgkin--Huxley-type model contains spike-generating Na+ and K+ currents, two inward
Ca2+ currents, a Ca2+-dependent K+ current and Na+- and K+-mediated leak currents. This
model replicates the firing responses of SCN neurons across the circadian cycle by accounting
for the effects of circadian clock genes and proteins on membrane K+ currents. Specifically,
the circadian proxy parameter R(t) modulates the conductance of the Ca2+-dependent K+

current IKCa and the K+-mediated leak current IK - leak. Low values of R correspond to
circadian phases in the night and result in no firing or low firing rates in response to low
values of input, while higher R values correspond to circadian phases in the middle of the
day and can result in DLAMO firing and DB states and generally lead to higher signalling
strength (Figure 3).
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SCN MEAN-FIELD FIRING-RATE MODEL 103

Figure 3. Diverse firing and synaptic gating behavior at different circadian phases in the biophysical SCN
neuron model [17]. Voltage V (t) traces (left axes, solid blue lines) and synaptic gating \^y(t) as a function
of V (t) (right axes, dashed red lines) for values of the circadian proxy R and external applied current Iapp
exhibiting four firing regimes. (a) A neuron at rest, with circadian proxy R =  - 5 and applied current Iapp = 2
\mu A/cm2. Such behavior fails to induce postsynaptic current and is expected of SCN neurons at night [5]. (b)
A neuron with R =  - 5 and Iapp = 8 \mu A/cm2, exhibiting typical action potential (AP) firing. Such behavior
results in large synaptic gating during the AP and is expected in circadian morning and circadian evening [5].
(c) A neuron with R = 4 and Iapp = 8 \mu A/cm2, exhibiting DLAMOs, where the membrane voltage oscillates
roughly sinusoidally at depolarized voltages. Such behavior decreases synaptic gating and is observed in some
neurons around circadian mid-day. (d) A neuron exhibiting DB, with R = 5 and Iapp = 8 \mu A/cm2, observed
in some SCN neurons in circadian afternoon [5], where membrane voltage is constant and elevated due to too
much excitation, often resulting in nonzero synaptic gating.

GABAergic synaptic current is modeled as

Isyn(t) = G(t) \cdot (EGABA  - V (t)).(3.3)

Synaptic gating \^y is modeled as in [16, 20]:

d\^y

dt
= ar \cdot 

1

(1 + exp( - (V (t) - ( - 20))/3))
\cdot (1 - \^y) - ad \cdot \^y,(3.4)
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104 ALEXANDER G. GINSBERG AND VICTORIA BOOTH

where ar and ad characterize the rise and decay rates, respectively, of synaptic gating in
response to presynaptic neuron voltage V (t). See Appendix D for full equations and parameter
values.

To explicitly obtain the functions F and Y (defined by (2.9)), values of F (G,R,EGABA)
and Y (G,R,EGABA) were computed for each combination of G, R, and EGABA on the 201-
by-201-by-201 rectangular grid for G \in [0, 1], R \in [ - 8.5, 8.5], and EGABA \in [ - 110, 0]. We
did so by numerically integrating (3.2) and (3.4), holding G, R and EGABA constant until
the numerical solution settled down to a stationary state. Level surfaces of the resulting data
F (G,R,EGABA), Y (G,R,EGABA) and the product Y F (G,R,EGABA) for different values of
EGABA are shown in Figure 4. In this figure, boundaries between the different firing regimes---
AP firing, DLAMO, DB, and resting---are indicated.

EGABA = −110 mV EGABA = −55 mV EGABA = 0 mV

Figure 4. Level surfaces (for fixed EGABA) of firing rate function F (G,R,EGABA) (top row), synaptic
gating function Y (G,R,EGABA) (middle row), and their product Y F (G,R,EGABA) (bottom row) for EGABA =
 - 110 ( 1st column),  - 55 ( 2nd column), and 0 mV ( 3rd column). Regions of each panel between magenta lines
correspond to AP firing activity, whereas regions between white lines correspond to DLAMOs, regions between
gray lines and the edges of the panel correspond to DB, and the remaining regions correspond to resting. Synaptic
gating Y varies in these regions (row 2): in AP firing, Y \sim 0.965; in DLAMOs, Y \sim 0.965 near the boundary
between AP firing and DLAMOs, but rapidly decays away from the boundary; in DB, the firing rate is zero but
synaptic gating ranges from about 0 to about 0.9. When the neuron is at rest, both F and Y are zero.
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SCN MEAN-FIELD FIRING-RATE MODEL 105

Generally, higher values of EGABA have a depolarizing effect on neural activity. For
instance, when EGABA =  - 110 mV for all neurons in the simulation (leftmost column),
synaptic currents are exclusively inhibitory, causing neurons to exit excited states such as
DB, DLAMOs, and AP firing as G increases, and significantly reducing the size of (G,R)
phase space in which such excited states occur. When EGABA =  - 55 mV (middle column),
synaptic currents are primarily inhibitory, so that neural activity is in a resting state for high G
values, but the region of (G,R) phase space corresponding to each firing regime is significantly
larger. On the other hand, when EGABA = 0 mV (rightmost column), synaptic currents are
primarily excitatory, leading to AP firing for low values of R, and to DB for sufficiently
large total synaptic conductances G at all values of R. Hence, for lower values of EGABA,
increasing G generally increases inhibition due to synaptic currents, pushing neurons from the
more excited states, DB, DLAMOs, or AP firing, to the least excited state, resting. Increasing
G at higher values of EGABA, on the other hand, increases excitation due to synaptic currents,
having the opposite effect on neural activity.

3.3. Joint distribution for \bfitG (\bfitt ), \bfitR (\bfitt ), and \bfitE \bfitG \bfitA \bfitB \bfitA for the SCN network. To apply
the model formalism to the SCN network, we write the joint probability distribution function
\gamma t at time t given by (2.21) using the parameters composing \vec{}P (t):

\gamma t(x, y, z) = PDFG(t)(x) \cdot PDFR(t)(y) \cdot PDFEGABA
(z).

For the EGABA distribution, we follow [16] and assume a normal distribution across the SCN,
with a mean of  - 55 mV and standard deviation of 7 mV.

For the time-varying circadian proxy parameter R(t), we let R vary periodically in the
range [ - 5, 5] over a circadian period, as suggested in [16]. To model this simply, we assume
that for any neuron, j, its R value, Rj(t), varies sinusoidally, driven by circadian phase \theta j(t):

Rj(t) = Rampl sin(\theta j(t)).(3.5)

We take each \theta j(t) to follow a Gaussian distribution with mean \theta (t) varying linearly over a
circadian period from 0 to 2\pi . In this way, \theta = 3\pi /2 corresponds to the trough in circadian
activity, for example. We further assume that the standard deviation \sigma \theta of the Gaussian
distribution is constant with respect to time. The distribution of Rj(t) is then inherited from
the distribution of \theta j(t) according to (3.5). For computational expediency, we consider a
``circadian"" period of about 43 seconds, as this is the minimal period needed to eliminate
hysteresis in model variables across the cycle.

