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SUMMARY

We establish a general theory of optimality for block bootstrap distribution estimation for sam- 15

ple quantiles under mild strong mixing conditions. In contrast to existing results, we study the

block bootstrap for varying numbers of blocks. This corresponds to a hybrid between the sub-

sampling bootstrap and the moving block bootstrap, in which the number of blocks is between

1 and the ratio of sample size to block length. The hybrid block bootstrap is shown to give the-

oretical benefits, and startling improvements in accuracy in distribution estimation in important 20

practical settings. The conclusion that bootstrap samples should be of smaller size than the orig-

inal sample has significant implications for computational efficiency and scalability of bootstrap

methodologies with dependent data. Our main theorem determines the optimal number of blocks

and block length to achieve the best possible convergence rate for the block bootstrap distribu-

tion estimator for sample quantiles. We propose an intuitive method for empirical selection of 25

the optimal number and length of blocks, and demonstrate its value in a nontrivial example.

Some key words: Hybrid Block Bootstrap; Subsampling; Optimality; Sample Quantile; Weak Dependence.

1. INTRODUCTION

Sample quantile estimation and inference with dependent data is an important problem, with

many common applications in statistics, such as time series analysis, Bayesian inference based 30

on Markov chain Monte Carlo samples, and quantile regression, to name a few. Block bootstrap

procedures have proven to be effective and popular tools in such problems. However, the optimal

choice of block length to achieve the fastest possible convergence rate of the block bootstrap

estimator of the distribution of the sample quantile is an open problem. Optimality in this sense

is crucial to achieving accurate point estimates, good coverage properties of confidence intervals, 35

as well as scalability and computational efficiency in high dimensions.

C© 2018 Biometrika Trust
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While bootstrap theory for the sample quantile problem is fairly well-understood for indepen-

dent data, there is no existing optimality theory for dependent data. A change from an indepen-

dent to a dependent context entails a complete revamp of the bootstrap theory, and optimality

results known for the independent case do not have a trivial generalisation in the dependent case.40

In this paper, we rigorously establish the optimal convergence rate for the block bootstrap

estimator for sample quantiles under standard weak dependence conditions of strong mixing,

which cover large classes of time series models. We call our approach a hybrid block bootstrap

because the fastest convergence rate is achieved by choosing not only the block length, but also

the number of blocks, and the optimal choice is in-between using a single block (the subsampling45

bootstrap) and using the number of blocks prescribed by the moving block bootstrap. The hybrid

block bootstrap is seen to achieve remarkable improvements in accuracy for sample quantile

distribution estimation compared to the subsampling bootstrap and the moving block bootstrap.

To put our results in a broader context, we mention that optimal block selection is generally an

open question for many blockwise statistical procedures with dependent data. The block boot-50

strap and blockwise empirical likelihood are two common examples. Many recent papers on

these topics contain statements to the effect that the sort of optimality theory and methodology

we develop in this paper are challenging open questions, in a wide variety of contexts. See, for

example, Gregory et al. (2015); Shao & Politis (2013) and Zhang & Shao (2013).

2. BLOCK BOOTSTRAP METHODS55

In the Supplementary Material, we provide a review of relevant bootstrap literature. There is

little literature on use of block bootstrap methods for the context considered here, which con-

siders a nonsmooth function of dependent data. Sun & Lahiri (2006), Sun (2007) and Sharipov

& Wendler (2013) are notable exceptions. Those authors considered block bootstrap approxi-

mation for sample quantiles under weak dependence. Sun & Lahiri (2006) established strong60

consistency of the moving block bootstrap, assuming only a polynomial (strong) mixing rate, for

both distribution and variance estimation of the sample quantiles. Sharipov & Wendler (2013)

established similar results for the circular block bootstrap utilizing a different set of conditions to

take advantage of empirical process theory for the Bahadur-Ghosh representation of the sample

quantile. Sun (2007) is particularly relevant to our work, as discussed further below. All of these65

earlier results assume that the number of blocks tends to infinity with the sample size.

Most recently, Kuffner et al. (2018) established a more general consistency result for a hy-

brid block bootstrap, for both distribution and variance estimation of sample quantiles. While an

exponential mixing rate is assumed, Kuffner et al. (2018) proved weak consistency for any num-

ber of blocks, 1 ≤ b = O(n/`) as n → ∞, whereas the existing proofs for the moving block70

bootstrap and circular block bootstrap required that b → ∞, where b = bn/`c. Here, n is the

available sample size, and ` is the block length. For a real number h, the notation bhc is defined

as the largest integer ≤ h, and dhe is the smallest integer ≥ h. The value of b is the number of re-

sampled blocks to be pasted to form the bootstrap data series. The case b = 1 corresponds to the

subsampling bootstrap (Politis & Romano, 1994), and the case b = bn/`c is the standard moving75

block bootstrap (Künsch, 1989). Therefore, the consistency results in Kuffner et al. (2018) are

for a hybrid between the moving block bootstrap and the subsampling bootstrap, and those two

extremes are covered by the same theory.

