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Density functional theory (DFT) within the local or semilocal density approximations, i.e., the local density

approximation (LDA) or generalized gradient approximation (GGA), has become a workhorse in the electronic

structure theory of solids, being extremely fast and reliable for energetics and structural properties, yet remaining

highly inaccurate for predicting band gaps of semiconductors and insulators. The accurate prediction of band

gaps using first-principles methods is time consuming, requiring hybrid functionals, quasiparticle GW, or quan-

tum Monte Carlo methods. Efficiently correcting DFT-LDA/GGA band gaps and unveiling the main chemical

and structural factors involved in this correction is desirable for discovering novel materials in high-throughput

calculations. In this direction, we use DFT and machine learning techniques to correct band gaps and band-edge

positions of a representative subset of ABO3 perovskite oxides. Relying on the results of HSE06 hybrid functional

calculations as target values of band gaps, we find a systematic band-gap correction of ∼1.5 eV for this class

of materials, where ∼1 eV comes from downward shifting the valence band and ∼0.5 eV from uplifting the

conduction band. The main chemical and structural factors determining the band-gap correction are determined

through a feature selection procedure.

DOI: 10.1103/PhysRevB.106.155156

I. INTRODUCTION

The band-gap and band-edge positions (i.e., ionization

energy and electron affinity) are basic properties of semi-

conductors and insulators, and often dictate the suitability of

materials for device applications. Their prediction, based on

first-principles methods, is key to novel materials discovery.

Density functional theory (DFT) calculations [1,2] based on

the local density approximation (LDA) [3] or generalized

gradient approximation (GGA) [4,5] are often used to pre-

dict stable crystal structures, with lattice parameters within

1–2% of the experimental values [6,7]. These calculations are

extremely fast and scalable, permitting the study of the ener-

getic and structural properties of thousands of materials with

relatively modest computing resources and in relatively short

times, playing a central role in current materials discovery

research efforts based on high-throughput computation. How-

ever, when standard LDA or GGA functionals are employed,

band gaps (Eg) predicted by DFT are severely underestimated

in comparison to experimental values [8–11]. Predicting Eg of

semiconductors and insulators requires going beyond LDA or

GGA approximations in DFT, making the calculations much

more involved and computationally expensive.

*These authors contributed equally to this work.
†janotti@udel.edu
‡bmedasan@pppl.gov

Methods that accurately predict band gaps are very expen-

sive with respect to both computational resources and wall

time. The simplest approach is to mix Fock exchange with

GGA exchange in a hybrid functional [12–15], partially cor-

recting the self-interaction error in DFT-LDA/GGA, giving

band gaps very close to the experimental values for many ma-

terials [16–19]. This increases the computation time 10-fold

compared to DFT-LDA/GGA calculations. More formally

rigorous approaches would be to use the Green’s function

quasiparticle GW [20–22] or the wave-function-based quan-

tum Monte Carlo [23–25] method, yet at the expense of at

least an extra order of magnitude in computational time. As a

result, these are not generally amenable to high-throughput

computational approaches, posing a stringent obstacle to

novel materials discovery.

Machine learning (ML) techniques have emerged as pow-

erful tools in materials science research, with applications in

a variety of directions, such as prediction and classification

of crystal structures [26–31] and building predictive models

of various materials properties [32–35]. Recent efforts also

include predicting band gaps, however with limited accu-

racy [36–40]. A straightforward direction would be to predict

band gaps using the DFT-GGA band structures available in the

AFLOW database [41] as a training set for machine learning

approaches. However, this would have limited use considering

that the predicted band gaps would still be severely underes-

timated. Or one could use DFT+U [42] for band gaps, with

2469-9950/2022/106(15)/155156(6) 155156-1 ©2022 American Physical Society



WEI LI et al. PHYSICAL REVIEW B 106, 155156 (2022)

computational costs similar to those of DFT-LDA/GGA; the

problem is what value of U to choose and the justification

of applying U to dispersive valence and conduction bands.

