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Density functional theory (DFT) within the local or semilocal density approximations, i.e., the local density
approximation (LDA) or generalized gradient approximation (GGA), has become a workhorse in the electronic
structure theory of solids, being extremely fast and reliable for energetics and structural properties, yet remaining
highly inaccurate for predicting band gaps of semiconductors and insulators. The accurate prediction of band
gaps using first-principles methods is time consuming, requiring hybrid functionals, quasiparticle GW, or quan-
tum Monte Carlo methods. Efficiently correcting DFT-LDA/GGA band gaps and unveiling the main chemical
and structural factors involved in this correction is desirable for discovering novel materials in high-throughput
calculations. In this direction, we use DFT and machine learning techniques to correct band gaps and band-edge
positions of a representative subset of ABO; perovskite oxides. Relying on the results of HSEO6 hybrid functional
calculations as target values of band gaps, we find a systematic band-gap correction of ~1.5 eV for this class
of materials, where ~1 eV comes from downward shifting the valence band and ~0.5 eV from uplifting the
conduction band. The main chemical and structural factors determining the band-gap correction are determined

through a feature selection procedure.
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I. INTRODUCTION

The band-gap and band-edge positions (i.e., ionization
energy and electron affinity) are basic properties of semi-
conductors and insulators, and often dictate the suitability of
materials for device applications. Their prediction, based on
first-principles methods, is key to novel materials discovery.
Density functional theory (DFT) calculations [1,2] based on
the local density approximation (LDA) [3] or generalized
gradient approximation (GGA) [4,5] are often used to pre-
dict stable crystal structures, with lattice parameters within
1-2% of the experimental values [6,7]. These calculations are
extremely fast and scalable, permitting the study of the ener-
getic and structural properties of thousands of materials with
relatively modest computing resources and in relatively short
times, playing a central role in current materials discovery
research efforts based on high-throughput computation. How-
ever, when standard LDA or GGA functionals are employed,
band gaps (E,) predicted by DFT are severely underestimated
in comparison to experimental values [8—11]. Predicting E, of
semiconductors and insulators requires going beyond LDA or
GGA approximations in DFT, making the calculations much
more involved and computationally expensive.
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Methods that accurately predict band gaps are very expen-
sive with respect to both computational resources and wall
time. The simplest approach is to mix Fock exchange with
GGA exchange in a hybrid functional [12-15], partially cor-
recting the self-interaction error in DFT-LDA/GGA, giving
band gaps very close to the experimental values for many ma-
terials [16—19]. This increases the computation time 10-fold
compared to DFT-LDA/GGA calculations. More formally
rigorous approaches would be to use the Green’s function
quasiparticle GW [20-22] or the wave-function-based quan-
tum Monte Carlo [23-25] method, yet at the expense of at
least an extra order of magnitude in computational time. As a
result, these are not generally amenable to high-throughput
computational approaches, posing a stringent obstacle to
novel materials discovery.

Machine learning (ML) techniques have emerged as pow-
erful tools in materials science research, with applications in
a variety of directions, such as prediction and classification
of crystal structures [26-31] and building predictive models
of various materials properties [32-35]. Recent efforts also
include predicting band gaps, however with limited accu-
racy [36—40]. A straightforward direction would be to predict
band gaps using the DFT-GGA band structures available in the
AFLOW database [41] as a training set for machine learning
approaches. However, this would have limited use considering
that the predicted band gaps would still be severely underes-
timated. Or one could use DFT+U [42] for band gaps, with
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computational costs similar to those of DFT-LDA/GGA; the
problem is what value of U to choose and the justification
of applying U to dispersive valence and conduction bands.
An interesting approach involves crystal graph convolutional
neural networks (CGCNNSs) based on atomic connections
in the crystal structure after being trained using DFT band
gaps [38]. However, this method was also trained and aimed
at DFT-GGA band gaps. Recently, reports on automated,
high-throughput calculations of band gaps based on a hybrid
functional have appeared in the literature [43—46], pointing
toward more reliable predictions of band gaps, yet the nature
and size of the band-gap corrections from the DFT-GGA
values have not been discussed or analyzed.