Finally, for the G distribution, we make the assumptions under which (2.20) holds and
G is normally distributed with mean and standard deviation given by (2.18) and (2.20),
respectively. To use such equations, though, we must calculate the mean Nsyn and variance
V ar(Nsyn) of the number of presynaptic neurons impinging on each neuron. To carry out the
calculation, we use that the SCN has roughly 20,000 neurons [1], N = 10, 000 per hemisphere.
We also use that there are about 3 - 12 \cdot 106 [25] synaptic connections per SCN half, with [39]
putting the number of synapses closer to the higher end of that range at 11 \cdot 106. Further, since
each synaptic connection represents 1 outgoing connection (from the presynaptic neuron) and
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106 ALEXANDER G. GINSBERG AND VICTORIA BOOTH

1 incoming connection (to the postsynaptic neuron), there are 11,000,000 incoming synaptic
connections, and the average number of incoming synapses for SCN neurons should be

Nsyn =
\#Incoming Synaptic Connections

\#Neurons
= 1,100.

We recognize that some recent studies such as [47] suggest that Nsyn should be closer to 10.
Nevertheless, we have opted to use Nsyn = 1,100 until a consensus in the SCN community has
been reached, noting that a reduction in Nsyn leads to similar results after compensating by
making a proportional increase in coupling strength g0.

In any case, to use (2.20) for the variance of G, observe that if the SCN were to be
modeled as a Poisson random graph with probability that any two neurons share a synapse
being p = Nsyn/N = 0.11, then via basic properties of expectations and variances,

V ar(Nsyn) = Nsyn \cdot (p - p2) = 979.

On the other hand, if, for instance, the number of incoming synapses to SCN neurons follows
a pure exponential distribution pk = (1  - r)kr, where 1 > r > 0 is an unspecified constant,
then

Nsyn = 1/r,

V ar(Nsyn) = (1 - r)/r2 = Nsyn
2
(1 - 1/Nsyn) = Nsyn

2  - Nsyn,

and hence if Nsyn = 1,100,

V ar(Nsyn) \approx 1,1002.

V ar(Nsyn) is also \approx 1,1002 if the underlying distribution is log-normal, a common assumption
for cortical brain areas [9]. We explore the effects of changing V ar(Nsyn) in section 4.2.

4. Results. Here we present numerical results for our mean-field firing-rate model ap-
plied to the SCN network, considering variation of different neural and network parameters,
including maximum synaptic conductance, mean and variance of synaptic reversal potentials,
variance of circadian phases across the population, and variance of the number of incoming
synapses per cell. We consider different amplitudes of the circadian proxy parameter R(t) to
illustrate different ranges of neural activity across the circadian cycle caused by the diverse
firing states of the SCN neuron model. We summarize the effects of changing these parameters
on the SCN firing rate statistics in Table 1 and validate the model results against a spiking
neuronal network in Appendix F.

4.1. Effect of changing \bfitg \bfzero . To investigate effects of changing maximum synaptic con-
ductance g0, we consider four different values of g0 (in mS

cm2 ): 10 - 6 (very weak), 10 - 5 (weak),
10 - 4 (middling strength), and 5 \cdot 10 - 4 (strong). To isolate the effects of g0, we take EGABA =
 - 55mV for all neurons in the network (\sigma EGABA = 0) and let all neurons have the same
circadian phase (\sigma \theta = 0) with R values that vary periodically with different amplitudes
(Rampl = 5, 3, and 1). We illustrate our findings in Figure 5.
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SCN MEAN-FIELD FIRING-RATE MODEL 107

Table 1
Summary of effects of various parameters on SCN network firing rate statistics across the circadian cycle.

Parameters correspond to columns, the types of effects on firing rate statistics correspond to rows, and the entry
in each box designates the type of correlation between the corresponding parameter and corresponding aspect of
firing-rate statistics. A ``+"" indicates positive correlation, a `` - "" indicates negative correlation.

g0 EGABA V ar(Nsyn) \sigma \theta \sigma EGABA

Minimum of f -- or none -- or none -- or none + + or none

Maximum of f -- or none + -- -- --

Amplitude of f Variable Variable Variable -- --
Minimum of \sigma f + or none None None + -- or none
Maximum of \sigma f + or none + + + --
Amplitude of \sigma f + + -- -- Variable
Amplitude of mid-day dip -- Variable Variable -- +

As expected, increasing g0 from weak coupling to stronger coupling generally leads to
higher mean firing rates as well as higher standard deviations in firing rates. However, for
large Rampl (left column) and particularly for stronger coupling, firing rates dip at peak R(t),
the assumed circadian mid-day, due to neuronal activity entering the DLAMO region, thus
leading to a decrease in synaptic signaling. For smaller Rampl (middle column), firing rates
plateau at ``mid-day"" but still dip for sufficiently large g0, whereas for still smaller Rampl

values (right column), firing rates vary nearly sinusoidally, with firing rates being significantly
lower for strong coupling than weaker coupling.

To clarify the process by which g0 influences firing rates, the trajectories of mean net-
work conductance G(t) across the R(t) cycle are plotted on the neuronal firing rate surface
F (G,R,EGABA) (curves in panels G--I). From such plots, it is clear that maximum synaptic
conductance g0 greatly affects which neuronal firing regions are sampled as R(t) varies. These
plots also clarify the observed behavior of standard deviations in the firing rates. Notably,
comparing panels G--I to the standard deviations in panels D--F, there is a nonzero standard
deviation when the total synaptic conductances G are well above zero (see black and green
curves in panels G--I). Moreover, peak standard deviations in panels D and E for stronger
g0 occur when G(t) nears the boundary of firing regimes. For instance, in panels G and H,
firing-rate standard deviations are large near transitions from zero to nonzero firing rates,
and remain elevated until G(t) is firmly in the DLAMO regime. Further, for lowest Rampl

(panel I), the (G(t), R(t)) trajectory remains near the threshold for AP firing throughout the
circadian cycle for strong coupling, resulting in nonzero standard deviations. These higher
standard deviations arise because when we integrate over the G distribution to calculate the
standard deviations of the firing rates, we integrate over the transition from action potential
firing to rest.

4.2. Effect of changing \bfitV \bfita \bfitr (\bfitN \bfits \bfity \bfitn ). Assuming a different network structure in the
SCN without changing the number of neurons or synapses changes V ar(Nsyn), the variance
in the number of incoming synapses per SCN neuron. In Figure 6, we consider 4 differ-
ent values for V ar(Nsyn) representing different network connectivity structures but assuming
N = 10, 000 neurons in the network and Nsyn = 1,100 incoming synapses per neuron on
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108 ALEXANDER G. GINSBERG AND VICTORIA BOOTH

Figure 5. Effect of maximum synaptic conductance g0 on network firing rate and standard deviation.
(a--f) Mean firing rates f(t) (first row) and standard deviations of firing rates \sigma f (t) ( 2nd row) over multiple
R(t) cycles (circadian period shortened to \approx 43s) for 4 different values of maximum synaptic conductance g0
(in mS

cm2 ) ranging from strong coupling ( g0 = 5 \cdot 10 - 4, black curves) to weak coupling ( g0 = 10 - 6, blue curves).
Three amplitudes of circadian variation are simulated, Rampl = 5 (left column), 3 (middle column), and 1 (right
column). (g,h) (G(t), R(t)) trajectories are plotted (solid lines) on the neuronal firing rate surface F (G,R, - 55)
for the same values of g0 as in (a--f). Dashed lines represent boundaries between firing regimes, as in Figure
4. In all panels, EGABA =  - 55 mV, and there is zero variance in circadian phase across the network.