An interesting approach involves crystal graph convolutional

neural networks (CGCNNs) based on atomic connections

in the crystal structure after being trained using DFT band

gaps [38]. However, this method was also trained and aimed

at DFT-GGA band gaps. Recently, reports on automated,

high-throughput calculations of band gaps based on a hybrid

functional have appeared in the literature [43–46], pointing

toward more reliable predictions of band gaps, yet the nature

and size of the band-gap corrections from the DFT-GGA

values have not been discussed or analyzed.

In this work, we developed machine learning models for

mapping band gaps computed with DFT-GGA into band

gaps with a higher accuracy Heyd–Scuseria–Ernzerhof (HSE)

functional HSE06 hybrid functional. We chose perovskite ox-

ides as an example to demonstrate the applicability of our

approach. Oxide perovskites are a class of compounds that

are of great importance in technology and basic sciences [47],

comprising semiconductors, insulators, ferromagnetic and an-

tiferromagnetic, ferroelectric, multiferroic, piezoelectric, and

high-Tc superconductor materials [48]. The wide range of

properties is often associated with the orbital character of

the bands near the Fermi level and is strongly affected by

variations in the crystal structure, such as octahedral rotations

and distortions that are associated with deviations from the

perfect cubic crystal structure [49]. The accurate prediction

of their electronic structure, band gaps, and position of the

valence and conduction bands with respect to the vacuum

level is crucial for designing novel devices. An interesting fea-

ture of ABO3 perovskite semiconductors and insulators is the

dependence of their band gaps on the metal elements A and B,

as well as on rotations and tilting of the BO6 octahedra. Here

we restricted the scope of the perovskite materials to those for

which the valence band is derived from oxygen 2p orbitals and

the conduction band is derived from A or B valence orbitals, as

indicated in Fig. 1. We did not consider perovskites where the

valence and conduction bands are determined by transition-

metal d orbitals and the gap associated with spin splitting of

d bands or d-d transitions. We explicitly included octahedral

tilting and rotations leading to tetragonal, orthorhombic, and

rhombohedral crystal structures, as shown in Fig. 1. Using a

high-throughput approach [50], we calculated the band struc-

tures of the perovskites with Perdew, Burke, and Ernzerhof

revised for solids (PBEsol) and HSE06 functionals. We ana-

lyzed the mapping of the valence-band maximum (VBM) and

conduction-band minimum (CBM) between the PBEsol and

HSE06 functionals by employing different machine learning

models. Our combined DFT-ML model predicts Eg within an

error of 0.16 eV to that of HSE-computed Eg, and reveals the

main atomic and structural factors that determine the correc-

tion to the VBM, CBM, and, consequently, Eg predicted at the

GGA level.

II. METHODS

The first-principles calculations are based on DFT within

the generalized gradient approximation of PBEsol [51] and

the projector augmented wave method [52,53] as implemented

αe

αa
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(e)

FIG. 1. Crystal structures of ABO3 perovskite prototypes and

selected A and B atoms. Crystal structure of (a) Pm3̄m cubic,

(b) I4mmm tetragonal, (c) Pnma orthorhombic, and (d) R3̄c rhombo-

hedral structures of ABO3 perovskites. Green, blue, and red spheres

represent A, B, and O atoms, respectively. (e) The apical and equato-

rial B-O-B bond angles, αa and αe. The A and B atoms selected for

this study are indicated in the Periodic Table in the lower panel.

in the Vienna Ab initio Simulation Package (VASP) [54,55].

The wave functions are expanded in plane waves with cutoff

energy of 650 eV. Structure optimizations are performed using

a 7 × 7 × 7, 7 × 5 × 7, 7 × 5 × 5, and 7 × 7 × 7 Ŵ-centered

k-point grid for the integrations over the Brillouin zones

of the cubic, tetragonal, orthorhombic, and rhombohedral

primitive cells, respectively. The screened hybrid functional

HSE06 [14,15] is employed to compute target band gaps,

using the structural parameters found using the PBEsol func-

tional. In tests, we found that PBEsol and HSE06 give lattice

parameters that differ by less than 1%, and in good agreement

with experimental values. So we neglected the differences in

the band gap calculated using the PBEsol-optimized lattice

parameters and those calculated using the HSE06-optimized

lattice parameters. Test calculations indicate that these differ-

ences are less than 0.1 eV.