As noted in Kuffner et al. (2018), their theoretical and empirical results suggest that there

can be substantial performance improvement, in terms of mean squared errors for both the vari-80

ance and distribution estimators, when choosing some value of b > 1, but less than bn/`c. This

suggests the following question: does there exist some optimal choice of the pair (b, `) which
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provides the best convergence rate for the bootstrap distribution estimator for sample quantiles

under weak dependence? We answer that question in the present paper.

Related to the motivation of the present paper is the paper by Sun (2007). She studied the 85

convergence rate of the moving block bootstrap distribution estimator for sample quantiles with

dependent data. A strong mixing condition with exponentially decaying mixing coefficients was

assumed. An almost sure convergence result was established, and the best rate of convergence

was found to be O(n−1/4 log log n), which is only slightly different from the convergence rate

for bootstrap approximation with independent, identically distributed data (Singh, 1981). We 90

consider a weaker polynomial rate condition, which is also slightly weaker than that assumed

in Sun & Lahiri (2006). Moreover, we allow the number of blocks to vary, instead of fixing

b = bn/`c. Our main theorem establishes the convergence rate of a hybrid bootstrap distribution

estimator for sample quantiles. It is a hybrid between the moving block bootstrap (b = bn/`c)

and subsampling (b = 1) bootstrap. We also apply our theory to the setting of Sun (2007) below. 95

Aside from our general optimality results being of foundational and practical value, they also

indicate that adaptive selection of the number of blocks could yield considerable improvements

in convergence rates for block bootstrap distribution estimators. Moreover, Lemma 4 below is

of independent interest, as it gives the convergence rate of the block bootstrap distribution esti-

mator, and has bearing on the regular smooth function model. We have included several relevant 100

empirical examples to illustrate the potential gains of optimal choice of the number of blocks,

as opposed to using the prescribed value of b for either the subsampling bootstrap (b = 1) or the

moving block bootstrap (b = bn/`c). In § 6, we give practical guidance as to how to choose (b, `)
in a given applied problem, by proposing a procedure for this purpose.

3. PROBLEM SETTING 105

3.1. Notation

Let Z ≡ {0,±1,±2, . . .} be the set of all integers. Define {Xi}i∈Z to be a doubly-infinite

sequence of random variables on the probability space (Ω,F , P ). The elements of the sequence

possess a common distribution function F , and its corresponding quantile function F−1, defined

by 110

F−1(p) = inf{u : F (u) ≥ p}, p ∈ (0, 1).

We will study the block bootstrap distribution estimator of a suitably centered and scaled sample

quantile. It is assumed throughout that {Xi}i∈Z is a strictly stationary process. The sequence

(X1, . . . , Xn) denotes a sample of size n from {Xi}i∈Z. Denote by 1{·} the indicator function,

so that 1{A} = 1 if event A occurs, 1{A} = 0, otherwise.

3.2. The Block Bootstrap 115

The moving block bootstrap (Künsch, 1989) splits the original sample (X1, . . . , Xn) into over-

lapping blocks of size `, Bi = (Xi, . . . , Xi+`−1), together constituting a set {B1, . . . , Bn−`+1}.

Let B∗
1 , . . . , B

∗
b be a random sample drawn with replacement from the original blocks, where

b = bn/`c is the number of blocks that will be pasted together to form a pseudo-time series.

That B∗
1 , . . . , B

∗
b is a random sample from {B1, . . . , Bn−`+1} means that the sampled blocks 120

are independently and identically distributed according to a discrete uniform distribution on

{B1, . . . , Bn−`+1}. The observations in the ith resampled block, B∗
i , are X∗

(i−1)`+1, . . . , X
∗
i`,

for 1 ≤ i ≤ b. Then the moving block bootstrap sample is the concatenation of the resampled
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blocks, written as

X∗
1 , . . . , X

∗
`

︸ ︷︷ ︸

B∗

1

, X∗
`+1, . . . , X

∗
2`

︸ ︷︷ ︸

B∗

2

, X∗
2`+1, . . . , X

∗
(b−1)`

︸ ︷︷ ︸

B∗

3 ···B∗

b−1

, X∗
(b−1)`+1, . . . , X

∗
b`

︸ ︷︷ ︸

B∗

b

.

