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SUMMARY

We establish a general theory of optimality for block bootstrap distribution estimation for sam-
ple quantiles under mild strong mixing conditions. In contrast to existing results, we study the
block bootstrap for varying numbers of blocks. This corresponds to a hybrid between the sub-
sampling bootstrap and the moving block bootstrap, in which the number of blocks is between
1 and the ratio of sample size to block length. The hybrid block bootstrap is shown to give the-
oretical benefits, and startling improvements in accuracy in distribution estimation in important
practical settings. The conclusion that bootstrap samples should be of smaller size than the orig-
inal sample has significant implications for computational efficiency and scalability of bootstrap
methodologies with dependent data. Our main theorem determines the optimal number of blocks
and block length to achieve the best possible convergence rate for the block bootstrap distribu-
tion estimator for sample quantiles. We propose an intuitive method for empirical selection of
the optimal number and length of blocks, and demonstrate its value in a nontrivial example.

Some key words: Hybrid Block Bootstrap; Subsampling; Optimality; Sample Quantile; Weak Dependence.

1. INTRODUCTION

Sample quantile estimation and inference with dependent data is an important problem, with
many common applications in statistics, such as time series analysis, Bayesian inference based
on Markov chain Monte Carlo samples, and quantile regression, to name a few. Block bootstrap
procedures have proven to be effective and popular tools in such problems. However, the optimal
choice of block length to achieve the fastest possible convergence rate of the block bootstrap
estimator of the distribution of the sample quantile is an open problem. Optimality in this sense
is crucial to achieving accurate point estimates, good coverage properties of confidence intervals,
as well as scalability and computational efficiency in high dimensions.
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2 T. A. KUFFNER ET AL.

While bootstrap theory for the sample quantile problem is fairly well-understood for indepen-
dent data, there is no existing optimality theory for dependent data. A change from an indepen-
dent to a dependent context entails a complete revamp of the bootstrap theory, and optimality
results known for the independent case do not have a trivial generalisation in the dependent case.

In this paper, we rigorously establish the optimal convergence rate for the block bootstrap
estimator for sample quantiles under standard weak dependence conditions of strong mixing,
which cover large classes of time series models. We call our approach a hybrid block bootstrap
because the fastest convergence rate is achieved by choosing not only the block length, but also
the number of blocks, and the optimal choice is in-between using a single block (the subsampling
bootstrap) and using the number of blocks prescribed by the moving block bootstrap. The hybrid
block bootstrap is seen to achieve remarkable improvements in accuracy for sample quantile
distribution estimation compared to the subsampling bootstrap and the moving block bootstrap.

To put our results in a broader context, we mention that optimal block selection is generally an
open question for many blockwise statistical procedures with dependent data. The block boot-
strap and blockwise empirical likelihood are two common examples. Many recent papers on
these topics contain statements to the effect that the sort of optimality theory and methodology
we develop in this paper are challenging open questions, in a wide variety of contexts. See, for
example, Gregory et al. (2015); Shao & Politis (2013) and Zhang & Shao (2013).

2. BLOCK BOOTSTRAP METHODS

In the Supplementary Material, we provide a review of relevant bootstrap literature. There is
little literature on use of block bootstrap methods for the context considered here, which con-
siders a nonsmooth function of dependent data. Sun & Lahiri (2006), Sun (2007) and Sharipov
& Wendler (2013) are notable exceptions. Those authors considered block bootstrap approxi-
mation for sample quantiles under weak dependence. Sun & Lahiri (2006) established strong
consistency of the moving block bootstrap, assuming only a polynomial (strong) mixing rate, for
both distribution and variance estimation of the sample quantiles. Sharipov & Wendler (2013)
established similar results for the circular block bootstrap utilizing a different set of conditions to
take advantage of empirical process theory for the Bahadur-Ghosh representation of the sample
quantile. Sun (2007) is particularly relevant to our work, as discussed further below. All of these
earlier results assume that the number of blocks tends to infinity with the sample size.

Most recently, Kuffner et al. (2018) established a more general consistency result for a hy-
brid block bootstrap, for both distribution and variance estimation of sample quantiles. While an
exponential mixing rate is assumed, Kuffner et al. (2018) proved weak consistency for any num-
ber of blocks, 1 < b= O(n/f) as n — oo, whereas the existing proofs for the moving block
bootstrap and circular block bootstrap required that b — oo, where b = |n/¢]. Here, n is the
available sample size, and ¢ is the block length. For a real number 5, the notation | /| is defined
as the largest integer < h, and [h] is the smallest integer > h. The value of b is the number of re-
sampled blocks to be pasted to form the bootstrap data series. The case b = 1 corresponds to the
subsampling bootstrap (Politis & Romano, 1994), and the case b = |n//] is the standard moving
block bootstrap (Kiinsch, 1989). Therefore, the consistency results in Kuffner et al. (2018) are
for a hybrid between the moving block bootstrap and the subsampling bootstrap, and those two
extremes are covered by the same theory.

As noted in Kuffner et al. (2018), their theoretical and empirical results suggest that there
can be substantial performance improvement, in terms of mean squared errors for both the vari-
ance and distribution estimators, when choosing some value of b > 1, but less than |n/¢]. This
suggests the following question: does there exist some optimal choice of the pair (b, ¢) which
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provides the best convergence rate for the bootstrap distribution estimator for sample quantiles
under weak dependence? We answer that question in the present paper.

Related to the motivation of the present paper is the paper by Sun (2007). She studied the
convergence rate of the moving block bootstrap distribution estimator for sample quantiles with
dependent data. A strong mixing condition with exponentially decaying mixing coefficients was
assumed. An almost sure convergence result was established, and the best rate of convergence
was found to be O(nfl/ 4loglogn), which is only slightly different from the convergence rate
for bootstrap approximation with independent, identically distributed data (Singh, 1981). We
consider a weaker polynomial rate condition, which is also slightly weaker than that assumed
in Sun & Lahiri (2006). Moreover, we allow the number of blocks to vary, instead of fixing
b = |n/¢]. Our main theorem establishes the convergence rate of a hybrid bootstrap distribution
estimator for sample quantiles. It is a hybrid between the moving block bootstrap (b = |n/¢])
and subsampling (b = 1) bootstrap. We also apply our theory to the setting of Sun (2007) below.

Aside from our general optimality results being of foundational and practical value, they also
indicate that adaptive selection of the number of blocks could yield considerable improvements
in convergence rates for block bootstrap distribution estimators. Moreover, Lemma 4 below is
of independent interest, as it gives the convergence rate of the block bootstrap distribution esti-
mator, and has bearing on the regular smooth function model. We have included several relevant
empirical examples to illustrate the potential gains of optimal choice of the number of blocks,
as opposed to using the prescribed value of b for either the subsampling bootstrap (b = 1) or the
moving block bootstrap (b = [n/¢]). In § 6, we give practical guidance as to how to choose (b, ¢)
in a given applied problem, by proposing a procedure for this purpose.

3. PROBLEM SETTING
3.1. Notation

Let Z = {0,£1,+£2,...} be the set of all integers. Define {X;};cz to be a doubly-infinite
sequence of random variables on the probability space (€2, F, P). The elements of the sequence
possess a common distribution function F', and its corresponding quantile function F~!, defined
by

F~Y(p) = inf{u: F(u) > p}, pe(0,1).

We will study the block bootstrap distribution estimator of a suitably centered and scaled sample
quantile. It is assumed throughout that {X;};c7 is a strictly stationary process. The sequence
(X1,...,X,) denotes a sample of size n from {X;};cz. Denote by 1{-} the indicator function,
so that 1{ A} = 1 if event A occurs, 1{A} = 0, otherwise.