average. Specifically we consider V ar(Nsyn) = 0 representing a network where all neurons
receive the same number of incoming synapses, V ar(Nsyn) = 979 corresponding to a Poisson
distribution in Nsyn characteristic of Poisson random graphs, V ar(Nsyn) = 1.21 \cdot 106 cor-
responding roughly to exponential or log-normal distributions for Nsyn, and V ar(Nsyn) =
9.79 \cdot 106 corresponding roughly to the maximum possible variance according to the inequality
V ar(Nsyn) \leq (Nsyn,max  - Nsyn)(Nsyn  - Nsyn,min) where Nsyn,min and Nsyn,max, the smallest
and largest possible values of Nsyn, are 0 and 10, 000, respectively. As seen in the figure,
increasing V ar(Nsyn) slightly reduces firing-rate amplitudes but can increase firing-rate stan-
dard deviations considerably. For example, when Rampl = 5, increasing V ar(Nsyn) from
1.21 \cdot 106 to 9.76 \cdot 106 more than doubles firing-rate standard deviations.
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SCN MEAN-FIELD FIRING-RATE MODEL 109

Figure 6. Effect of V ar(Nsyn), the variance in the number of presynaptic neurons per SCN neuron, on net-
work firing rate and standard deviation given weak coupling ( g0 = 5\cdot 10 - 5). (a--f) In the top row and middle row,
firing rates and firing-rate standard deviations, respectively, are graphed for each of four values of V ar(Nsyn).
(g,h) (G(t), R(t)) trajectories are plotted (solid lines) on the neuronal firing rate surface F (G,R, - 55) for the
same values of V ar(Nsyn) as in (a--f). Dashed lines represent boundaries between firing regimes, as in Figure 4.
The left, middle, and right columns correspond to values of 5, 3, and 1, respectively, for Rampl, simulated over
two shortened circadian cycles. In all panels, EGABA =  - 55 mV, and there is zero variance in both circadian
phase and GABA reversal potential across the network.

4.3. Effect of circadian phase distribution. Introducing variance in the circadian phases
of neurons in the SCN network results in a distribution of R values. In Figure 7, circadian
phase standard deviation \sigma \theta values of 0 (no variation), 0.3 (middling), 0.6 (somewhat large),
and 0.9 (very large) radians are considered. Increasing \sigma \theta strongly reduces the amplitude of
firing-rate oscillations. Even for the largest Rampl, increased \sigma \theta removes the ``mid-day"" dip
because the spread in R(t) values attenuates the influence of DLAMO and DB behaviors on
overall firing rate. Additionally, increasing circadian phase standard deviation keeps firing
rates above zero throughout the R(t) cycle. Standard deviations in firing rate are higher with
increased \sigma \theta and remain elevated throughout the circadian cycle for largest \sigma \theta .

4.4. Effect of \bfitE \bfitG \bfitA \bfitB \bfitA distribution. From our simulations, the standard deviation in
EGABA, \sigma EGABA, has nonnegligible effects on firing-rate statistics mainly for large maximal
synaptic conductances (g0 \geq 10 - 4 nS/cm2). However, even with strong synaptic coupling,
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110 ALEXANDER G. GINSBERG AND VICTORIA BOOTH

Figure 7. Effect of introducing variance in circadian phase (given g0 = 5 \cdot 10 - 5 m
cm2 , EGABA =  - 55mV ,

and \sigma EGABA = 0mV ). (a--f) In the top row and middle row, firing rates and firing-rate standard deviations,
respectively, are graphed for each of four values of \sigma \theta . (g,h) (G(t), R(t)) trajectories are plotted (solid lines)
on the neuronal firing rate surface F (G,R, - 55) for the same values of \sigma \theta as in (a--f). Dashed lines represent
boundaries between firing regimes, as in Figure 4. The left, middle, and right columns correspond to Rampl

values of 5, 3, and 1, respectively, simulated over two shortened circadian cycles.

introducing a distribution in EGABA only slightly dampens firing-rate oscillation amplitude
(Figure 8). Indeed, as displayed in panels (a--c), firing rates corresponding to higher values
of \sigma EGABA have slightly lower peaks mid-day and higher troughs in the evening (for lowest
Rampl, right column). More visible are the changes in firing-rate standard deviation, where
increasing \sigma EGABA significantly increases firing-rate standard deviations especially during
mid-day of the circadian cycle (panels (d--f) of Figure 8). Further simulations (not shown)
attempting to isolate the effect of \sigma EGABA on firing-rate statistics suggest that, particularly for
weaker coupling strengths, increasing \sigma EGABA primarily plays a role in increasing firing-rate
standard deviations around circadian mid-day.
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SCN MEAN-FIELD FIRING-RATE MODEL 111

Figure 8. Effect of introducing standard deviation in EGABA given strong coupling ( g0 = 5 \cdot 10 - 4 mS
cm2 ,

EGABA =  - 55mV , and \sigma \theta = 0.1). (a--f) In the top row and middle row, firing rates and firing-rate standard
deviations, respectively, are graphed for each of four values of \sigma EGABA. (g,h) (G(t), R(t)) trajectories are
plotted (solid lines) on the neuronal firing rate surface F (G,R, - 55) for the same values of \sigma EGABA as in
(a--f). Dashed lines represent boundaries between firing regimes, as in Figure 4. The left, middle, and right
columns correspond to Rampl values of 5, 3, and 1, respectively.

4.5. Combined effects of distributions in circadian phase and \bfitE \bfitG \bfitA \bfitB \bfitA . Here we con-
sider the presumably more physiologically accurate condition where there are distributions of
circadian phase and GABA reversal potential across the SCN network. Given a more realistic
\sigma EGABA = 7 along with strong coupling g0 = 5 \cdot 10 - 4 and some variance in \sigma \theta (Figure 9),
we see firing-rate oscillations qualitatively similar to those without any variance in EGABA

(\sigma EGABA = 0) but still with variance in circadian phase, as in Figure 7. With variance in
both circadian phase and EGABA, firing rates are generally several hertz lower than with only
variance in \sigma \theta , have means with somewhat lower peaks and higher troughs mid-day, and no
secondary peaks at mid-day. Moreover, the standard deviations of firing rates are considerably
larger than in Figure 7, particularly for small \sigma \theta values and at mid-day in the circadian cycle.
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112 ALEXANDER G. GINSBERG AND VICTORIA BOOTH

Figure 9. Role of changing variance in circadian phase given significant variance in EGABA and strong
coupling between neurons ( g0 = 5 \cdot 10 - 4 mS

cm2 , EGABA =  - 55mV , \sigma EGABA = 7mV ). (a--f) In the top row and
middle row, firing rates and firing-rate standard deviations, respectively, are graphed for each of four values of
\sigma EGABA. (g,h) (G(t), R(t)) trajectories are plotted (solid lines) on the neuronal firing rate surface F (G,R, - 55)
for the same values of \sigma EGABA as in (a--f). Dashed lines represent boundaries between firing regimes, as in
Figure 4. The left, middle, and right columns correspond to Rampl values of 5, 3, and 1, respectively.

This suggests that while \sigma \theta has larger effects on mean firing rates than does \sigma EGABA, both
variances increase firing-rate standard deviations, with \sigma EGABA having a larger effect than \sigma \theta 
at mid-day.

5. Discussion. We have introduced a mean-field firing-rate formalism for a population
of neurons whose electrophysiological characteristics, such as firing responses and synaptic
current reversal potentials, are modeled as probability distributions across the network. Such
distributions arise in our formalism from variability in underlying network parameters, such as
network connectivity, or in the case of the mammalian SCN, molecular clock phase, and GABA
reversal potential. In applying the formalism to the SCN, not only have we incorporated
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SCN MEAN-FIELD FIRING-RATE MODEL 113

variation in circadian phases and GABA reversal potentials across SCN neurons, but we have
incorporated into the model the unusual firing activity of SCN neurons, including DLAMOs
and DB. In doing so, we have provided and illustrated an unusually flexible firing-rate model
formalism which accounts for more varied and complex neuronal properties than is typical of
standard firing-rate models.