In this work, we developed machine learning models for
mapping band gaps computed with DFT-GGA into band
gaps with a higher accuracy Heyd—Scuseria—Ernzerhof (HSE)
functional HSEO6 hybrid functional. We chose perovskite ox-
ides as an example to demonstrate the applicability of our
approach. Oxide perovskites are a class of compounds that
are of great importance in technology and basic sciences [47],
comprising semiconductors, insulators, ferromagnetic and an-
tiferromagnetic, ferroelectric, multiferroic, piezoelectric, and
high-T; superconductor materials [48]. The wide range of
properties is often associated with the orbital character of
the bands near the Fermi level and is strongly affected by
variations in the crystal structure, such as octahedral rotations
and distortions that are associated with deviations from the
perfect cubic crystal structure [49]. The accurate prediction
of their electronic structure, band gaps, and position of the
valence and conduction bands with respect to the vacuum
level is crucial for designing novel devices. An interesting fea-
ture of ABO3 perovskite semiconductors and insulators is the
dependence of their band gaps on the metal elements A and B,
as well as on rotations and tilting of the BOg octahedra. Here
we restricted the scope of the perovskite materials to those for
which the valence band is derived from oxygen 2 p orbitals and
the conduction band is derived from A or B valence orbitals, as
indicated in Fig. 1. We did not consider perovskites where the
valence and conduction bands are determined by transition-
metal d orbitals and the gap associated with spin splitting of
d bands or d-d transitions. We explicitly included octahedral
tilting and rotations leading to tetragonal, orthorhombic, and
rhombohedral crystal structures, as shown in Fig. 1. Using a
high-throughput approach [50], we calculated the band struc-
tures of the perovskites with Perdew, Burke, and Ernzerhof
revised for solids (PBEsol) and HSEO6 functionals. We ana-
lyzed the mapping of the valence-band maximum (VBM) and
conduction-band minimum (CBM) between the PBEsol and
HSEO06 functionals by employing different machine learning
models. Our combined DFT-ML model predicts E, within an
error of 0.16 eV to that of HSE-computed E,, and reveals the
main atomic and structural factors that determine the correc-
tion to the VBM, CBM, and, consequently, E, predicted at the
GGA level.

II. METHODS

The first-principles calculations are based on DFT within
the generalized gradient approximation of PBEsol [51] and
the projector augmented wave method [52,53] as implemented
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FIG. 1. Crystal structures of ABO; perovskite prototypes and
selected A and B atoms. Crystal structure of (a) Pm3m cubic,
(b) 14,,mm tetragonal, (c) Pnma orthorhombic, and (d) R3¢ rhombo-
hedral structures of ABO; perovskites. Green, blue, and red spheres
represent A, B, and O atoms, respectively. (e) The apical and equato-
rial B-O-B bond angles, o, and «,. The A and B atoms selected for
this study are indicated in the Periodic Table in the lower panel.

in the Vienna Ab initio Simulation Package (VASP) [54,55].
The wave functions are expanded in plane waves with cutoff
energy of 650 eV. Structure optimizations are performed using
a7xTx7,7Tx5x7,7x5x5,and7 x 7 x 7 I'-centered
k-point grid for the integrations over the Brillouin zones
of the cubic, tetragonal, orthorhombic, and rhombohedral
primitive cells, respectively. The screened hybrid functional
HSEQ6 [14,15] is employed to compute target band gaps,
using the structural parameters found using the PBEsol func-
tional. In tests, we found that PBEsol and HSEQ6 give lattice
parameters that differ by less than 1%, and in good agreement
with experimental values. So we neglected the differences in
the band gap calculated using the PBEsol-optimized lattice
parameters and those calculated using the HSEO06-optimized
lattice parameters. Test calculations indicate that these differ-
ences are less than 0.1 eV.