3.2.  The Block Bootstrap

The moving block bootstrap (Kiinsch, 1989) splits the original sample (X7, ..., X,,) into over-
lapping blocks of size ¢, B; = (Xj, ..., X;1¢—1), together constituting a set { By, ..., B,_¢y1}.
Let BY,..., B; be a random sample drawn with replacement from the original blocks, where
b= |n/¢] is the number of blocks that will be pasted together to form a pseudo-time series.
That B, ..., B; is a random sample from {B,..., B,_¢;1} means that the sampled blocks
are independently and identically distributed according to a discrete uniform distribution on
{B1,...,Bn_rt1}. The observations in the ith resampled block, B}, are X(*z'—1)é+1v XD,
for 1 <4 < b. Then the moving block bootstrap sample is the concatenation of the resampled
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4 T. A. KUFFNER ET AL.

blocks, written as

* * * * * * * *
X17' "7X€7X€+17"‘ ,X2€,X2€+1,... 7X(b—1)€7X(b—1)€+17'"7be‘

B*

B B3 BB} ;

1
Note that this way of constructing the pseudo-time series will reproduce the original dependence
structure asymptotically.

The subsampling bootstrap (Politis & Romano, 1994), and specifically the overlapping blocks
version relevant to the present setting, first splits the original sample into precisely the same
overlapping blocks as the moving block bootstrap, each of length ¢. However, the subsampling
bootstrap draws only a single block. A nice property of this procedure is that the original de-
pendence structure in the sample is exactly retained in the single subsample. By contrast, the
pseudo-time series constructed by the moving block bootstrap only reproduces the original de-
pendence structure asymptotically.

We define dependence for the sequence of random variables { X, };c7 in terms of the mixing
properties of o-algebras generated by subsets of the sequence which are separated by a distance,
in units of time, tending to infinity. For any two sub-o-algebras of F, say F; and F, the a-
mixing coefficient between 7 and F3 is defined to be (Athreya & Labhiri, 2006, Section 16.2.1)

a(Fi1,F2) =  sup  |pr(ANDB) —pr(A)pr(B)|. (1)
A€eF1,BEF,

Write .7-",5” for the smallest o-algebra of subsets of €2 with respect to which X;,i =k, ... k +1t,
are measurable. Let F* __ be the smallest o-algebra which contains the unions of all of the o-
algebras ¥ as a — —oo. Thatis, F* _ is a sub-c-algebra of F, and it is the o-algebra generated
by the random variables X, X, 1,..., Xy as a — —oo. Similarly, for —oo < k < oo, let F°
be the o-algebra generated by the random variables X1, Xg42,..., Xgtq, as @ — 0o. The
a-mixing coefficient of the sequence { X };cz is defined as

a(t) = sup a(}"foo, Frtt)s
kEZ

where a(-, -) is defined in (1). If the a-mixing coefficient decays to zero,

Jim a(f) =0, )
then the process {X;};cz is said to be strongly mixing. The sequence of random variables
{X;}iez is said to be weakly dependent if the process {X;};cz is strongly mixing, that is if
(2) holds.

4. THEORETICAL RESULTS

Assume that (X7,...,X,,) is a sample of a stationary strong mixing process with mixing
coefficient cr(t). We assume either a polynomial mixing rate such that a(t) = O(t=#) for some
3 € (5,00) or an exponential mixing rate such that a(t) = O(e~C*) for some C' > 0. Denote by
F the distribution function of X; and F;, the empirical distribution function of (X1, ..., X5).

Define, for x € R, 0(2)? = limy, o0 Var{n/2F,(z)} = 3°0°__ Cov (1{X, < 2}, 1{X; <
;U}) Define, for ¢ € {1,2,...,n},be {1,2,...} and x € R, Jy, ..., J, to be independent ran-
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dom indices uniformly drawn from the set {1,...,n — ¢+ 1},

i+4—1
Uiw) =" > Xy <a}, i=1,...,n—L+]1,
t=1

Ji+0—1

Uf(z)=0" > X, <a}, i=1,...,b,
t=J;

n—_0+1

b
Fo)=(n—L+1)7" Y Ui(z), Frlx)=b""> U(x).
i=1 i=1
Define, for p € (0, 1),
GE=F'p), &=F"'0p, &=E'0), &=F""0):
Assume that f = F” is defined on a neighbourhood .4}, of £, with

0 < inf f(z) < sup f(x) < oo.
TENp zEN

_ 4B+
THEOREM 1. Suppose that n = O(n — {), n 5G8+5) (¢ — 0o and b > 1. Let x € R be fixed
and 6 > 0 be any arbitrarily small constant.

(i) If polynomial mixing holds with 3 € (5,00) and ¢ = O(b), then
pr{(be)l/Q(g;; — &) < :U‘Xl, o ,Xn}
_ pr{n1/2 (E.—&) < :1:} n 0,,{5*1 M2V () Y28
+0p{n_%+5(b€)1/2 n nfﬁw(b@l/?

___B(2B=3) 1 2(8+3) _ _4B+45 B+2
+n  B-0ED Pps 2t T DEeD 4 16D TOp3 gt

_2(8+1) 1 _4B+T 48243841 1 _3B+4
+0 +0p3 93025+ }

4+ n 2841 TOh2 20+ 4 2@AFDH(BFD
(ii) If exponential mixing holds with a/(t) = O(e~*) for some C > 0, then
pr{(zw)l/?(g;: —E) < ij1, o ,Xn}
_ pr{n1/2 (én _ £p) < $} i Op{g—l 4212 4 (bﬁ)_l/Q
X n—1p3—0p1+50 4 n%w(b@(ka)m}
+ op{n—%”(be)l/? + n—1+5b%£}.

We may deduce from Theorem 1 the following two cases.
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6 T. A. KUFFNER ET AL.
Case (i) Polynomial mixing with 3 € (5,00) and ¢ = O(b).
The convergence rate of the bootstrap distribution estimator is minimised by setting

48+7

6(3615) | 1851/2) /4
o h o nﬁi1 ogn, B € (5,(7+185'/2)/4],
n36GFD | B e (7+185Y2)/4,00),

which yields, for any § > 0,

pr{(b€)1/2(§; - §n) < :c’Xl, ... ,Xn} - pr{n1/2(én — §p) < :c}

1482 4+8-37

0, n12<36+5>(6+1>+6}, B € (5,(7+ 1851/2) /4],

Opn 3mD 04 B € (7+185Y2)/4,00).

Note that as 3 — oo, the optimal orders of ¢ and b approach n'/3, which does not depend on
unknown parameters and may be taken as a practical reference for empirical choices of £ and b.
With such choices, that is £ o< b o n'/3, the bootstrap distribution estimator has the convergence

+4

__B=2
rate O, qn 30+D } for 5 € (5,00) and any ¢ > 0. The latter convergence rate is slightly

slower than that specified in (3), a price to pay for the absence of knowledge of 3.

On the other hand, the moving block bootstrap sets b = |n/¢], based on which the optimal
¢ is of order n'/3, so that b o n?/3. The convergence rate of the resulting bootstrap distribution
estimator is given, for any 6 > 0, by

__B=5
0,4n 7m0 L ge (524172,

-3
1

__B=3
Op 3 n iEsyRad , B€(2+171/27oo),

which is markedly slower than that obtained by setting ¢ o< b o n'/3. Figure 1 compares the op-
timal convergence rate with those based on b oc £ o< /3 and b = |n/f] o< n?/3, respectively.
Log error rates for the block bootstrap distribution estimator are plotted against 5 for the optimal
pairs of (b, ¢). The choice b = ¢ = n'/3 is optimal under exponential mixing, and it is our rec-
ommendation when no information about the exact value of 3 is available. Thus the discrepancy
between the solid and dashed curves shows how ignorance about 3 affects the error rate. The
choice b = n?/3, ¢ = n'/3 is optimal for Kiinsch’s moving block bootstrap.