5.1. Advantages of our mean-field firing-rate formalism. Indeed, the primary advantage
of our model is that it allows any electrophysiological properties which can be incorporated
into an underlying single-neuron model to vary roughly on a continuum across the network.
In other words, our model can incorporate heterogeneity in far more diverse ways than can
other firing-rate models. To start, our model allows for arbitrary degree distributions in the
underlying neuronal network, that is, in the number of synapses impinging on postsynaptic
neurons, thereby including the primary source of heterogeneity in firing-rate models appearing
in the review [15], although our model does not include any noise terms. Further, our model
expands upon the treatment of the two sources of heterogeneity appearing in the famous
Wilson--Cowan model [53]. One such source of heterogeneity is that one population of neurons
is excitatory while the other is inhibitory. Our model, on the other hand, by assuming varying
GABAergic reversal potentials, allows PSCs to excite/inhibit postsynaptic neurons to different
degrees within a single population! The other source of heterogeneity in the Wilson--Cowan
model is that the firing thresholds of neurons differ. Our model also accounts for variable firing
thresholds and variable types of firing activity by allowing parameters such as R and EGABA

underlying individual neuronal dynamics to vary. In doing so, our model also captures the
heterogeneities in the ``intrinsic frequencies"" of neurons in Ott--Antonsen derived oscillator
models appearing in [38] or [10] and expands upon this by allowing for different types of
activity such as DLAMOs.

To capture all those heterogeneities, our model directly incorporates the dynamics of
individual neurons through model variables and the deterministic ``transfer"" functions F (G, \vec{}P )
and Y (G, \vec{}P ) describing the firing-rate and gating of synaptic efficacy, respectively, for a neuron
with total synaptic conductance G and parameters \vec{}P . Consequently, our model allows for the
neuronal dynamics to be complex, so long as F and Y may be computed from appropriate
single-neuron models. Only a few other firing-rate models have successfully incorporated
complex neuronal dynamics into firing-rate models, including the convolutional model with
averaging of Zandt et al. [55], the population density Fokker--Planck equation model employing
Fokker--Planck equations (FPEs) [12], and the ``master equation"" FPE model [11].

A further advantage is that our model describes the mean and variance of firing rates of
neurons across the network without attempting to calculate the full probability distribution.
In this sense, our model can capture the effects of heterogeneity among neurons in the network
better than models that only describe the means, such as classic firing-rate models, including
``convolutional models."" Describing the variance of firing-rates also informs us about the
coherence of the signals output by the modeled network, which has potentially important
physiological outcomes, particularly for the SCN (see section 5.2). Such descriptions are
therefore lacking from models that describe only mean firing rates, including the Wilson--
Cowan model [53], the heuristic but influential model of Da Silva [14], and the model of
Amari [2]. Nevertheless, such convolutional models remain popular, being used to model
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114 ALEXANDER G. GINSBERG AND VICTORIA BOOTH

neurological processes in a variety of contexts, including sleep-wake dynamics [18], modeling
the developing spinal cord [48], and more generally in summarizing the behavior of spiking
neural networks [27].

On the other hand, there are firing-rate models which directly output both the means and
standard deviations of the firing rates across the network just as our model does, of which
the most relevant to this discussion is that of Zandt et al. [55]. Other models describe even
more information about the variability in firing rates across the network---they describe the
full probability distribution of firing rates. Such models are known as population density or
FPE models. Well-known examples include the foundational model of Nykamp and Tranchina
[44], the ``master equation"" approach of El Boustani and Destexhe [19], and those presented
in the review by Deco et al. [15]. While these models provide more information about the
effects of heterogeneities, they have largely not yet been used to describe heterogeneities as
varied as the SCN network requires.

Despite these advantages, our model formalism does not account for varying synaptic
strengths across the network. Instead, we considered a homogeneous maximum synaptic
conductance g0 for all synaptic connections. Alternatively, heterogeneous synaptic strengths
could be included in our formalism by considering a weighted sum for the total synaptic
conductance Gi(t) in (2.4). For two cases, we can include weighted synaptic strengths directly
in the derivation of the model. For the case where all outgoing synapses from a presynaptic
neuron have the same weight, a scaling factor wj can be included within the summation of
(2.4). For the model derivation, the product of the synaptic gating and firing-rate functions
Y F (G(t), \vec{}P ) in (2.12) and (2.13) would be scaled by this synaptic weight and its distribution
would be included in the joint distribution \gamma t (defined in (2.21)). For the second case where
all incoming synapses to a postsynaptic neuron have the same weight, a scaling factor wi can
be included within the summation of (2.4). For the model derivation, the statistics of the
distribution of wi would be incorporated into the distribution of total synaptic conductance
G(t) in (2.18) and (2.20), thus modifying the distribution of G(t) in (2.21). For the case of
completely heterogeneous synaptic strengths, it is possible to extend the model formalism and
derive appropriate statistics for total synaptic conductance [55]. However, implementation of
the model for this case would depend on the specific weighted connectivity matrix for the
network.

Our model formalism also does not include a spatial component and thus cannot account
for differences in firing behavior between different portions of a network of neurons. Firing-rate
models which include spatial dependencies are typically called neural field models. Examples
of neural field models include that of Amari [2], one of the earliest well-known neural field
models, and more recently the model of wandering ``bumps"" by Bressloff [6]. Accounting for
spatial distributions of firing rates could improve analysis of SCN network firing activity, as
the SCN is divided into dorsal (shell) and ventral (core) regions, which some evidence suggests
could form functionally distinct compartments within the SCN [54]. Extending our formalism
to account for spatial statistics of firing rates may be considered in future work.

5.2. Summary of effects of SCN cellular variation. To apply our mean-field firing-
rate formalism to the SCN, we have considered the scenario where SCN firing rates exhibit
daily rhythmic oscillations, as observed experimentally in recordings of SCN neural activity
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SCN MEAN-FIELD FIRING-RATE MODEL 115

[8, 34, 35, 36, 50]. To generate rhythmic oscillations, we have forced periodic variation in the
circadian proxy parameter R(t). However, the best time profile for R(t) to accurately simulate
the effects of the molecular clock on the electrophysiological properties of SCN neurons has
not been identified. Hence, we have simply modeled R(t) as sinusoidally varying. Further-
more, experimental recordings of SCN electrical activity indicate that its rhythmic oscillations
can vary under different conditions, such as light intensity [3] and seasonality [50]. Thus, we
have considered multiple sinusoidal time profiles for R(t) which induce the various ranges of
activity levels that can be generated by the different firing states observed in the single SCN
neuron model.

We have investigated the effects of variation in SCN network properties by simulating the
model under a variety of values for four physiologically relevant parameters: synaptic coupling
strength (g0), variance in the number of synapses incoming to SCN neurons (V ar(Nsyn)), stan-
dard deviation in GABA reversal potential (\sigma EGABA), and standard deviation in circadian
phase (\sigma \theta ). We have also investigated the effects of varying mean GABA reversal potential
(EGABA), shown in Appendix G. The primary effects of changing these parameters are re-
flected in the maximum, minimum, and amplitude of oscillations of mean firing rates f and
standard deviations in firing rates \sigma f across the simulated circadian cycle. Interestingly, we
also find that parameter variation affected the occurrence of a ``mid-day"" dip in mean firing
rates. The observed effects of these parameters on firing-rate statistics are summarized in
Table 1.