Note that this way of constructing the pseudo-time series will reproduce the original dependence125

structure asymptotically.

The subsampling bootstrap (Politis & Romano, 1994), and specifically the overlapping blocks

version relevant to the present setting, first splits the original sample into precisely the same

overlapping blocks as the moving block bootstrap, each of length `. However, the subsampling

bootstrap draws only a single block. A nice property of this procedure is that the original de-130

pendence structure in the sample is exactly retained in the single subsample. By contrast, the

pseudo-time series constructed by the moving block bootstrap only reproduces the original de-

pendence structure asymptotically.

We define dependence for the sequence of random variables {Xi}i∈Z in terms of the mixing

properties of σ-algebras generated by subsets of the sequence which are separated by a distance,135

in units of time, tending to infinity. For any two sub-σ-algebras of F , say F1 and F2, the α-

mixing coefficient between F1 and F2 is defined to be (Athreya & Lahiri, 2006, Section 16.2.1)

α(F1,F2) ≡ sup
A∈F1,B∈F2

|pr(A ∩B)− pr(A)pr(B)|. (1)

Write Fk+t
k for the smallest σ-algebra of subsets of Ω with respect to which Xi, i = k, . . . , k + t,

are measurable. Let Fk
−∞ be the smallest σ-algebra which contains the unions of all of the σ-

algebras Fk
a as a → −∞. That is, Fk

−∞ is a sub-σ-algebra of F , and it is the σ-algebra generated140

by the random variables Xa, Xa+1, . . . , Xk as a → −∞. Similarly, for −∞ ≤ k ≤ ∞, let F∞
k

be the σ-algebra generated by the random variables Xk+1, Xk+2, . . . , Xk+a, as a → ∞. The

α-mixing coefficient of the sequence {Xi}i∈Z is defined as

α(t) ≡ sup
k∈Z

α(Fk
−∞,F∞

k+t),

where α(·, ·) is defined in (1). If the α-mixing coefficient decays to zero,

lim
t→∞

α(t) = 0, (2)

then the process {Xi}i∈Z is said to be strongly mixing. The sequence of random variables145

{Xi}i∈Z is said to be weakly dependent if the process {Xi}i∈Z is strongly mixing, that is if

(2) holds.

4. THEORETICAL RESULTS

Assume that (X1, . . . , Xn) is a sample of a stationary strong mixing process with mixing

coefficient α(t). We assume either a polynomial mixing rate such that α(t) = O(t−β) for some150

β ∈ (5,∞) or an exponential mixing rate such that α(t) = O(e−Ct) for some C > 0. Denote by

F the distribution function of X1 and Fn the empirical distribution function of (X1, . . . , Xn).
Define, for x ∈ R, σ(x)2 = limn→∞ Var

{
n1/2Fn(x)

}
=

∑∞
t=−∞ Cov

(
1{X0 ≤ x}, 1{Xt ≤

x}
)
. Define, for ` ∈ {1, 2, . . . , n}, b ∈ {1, 2, . . .} and x ∈ R, J1, . . . , Jb to be independent ran-
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dom indices uniformly drawn from the set {1, . . . , n− `+ 1}, 155

Ui(x) = `−1
i+`−1∑

t=i

1{Xt ≤ x}, i = 1, . . . , n− `+ 1,

U∗
i (x) = `−1

Ji+`−1∑

t=Ji

1{Xt ≤ x}, i = 1, . . . , b,

F̃n(x) = (n− `+ 1)−1
n−`+1∑

i=1

Ui(x), F ∗
n(x) = b−1

b∑

i=1

U∗
i (x).

Define, for p ∈ (0, 1),

ξp = F−1(p), ξ̂n = F−1
n (p), ξ̃n = F̃−1

n (p), ξ∗n = F ∗−1
n (p).

Assume that f = F ′ is defined on a neighbourhood Np of ξp, with 160

0 < inf
x∈Np

f(x) ≤ sup
x∈Np

f(x) < ∞.

THEOREM 1. Suppose that n = O(n− `), n
− 4β+7

6(3β+5) ` → ∞ and b ≥ 1. Let x ∈ R be fixed

and δ > 0 be any arbitrarily small constant.