Case (ii) Exponential mixing.

The error rate has an order minimised by setting £ o b ox n'/3

I)l"{(M)l/2 (& — én) < fv‘Xl, ... ,Xn} = pr{n1/2 (gn — &) < :v} +0, (n_1/3+5),

for any arbitrarily small § > 0. For moving block bootstrap, the error rate is minimised if ¢
is chosen to have order between n!/* and n'/2, yielding an optimal convergence rate of order

O, (n_l/ 4+5) for any § > 0. If we set b = 1, which amounts to the subsampling method, then
1/2

, which yields

the fastest error rate has order O, (n_l/ 4), attained by setting £ < n

Remark 1. The mixing rate could be slower than what we require if the purpose is only to
prove that the bootstrap is consistent. For example, Sharipov & Wendler (2013) prove circu-
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Fig. 1. Log error rates for the block bootstrap distribution

estimator.
0.1 optimal
——— {=b=n'?
S R I S 0 =n'b=n??
+
<
$—
—
=
5 -0.2
N
e
a0
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lar bootstrap consistency under a very weak condition on the mixing rate. Naturally, stronger
conditions are required to investigate higher-order asymptotic properties.

Remark 2. Of independent interest is the result of Lemma 4 in the Appendix, which gives
the convergence rate of the block bootstrap distribution estimator for n/2 {F.(z) — F(z)} and
has a bearing on the regular smooth function model. Consider the simpler case of exponential
mixing. It is easily seen that the convergence rate is minimised at Op(nfl/ 3), attained by setting
¢ < n'/3 and b having order not smaller than n!/3, of which moving block bootstrap is a special
case. The subsampling method, b = 1, however, has at best a convergence rate of only order
O,(n~1/%), attained by setting ¢ oc n'/2.

Remark 3. Results on distribution estimation for n1/2 (fn — fp), embodied in Theorem 1, dif-
fer substantially from the regular case in that local estimation of F' over a shrinking neighbour-
hood of size O, { (b¢)~1/2} around &, incurs an error of order n~/2(b¢)/4, which favours a
small b and precludes moving block bootstrap from yielding an optimal convergence rate.

Remark 4. The reader may wonder how far the non-bootstrap statistic is from its Gaussian
limit. The asymptotic order is given by (A1) in the Appendix. However, to use the Gaussian limit
as a potential competing estimator, one must worry about how the variance, which involves the
density function, should be estimated optimally. The question of optimality for block bootstrap
estimation of the density involves another nonsmooth functional: a kernel density estimator. The
density estimation problem is sufficiently different from the sample quantile problem that a sep-
arate theory is needed. Our optimality theory for density estimation will be reported elsewhere.

Remark 5. Results analogous to Theorem 1 in the case of independent data have been proved
by Sakov & Bickel (2000) and Arcones (2003) for the m out of n bootstrap, which amounts to
setting b = m — oo and £ = 1 in our block bootstrap procedure. Their proofs build essentially
on an Edgeworth expansion for the binomial distribution of bF(x) to establish asymptotic nor-
mality of the bootstrap. With the data strongly mixing and b not necessarily diverging to infinity,
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8 T. A. KUFFNER ET AL.

bF(x) is no longer an expanding sum of independent data. This calls for the critical condition
¢ — oo and a technically more involved treatment of the cumulant generating function of £ in
our proof: see the Appendix for more details.

5. RELEVANCE TO COVERAGE ERROR
Define

Ga(w) = pr {00 2(& — &) < wlX0,. X}
and let A(n, b, £) be defined by

én(x) = {«Tf(fp)/g({p)} + A(”: b, 5)7 4)

where ® denotes the standard normal distribution function. Our main results in § 4 establish the
asymptotic order of A(n, b, ¢) and derive the optimal orders of (b, ¢) which minimise that order.
A level o lower percentile confidence interval for £, is given by

[0 —n 126G (@), 00).
Noting from (4) that
G (@) = @71 (@)a(&)/ f (&) + Op {A(n,,0)}
and using (A1) (Lahiri & Sun, 2009) from the Appendix, we obtain that
pr{& > & — 072G (@)} = pr{n' (6 - &) < @7 (@) (&)/f(&)} + O {A(n,b,6)}
=a+ O{A(n,b,0) + nil/z}.

Since A(n, b, ¢) generally decays at a rate slower than n~Y/2, which is optimal for independent
data, minimising the order of A(n, b, ¢) amounts to minimising the order of the coverage error
of the percentile confidence interval.

6. PRACTICAL PROCEDURE FOR SELECTING OPTIMAL (b, ¢)
Setting b = |c1n'/?| and £ = |con!/3|, the objective is to find the optimal pair of positive
constants (ci, c2) which minimise the estimation error of Gy, (), or coverage error under some
obvious modification of the procedure. Note from (4) and (A1) that

Gn(x) — Gp(x) = A(n, [en?], [ean3]) + O(nV/?). )
Define, for ¢1,co > 0 and a fixed p > 1,
Su(cr, e2) = {E|A(n, lern'/3], [ean'/?]) [P 11/7.
Then the L, estimation error of G () has the expansion

{EIGn(x) — Gn(@)P}* = bn(c1, c2) + O(n™2). ©)

We wish to minimise d,,(cq, c2) with respect to ¢y, ca.
Let M be a subsample size satisfying M = o(n) and M — oco. Let GS\Z[) (x) be constructed

analogously to G, (z), with the complete sample (X1, ..., X,,) replaced by the jth block of M



Block bootstrap for sample quantiles 9

consecutive observations drawn from (X1,..., X,), for j =1,...,n — M + 1. Then we have,
analogous to (5), that

GO (@) = Grr(z) = AD (M, [ M, [eaMY3]) + O(M 12, %)

where AU)(-) denotes the version of A(-) obtained from the jth subsample. Define
N R 1/
Err(ci,co) = (n— M + 1)_1/”{ Z ‘Gg\i[)(:v) - Gn(:c)‘p} p.
J

Using (A1), (5) and (7), we have

GY)(2) = Gul(2) = Gu(x) + AV (M, [ M3, |eaM'3]) + O(M /)
- Gn(:v) - A(nv Lclnl/SJa LCQ’I’LI/?)J) - O(n_1/2)
= AD(M, ey M3, [eaM'3]) + O(M Y2,

It follows that

. 1
Brr(er,c2) = (n— M+ 1)~ { 37 [AD O, (e M3, [eaM ') | " 4 0,2

J
= dnr(cr, ) {1+ 0p(1)} + Op(M~72).

If we assume, as is typical, that §,,(c1, c2) has a leading term of the form S(c1,co)n™" (0 <
~ < 1/2) for some function 3(-) independent of n, then Err(cy,c2), dpr(c1,ce) and 0y, (c1, c2)
are all minimised at asymptotically the same (c1, ¢2). Thus, an empirical procedure for choosing
(c1, ¢2), and hence choosing (b, £), may be based on the minimisation of Err(cy, ¢2).

This procedure constructs the error estimate Err(cy,ce) by considering all n — M + 1 sub-
samples of M consecutive points drawn from the original data sample, and is therefore computa-
tionally expensive. However, the argument supporting minimization of this quantity actually only
requires that the number of subsamples used in the construction should grow with sample size n.
In practice, therefore, it is reasonable to evaluate the error measure Err(cqy, co) using a smaller
set of subsamples: in the numerical illustration given below, 20 subsamples, equally spaced along
the data series (X1, ..., X},), are used, allowing rapid evaluation of the error estimate.