Of all the observed effects on firing rates, perhaps the most physiologically significant are
the effects on the amplitude of firing-rate oscillations across the circadian cycle. Indeed, our
results highlight mechanisms which shrink the amplitudes of oscillations in SCN firing rates.
Decreased amplitude of SCN firing-rate cycling has been observed in aged rodents [23], and
would likely lead to reduced amplitude of behavioral circadian rhythms. Such blunting of
behavioral circadian rhythms has likewise been associated with aging [22, 28] as well as with
neurodegenerative diseases such as Alzheimer's disease [13, 31, 45] and Parkinson's Disease
[13, 31, 49, 52].

Our results indicate that increasing \sigma \theta , the standard deviation in circadian phases across
SCN neurons, strongly decreases the amplitude of firing rates. In terms of our model, this
happens because upon increasing standard deviations in circadian phase, the range of neuron
firing states grows wider. Indeed, with a large standard deviation in circadian phase, in the
middle of the circadian night, a typical neuron might be at rest, but other neurons whose
phases correspond to earlier or later circadian times could be in the AP firing regime, thus
increasing the minimum average firing rate. Similarly, lower average firing rates may occur in
the middle of the circadian day due to some neurons firing at lower frequencies. Physiologically,
wider standard deviations in circadian phase would correspond to desynchronization in the
molecular clocks of SCN neurons. Desynchronization of gene expression rhythms in the SCN
has been observed in aged rodents [43] and also in rodents in response to abrupt shifts in the
light:dark cycle, as would occur with jet lag [42].

Another parameter whose growth reduced the amplitude of firing rates is \sigma EGABA, the
standard deviation of GABA reversal potentials across the SCN network. GABAergic neu-
rotransmission is fundamental in the SCN [40] and consists of both synaptic GABA currents
as well as extrasynaptic tonic GABA-receptor mediated currents [37]. Differences in the
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116 ALEXANDER G. GINSBERG AND VICTORIA BOOTH

locations of synaptic and extrasynaptic GABA receptors and in the local chloride concen-
trations may lead to differences in effective GABA reversal potentials. In our formalism,
accounting for variance in EGABA can reflect such diversity of GABA-mediated signaling in
the network. Moreover, wider variations in EGABA values lead to wider variations in synaptic
signaling and thus firing responses across the network. However, large effects of \sigma EGABA on
mean firing rates were observed only when coupling strength between neurons was high, i.e.,
when total synaptic conductance was high.

While coupling strength g0 had some effect on the amplitude of oscillations in mean SCN
firing rates, its effects were more nonlinear than those of other parameters. Most notable is
that g0 mainly affects firing rates near circadian ``mid-day."" This is because the coupling g0
between two neurons only matters when the presynaptic neuron is active. Since most SCN
neurons are intrinsically active at times near ``mid-day,"" whereas few neurons are active near
circadian ``midnight,"" neuronal signaling has the largest capacity to be influenced by g0 near
``mid-day."" In particular, for low values of g0, mean firing rates show three peaks around
``mid-day,"" one shortly before ``mid-day,"" a second at circadian maximum (i.e., for maximal
R), and the third shortly after mid-day. These peaks reflect variations in activity and synaptic
signaling as R(t) and G(t) values traverse the DLAMO region of the F (G,R,EGABA) surfaces.
Increasing g0 from weak coupling reduces and eventually eliminates the second peak at ``mid-
day,"" resulting in a ``mid-day"" dip in firing rates.

Variability in the level of high SCN neural activity, including dips, has been observed in
recordings of SCN neural firing activity particularly under long photoperiods [41, 50]. While
the significance of such mid-day dips in SCN firing rates is unclear, we speculate that they
could contribute to the well-documented increased tendency to sleep in afternoons [7] and the
afternoon dip in alertness [33] in humans.

Other phenomena predicted by our model are that the standard deviations of firing rates
are highly variable, varying in patterns similar to the variations in firing rates but often surging
at circadian ``sunrise"" and ``sunset."" Tracking trajectories of total synaptic conductances show
that these surges occur when neural firing states approach and cross boundaries between
firing regimes---where sunrise corresponds to the transition from rest to AP firing, and sunset
corresponds to the transition from AP firing to rest. Recordings of individual SCN neural
activity show high variance, particularly in the dorsal region, with some units reaching peak
firing at the transition when lights turn on or off, in contrast to the majority of units firing
during lights on [8]. The high firing-rate variance at these transitions suggests that SCN
signaling may become more incoherent and perhaps contribute to ``sundowning"" [30], in which
certain neuropsychiatric conditions become exacerbated in dementia patients, for example, at
or around sunset. There is evidence that sundowning is mediated by degeneration of the SCN
[30] and can be improved with bright light therapy which increases amplitude and reduces
variance in SCN neural activity [3].

Outside of this surging tendency at boundaries between firing regimes, firing-rate standard
deviations were strongly positively correlated with the total synaptic conductance G. Hence,
increasing parameters which increased total synaptic conductance, such as maximum synaptic
conductance g0, tended to increase standard deviations of firing rates. Firing-rate standard
deviations also increased as standard deviations in EGABA, in circadian phases, and in Nsyn

increased. Notably, the increase in firing-rate standard deviation as V ar(Nsyn) increased
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SCN MEAN-FIELD FIRING-RATE MODEL 117

appeared to be the only strong effect on network firing-rate statistics of changing the network
connectivity structure, when average connection density N syn was held constant.

5.3. SCN model limitations. Despite the potential predictive power of our model, our
results have several limitations. In particular, we have assumed that the mean circadian proxy
R(t) varies sinusoidally throughout the day. As mentioned above, this assumption captures the
observed oscillations in firing characteristics of SCN neurons [4, 5] and generates the observed
oscillations in firing rates [8, 34, 35, 36, 50]. However, a more accurate time profile for R(t)
may be determined by matching experimental data on the time course of daily changes in SCN
firing properties with the effects of R on firing state in the SCN neuron model. Existing data
provides information on SCN neural firing at different time points across the day, and current
work is focused on estimating the appropriate continuous time profile to capture this data.
Further work is needed, however, to understand how external light schedules may influence
the course of SCN neuron firing patterns across the day.

Model results would also be improved by incorporating additional distributions of prop-
erties of SCN neurons. For example, variation in the period of the molecular circadian clocks
across the SCN could be included. It may also be appropriate to incorporate spatial hetero-
geneity into our model. Indeed, as mentioned earlier in the Discussion, it may be appropriate
to model the SCN as two populations---one population each for the dorsal (core) and ventral
(shell) portions of the SCN. Not only may these regions play functionally different roles in the
SCN [54], but important neuronal properties may differ between these regions. For instance,
EGABA is typically lower in the ventral than the dorsal SCN [16], and differences in circadian
phases between the dorsal and ventral SCN have been reported [21].

Further, studies such as [1] indicate that ventral SCN neurons have more functional con-
nections than do dorsal SCN neurons. This in turn suggests that neurons in the ventral SCN
may share a larger number of synaptic connections with other SCN neurons than do dorsal
SCN neurons. Due to the larger number of synapses, ventral SCN neurons would likely ex-
perience more synaptic signaling and thus higher total synaptic conductances G than dorsal
SCN neurons. Because ventral SCN neurons, as mentioned above, also have lower values of
EGABA, there would be an anticorrelation between G and EGABA in the SCN. Such anticorre-
lation would violate the assumption of independence we have made to calculate the probability
distribution of (G,R,EGABA) across SCN neurons, potentially altering predicted mean firing
rates.