We used different ML algorithms to build our band-gap
prediction model, including the linear ridge regressor, ker-
nel ridge regressor, and gradient boosted decision tree from
open-source software package SCIKIT-LEARN TOOLBOX [56].
The input to the model is comprised of atomic and struc-
tural properties, including the B-O-B apical angle o, and
B-O-B equatorial angle «,. The regression fit to the input
gives the predicted band gaps. The prediction performance of
the learning models is evaluated by the mean absolute error.
The feature importance of all the descriptors is obtained with
the gradient boosted decision tree (GBDT) to interpret the
importance of various descriptors in the training model. We
conducted a hyperparameter search for GBDT models through
grid search. The search parameters include max_tree_depth
(1, 2,..., 10), number_of_estimators (50, 100, 150,..., 1000),
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FIG. 2. Correction of the band gap of ABO; perovskites based on HSE06 and DFT-GGA PBEsol calculations. (a) HSE06 vs PBEsol band
gaps. (b) The band-gap correction (AE,, light green), and correction of the valence-band maximum AVBM (light blue) and conduction-band
minimum ACBM (dark red) vs HSE06 band gap. (c) Schematic of the correction of the band edge of the positions. The dashed line in (a),
placed to guide the eye, has slope equal to 1 and crosses the vertical axis at 1.5 eV.

and learning_rate (0.01, 0.02,..., 0.2). We used the default
hyperparameter values in the SCIKIT-LEARN package for train-
ing linear ridge regressor (LRR) and kernel ridge regressor
(KRR). We used MINMAX SCALING to normalize the data for
LRR and KRR. We did not normalize the raw features for
training GBDT since normalization is not necessary to GBDT
due to the tree-based model nature. We partitioned the data
such that one-third of the data is reserved for testing. For the
remaining two-thirds of the data, threefold cross validation
(two-ninths of the total data as the test set and four-tenths of
the total data as the training set at any given time) was used
for hyperparameter tuning. Our mean absolute error (MAE)
results are based on the testing data set.

III. RESULTS AND DISCUSSION

We selected 118 oxide perovskites ABO3, and for each
we considered four crystal structures, with symmetries Pm3m
(cubic), I4/mmm (tetragonal), Pnma (orthorhombic), and
P63/mmc (rthombohedral), as shown in Fig. 1, totaling 472
structures. The selected A and B atoms, also indicated in the
Periodic Table in Fig. 1, are A = Li, Na, K, Rb, Cs, Cu,
Ag, Au, Be, Mg, Ca, Sr, Ba, Pb, Zn, Cd, Sn, Sc,Y, La, or
Bi, and B = P, As, Sb, V, Nb, Ta, Si, Ge, Sn, Ti, Zr, Hf,
Al, Ga, In, or TI, such that the considered compounds satisfy
valence(A) + valence(B) = 6. A data set of DFT-GGA band
gaps was constructed using this set of materials.

The four crystal structures for all ABO3; compounds were
first optimized with the DFT-GGA PBEsol functional. Then
their electronic structures were calculated using PBEsol and
HSEOQ6. In this way, since the average electrostatic potential
is used as the reference for the Kohn-Sham band energies
and does not depend on exchange and correlation, we can
directly compare the PBEsol and HSEQ6 band structures,
extracting the corrections for VBM, CBM, and the band gap
(i.e., AVBM, ACBM, and AE,). We note that for all com-
pounds studied here, the VBM for the cubic structure occurs
at the R point (0.5, 0.5, 0.5) and the CBM occurs at the I"

point in the cubic Brillouin zone, characterizing an indirect
R-T" fundamental band gap. For the tetragonal, orthorhombic,
and rhombohedral structures, both VBM and CBM occur at
I', characterizing a direct I'-I" fundamental band gap.