7. EXAMPLES

To illustrate the benefits of optimally choosing (b, £), we consider three very general examples,
the third presented in the Supplementary Material.. For concreteness, we consider p = 1/2, and
simulate the mean squared errors of hybrid block bootstrap estimators of G,,(u) for particular
choices of u. The true reference values of G,,(-) are approximated via massive simulation, 5 x
108 replications. For each of the sample sizes n = 200, n = 500, and n = 1000, all entries in the
included tables and heat maps are based on 20, 000 replications, with 20, 000 bootstrap samples
used within each replication, unless otherwise stated. For n = 2, 000, the number of replications
and bootstrap samples are each 10, 000. For convenience, Table 1 provides some reference values
of (b, ¢) for moving block bootstrap for the sample sizes we consider. This facilitates comparison
with the moving block bootstrap choice of b = |n/¢| for a range of values of ¢. In particular, we
give values for ¢ approximately equal to n1/2, which is not optimal, nt/3, thought to be optimal,
n1/4, and nl/5.
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10 T. A. KUFFNER ET AL.

Table 1. Standard choices of (b, ) for different n, with the moving block bootstrap choice b =
[n/¢].
| (b t~n'?) (b ex=n'l) (b lxnlt) (000"l

n=200] (14,14) (33,6) (50, 4) (66,3)
n=500 | (22,22) (62, 8) (100, 5) (125,4)
n=1,000| (31,32) (100, 10) (166, 6) (250, 4)
n=2000 | (44,45) (153,13) (285, 7) (400, 5)

Example 1 (ARMA(1,1)). Suppose that the observations are generated according to an
ARMA (1,1) model

Xt - 0'4X(t71) =€+ 0.36(15,1),

with ¢; independent, identically distributed N (0,1). The strong mixing condition is satisfied
with an exponential rate (Lahiri, 2003, Example 6.1). An initial X is sampled according to the
marginal distribution, i.e. Xo ~ N(0, 1.5833), and ¢y ~ N(0,1).

With p = 1/2, we have &, = 0. We simulate the mean squared error in estimation of G,(1)
over a range of (b, ¢). The true value being estimated was computed, by massive simulation,
as described, as G,,(1) =~ 0.67978. The heat map in Figure 2 plots mean squared error for n =
200, over a grid of values of (b, £). The heat map clearly illustrates the sub-optimality of b = 1,
the subsampling bootstrap. The minimum mean squared error is 0.00468, with (b, /) = (7, 8).
By contrast, the minimum mean squared error for the moving block bootstrap is 0.00637, with
(b,¢) = (33,6), and the subsampling bootstrap, which fixes b = 1, has minimum mean squared
error of 0.00754, with ¢ = 14.

Fig. 2. Heat map for the ARMA(1,1) model with n = 200.

20 =
18 4 B 0.025
16 =
14 - 0.020
12 =

- 10 L - 0.015
g L
6 L - 0.010
4 - L
5 - N - 0.005

T T T T -
2 4 6 8 10
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Table 2. ARMA(1,1) model. Choices of (b, () which minimise the mean squared error for esti-
mating Gy, (1) for different sample sizes n.
(b, 0) MSE
n =200 (7,8)  0.00468
n =500 (10,10) 0.00250
n=1,000 (10,14) 0.00154
n=2,000 (12,18) 0.00097

We also compute the values of the pair (b, ¢) which minimize mean squared error for other
sample sizes, n = 500, 1000, and 2000. These results are shown in Table 2. Comparing with
Table 1, we note that the mean squared error minimizing pair (b, ¢) for each n uses an ¢ strictly
greater than n'/3 and a b much less than |n/¢]. Additionally, the mean squared error minimizing
value of b is much larger than 1.

The theory says that the hybrid moving block bootstrap has an error rate in estimation of
Grn(1) of n~1/3, so we should expect the mean squared error to decrease at rate n~ /3, In fact, a
regression of the logarithm of the mean squared error on log(n) for the values reported in Table 2
has slope —0.6885, which is not far off —2/3. The heat map illustrates that the subsampling and
moving block bootstrap choices of (b, ) are suboptimal.

For the current problem, of estimation of the sampling distribution of the sample quantile,
there is therefore clear theoretical and practical advantage in using the hybrid block boot-
strap, b < n,b # 1, over the moving block bootstrap. Remark 2 indicates, by contrast, that
we might expect to see little difference, in estimation error terms, between the hybrid block
bootstrap procedure and moving block bootstrap if, instead, we are interested in estimation
of pr[n'/2{F,(z) — F(x)} < y]. This was verified by considering, for all combinations of
(b, £), the mean squared error of the estimator pr [(b0)'/2{F(z) — F,(2)} < y|X1,..., X,
for z = 0, so that F'(z) = 0.5, and y = 0.9, for which the quantity being estimated ~ 0.89501,
for sample size n = 100. Based on 20,000 replications, with 20,000 bootstrap samples being
used in construction of the estimator for each, the minimum mean squared error achieved by
moving block bootstrap is 0.00084, with (b, ) = (25,4). This is very similar to the overall mini-
mum mean squared error of 0.00082, seen for (b, £) = (18, 5). The minimum means quared error
of the subsampling bootstrap, b = 1, is 0.00334, substantially larger, when ¢ = 7. This same pic-
ture was seen for n = 200, when, for the same values x = 0,y = 0.9, the true probability being
estimated ~ 0.87781. Simulation shows that the minimum mean squared error of moving block
bootstrap is then 0.00108, with (b, ¢) = (28, 7), with the same minimum mean squared error for
the hybrid block bootstrap, achieved for (b, £) = (30, 6). Here the subsampling bootstrap yields
an optimal mean squared error of 0.00227 when ¢ = 8. These illustrative figures confirm that the
hybrid block bootstrap has little advantage over moving block bootstrap in error terms for this
problem.

Example 2 (Nonlinear ARMA(2,3)). Let { X }+cz be a sequence from the ARMA(2,3) process
X — 0-1X(t—1) + 0'3X(t—2) =€ + 0-16(t—1) + 0'26(t—2) — 0.16(15_3).

As noted by Lahiri (2003, Example 6.1), such a sequence is strong mixing with exponentially
decaying mixing coefficients. To simulate from this model, we initiate by generating Xg, X_1
from the marginal N (0, 02) distribution, which has v2 = 1.0776, with €0, €—1, €_2 independent
N(0,1). The nonlinear model we consider is the square transformation of the above ARMA
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12 T. A. KUFFNER ET AL.
process,
Y; = X7

The square transformation above preserves the strong mixing property and also preserves the
mixing rate. Therefore, Y; is strong mixing with the same exponential rate as X;. The interested
reader is referred to Fan & Yao (2003, p. 69) or Davis & Mikosch (2009, p. 258). As with the
previous example, we consider p = 1/2, and thus &, satisfies

pr(Y; = Xt2 < gp) = 1/27
implying &, = (0.675v)%. The simulation approximation to the true value is G (—1.5) ~

0.09276.

Fig. 3. Heat map for the nonlinear (squared) ARMA(2,3)
model; n = 200.

| | | |
207 -

0.008

0.007

- 0.006

B - 0.005

~ - 0.004

The heat map of Figure 3 shows again that the subsampling and moving block bootstrap
choices of (b, £) are suboptimal from the perspective of minimizing mean squared error.

In Figure 4 we display the coverage error of lower percentile confidence intervals, as described
in Section 5, of nominal 90% coverage. We observe that there is undercoverage for most choices
of (b, ¢), sometimes very substantial, though there is overcoverage in a few cases. Appropriate
choice of (b, ¢) can yield limits with exactly the required coverage.