(i) If polynomial mixing holds with β ∈ (5,∞) and ` = O(b), then

pr
{

(b`)1/2
(
ξ∗n − ξ̃n

)
≤ x

∣
∣
∣X1, . . . , Xn

}

= pr
{

n1/2
(
ξ̂n − ξp

)
≤ x

}

+Op

{

`−1 + `1/2n−1/2 + (b`)−1/2`δ

+n
− β−1

2(β+1)
+δ

(b`)(1−δ)/4 + n−1b
2β+1
4(β+1)

−δ
`

4β+7
4(β+1)

+5δ
}

+ op

{

n
−β−3

β−1
+δ

(b`)1/2 + n
− 3β−1

4(β+1)
+δ

(b`)1/2

+n
− β(2β−3)

(β−1)(2β+1)
+δ

b
1
2 `

1
2
+

2(β+3)
(β−1)(2β+1) + n

− 4β+5
4(β+1)

+δ
b
1
2 `

β+2
β+1

+n
− 2(β+1)

2β+1
+δ

b
1
2 `

4β+7
2(2β+1) + n

− 4β2+3β+1
2(2β+1)(β+1)

+δ
b
1
2 `

3β+4
2(2β+1)

}

.

(ii) If exponential mixing holds with α(t) = O(e−Ct) for some C > 0, then

pr
{

(b`)1/2
(
ξ∗n − ξ̃n

)
≤ x

∣
∣
∣X1, . . . , Xn

}

= pr
{

n1/2
(
ξ̂n − ξp

)
≤ x

}

+Op

{

`−1 + `1/2n−1/2 + (b`)−1/2

+n−1b
1
2
−δ`1+5δ + n− 1

2
+δ(b`)(1−δ)/4

}

+ op

{

n− 3
4
+δ(b`)1/2 + n−1+δb

1
2 `
}

.

We may deduce from Theorem 1 the following two cases. 165
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Case (i) Polynomial mixing with β ∈ (5,∞) and ` = O(b).

The convergence rate of the bootstrap distribution estimator is minimised by setting

` ∝ b ∝







n
4β+7

6(3β+5) log n, β ∈
(
5, (7 + 1851/2)/4

]
,

n
β−1

3(β+1) , β ∈
(
7 + 1851/2)/4,∞

)
,

which yields, for any δ > 0,

pr
{

(b`)1/2
(
ξ∗n − ξ̃n

)
≤ x

∣
∣
∣X1, . . . , Xn

}

− pr
{

n1/2
(
ξ̂n − ξp

)
≤ x

}

=







Op

{

n
− 14β2+β−37

12(3β+5)(β+1)
+δ

}

, β ∈
(
5, (7 + 1851/2)/4

]
,

Op

{

n
− β−1

3(β+1)
+δ

}

, β ∈
(
7 + 1851/2)/4,∞

)
.

(3)

Note that as β → ∞, the optimal orders of ` and b approach n1/3, which does not depend on

unknown parameters and may be taken as a practical reference for empirical choices of ` and b.170

With such choices, that is ` ∝ b ∝ n1/3, the bootstrap distribution estimator has the convergence

rate Op

{

n
− β−2

3(β+1)
+δ

}

, for β ∈ (5,∞) and any δ > 0. The latter convergence rate is slightly

slower than that specified in (3), a price to pay for the absence of knowledge of β.

On the other hand, the moving block bootstrap sets b = bn/`c, based on which the optimal

` is of order n1/3, so that b ∝ n2/3. The convergence rate of the resulting bootstrap distribution175

estimator is given, for any δ > 0, by






Op

{

n
− β−5

2(β−1)
+δ

}

, β ∈
(
5, 2 + 171/2

]
,

Op

{

n
− β−3

4(β+1)
+δ

}

, β ∈
(
2 + 171/2,∞

)
,

which is markedly slower than that obtained by setting ` ∝ b ∝ n1/3. Figure 1 compares the op-

timal convergence rate with those based on b ∝ ` ∝ n1/3 and b = bn/`c ∝ n2/3, respectively.

Log error rates for the block bootstrap distribution estimator are plotted against β for the optimal

pairs of (b, `). The choice b = ` = n1/3 is optimal under exponential mixing, and it is our rec-180

ommendation when no information about the exact value of β is available. Thus the discrepancy

between the solid and dashed curves shows how ignorance about β affects the error rate. The

choice b = n2/3, ` = n1/3 is optimal for Künsch’s moving block bootstrap.

Case (ii) Exponential mixing.