The calculated HSEO6 band gaps vs PBEsol band gaps
are shown in Fig. 2(a). There are 383 data points selected in
the 472 materials since others are not stable according to the
to DFT calculation. First, we note that the HSE06 predicted
band gaps have a nearly linear relationship with the DFT-GGA
predicted band gaps. We applied a simple linear regression
fit using y = ax + b between the two sets of band gaps and
obtained a = 1.12 and b = 1.15. The resulting mean absolute
error (MAE) is 0.21 eV, which is comparable to the MAEs
obtained with the more complicated models presented in the
study. Since the value of a is close to 1, the data had been fit to
an even simpler model of fixed correction, y = x 4+ »". Fixed
correction is very appealing due to its simplicity and provides
an intuitive physical insight into the nature of the correction.
The optimal b was found to be 1.5 eV with an MAE of
0.32 eV. The MAE of the fixed correction model compares
well with the typical error in the DFT predicted band gaps,
even when hybrid functionals are used. The fixed correction
model implies that DFT-GGA underestimates the band gap
with respect to HSE06 by ~1.5 eV. This is quite surprising
given that in general, DFT-LDA /GGA does not underestimate
the band gap of semiconductors and insulators by a fixed
amount [57]. The largest deviation from this trend is observed
for compounds containing Cu, Pb, and Sn occupying the A
site. In the case of Cu-B-O3; compounds, the Cu d orbitals mix
with the O 2p orbitals, pushing the VBM to higher energies.
In the case of Sn-B-O3 and Pb-B-Os;, the VBM has large
contributions from Sn and Pb s valence orbitals, which also
pushes the VBM to higher energies. In all the cases where
the valence band is mostly derived from O 2p orbitals, the
approximate 1.5 eV band-gap correction fits the data quite
well.

The separated corrections AVBM and ACBM, i.e., the
amount the VBM and CBM in HSEO06 differ from the VBM
and CBM in DFT-GGA, are shown in Fig. 2(b). Contrary to
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TABLE 1. Mean absolute error (MAE) used to evaluate the
performance of fixed correction (FC), linear regression (LR), lin-
ear ridge regressor (LRR), kernel ridge regressor (KRR), and the
gradient boosted decision tree (GBDT) models in predicting the cor-
rections of the valence-band maximum (AVBM), conduction-band
minimum (ACBM), and band gap (AE,) of oxide perovskites in
DFT-GGA PBEsol compared to the HSE06 values.

FC LR LRR KRR GBDT
AVBM 0.17 0.09 0.10£0.01 0.09+£0.01 0.09+0.01
ACBM 0.24 0.17 0.19£0.01 0.15£0.01 0.10+0.003
AE, 032 021 0.234£0.02 0204001 0.16£0.01

common wisdom, where it is often assumed that to correct
the DFT-GGA band gap only, an upward shift of the CBM
is necessary, we find that about 2/3 of the gap correction
comes from shifting down the VBM and only about 1/3 of the
correction comes from shifting the conduction band upward.
This is attributed to large self-interaction correction of the
O 2p-derived valence bands in these materials. Again, the
outliers, where the VBM is corrected by a lesser amount,
correspond to compounds containing Cu, Sn, or Pb in the A
site. It is also interesting to note that the correction in the
VBM derived from O 2p is larger than the correction of CBM
derived from d orbitals, such as in SrTiO3 and similar com-
pounds, despite the rather flat nature of their conduction bands
that are derived from the quite localized transition-metal d
orbitals. Finally, we also note that the band-gap correction
AEj is slightly larger than 1.5 eV for compounds with larger
band gaps, approaching 2 eV, and this is traced back to the
correction of the CBM which approaches 1 eV for compounds
with E, 2 4 eV.