As proof of concept of the adaptive procedure for choice of (b, £) described in Section 6, we
consider estimation of Gy, (1) =~ 0.80952, for sample size n = 512. We restrict to candidate val-
ues c1, ¢ € {0.5,0.75,1.0,1.5,2.0}, corresponding to adaptive choice of b, ¢ € {4,6,8,12,16}.
Table 3 shows the mean squared error in estimation of G, (1) over 2500 replications for each
combination of (c1,c2). By contrast, the mean squared error obtained by minimization of
Err(ey, c2) for each replication, using 20 subsamples of size M = 64 in construction of this
error quantity, was 0.00189. The adaptive method clearly yields a mean squared error that is
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Fig. 4. Heatmap for the coverages of 90% lower confidence
limits in the nonlinear (squared) ARMA(2,3) model; n =
200.

-4

- -6

6 - - - -8

Table 3. Nonlinear (squared) ARMA(2,3) model: mean squared error in estimation of Gp(1)
over 2500 replications, for b = |cyn'/3| and £ = |can'/?|, n = 512. The mean squared error
of the adaptive procedure was 0.00189.
Co

0.5 0.75 1.0 1.5 2.0

0.5 | 0.00164 0.00150 0.00158 0.00189 0.00230

0.75 | 0.00143 0.00154 0.00172 0.00220 0.00272
c1 1.0 | 0.00144 0.00166 0.00191 0.00250 0.00300

1.5 | 0.00161 0.00195 0.00232 0.00297 0.00350

2.0 | 0.00179 0.00225 0.00265 0.00335 0.00399

far from optimal in this setting, but outperforms the procedure which fixes b, £ to larger values
among those being considered.

The adaptive procedure is seen to perform better with increasing sample size. Table 4 provides
analagous results for sample size n = 1728, for which G, (1) ~ 0.81125. Using M = 512 in
the minimization of Err(ci,co) over the same range of ¢1, c2, now corresponding to adaptive
choice of b, ¢ € {6,9,12, 18,24}, and again using just 20 subsamples of length M in evaluation
of Err(cy, cz), the mean squared error of the adaptively chosen estimator over the 2500 replica-
tions was observed as 0.00066, much closer to optimal. Further tuning of the adaptive procedure
certainly seems worthwhile as a means of providing an effective automatic choice of (b, ¢) for
the hybrid block bootstrap and will be pursued elsewhere.
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14 T. A. KUFFNER ET AL.

Table 4. Nonlinear (squared) ARMA(2,3) model: mean squared error in estimation of Gy(1)
over 2500 replications, for b = [c1n/?] and £ = |can'/3|, n = 1728. The mean squared error
of the adaptive procedure was 0.00066.
C2

0.5 0.75 1.0 1.5 2.0

0.5 | 0.00062 0.00063 0.00072 0.00089 0.00108

0.75 | 0.00061 0.00131 0.00082 0.00105 0.00126
c; 1.0 [ 0.00065 0.00080 0.00094 0.00119 0.00139

1.5 | 0.00076 0.00094 0.00112 0.00138 0.00166

2.0 | 0.00087 0.00106 0.00125 0.00159 0.00182

In the Supplementary Material we provide a further example involving a process whose mixing
coefficients decay at a polynomial rate. This again supports the finding of suboptimality of the
choices of (b, ¢) indicated by the subsampling bootstrap and moving block bootstrap.

Remark 6. Future work will also study the smoothed extended tapered block bootstrap meth-
ods of Gregory et al. (2015, 2018), for which only basic consistency results are currently estab-
lished. Our approach to studying optimal rates is expected to be informative about optimal tuning
of such methods, though this latter procedure is complicated by additional tuning parameters.

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes: a review of the bootstrap
literature, derivations of technical results used in the Appendix in the proof of Theorem 1 and a
further numerical example.
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APPENDIX: PROOFS

In what follows we denote by C' a generic positive constant independent of n. Lahiri & Sun
(2009) show under polynomial mixing rates that, for any x € R,

pr{(n'?(& — &) <z} = @{xf(&)/0(&)} +O(n™?). (A1)
We first state a lemma which is a special case of Sun and Lahiri’s (2006) Lemma 5.3.

LEMMA 1. Let {Vn,t 1t =0,%+1,+£2,... } be a double array of row-wise stationary strong
mixing Bernoulli (p,,) random variables with 0 < p, < q < 1 and mixing coefficients o, (t) =
a(t) = O(t=P), for some fixed q € (0,1) and B > 0. Then, for any positive ¢, = o(1), n™+ <
dn = o(1) and any § € (0,1), we have

pr{ Z (Vn,t - pn) > nfn}
t=1
2 2
<C <5n1 + 67@) exp <_ Cmnen) + Cn(l +p26;1)5g(175)_
n + €n Pn + €n

Define, for any r > 0, %’r(fp) = [fp -r&+ r].

4847
LEMMA 2. Suppose that o(t) = O(t=5) for some B > 5 and n” 5G5+5 { — oc. Then for any

arbitrarily small § > 0, the following results hold uniformly over € € [n*CO, 1).

; L TN L
(i) %S(lgp) , |Fr(z) — F(z)| = Oy {n 2D 20 2(B D) }for any ¢y € (0,3).
TEHe(Ep)NNp

. 1 p+3
(ii) js(lgp) p |Fr(z) — Fu(z)| = O, {n—162(6+1)+5€2(ﬁ+1)+36}for some cy > 1/2.
TERB(Ep)NMp
__B=t
(iii) Js(lgp) y |Fr(z) — Fu(&) — F(z) +p| = O, {n 2<ﬁ+1)+66(1+6)/2}f0r any o € (0,2).
TERBe(Ep)NNp

_4B+T
LEMMA 3. Suppose that a(t) = O(t=?) for some > 5 and n” 5GB+5) { — oo. Then for any
arbitrarily small 6 > 0,

(i) & =&+ 0, {nW T g |

. 5—3 __B(2B-3) 2(8+3) __4B+5 B8+3
(ii) F, (fn) =p+ op{nfﬂ“; 4+ n " B-DEEHD TOYBE-D@ATD 4 35+D TOYT(BTD

Sty +6€ 2%131 }

+n 2B8+1
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16 T. A. KUFFNER ET AL.
LEMMA 4. For any arbitrarily small 5 > 0 and any compact # C R,
pr[(60)2{ (@) - Fal@)} <y| X, Xa] = ®{(y/o(2)}
B {Op{€1 + 02072 4 (b0)7Y200} if € = O(b) and a(t) = O(t~P) for some 3 > 5,
B Op{ 1+ 02n=Y2 4 (b0)=Y2}  ifa(t) = O(e™Y),
uniformly over (z,y) € Ny, X A .

Proof of Lemma 4 3
Denote by #; () the jth conditional cumulant of (b¢)Y/2{ Fi*(z) — F,,(z)} given X1, ..., X,
It is clear that &1 (x) = 0. '
Define, for j = 1,2,...,V; = (n— £+ 1)7! E;:f“ {Ui(z) — F(z)}’ and
i—1
A = E{{l{XO <2} - F@)}[ Y {1{X, <2} - F@)}) }
lt|<e—1
Then we have, by stationarity and strong mixing properties, E (V;) = E[{U;(z) — F(z)}] =
O(EI_jAj) and nVar(Vj) = O(fl_ﬁ + 62—2]‘./42],) .
Consider first the case 8 < co. Expressing the jth conditional cumulant of U5 () as a function
gj of (V1,...,V;), we obtain
fj(z) = (b0)PD T g;(V1, .., V)
= (b0)/20 I [g;(EW1, ... ,EV;)) + Op {n /200 =A/2 4 n=1/20170) A0, 1/21] ) (A2)
where g;(EV, ..., EV;) identifies the jth cumulant of Uy(x) — F(z). A comparison with the
case of independent data suggests that, for any arbitrarily small § > 0,
g (EV1,...,EV)) = O(L7F 4 ¢17719). (A3)
Noting that Ay = O(1) and
Ay =0{7 gV, BV Y A