We used different ML algorithms to build our band-gap

prediction model, including the linear ridge regressor, ker-

nel ridge regressor, and gradient boosted decision tree from

open-source software package SCIKIT-LEARN TOOLBOX [56].

The input to the model is comprised of atomic and struc-

tural properties, including the B-O-B apical angle αa and

B-O-B equatorial angle αe. The regression fit to the input

gives the predicted band gaps. The prediction performance of

the learning models is evaluated by the mean absolute error.

The feature importance of all the descriptors is obtained with

the gradient boosted decision tree (GBDT) to interpret the

importance of various descriptors in the training model. We

conducted a hyperparameter search for GBDT models through

grid search. The search parameters include max_tree_depth

(1, 2,..., 10), number_of_estimators (50, 100, 150,..., 1000),
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FIG. 2. Correction of the band gap of ABO3 perovskites based on HSE06 and DFT-GGA PBEsol calculations. (a) HSE06 vs PBEsol band

gaps. (b) The band-gap correction (�Eg, light green), and correction of the valence-band maximum �VBM (light blue) and conduction-band

minimum �CBM (dark red) vs HSE06 band gap. (c) Schematic of the correction of the band edge of the positions. The dashed line in (a),

placed to guide the eye, has slope equal to 1 and crosses the vertical axis at 1.5 eV.

and learning_rate (0.01, 0.02,..., 0.2). We used the default

hyperparameter values in the SCIKIT-LEARN package for train-

ing linear ridge regressor (LRR) and kernel ridge regressor

(KRR). We used MINMAX SCALING to normalize the data for

LRR and KRR. We did not normalize the raw features for

training GBDT since normalization is not necessary to GBDT

due to the tree-based model nature. We partitioned the data

such that one-third of the data is reserved for testing. For the

remaining two-thirds of the data, threefold cross validation

(two-ninths of the total data as the test set and four-tenths of

the total data as the training set at any given time) was used

for hyperparameter tuning. Our mean absolute error (MAE)

results are based on the testing data set.

III. RESULTS AND DISCUSSION

We selected 118 oxide perovskites ABO3, and for each

we considered four crystal structures, with symmetries Pm3̄m

(cubic), I4/mmm (tetragonal), Pnma (orthorhombic), and

P63/mmc (rhombohedral), as shown in Fig. 1, totaling 472

structures. The selected A and B atoms, also indicated in the

Periodic Table in Fig. 1, are A = Li, Na, K, Rb, Cs, Cu,

Ag, Au, Be, Mg, Ca, Sr, Ba, Pb, Zn, Cd, Sn, Sc,Y, La, or

Bi, and B = P, As, Sb, V, Nb, Ta, Si, Ge, Sn, Ti, Zr, Hf,

Al, Ga, In, or Tl, such that the considered compounds satisfy

valence(A) + valence(B) = 6. A data set of DFT-GGA band

gaps was constructed using this set of materials.

The four crystal structures for all ABO3 compounds were

first optimized with the DFT-GGA PBEsol functional. Then

their electronic structures were calculated using PBEsol and

HSE06. In this way, since the average electrostatic potential

is used as the reference for the Kohn-Sham band energies

and does not depend on exchange and correlation, we can

directly compare the PBEsol and HSE06 band structures,

extracting the corrections for VBM, CBM, and the band gap

(i.e., �VBM, �CBM, and �Eg). We note that for all com-

pounds studied here, the VBM for the cubic structure occurs

at the R point (0.5, 0.5, 0.5) and the CBM occurs at the Ŵ

point in the cubic Brillouin zone, characterizing an indirect

R-Ŵ fundamental band gap. For the tetragonal, orthorhombic,

and rhombohedral structures, both VBM and CBM occur at

Ŵ, characterizing a direct Ŵ-Ŵ fundamental band gap.