Having established the band-gap correction for these oxide
perovskites, we now turn to machine learning techniques to
develop a model that correlates the AVBM, ACBM, and
AE, corrections to atomic and structural properties of the
compounds. The atomic properties as input to the machine
learning models include electronegativity, ionization energy,
valence-orbital energies, and atomic radius of both A and
B atoms. Structural properties include octahedral tilting and
rotations that are characterized by the apical «, and equatorial
o, angles corresponding to B-O-B angles parallel and perpen-
dicular to the ¢ axis. We employed three machine learning
models, which are the linear ridge regressor (LRR), kernel
ridge regressor (KRR), and the gradient boosted decision
tree (GBDT) regressor, as implemented in the SCIKIT-LEARN
TOOLBOX [56]. We used a regularization strength of 0.01 to
both LRR and KRR models. For the KRR method, we used a
polynomial kernel with a maximum order of 3. For the GBDT
model, we set the maximum tree depth to 5 with 500 base
estimators.

The prediction performance of the LRR, KRR, and GBDT
models can be seen in Table I. In these models, we use
two-thirds of the data as the training set. We also use the
mean absolute error (MAE) to measure the performance in
predicting AVBM, ACBM, and AE,. Among the three mod-
els, GBDT gives the highest prediction accuracy with low

variance; the KRR model performs better than LRR. Note that
we obtain lower MAE than previous models [31,36,44,58,59],
likely due to the better quality or more uniformity of our train-
ing dataset. The results indicate that there exists a nonlinear
relation between the input properties and the target results,
explaining why the pure linear model LRR performs poorly.
Note that all three ML models predict AVBM with similar
performance, indicating that the VBM correction has a more
linear relationship with the input properties than the CBM and
E, corrections.

What are the main atomic and structural properties that
determine the band-gap and band-edge corrections? The an-
swer is shown in Fig. 3, where the input properties are ranked
according to their contributions to the prediction accuracy
based on the mean decrease in the impurity of the GBDT
model [60]. We find that the electronegativity, the energy of
the p valence orbital of atom A, and the equatorial angle of
the octahedral rotation are the main properties that determine
AVBM. For ACBM, the main properties are the electronega-
tivity, ionization energy of atom B, and the equatorial angle of
the octahedral rotation. For more advanced feature importance
evaluation methods with higher local and global consistency
and interpretability, we refer to the literature [61,62]. We
have also applied LRR, KRR, and GBDT models to the data
by excluding the discovered less-important features for each
label, and no obvious accuracy improvement is identified.

For both AVBM and ACBM, the equatorial angle deter-
mines the overlap between the orbitals of B and O in the
directions parallel to the a-b plane, which, in turn, affect both
the VBM and CBM positions. Note that the dependence on the
apical angle ¢, is less than that on the equatorial angle «, since
the former affects the B-O orbital overlap only along the ¢
direction. Finally, we also note that the relative importance of
the electronegativity, ionization energies, and rotation angles
is higher for atom A than for atom B in determining the band
gap. This is attributed to the larger contribution of the VBM
correction than the CBM correction to AE,.

IV. SUMMARY

Using high-throughput DFT-GGA PBEsol and HSE06
calculations, we determined the band-gap correction of a
representative set of oxide perovskites, finding that the
HSEQ6-based correction pushes down the valence band by
~1 eV and pushes up the conduction band by ~0.5 eV.
These results are then used in machine learning models that
include atomic and structural properties as input to deter-
mine the corrections to the valence band, conduction band,
and band gap. The properties used as fitting parameters are
ranked according to their relative importance to the correc-
tions. We find that the electronegativity of the A and B atoms
together with the equatorial angle of rotation of the BOg
octahedra are the main factors involved in the corrections.
These results serve as a starting point and guide to developing
machine-learning-based approaches applicable to the discov-
ery of novel electronic materials.

The datasets generated and/or analyzed during the current
study are available in the GitHub repository [63].
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FIG. 3. Feature importance in the gradient boosted decision tree (GBDT) model for determining the band-gap (AE,) and band-edge

(AVBM, ACBM) corrections of ABO; perovskites.
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