Finally, even if such assumptions of independence are not violated, it is not clear what
the distribution of the total synaptic conductance G, alone, should be at any particular time.
Indeed, even though we have provided conditions that would make G normally distributed,
such conditions require that V ar(Nsyn) be much smaller than Nsyn, which is unknown. Nev-
ertheless, the aforementioned functional connectivity study finds that functional connections
in the SCN follow a power-law degree distribution [1], which, if also true of the synaptic
connections, would help us better understand the distribution of G.

Also potentially affecting the distribution of G and SCN firing activity in general is the
presence of gap junctions in the SCN. Indeed, it has been shown that gap junctions play a
role, in particular, in synchronizing SCN neurons [51]. However, our model only takes into
account chemical synapses in its current formulation and, as it only summarizes firing-rate
statistics, is not able to directly account for synchrony between SCN neurons.
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118 ALEXANDER G. GINSBERG AND VICTORIA BOOTH

5.4. Conclusions. Despite the limitations, our mean-field firing-rate model for the SCN
network makes predictions about the effects on population firing statistics of the unique prop-
erties of the SCN neural network, such as circadian phase effects on firing state, distributions of
GABA reversal potentials, and modulation of synaptic signaling due to atypical neuron firing
states. In doing so, our model clarifies how these properties can lead to circadian disruptions,
such as the blunted circadian rhythm amplitude associated with aging and neurophysiological
diseases. More generally, our model formalism provides a new method to capture the effects of
heterogeneity in the electrophysiological properties across neurons on the network firing-rate
statistics.

Appendix A. Parameters for the application to the SCN. In Table 2 below, we sum-
marize the abbreviations, default values, valid range, and default units for parameters used to
apply the model specifically to the SCN. Note that some parameters have parameter ranges
outside of which our model does not function. Namely, Rampl, EGABA, and \sigma EGABA are re-
stricted by the values of R and EGABA over which we have calculated Y (G,R,EGABA) and
F (G,R,EGABA). On the other hand, \sigma \theta , and g0 make the model impractically slow or subject
to noise if they exceed the parameter range.

Table 2
Summary of parameters for the application to the SCN: In the table, [\mathrm{a}], [\mathrm{b}], [\mathrm{c}], [\mathrm{d}] indicate that re-

spective values are due to [1], [39], [16], and [55]. [\mathrm{e}] Indicates that in particular, we need that \sigma EGABA \leq 
1
5
max(| EGABA + 110)| , | EGABA| ), or else when integrating over the EGABA distribution when calculating ex-

pectations of firing rates, we exceed the valid parameter range. The maximum value of \sigma EGABA therefore is 11
mV, occurring when EGABA =  - 55 mV.

Parameter Abbreviation Default Range Units

Number of neurons in
simulation

N 10,000[\mathrm{a}] - Number of neurons

Average number of
synapses into a neuron

Nsyn 1,100[\mathrm{b}] - Number of synapses

Variance in the number
of synapses into neurons

V ar(Nsyn) 979 0 -- (N  - Nsyn)Nsyn Number of synapses

Circadian proxy R Rampl sin(\theta (t))  - 8.5 -- 8.5 N/A

Circadian proxy
amplitude

Rampl 5[\mathrm{c}] 0 -- 8.5 N/A

Mean circadian phase \theta Time dependent 0 -- 2\pi Radians
Standard deviation in
circadian phase

\sigma \theta 0.1 0 -\approx 3 Radians

Mean GABA reversal
potential

EGABA  - 55[\mathrm{b}]  - 110 -- 0 mV

Standard deviation in
EGABA

\sigma EGABA 7[\mathrm{b}] 0 -- 11[\mathrm{e}] mV

Maximum synaptic
conductance

g0 5 \cdot 10 - 4 0 -- \approx 10 - 2 nS/cm2

Synaptic time constant \tau 34[\mathrm{d}] - ms
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SCN MEAN-FIELD FIRING-RATE MODEL 119

Appendix B. Numerical simulations. All simulations were conducted using MATLAB,
and code is available upon request to the authors.

The convolutions used to find the statistics for synaptic conductance, g, rewritten as
differential equations, were solved using an Euler-step algorithm. Notably, switching to more
stable algorithms such as Runge--Kutta in no cases significantly improved the smoothness of
solutions. Further, at times the step-size for the Euler-step algorithm had to be reduced to
increase the smoothness of solutions.

The data underlying the F -G-R-EGABA, Y -G-R-EGABA, and Y F -G-R-EGABA surfaces
was generated by solving the Hodgkin--Huxley type differential equations of Diekman [17] over
about 2 seconds for roughly 6,000,000 combinations of G,R, and EGABA values. To do so we
took advantage MATLAB's parallel computing capabilities by running the code on the Great
Lakes Computing Cluster using 12 cores over the course of about 20 hours.

To extrapolate from this data to the continuous functions F (G,R,EGABA) and
Y (G,R,EGABA), we linearly interpolated piecewise between data points. However, to reduce
numerical noise introduced by integrating over piecewise linear interpolations of the original
data in simulations for model results, polynomial fits of F (G,R,EGABA) and Y F (G,R,EGABA)
data, as well as of the corresponding boundaries between firing regimes, were computed for
each firing regime present when EGABA =  - 55 mV. In simulations of our firing-rate model
where EGABA =  - 55 mV for all neurons in the network, these fits were used instead of the
linear interpolations of the data. In particular, the polynomial fits can be seen in the fig-
ures displaying model simulations where \sigma EGABA = 0 and EGABA =  - 55 mV (Figures 5--7,
and the second column of Figure 11). Fits for each firing regime seen in F (G,R, - 55) and
Y F (G,R, - 55) as well as for the corresponding boundaries were made using MATLAB's ``fit""
command, using a mixture of built-in and custom fit-types.

Finally, to calculate the integrals for standard deviations and means of firing rates f
and yf , we used trapezoidal integration modified to take into account the sparsity of and to
interpolate over the F -G-R-EGABA and Y F -G-R-EGABA surfaces. To further increase the
speed of our algorithm, we only integrated within five standard deviations of the center of the
distributions for G, R, and EGABA, as the contributions of the integrand from other values of
G, R, and EGABA were negligibly small in our simulations.

Appendix C. Characteristic function for total synaptic conductance. The character-
istic function for total synaptic conductance G may be used to specify the shape of the G
distribution and is a function of the statistics for Nsyn and g. In particular, if we strengthen
our assumptions that gj,i(t) for j = 1, . . . Nsyn,i are pairwise uncorrelated with one another
and are independent of Nsyn,i by instead assuming that gj,i(t)for j = 1, . . . , Nsyn,i and Nsyn,i

form a mutually independent collection of random variables, we have that the characteristic
function is

\phi G(x) = E
\Bigl[ 
eixG(t)

\Bigr] 
= E

\Bigl[ 
eix

\sum Nsyni
j=1 gj,i

\Bigr] 
= E

\Bigl[ 
\Pi 

Nsyni

j=1 eixgj,i
\Bigr] 

= E
\Bigl[ 
E
\Bigl[ 
\Pi 

Nsyni

j=1 eixgj,i | Nsyn,i

\Bigr] \Bigr] 
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120 ALEXANDER G. GINSBERG AND VICTORIA BOOTH

= E
\Bigl[ 
\Pi 

Nsyni

j=1 E
\bigl[ 
eixgj,i | Nsyn,i

\bigr] \Bigr] 
= E

\Bigl[ 
\Pi 

Nsyni

j=1 E
\bigl[ 
eixg

\bigr] \Bigr] 
= E

\bigl[ 
(\phi g(x))

Nsyn
\bigr] 
,

and hence

\phi G = \scrG Nsyn
(\phi g),

where \scrG Nsyn
, the probability generating function of Nsyn, is determined exclusively by the

degree distribution of the network.