The calculated HSE06 band gaps vs PBEsol band gaps

are shown in Fig. 2(a). There are 383 data points selected in

the 472 materials since others are not stable according to the

to DFT calculation. First, we note that the HSE06 predicted

band gaps have a nearly linear relationship with the DFT-GGA

predicted band gaps. We applied a simple linear regression

fit using y = ax + b between the two sets of band gaps and

obtained a = 1.12 and b = 1.15. The resulting mean absolute

error (MAE) is 0.21 eV, which is comparable to the MAEs

obtained with the more complicated models presented in the

study. Since the value of a is close to 1, the data had been fit to

an even simpler model of fixed correction, y = x + b′. Fixed

correction is very appealing due to its simplicity and provides

an intuitive physical insight into the nature of the correction.

The optimal b′ was found to be 1.5 eV with an MAE of

0.32 eV. The MAE of the fixed correction model compares

well with the typical error in the DFT predicted band gaps,

even when hybrid functionals are used. The fixed correction

model implies that DFT-GGA underestimates the band gap

with respect to HSE06 by ∼1.5 eV. This is quite surprising

given that in general, DFT-LDA/GGA does not underestimate

the band gap of semiconductors and insulators by a fixed

amount [57]. The largest deviation from this trend is observed

for compounds containing Cu, Pb, and Sn occupying the A

site. In the case of Cu-B-O3 compounds, the Cu d orbitals mix

with the O 2p orbitals, pushing the VBM to higher energies.

In the case of Sn-B-O3 and Pb-B-O3, the VBM has large

contributions from Sn and Pb s valence orbitals, which also

pushes the VBM to higher energies. In all the cases where

the valence band is mostly derived from O 2p orbitals, the

approximate 1.5 eV band-gap correction fits the data quite

well.

The separated corrections �VBM and �CBM, i.e., the

amount the VBM and CBM in HSE06 differ from the VBM

and CBM in DFT-GGA, are shown in Fig. 2(b). Contrary to
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TABLE I. Mean absolute error (MAE) used to evaluate the

performance of fixed correction (FC), linear regression (LR), lin-

ear ridge regressor (LRR), kernel ridge regressor (KRR), and the

gradient boosted decision tree (GBDT) models in predicting the cor-

rections of the valence-band maximum (�VBM), conduction-band

minimum (�CBM), and band gap (�Eg) of oxide perovskites in

DFT-GGA PBEsol compared to the HSE06 values.

FC LR LRR KRR GBDT

�VBM 0.17 0.09 0.10 ± 0.01 0.09 ± 0.01 0.09 ± 0.01

�CBM 0.24 0.17 0.19 ± 0.01 0.15 ± 0.01 0.10 ± 0.003

�Eg 0.32 0.21 0.23 ± 0.02 0.20 ± 0.01 0.16 ± 0.01

common wisdom, where it is often assumed that to correct

the DFT-GGA band gap only, an upward shift of the CBM

is necessary, we find that about 2/3 of the gap correction

comes from shifting down the VBM and only about 1/3 of the

correction comes from shifting the conduction band upward.

This is attributed to large self-interaction correction of the

O 2p-derived valence bands in these materials. Again, the

outliers, where the VBM is corrected by a lesser amount,

correspond to compounds containing Cu, Sn, or Pb in the A

site. It is also interesting to note that the correction in the

VBM derived from O 2p is larger than the correction of CBM

derived from d orbitals, such as in SrTiO3 and similar com-

pounds, despite the rather flat nature of their conduction bands

that are derived from the quite localized transition-metal d

orbitals. Finally, we also note that the band-gap correction

�Eg is slightly larger than 1.5 eV for compounds with larger

band gaps, approaching 2 eV, and this is traced back to the

correction of the CBM which approaches 1 eV for compounds

with Eg � 4 eV.