The error rate has an order minimised by setting ` ∝ b ∝ n1/3, which yields185

pr
{

(b`)1/2
(
ξ∗n − ξ̃n

)
≤ x

∣
∣
∣X1, . . . , Xn

}

= pr
{

n1/2
(
ξ̂n − ξp

)
≤ x

}

+Op

(

n−1/3+δ
)

,

for any arbitrarily small δ > 0. For moving block bootstrap, the error rate is minimised if `
is chosen to have order between n1/4 and n1/2, yielding an optimal convergence rate of order

Op

(
n−1/4+δ

)
for any δ > 0. If we set b = 1, which amounts to the subsampling method, then

the fastest error rate has order Op

(
n−1/4

)
, attained by setting ` ∝ n1/2.

Remark 1. The mixing rate could be slower than what we require if the purpose is only to190

prove that the bootstrap is consistent. For example, Sharipov & Wendler (2013) prove circu-
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bF ∗
n(x) is no longer an expanding sum of independent data. This calls for the critical condition

` → ∞ and a technically more involved treatment of the cumulant generating function of F ∗
n in

our proof: see the Appendix for more details.

5. RELEVANCE TO COVERAGE ERROR220

Define

Ĝn(x) = pr
{

(b`)1/2(ξ∗n − ξ̃n) ≤ x|X1, . . . , Xn

}

and let ∆(n, b, `) be defined by

Ĝn(x) = Φ {xf(ξp)/σ(ξp)}+∆(n, b, `), (4)

where Φ denotes the standard normal distribution function. Our main results in § 4 establish the

asymptotic order of ∆(n, b, `) and derive the optimal orders of (b, `) which minimise that order.

A level α lower percentile confidence interval for ξp is given by225

[ξ̂n − n−1/2Ĝ−1
n (α),∞).

Noting from (4) that

Ĝ−1
n (α) = Φ−1(α)σ(ξp)/f(ξp) +Op {∆(n, b, `)} ,

and using (A1) (Lahiri & Sun, 2009) from the Appendix, we obtain that

pr
{
ξp ≥ ξ̂n − n−1/2Ĝ−1

n (α)
}
= pr

{
n1/2(ξ̂n − ξp) ≤ Φ−1(α)σ(ξp)/f(ξp)

}
+O {∆(n, b, `)}

= α+O
{
∆(n, b, `) + n−1/2

}
.

Since ∆(n, b, `) generally decays at a rate slower than n−1/2, which is optimal for independent230

data, minimising the order of ∆(n, b, `) amounts to minimising the order of the coverage error

of the percentile confidence interval.

6. PRACTICAL PROCEDURE FOR SELECTING OPTIMAL (b, `)

Setting b = bc1n
1/3c and ` = bc2n

1/3c, the objective is to find the optimal pair of positive

constants (c1, c2) which minimise the estimation error of Ĝn(x), or coverage error under some235

obvious modification of the procedure. Note from (4) and (A1) that

Ĝn(x)−Gn(x) = ∆(n, bc1n
1/3c, bc2n

1/3c) +O(n−1/2). (5)

Define, for c1, c2 > 0 and a fixed ρ ≥ 1,

δn(c1, c2) =
{
E
∣
∣∆

(
n, bc1n

1/3c, bc2n
1/3c

)∣
∣ρ
}1/ρ

.

Then the Lρ estimation error of Ĝn(x) has the expansion

{
E|Ĝn(x)−Gn(x)|

ρ
}1/ρ

= δn(c1, c2) +O(n−1/2). (6)

We wish to minimise δn(c1, c2) with respect to c1, c2.

Let M be a subsample size satisfying M = o(n) and M → ∞. Let Ĝ
(j)
M (x) be constructed240

analogously to Ĝn(x), with the complete sample (X1, . . . , Xn) replaced by the jth block of M
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consecutive observations drawn from (X1, . . . , Xn), for j = 1, . . . , n−M + 1. Then we have,

analogous to (5), that

Ĝ
(j)
M (x)−GM (x) = ∆(j)

(
M, bc1M

1/3c, bc2M
1/3c

)
+O(M−1/2), (7)

where ∆(j)(·) denotes the version of ∆(·) obtained from the jth subsample. Define

Err(c1, c2) = (n−M + 1)−1/ρ
{∑

j

∣
∣Ĝ

(j)
M (x)− Ĝn(x)

∣
∣ρ
}1/ρ

.

Using (A1), (5) and (7), we have 245

Ĝ
(j)
M (x)− Ĝn(x) = GM (x) + ∆(j)(M, bc1M

1/3c, bc2M
1/3c) +O(M−1/2)

−Gn(x)−∆(n, bc1n
1/3c, bc2n

1/3c)−O(n−1/2)

= ∆(j)(M, bc1M
1/3c, bc2M

1/3c) +O(M−1/2).