Appendix D. Single-cell SCN neuron model. Diekman's single-cell SCN neuron model
[17] states that the membrane voltage V of an SCN neuron is modeled by

C
dV

dt
= Iapp  - INa  - IK  - ICaL  - ICaNonL  - IKCa(R) - IK - leak(R) - INa - leak,

where C = 5.7 pF, voltage is in mV, and membrane currents Ix in pA are given in Table 3.

The gating variables q = m,h, n, rL, rNonL, fNonL follow

dq

dt
=

q\infty (V (t)) - q(t)

\tau q(V (t))
,

the gating variable s follows

ds

dt
=

s\infty (Cas(t)) - s(t)

\tau q(Cas(t))
,

fL follows

fL =
K1

K2 + Cas(t)
,

Table 3
Formulas (2nd column) for ionic currents (1st column) and corresponding constants (3rd and 4th columns)

as appearing in the single neuron model of [17].

Current (pA) Formula Max conductance (nS) Reversal potential (mV)

INa gNam
3(t)h(t) \cdot (V (t) - ENa) gNa = 229 ENa = 45

IK gKn4(t) \cdot (V (t) - EK) gK =3 EK =  - 97
ICaL gCaLrL(t)fL(Cas(t)) \cdot (V (t) - ECa) gCaL = 6 ECa = 54
ICaNonL gCaNonLrNonL(t)fNonL(t) \cdot (V (t) - ECa) gCaNonL = 20 ECa = 54
IKCa(R) gKCa(R)s2(t) \cdot (V (t) - EK) gKCa = 198

1+exp(R)+2
EK =  - 97

IK - leak(R) gK - leak(R) \cdot (V (t) - EK) gK - leak = 0.2
1+exp(R)

EK =  - 97

INa - leak gNa - leak \cdot (V (t) - ENa) gNa - leak = 0.0576 ENa = 45
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SCN MEAN-FIELD FIRING-RATE MODEL 121

Table 4
The gating variables (2nd column) involved in the dynamics of each type of ionic current (1st column).

The 3rd and 4th columns describe the activation functions and the time constants for each gating variable.

Current type (pA) Gating variable q q\infty \tau q

INa m 1
1+exp( - (V (t)+35.2)/8.1)

exp( - (V (t) + 286)/160)

INa h 1
1+exp((V (t)+62)/2)

0.51 + exp( - (V (t) + 26.6)/7.1)

IK n 1
[1+exp( - (V (t) - 14)/17)]0.25

exp( - (V (t) - 67)/68)

ICaL rL
1

1+exp( - (V (t)+36)/5.1)
3.1

ICaNonL rNonL
1

1+exp( - (V (t)+21.6)/6.7)
3.1

ICaNonL fNonL
1

1+exp((V (t)+260)/65)
exp( - (V (t) - 444)/220)

IKCa(R) s 107(Cas)
2

107(Cas)2+5.6
500

107(Cas)2+5.6

where K1 = 3.93E  - 5mM, K2 = 6.55E  - 4mM, and Cas follows

dCas
dt

=  - ks(ICaL(t) + ICaNonL(t)) - Cas/\tau s + bs,

where ks = 1.65E - 4 mM/fC and bs = 5.425E - 4 mM/ms. Steady state activation functions
q\infty and time constants \tau q for the gating variables are given in Table 4.

Appendix E. Verification of differential equations. We show that the convolutions from
(2.14) and (2.15),

g(t) = H  \star yf = (H  \star yf)(t) =

\int t

0
H(t - s)yf(s)ds,

\sigma g(t) = (H  \star \sigma yf )(t) =

\int t

0
H(t - s)\sigma yf (s)ds,

may be written as the differential equations from (2.16) and (2.17),

g\prime \prime =  - 2\tau  - 1g\prime  - \tau  - 2g + e\tau  - 1g0yf(t),

\sigma g
\prime \prime =  - 2\tau  - 1\sigma g

\prime  - \tau  - 2\sigma g + e\tau  - 1g0\sigma yf (t).

To verify these equations, observe that

d

dt

\biggl[ \int t

0
H(t - s)yf(s)ds

\biggr] 
=

d

dt

\biggl[ \int t

0
e \cdot g0

t - s

\tau 
e - (t - s)/\tau yf(s)ds

\biggr] 
=

g0e

\tau 

d

dt

\biggl[ 
e - t/\tau t

\int t

0
es/\tau yf(s)ds - e - t/\tau 

\int t

0
ses/\tau yf(s)ds

\biggr] 
=

g0e

\tau 

\biggl[ 
e - t/\tau 

\biggl( 
1 - t

\tau 

\biggr) \int t

0
es/\tau yf(s)ds+ tyf(t) - 

\biggl( 
 - e - t/\tau 

\int t

0

s

\tau 
es/\tau yf(s)ds+ tyf(t)

\biggr) \biggr] 
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=
g0e

\tau 

\biggl[ 
e - t/\tau 

\biggl( 
1 - t

\tau 

\biggr) \int t

0
es/\tau yf(s)ds+

1

\tau 
e - t/\tau 

\int t

0
ses/\tau yf(s)ds

\biggr] 
= e - t/\tau g0e

\tau 

\biggl[ \biggl( 
1 - t

\tau 

\biggr) \int t

0
es/\tau yf(s)ds+

1

\tau 

\int t

0
ses/\tau yf(s)ds

\biggr] 
=

g0e

\tau 

\int t

0

\biggl( 
1 - t

\tau 
+

s

\tau 

\biggr) 
e - (t - s)/\tau yf(s)ds

and

d2

dt2

\biggl[ \int t

0
H(t - s)yf(s)ds

\biggr] 
=

g0e

\tau 

\Biggl( 
e - 

t

\tau 

 - \tau 

\biggl[ \biggl( 
1 - t

\tau 

\biggr) \int t

0
e

s

\tau yf(s)ds+
1

\tau 

\int t

0
se

s

\tau yf(s)ds

\biggr] 
+e - 

t

\tau 

\biggl[ 
d

dt

\biggl( \biggl( 
1 - t

\tau 

\biggr) \int t

0
e

s

\tau yf(s)ds

\biggr) 
+

t

\tau 
e

t

\tau yf(t)

\biggr] \biggr) 
= e - 

t

\tau 
g0e

\tau 

\biggl[ \biggl( 
t

\tau 2
 - 1

\tau 

\biggr) \int t

0
e

s

\tau yf(s)ds - 1

\tau 2

\int t

0
se

s

\tau yf(s)ds - 1

\tau 

\int t

0
e

s

\tau yf(s)ds

+

\biggl( 
1 - t

\tau 

\biggr) 
e

t

\tau yf(t) +
t

\tau 
e

t

\tau yf(t)

\biggr] 
= e - t/\tau g0e

\tau 

\biggl[ \biggl( 
t

\tau 2
 - 2

\tau 

\biggr) \int t

0
es/\tau yf(s)ds - 1

\tau 2

\int t

0
ses/\tau yf(s)ds+ et/\tau yf(t)