Having established the band-gap correction for these oxide

perovskites, we now turn to machine learning techniques to

develop a model that correlates the �VBM, �CBM, and

�Eg corrections to atomic and structural properties of the

compounds. The atomic properties as input to the machine

learning models include electronegativity, ionization energy,

valence-orbital energies, and atomic radius of both A and

B atoms. Structural properties include octahedral tilting and

rotations that are characterized by the apical αa and equatorial

αe angles corresponding to B-O-B angles parallel and perpen-

dicular to the c axis. We employed three machine learning

models, which are the linear ridge regressor (LRR), kernel

ridge regressor (KRR), and the gradient boosted decision

tree (GBDT) regressor, as implemented in the SCIKIT-LEARN

TOOLBOX [56]. We used a regularization strength of 0.01 to

both LRR and KRR models. For the KRR method, we used a

polynomial kernel with a maximum order of 3. For the GBDT

model, we set the maximum tree depth to 5 with 500 base

estimators.

The prediction performance of the LRR, KRR, and GBDT

models can be seen in Table I. In these models, we use

two-thirds of the data as the training set. We also use the

mean absolute error (MAE) to measure the performance in

predicting �VBM, �CBM, and �Eg. Among the three mod-

els, GBDT gives the highest prediction accuracy with low

variance; the KRR model performs better than LRR. Note that

we obtain lower MAE than previous models [31,36,44,58,59],

likely due to the better quality or more uniformity of our train-

ing dataset. The results indicate that there exists a nonlinear

relation between the input properties and the target results,

explaining why the pure linear model LRR performs poorly.

Note that all three ML models predict �VBM with similar

performance, indicating that the VBM correction has a more

linear relationship with the input properties than the CBM and

Eg corrections.

What are the main atomic and structural properties that

determine the band-gap and band-edge corrections? The an-

swer is shown in Fig. 3, where the input properties are ranked

according to their contributions to the prediction accuracy

based on the mean decrease in the impurity of the GBDT

model [60]. We find that the electronegativity, the energy of

the p valence orbital of atom A, and the equatorial angle of

the octahedral rotation are the main properties that determine

�VBM. For �CBM, the main properties are the electronega-

tivity, ionization energy of atom B, and the equatorial angle of

the octahedral rotation. For more advanced feature importance

evaluation methods with higher local and global consistency

and interpretability, we refer to the literature [61,62]. We

have also applied LRR, KRR, and GBDT models to the data

by excluding the discovered less-important features for each

label, and no obvious accuracy improvement is identified.

For both �VBM and �CBM, the equatorial angle deter-

mines the overlap between the orbitals of B and O in the

directions parallel to the a-b plane, which, in turn, affect both

the VBM and CBM positions. Note that the dependence on the

apical angle αa is less than that on the equatorial angle αe since

the former affects the B-O orbital overlap only along the c

direction. Finally, we also note that the relative importance of

the electronegativity, ionization energies, and rotation angles

is higher for atom A than for atom B in determining the band

gap. This is attributed to the larger contribution of the VBM

correction than the CBM correction to �Eg.

IV. SUMMARY

Using high-throughput DFT-GGA PBEsol and HSE06

calculations, we determined the band-gap correction of a

representative set of oxide perovskites, finding that the

HSE06-based correction pushes down the valence band by

∼1 eV and pushes up the conduction band by ∼0.5 eV.

These results are then used in machine learning models that

include atomic and structural properties as input to deter-

mine the corrections to the valence band, conduction band,

and band gap. The properties used as fitting parameters are

ranked according to their relative importance to the correc-

tions. We find that the electronegativity of the A and B atoms

together with the equatorial angle of rotation of the BO6

octahedra are the main factors involved in the corrections.

These results serve as a starting point and guide to developing

machine-learning-based approaches applicable to the discov-

ery of novel electronic materials.

The datasets generated and/or analyzed during the current

study are available in the GitHub repository [63].
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FIG. 3. Feature importance in the gradient boosted decision tree (GBDT) model for determining the band-gap (�Eg) and band-edge

(�VBM, �CBM) corrections of ABO3 perovskites.
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