It follows that

Err(c1, c2) = (n−M + 1)−1/ρ
{∑

j

∣
∣∆(j)(M, bc1M

1/3c, bc2M
1/3c)

∣
∣ρ
}1/ρ

+Op(M
−1/2)

= δM (c1, c2){1 + op(1)}+Op(M
−1/2).

If we assume, as is typical, that δn(c1, c2) has a leading term of the form β(c1, c2)n
−γ (0 < 250

γ < 1/2) for some function β(·) independent of n, then Err(c1, c2), δM (c1, c2) and δn(c1, c2)
are all minimised at asymptotically the same (c1, c2). Thus, an empirical procedure for choosing

(c1, c2), and hence choosing (b, `), may be based on the minimisation of Err(c1, c2).
This procedure constructs the error estimate Err(c1, c2) by considering all n−M + 1 sub-

samples of M consecutive points drawn from the original data sample, and is therefore computa- 255

tionally expensive. However, the argument supporting minimization of this quantity actually only

requires that the number of subsamples used in the construction should grow with sample size n.

In practice, therefore, it is reasonable to evaluate the error measure Err(c1, c2) using a smaller

set of subsamples: in the numerical illustration given below, 20 subsamples, equally spaced along

the data series (X1, . . . , Xn), are used, allowing rapid evaluation of the error estimate. 260

7. EXAMPLES

To illustrate the benefits of optimally choosing (b, `), we consider three very general examples,

the third presented in the Supplementary Material.. For concreteness, we consider p = 1/2, and

simulate the mean squared errors of hybrid block bootstrap estimators of Gn(u) for particular

choices of u. The true reference values of Gn(·) are approximated via massive simulation, 5× 265

106 replications. For each of the sample sizes n = 200, n = 500, and n = 1000, all entries in the

included tables and heat maps are based on 20, 000 replications, with 20, 000 bootstrap samples

used within each replication, unless otherwise stated. For n = 2, 000, the number of replications

and bootstrap samples are each 10, 000. For convenience, Table 1 provides some reference values

of (b, `) for moving block bootstrap for the sample sizes we consider. This facilitates comparison 270

with the moving block bootstrap choice of b = bn/`c for a range of values of `. In particular, we

give values for ` approximately equal to n1/2, which is not optimal, n1/3, thought to be optimal,

n1/4, and n1/5.
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Table 1. Standard choices of (b, `) for different n, with the moving block bootstrap choice b =
bn/`c.

(b, ` ≈ n1/2) (b, ` ≈ n1/3) (b, ` ≈ n1/4) (b, ` ≈ n1/5)
n = 200 (14, 14) (33, 6) (50, 4) (66, 3)
n = 500 (22, 22) (62, 8) (100, 5) (125, 4)

n = 1, 000 (31, 32) (100, 10) (166, 6) (250, 4)
n = 2, 000 (44, 45) (153, 13) (285, 7) (400, 5)

Example 1 (ARMA(1,1)). Suppose that the observations are generated according to an

ARMA (1,1) model275

Xt − 0.4X(t−1) = εt + 0.3ε(t−1),

with εt independent, identically distributed N(0, 1). The strong mixing condition is satisfied

with an exponential rate (Lahiri, 2003, Example 6.1). An initial X0 is sampled according to the

marginal distribution, i.e. X0 ∼ N(0, 1.5833), and ε0 ∼ N(0, 1).

With p = 1/2, we have ξp = 0. We simulate the mean squared error in estimation of Gn(1)
over a range of (b, `). The true value being estimated was computed, by massive simulation,280

as described, as Gn(1) ≈ 0.67978. The heat map in Figure 2 plots mean squared error for n =
200, over a grid of values of (b, `). The heat map clearly illustrates the sub-optimality of b = 1,

the subsampling bootstrap. The minimum mean squared error is 0.00468, with (b, `) = (7, 8).
By contrast, the minimum mean squared error for the moving block bootstrap is 0.00637, with

(b, `) = (33, 6), and the subsampling bootstrap, which fixes b = 1, has minimum mean squared285

error of 0.00754, with ` = 14.

Fig. 2. Heat map for the ARMA(1,1) model with n = 200.
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Table 2. ARMA(1,1) model. Choices of (b, `) which minimise the mean squared error for esti-

mating Gn(1) for different sample sizes n.