2<i<j—2

bz

it can be shown by induction and (A3) that

A= O{gj—l—ﬂ + 00 4 pU=2)/2=(1/2=0)1{j Odd}}7 j > 3. (Ad)
It follows from (A2), (A3) and (A4) that
Ro(a) = Lga(V1, Vo) = £(V2 — VY)

= > (1= [t|/0) Cov(1{Xo < a}, 1{X; < x}) + Op{n /(T I=0/2 4 | 44]1/2)}
1<|t[<e-1

= 0(2)2 + O(U™Y) + O {n~V24B=B2 4y =1/241/2}
=o(2)*+ 0, (E_l + n_1/2€1/2) (A5)
and, for j > 3 and ¢ = O(b),
Ri(x) = (020 I [g;(EV1, ... ,EV)) + Op{n=V/200=F)/2 4 n= 120170 gy, |1/21]
—p=(-2)/2 Op{gj/2—6 4 p1mI/248 o =1/2p(5+1-6)/2 n—1/2g1/2}
_ Op{b_1/2€_1/2+6 +n12p6-8)/2 4 n—1/2b—1/2£1/2}‘ (A6)



Block bootstrap for sample quantiles 17

Without imposing the condition ¢ = O(b), the above arguments can similarly be applied to the
case of exponential mixing rates to establish (A5) and a stronger version of (A6), with é = 0 and
B = oo.

Following Arcones (2003), application of Esseen’s lemma (Feller, 1971, Lemma XV1.4.2) to
polygonal approximations of the conditional distribution function of (b¢)Y/2{F(z) — F,,(z)} s

and ®{ - /o(x)} yields, for any arbitrarily large C’ > 0,

sup ‘Pr[(bﬁ)lﬂ{Fﬁ(x) — Fo(2)} < y‘Xl, . ,Xn} _ @{y/g(m)}‘
(z,y)ENpXH
<CC/ 1(b£) 1/2+C/Cl bl |t| 1 7t2/2‘6 +t2/2 1‘ sin {2—10($)—1(b£)_1/2t}

2~ 1o (x) =1 (b0)~1/2¢ 7

where #%(t) denotes the conditional characteristic function of (b¢)'/2{ F(z) — F,(2)} /o (2). e

Lemma 4 then follows by bounding & (t) + ¢2/2 using (A5) and (A6) under polynomial mixing,

or using (A5) and the stronger version of (A6) under exponential mixing.

Proof of Theorem 1: ~
Consider first the case 5 < co. We have, by Lemmas 2, 3 and Taylor expansion of F about &,,,

p— Fo{& + (b0) 7122}
= {p— Fa@)} + [Faln) — Fuf{+ (b0) 22} ]
2(5+3)

B(26-3)
= F, (&) — F, {gn + (b0) 1/2x}_|_0 {n R 1+5+n F-DEeD T 1)@t

4645 543 2(8+1) _ 2645
L TG g 4y 2err Hpaner } +0 {nflb T~ 54(@+1>+55}

38—1 ___B(2B=3) 2(8+3)
—(b0)" V22 f (€ + op{n T340 L it L e nee O g e

4+5 4 5 _B+3 208+1) 5 B3 _ 48243841 46,543
+n 4B+D TUQ2B+) 4 2841 (28+1 4 2@2B+1)(B+D) £2(2B+1>}

2845

£ 000 Ny T A a0 ag)

Note that (A7) holds under exponential mixing for any arbitrarily large 5. Applying Lemma 4, s
we have, for arbitrarily small § > 0, that
pr {F;{gn + (bﬁ)_1/2x} < p‘Xl, . ,Xn}
= pr((b0) 2 [Fy{& + (00) 722} = Fu{én + (b0)7/2a}]
< (b)Y [p — Fp{&n + (b0) 1/ %2}]
= (602 [p ~ Fulén + 00722} fo{&u + (b)) )

Op{ ™+ 0/2n=Y2 4 (b0)=Y2¢5} if £ = O(b) and a(t) = O(t77),
Op{ =1 + 12n=12 4 (b0)~1/2}  if a(t) = O(e™ ).

Xl,...,Xn)

(A8)
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It follows from (A7), (A8) and Lemma 3(i) that for arbitrarily small § > 0,
pr [F;{g"n +(b0) "2} < p’Xl, . ,Xn}

=o{ —zf(&) /(&) } + Op{gfl V2 ()24 n—%ﬂs(b@(l,gw

28+1 4847 B—3 38—1
+n~lparD _5g74(/3+1>+55} + op{n—ﬂ”(bg)l/? + WD O (b2

B(28-3)

_ 1 B+2 2B+1) |5 1 _4B4T
+n~ B-DEF+D

1 2(8+3) 4845
o5 p2tT b3 (2028TT)

D@D 4 WD TOp3 g5t 4~ 2641

+n” 2(42%Q++1??§+11) +6% p3tamrT) }
(A9)
if 8 € (5,00) and £ = O(b), and
pr[Fr{én+ (60722} <p| X0, X
= o{ —xf(&)/0(&)} + Op{ﬂfl + 012712 (b)) ~? n—1p3—0 1450
+ ”_%M(b@(l_dw} + Op{n_%+6(b€)1/2 + n_”‘sb%é} (A10)

under exponential mixing. Theorem 1 then follows by (A1), (A9), (A10) and noting that
pr [F’:{én + (bg)_l/Qx} > p‘Xla cee 7Xn:| S pr{(bg)l/Q (g;kz - én) g IZ?‘Xl, s 7Xn}

<pr [Ff:{én + (bé)*l/%} > p’Xl, . ,Xn}
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1. SOME TECHNICAL REMARKS

The type of weak dependence we assume is strong mixing. Because this is not the only type
of weak dependence in common use (Wu, 2005a, 2011; Dedecker & Prieur, 2005; Doukhan &
Louhichi, 1999), some justification for the choice of strong mixing is warranted. First, the vast
majority of relevant block bootstrap literature relies on strong mixing assumptions; see, e.g., the
monographs on block bootstrap (Lahiri, 2003) and subsampling (Politis et al., 1999). As a second
reason, there is a rich literature which exploits the mixing rate to differentiate asymptotic orders
when studying higher-order asymptotic properties of the bootstrap for statistical functionals with
dependent data (Gotze & Hipp, 1983; Lahiri, 2007).

Sample quantiles are often associated with empirical process theory, and the Bahadur repre-
sentation of sample quantiles for dependent data can facilitate the study of limit theory (Sen,
1972; Wu, 2005b). However, while the Bahadur representation and corresponding empirical pro-
cess theory is often useful for proving basic results such as consistency, asymptotic normality,
or the law of the iterated logarithm, the question of optimal convergence rates requires a differ-
ent approach utilizing higher-order asymptotics. We are not aware of any established empirical
process results which can lead to the asymptotic orders derived herein. Specifically, the order, as
a function of the available sample size n, of the remainder term in the Bahadur representation
of sample quantiles under strong mixing is not necessarily informative about the asymptotic or-
der of error in the block bootstrap approximation. Even if the remainder can be made as small as
n~3/4, this error will be transmitted to an error of order n'/2n=3/4 = n=1/4 when approximating
the cumulative distribution function of the sample quantile by that of the empirical distribution.
Such an error term will swamp the more precise orders established using our approach: see Fig-
ure 1 in § 4 of the paper, which shows that the optimal order is far below n~/4 for most values
of the mixing rate parameter 5. The main difference in our approach is that we study the event
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2 T. A. KUFFNER ET AL.

{n'/2(sample quantile — population quantile) < z} directly without having to approximate the
quantile process by the empirical process via the Bahadur representation. The latter approxima-
tion causes an unnecessary loss of precision in assessing the convergence rate of the distribution.