\biggr] 
= e - t/\tau g0e

\tau 

\biggl[ \biggl( 
t

\tau 2
 - 2

\tau 

\biggr) \int t

0
es/\tau yf(s)ds - 1

\tau 2

\int t

0
ses/\tau yf(s)ds

\biggr] 
+

g0e

\tau 
yf(t)

= e - t/\tau g0e

\tau 

\biggl[ \biggl( 
t

\tau 2
 - 2

\tau 

\biggr) \int t

0
es/\tau yf(s)ds - 1

\tau 2

\int t

0
ses/\tau yf(s)ds

\biggr] 
+

g0e

\tau 
yf(t)

=  - e - t/\tau g0e

\tau 2

\biggl[ \biggl( 
2 - t

\tau 

\biggr) \int t

0
es/\tau yf(s)ds+

1

\tau 

\int t

0
ses/\tau yf(s)ds

\biggr] 
+

g0e

\tau 
yf(t)

=  - g0e

\tau 2

\int t

0

\biggl( 
2 - t

\tau 
+

s

\tau 

\biggr) 
e - (t - s)/\tau yf(s)ds+

g0e

\tau 
yf(t),

and thus

d2

dt2

\biggl[ \int t

0
H(t - s)yf(s)ds

\biggr] 
+

2

\tau 

d

dt

\biggl[ \int t

0
H(t - s)yf(s)ds

\biggr] 
+

1

\tau 2

\int t

0
H(t - s)yf(s)ds - g0e

\tau 
yf(t)

=
g0e

\tau 2

\int t

0

\biggl[ 
 - 
\biggl( 
2 - t

\tau 
+

s

\tau 

\biggr) 
+ 2

\biggl( 
1 - t

\tau 
+

s

\tau 

\biggr) 
+

\biggl( 
t - s

\tau 

\biggr) \biggr] 
e - (t - s)/\tau yf(s)ds

= 0,

as desired. An analagous argument shows that (2.15) may be rewritten as (2.17).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/0

6/
23

 to
 1

41
.2

11
.4

.2
24

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



SCN MEAN-FIELD FIRING-RATE MODEL 123

Appendix F. Validating model results against a spiking neuronal network. To validate
the predictions of our firing-rate model, we simulated a network of biophysical model SCN
neurons. The 100-cell network has connectivity similar to the networks underlying results
shown in Figures 5--10. In particular, synaptic structure is based on a Poisson random graph
with 11\% connectivity. The dynamics of each neuron is modeled using the Hodgkin--Huxley-
type SCN neuron model from (3.2), and GABAergic synaptic gating was modeled with (3.4).
Total synaptic conductance G(t) for each neuron is computed by linearly summing synaptic
gating variables over all presynaptic neurons and multiplying by a maximum synaptic con-
ductance g0. The value of g0 is chosen to be 0.5/Nsyn nS/cm2, similar to the value used in the
firing-rate model. This results in values of G(t) between 0 and roughly 0.5 nS/cm2. Synaptic
current in each postsynaptic cell is modeled by (3.3) where V (t) is the membrane potential of
the postsynaptic cell.

To validate the ability of the firing-rate model to capture the effects of heterogeneities
in the spiking network model, we simulate the spiking network model for two combinations

Figure 10. Comparison of firing-rate model results to activity in a spiking neuronal network. Mean firing
rates (top row) and standard deviations (bottom row) for the firing-rate model (red curves) and for a network
of 100 SCN model neurons (black curves). (a,c) No variance in circadian phases or EGABA (\sigma \theta = 0 and
\sigma EGABA = 0 mV). (b,d) \sigma \theta = 0.9 and \sigma EGABA = 7 mV as in Figure 9. In the firing-rate model, g0 = 5 \cdot 10 - 4

nS/cm2, Rampl = 5, Nsyn = 1,100 and V ar(Nsyn) = 979.
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of standard deviations in circadian phase values, \sigma \theta , and in GABA reversal potential values,
\sigma EGABA. Specifically, we simulate a network with no variance in circadian phases or EGABA

(\sigma \theta = 0 and \sigma EGABA = 0 mV) and a network where the variances were set to their largest
values considered in Figure 9 (\sigma \theta = 0.9 and \sigma EGABA = 7 mV). In both these networks, mean
EGABA was set to -55 mV, the amplitude Rampl of the circadian proxy was 5, and in the latter
network both EGABA and circadian phase followed Gaussian distributions.

To compare the firing-rate statistics of the firing-rate model to the average activity of the
spiking network, we calculate the mean f and standard deviations \sigma f of the firing rates across
the spiking network. To do so, we bin the spiking activity into 0.125 seconds intervals, count
the number of spikes for each neuron in each bin, and divide the spike counts by the bin width
to arrive at time-varying, mean firing rates for each neuron. We then compute the mean and
standard deviations of cellular firing rates across all neurons during each bin.

As shown in Figure 10, the firing-rate statistics of the spiking network qualitatively repro-
duce the predictions of our firing-rate model. In particular, the peaks and troughs of f and
\sigma f predicted by the spiking network occur roughly at the same time as those predicted by
our firing-rate model. Moreover, each model's predictions of f typically differ by only up to a
few hertz for both the simulation with \sigma \theta = 0 and \sigma EGABA = 0 mV and the simulation with
\sigma \theta = 0.9 and \sigma EGABA = 7 mV. However, while both models' predictions of \sigma f have similar
magnitudes, it should be noted that since the spiking network is small and the simulation
time is relatively short (lasting 100 seconds), the magnitudes of \sigma f predicted by the spiking
network increase with decreasing bin width. Consequently, comparisons between \sigma f output
by the two types of models are best made qualitatively.

Appendix G. Effect of changing \bfitE \bfitG \bfitA \bfitB \bfitA . The effects of EGABA on network synaptic
conductance and firing rates are shown in Figure 11 where three different values of EGABA

are considered:  - 80 mV,  - 55 mV, and  - 32 mV. To isolate the effects of changing EGABA, we
assume there to be no variance in circadian phase \sigma \theta = 0 or in EGABA itself (\sigma EGABA = 0). We
find that higher values of EGABA lead to higher firing rates, with a ``mid-day"" dip occurring
for the largest Rampl (left column) when maximum synaptic conductance is at a moderate
level (g0 = 5 \cdot 10 - 4 mS/cm2). For lower Rampl, the mid-day dip is flattened out since network
activity doesn't reach the DLAMO region (middle column), and for smallest Rampl, firing rate
varies approximately sinusoidally. Firing-rate standard deviations (middle row) remain small,
except for brief spikes as network activity transitions between AP firing and subthreshold
regimes.
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Figure 11. Effect of EGABA on firing rates when variance in EGABA and circadian phase are not present
and synaptic coupling is weak, fixed at g0 = 5 \cdot 10 - 5 for all neurons. (a--f) Mean firing rates f(t) (first row) and
standard deviations of firing rates \sigma f (t) ( 2nd row) over multiple R(t) cycles (shortened circadian cycles) for
3 different values of GABA reversal potential EGABA (in mV),  - 55 mV likely being the mean EGABA in the
SCN. Three amplitudes of circadian variation are simulated, Rampl = 5 (left column), 3 (middle column), and
1 (right column). (g--i) Trajectories (G(t), R(t)) are plotted on the neuronal firing rate surface F (G,R, - 55)
for the same values of EGABA as in (a--f). Firing-rate standard deviations tend to be largest near transitions
between firing regimes.
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