(b, `) MSE

n = 200 (7,8) 0.00468

n = 500 (10,10) 0.00250

n = 1, 000 (10,14) 0.00154

n = 2, 000 (12,18) 0.00097

We also compute the values of the pair (b, `) which minimize mean squared error for other

sample sizes, n = 500, 1000, and 2000. These results are shown in Table 2. Comparing with

Table 1, we note that the mean squared error minimizing pair (b, `) for each n uses an ` strictly

greater than n1/3 and a b much less than bn/`c. Additionally, the mean squared error minimizing 290

value of b is much larger than 1.

The theory says that the hybrid moving block bootstrap has an error rate in estimation of

Gn(1) of n−1/3, so we should expect the mean squared error to decrease at rate n−2/3. In fact, a

regression of the logarithm of the mean squared error on log(n) for the values reported in Table 2

has slope −0.6885, which is not far off −2/3. The heat map illustrates that the subsampling and 295

moving block bootstrap choices of (b, `) are suboptimal.

For the current problem, of estimation of the sampling distribution of the sample quantile,

there is therefore clear theoretical and practical advantage in using the hybrid block boot-

strap, b` < n, b 6= 1, over the moving block bootstrap. Remark 2 indicates, by contrast, that

we might expect to see little difference, in estimation error terms, between the hybrid block 300

bootstrap procedure and moving block bootstrap if, instead, we are interested in estimation

of pr
[
n1/2{Fn(x)− F (x)} ≤ y

]
. This was verified by considering, for all combinations of

(b, `), the mean squared error of the estimator pr
[
(b`)1/2{F ∗

n(x)− F̃n(x)} ≤ y
∣
∣X1, . . . , Xn

]
,

for x = 0, so that F (x) = 0.5, and y = 0.9, for which the quantity being estimated ≈ 0.89501,

for sample size n = 100. Based on 20,000 replications, with 20,000 bootstrap samples being 305

used in construction of the estimator for each, the minimum mean squared error achieved by

moving block bootstrap is 0.00084, with (b, `) = (25, 4). This is very similar to the overall mini-

mum mean squared error of 0.00082, seen for (b, `) = (18, 5). The minimum means quared error

of the subsampling bootstrap, b = 1, is 0.00334, substantially larger, when ` = 7. This same pic-

ture was seen for n = 200, when, for the same values x = 0, y = 0.9, the true probability being 310

estimated ≈ 0.87781. Simulation shows that the minimum mean squared error of moving block

bootstrap is then 0.00108, with (b, `) = (28, 7), with the same minimum mean squared error for

the hybrid block bootstrap, achieved for (b, `) = (30, 6). Here the subsampling bootstrap yields

an optimal mean squared error of 0.00227 when ` = 8. These illustrative figures confirm that the

hybrid block bootstrap has little advantage over moving block bootstrap in error terms for this 315

problem.

Example 2 (Nonlinear ARMA(2,3)). Let {Xt}t∈Z be a sequence from the ARMA(2,3) process

Xt − 0.1X(t−1) + 0.3X(t−2) = εt + 0.1ε(t−1) + 0.2ε(t−2) − 0.1ε(t−3).

As noted by Lahiri (2003, Example 6.1), such a sequence is strong mixing with exponentially

decaying mixing coefficients. To simulate from this model, we initiate by generating X0, X−1

from the marginal N(0, v2) distribution, which has v2 = 1.0776, with ε0, ε−1, ε−2 independent 320

N(0, 1). The nonlinear model we consider is the square transformation of the above ARMA
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process,

Yt = X2
t .

The square transformation above preserves the strong mixing property and also preserves the

mixing rate. Therefore, Yt is strong mixing with the same exponential rate as Xt. The interested

reader is referred to Fan & Yao (2003, p. 69) or Davis & Mikosch (2009, p. 258). As with the325

previous example, we consider p = 1/2, and thus ξp satisfies

pr(Yt = X2
t ≤ ξp) = 1/2,

implying ξp = (0.675v)2. The simulation approximation to the true value is Gn(−1.5) ≈
0.09276.

Fig. 3. Heat map for the nonlinear (squared) ARMA(2,3)
model; n = 200.
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The heat map of Figure 3 shows again that the subsampling and moving block bootstrap

choices of (b, `) are suboptimal from the perspective of minimizing mean squared error.330

In Figure 4 we display the coverage error of lower percentile confidence intervals, as described

in Section 5, of nominal 90% coverage. We observe that there is undercoverage for most choices

of (b, `), sometimes very substantial, though there is overcoverage in a few cases. Appropriate

choice of (b, `) can yield limits with exactly the required coverage.

As proof of concept of the adaptive procedure for choice of (b, `) described in Section 6, we335

consider estimation of Gn(1) ≈ 0.80952, for sample size n = 512. We restrict to candidate val-

ues c1, c2 ∈ {0.5, 0.75, 1.0, 1.5, 2.0}, corresponding to adaptive choice of b, ` ∈ {4, 6, 8, 12, 16}.