2. BACKGROUND

To understand how our results fit into the bootstrap landscape, consider the following. A broad
categorization of settings for bootstrap methods is suggested by Lahiri (2003): (i) smooth func-
tionals of independent data; (ii) nonsmooth functionals of independent data; (iii) smooth func-
tionals of dependent data; and (iv) nonsmooth functionals of dependent data. Setting (i) is the
classic setting of the bootstrap, with Hall (1992) being an authoritative reference. In setting
(ii), bootstrap methods for approximating distributions of sample quantiles have been studied
by Efron (1979); Bickel & Freedman (1981); Singh (1981); Babu (1986); Efron (1982); Ghosh
et al. (1984); Hall & Sheather (1988); Hall et al. (1989); Hall & Martin (1991); De Angelis et al.
(1993) and Falk & Janas (1992).

In setting (iii), i.e. smooth functionals of dependent data, the existing literature is concentrated
on block bootstrap methods, beginning with Hall (1985), and Carlstein (1986). Subsequently,
the moving block bootstrap was proposed by Kiinsch (1989) and Liu & Singh (1992). Other
variants of the block bootstrap for smooth functionals have been suggested by Paparoditis &
Politis (2001); Politis & Romano (1992, 1994) and Politis et al. (1997), to name a few. The
various existing block bootstrap methods and their properties for weakly dependent sequences
have been investigated by, for example, Bithimann (1994); Naik-Nimbalkar & Rajarshi (1994);
Hall et al. (1995); Gotze & Kiinsch (1996); Lahiri (1992, 1996, 1999) and Biihimann & Kiinsch
(1999).

A distinct literature exists concerning the Bahadur representation of sample quantiles for
strong mixing sequences. When such a representation exists, i.e. there is a nice relationship be-
tween the sample quantiles and empirical distribution function, then block bootstrap consistency
properties will be implied by consistency properties of bootstrapping the empirical (quantile)
process. Some recent work in this area is due to Sharipov & Wendler (2013), who proved weak
consistency of circular block bootstrap under some additional conditions regarding mixing, block
length and differentiability.

Another recent development in dependent data bootstrap methodology is the convolved sub-
sampling bootstrap (Tewes et al., 2017). This bootstrap estimator is defined by the k-fold self-
convolution of a subsampling distribution. In the special case of the sample means problem, this
corresponds to our hybrid bootstrap. For the sample quantile problem which is the particular
focus here, convolved subsampling bootstrap essentially computes the average of within-block
sample quantiles over the b resampled blocks. By contrast, our estimator is the sample quantile
of a single series formed by joining b blocks. Further theoretical comparison of these approaches
will be undertaken elsewhere.

Other indirectly-related work includes Lahiri (2005), who studied consistency of jackknife-
after-bootstrap variance estimation for bootstrap quantiles, and Gregory et al. (2015), who
showed that the Sun & Labhiri (2006) strong consistency results for distribution and variance
estimation via the moving block bootstrap also hold for the smoothed extended tapered block
bootstrap (SETBB). The SETBB has been further developed for quantile regression by Gregory
et al. (2018), though again only consistency is established, rather than optimal convergence rates.
We mention that Shao & Politis (2013) employed a fixed b subsampling procedure to estimate
confidence sets for statistics adhering to the smooth function model. In Section 3 they also con-
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sider functionals of the form 7'(F') that can be linearly approximated as an average of influence
functions. The quantile T'(F) = F~!(p) would be covered by this framework, and their simula-
tion study reported includes the median as an example. However, all of the papers cited above do
not go beyond first-order consistency.

3. A FURTHER EXAMPLE

In this example, we construct a process whose mixing coefficients decay at a polynomial rate,
but not an exponential rate. This is accomplished through Theorem 2.1 of Chanda (1974); see
also Bandyopadhyay (2006) and §3 of Chen et al. (2016).

Example 3 (Polynomial Mixing Rate). Let the sequence { X };cz be generated according to

oo
Xt = Z Cth_j,
7=0

where the Z; are independent, identically distributed /V (0, 1) and ¢; = (]ﬁ)” Then X is strong
mixing with a polynomial rate, and Chanda (1974) may be used to deduce that § < v — 2.

In practice, we cannot simulate from the above process exactly because it is expressed as an in-
finite series. Therefore, we approximate the process by truncating the series at 100 terms, which
means that in reality X is approximated by a very high order MA process. For our numeri-
cal example, v = 10.0 and n = 200. As before, we consider p = 1/2, corresponding to &, = 0.
Simulation yields an approximation to the true value G,,(2) ~ 0.95229. The heatmap for this
example shown in Figure 1 is based on 10,000 replications, and 10,000 bootstrap samples for
each replication of the experiment. As with the previous two examples, the heatmap supports our

Fig. 1. Heatmap for the polynomial mixing rate example;
n = 200.

0.0030

0.0025

0.0020

- 0.0015

- 0.0010

2 . - 0.0005

85

90

95

100



4 T. A. KUFFNER ET AL.

finding of suboptimality of the choices of (b, £) suggested by the subsampling bootstrap and the
MBB.

4. PROOEFS

Proof of Lemma 2:
_B-1 35 1_-_1 5
105 Define m,, = |n 2B+ "¢ 2B+ and €, = ¢/m,,. Then we have

sup |Fy(x)— F(z)| < max Fo(&) + ken) — F(&p + ken)| + Cen. (1)
xeﬁe(gp)‘ (=) ( )‘ ke{O,:ﬁ:l,...,ﬂ:mn}‘ (& ) (& )‘
Foreach k € {0,£1,...,+m,}, application of Lemma 1 with V,, ; = 1{X; < &, + ke, }, pp =

—1
F(& + keyp) and 0, = (en2_A1) 1+8(1-42) for arbitrarily small Ay, As > 0, yields

P{ Fo(&y + ken) — F(&y + ken)| > en}

4 _1+38+28% 5 B—1__ (B+3)
< (Cn?2+8 exp{_Cn(gicO)a}‘i‘Ce 2(1+8)2 B+ CA2n_2(ﬁ+1> 51 TOA2

It follows by Bonferroni’s inequality that

P, P ke~ P& + ko) > o0}

< (2mn + 1)1@{ E,

(&p + ken) — F (& + ken)‘ > en}

— _ ) (4=cq)B46—2¢q
< OnTrt e P oy, {_Cn(‘””co)s} +Cn e o(1)
for sufficiently small AQ, uniformly OVET € € [ ¢ 1) This, in conjunction with (1), implies
1o that  sup ‘Fn(:r) | = ), which proves part (i) of Lemma 2.
z€Be(Ep)
To prove part (ii), write n’ = n — £ + 1 and note that
1 =l
Fp(z) — MZ(—Z) {(1{X; <2} + X1 < a}—2F ()}

i=1

()} 2)

_cqd 3B+5 L35 .
Define, for ¢ > 1/2, m=n “Tm 2 a2 It is clear that m = o(¢). Noting that for

sufficiently large n and sufficiently small A > 0,
Int S 48+ 7
Inn = 6(38+5)

+ A,

we have
Inm 1 ) 38+5 30 48+ 7
m>_"’°{4(/3+1>+2}+{ NEES VRN }{ (3B+5)+A}

1 6 1 (3B+5)A [ B+2
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We may therefore choose ¢y sufficiently close to 1/2 and some K < 6 such thatlnn/Inm < K
and cg K < 3. It follows that for any € > n=,

€>n"0 > mk 5 gk

Consider

-1 l—m | l—

{I{X <z} —Fl(x ) ™ {I{Xi <z}-— F(w)}
=1 j=1 | i=j

,_\

-1 -1

— Z Z{I{Xigx}—F(:c)} =1 — I — I3, say.

j=t—m+1 | i=j

Applying part (i), we have, uniformly over € € [n_CU, 1) , that
I = Op {n_1€2(€3‘131)+3552(51+1)+6}

and

l—m
1 +38 s+ SRS T N S
I, =0, i E (5_3)2(B+1> 2(B+1) = Oy n~ {2EFD T 2B .
j=1

It is clear that
Is =0, {(nﬁ)flmQ}
=0, {n‘l_ TR ‘0056253131> +3‘5}

B+3 1
=0, {n—1£2(6+1)+3562(6+1)+5} .

The bounds on I, I, I3 therefore imply that

e; Z @—) {UXi < 2} + X1 < 2} - 2F(2) )

3)
=0, {n—lwétsl)*g‘se 2(61+1)+5} .
It follows by part (i) again that
(@)} =0, {gn_l st5emy T30 2<5+1)+5}
=0, {n_1£2(§;31)+35 </3+1>+5} 4)

Part (ii) then follows by combining (2), (3) and (4).
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s-1__
For the proof of part (iii), define M,, = [n2(5+1> 66(15)/2—‘ and €,, = ¢/M,,. Then we have

sup ‘Fn(x) — Fu(&) — F(=) +p‘
r€ERBe(Ep)

< — — .
—ke{o,ffﬁ?fiMn}‘F"(ép““") Fu(&p) = F(& + ken) +p| + Cen (5)

For each k € {£1,...,4+m,}, set, for the application of Lemma 1, V,; = [1{X; < & +

ken} — {X; < &Y pn = |F (& + ken) — p| and 6, = (n 2_AleAQ)_l/(ﬂ(l_AQ)Jrl), for arbi-
o trarily small Aq, As > 0. Noting that Cle, < pn < Ce, we have, by Lemma 1, that for any
A€ (0,1),

P

< O(nQ—AleAg)l/(B(lfAZ)Jrl)

Fo(&p + ken) — Fu(&p) — F(&p + ken) +p‘ > Gn}
{_C(n2—A1€A2)71/(5(17A2)+1) Ty +26 5}

exp

+ Cn%—%—(lﬁ)/ﬂA (nz—A1 GAQ) —BA=A)/(B(1=A2)+1)

It follows by Bonferroni’s inequality that for sufficiently small A’ > 0 and for any ¢( € (0, 2),

P Fn kn _Fn _F k’n n
{ke{o,ﬂf‘ﬁm”}‘ (&p + ken) (é0) = F(& + ken) +p| > ¢ }

< (2M,, + 1)]P’{

Frl(& + ken) = Fu(§0) = F(§ + kea) +p| > en |
< Cn253131> exp {— Cn(2_co)5/2} + O~ G +AT — (1),

uniformly over € € [n=%,1). This, in conjunction with (5), implies that sup |F,(z)—
r€Be(Ep)

Fo(&) — F(x) + p‘ = Op(€y,), which proves part (iii) of Lemma 2.
135 Proof of Lemma 3:
Let ¢p > 1/2 be as specified in Lemma 2(ii). Define, for € € [n=%, 1),

)+5 )+3§

on(e) =n"~ 2(ﬁ+1 £2(6+1

T 5T
264+1—2 +1
€1 = { 1€2<B+1 +35} and e = n~1/2 + €1.
Note that d,,(e1) = €1. Using Lemma 2(ii), we have, for some a € (0, 1), any M > 0 and suffi-
ciently large n, M,
P(&, — & > Meo)

< ]P’{ sup |Ep(x) — Fp(x)] > M5n(M€2)}
1'6-—%,]%52 (gp)ﬂ/%

+P{F,(& + Me) < p+ M6, (Mey)}
<N+ P(nV2{Fa(gy + Mez) = F(& + Mes) )

< —27'M (&) [1 +n' e — MmO MR 25, (n71%) + 61}]). (6)
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Note that if €; = o(n~'/2), then 6, (n~1/2) = o(n~1/?), so that 140

lim —27'Mf(&,) N1+ n'/2e; — CMf(lfa)Mnlﬂ{(Sn(”ilﬂ) teaf] = —27 M f(&y).

n—oo

If ; > Con~ Y2 for some C > 0, then (5n(n_1/2) < Cy“on(e1) = Cy “e1, so that for M suffi-
ciently large, we have

n'/?e; — C’M_(l_O‘)Mnl/2{5n(n_1/2) + 61}
> ) {1 — oM (O + 1)} > Cp/2.

The above results suggest that
—27 M f (&) [L +n'Per — MU INRY 2[5, (nY?) + e }] < —4TIMF(E)

for M, n sufficiently large. It then follows from (6) that P(én —& > M 62) can be made ar-
bitrarily small if we choose n, M and M large enough, using the fact that Fo(&p + Meg) — s
F(&, + Mey) = Oy(n~'/2). The same arguments can be applied to the lower tail probability
P(én - & < —MEQ). Thus we have &, = &p + Op(e2). Lemma 3(i) then follows as ¢ can be
made arbitrarily small.

To prove part (ii), write

_2(B+1) B+3

50(”76) =n -1/2 +mn 28+1 (2B+1 150
_ 4845 _p+3 _2(B+1) p+3
e1(n,l) =n G+ L2BF) 4 n~ 25+1 (2541
,L B(28-3) 2(B8+3)
( ,g) n A1 4 p B-DEF+D) (B-1)(2+1) |
(na ‘6) =& (n7€) + 52(”75)’
Denote by X(;) <--- < X(n) the ordered sequence of X, ..., X,,. For any arbitrarily small
A, A >0, IP’{F ) > p+nde(n,l } is bounded above by 155
IP’{F,L(X(J-H)) = Fu(X(jgr) =0+ n’e(n, £) — ney(n, L),

Fn(X(])) <p-+ ’I’LAﬁl(TL,E), X(j+1) - gp’ < nA/EO(n’f) some ja k> ]-} (7)
+B{[& ~ | > n¥eo(n. 0} + B{ sup |Fu(e) — Fu(a)] > nei(n,0)}.

(&p) N A7. Noting that

where the supremum in the last probability is taken over x € %, ar
nt- Bso(nﬂ O{ggnﬁﬁ 1} O{Enﬁﬁ 1} we have

n~(B=2=40¢ (n,?) {n5£(n, ) }_(5_1)
= o{n—(5—2—A’)—5(6—1)50(n7 Onf~eo(n, 5)_2}
_ O{n_2+A/_5(5_1)50(n, E)—l}
= o{n_z_Also(n, Z)_l}
for sufficiently small A’ > 0. Thus we may find a positive sequence {7, } satisfying

Nn = 0{71_2_Al€o(n,f)_1} and n_(ﬁ_%A,)so(n,Z){n‘ss(n,ﬁ)}_(ﬁ_l) =o(n,) (8)

eo(n,l)
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for sufficiently small A’ > 0. Noting that n®e;(n, £) = o(n°s(n, )) for sufficiently small A,
following the proof of Lemma 5.4(iv) of Sun and Lahiri (2006) and using (8), the first probability
in (7) can be bounded above, for sufficiently large n and sufficiently small A" > 0, by

n Y P{Xi= X € By (&) N}

§>2-1nl+de(n )

< et eq(n, Oy + an_ﬁJ“A/eo(n,E){n‘ss(n,ﬁ)}f(’gfl)n_l =o(1).

n

That the last two probabilities in (7) converge to 0 follows from Lemma 3(i) and Lemma 2(ii),
respectively. From the above results we derive that P{ F},(&,) > p + n’e(n, £)} = o(1). Similar

arguments show also that ]P’{Fn(fn) < p—ne(n,l)} = o(1), which completes the proof of
part (ii).
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