Table 3 shows the mean squared error in estimation of Gn(1) over 2500 replications for each

combination of (c1, c2). By contrast, the mean squared error obtained by minimization of

Err(c1, c2) for each replication, using 20 subsamples of size M = 64 in construction of this340

error quantity, was 0.00189. The adaptive method clearly yields a mean squared error that is
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Fig. 4. Heatmap for the coverages of 90% lower confidence
limits in the nonlinear (squared) ARMA(2,3) model; n =

200.
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Table 3. Nonlinear (squared) ARMA(2,3) model: mean squared error in estimation of Gn(1)
over 2500 replications, for b = bc1n

1/3c and ` = bc2n
1/3c, n = 512. The mean squared error

of the adaptive procedure was 0.00189.

c2
0.5 0.75 1.0 1.5 2.0

0.5 0.00164 0.00150 0.00158 0.00189 0.00230

0.75 0.00143 0.00154 0.00172 0.00220 0.00272

c1 1.0 0.00144 0.00166 0.00191 0.00250 0.00300

1.5 0.00161 0.00195 0.00232 0.00297 0.00350

2.0 0.00179 0.00225 0.00265 0.00335 0.00399

far from optimal in this setting, but outperforms the procedure which fixes b, ` to larger values

among those being considered.

The adaptive procedure is seen to perform better with increasing sample size. Table 4 provides

analagous results for sample size n = 1728, for which Gn(1) ≈ 0.81125. Using M = 512 in 345

the minimization of Err(c1, c2) over the same range of c1, c2, now corresponding to adaptive

choice of b, ` ∈ {6, 9, 12, 18, 24}, and again using just 20 subsamples of length M in evaluation

of Err(c1, c2), the mean squared error of the adaptively chosen estimator over the 2500 replica-

tions was observed as 0.00066, much closer to optimal. Further tuning of the adaptive procedure

certainly seems worthwhile as a means of providing an effective automatic choice of (b, `) for 350

the hybrid block bootstrap and will be pursued elsewhere.
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Table 4. Nonlinear (squared) ARMA(2,3) model: mean squared error in estimation of Gn(1)
over 2500 replications, for b = bc1n

1/3c and ` = bc2n
1/3c, n = 1728. The mean squared error

of the adaptive procedure was 0.00066.

c2
0.5 0.75 1.0 1.5 2.0

0.5 0.00062 0.00063 0.00072 0.00089 0.00108

0.75 0.00061 0.00131 0.00082 0.00105 0.00126

c1 1.0 0.00065 0.00080 0.00094 0.00119 0.00139

1.5 0.00076 0.00094 0.00112 0.00138 0.00166

2.0 0.00087 0.00106 0.00125 0.00159 0.00182

In the Supplementary Material we provide a further example involving a process whose mixing

coefficients decay at a polynomial rate. This again supports the finding of suboptimality of the

choices of (b, `) indicated by the subsampling bootstrap and moving block bootstrap.

Remark 6. Future work will also study the smoothed extended tapered block bootstrap meth-355

ods of Gregory et al. (2015, 2018), for which only basic consistency results are currently estab-

lished. Our approach to studying optimal rates is expected to be informative about optimal tuning

of such methods, though this latter procedure is complicated by additional tuning parameters.

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes: a review of the bootstrap360

literature, derivations of technical results used in the Appendix in the proof of Theorem 1 and a

further numerical example.
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APPENDIX: PROOFS

In what follows we denote by C a generic positive constant independent of n. Lahiri & Sun

(2009) show under polynomial mixing rates that, for any x ∈ R,

pr
{
(n1/2

(
ξ̂n − ξp

)
≤ x

}
= Φ

{
xf(ξp)/σ(ξp)

}
+O(n−1/2). (A1)

We first state a lemma which is a special case of Sun and Lahiri’s (2006) Lemma 5.3. 400

LEMMA 1. Let
{
Vn,t : t = 0,±1,±2, . . .

}
be a double array of row-wise stationary strong

mixing Bernoulli (pn) random variables with 0 < pn ≤ q < 1 and mixing coefficients αn(t) =
α(t) = O(t−β), for some fixed q ∈ (0, 1) and β > 0. Then, for any positive εn = o(1), n−1 ≤
δn = o(1) and any δ ∈ (0, 1), we have

pr
{
∣
∣
∣

n∑

t=1

(
Vn,t − pn

)
∣
∣
∣ > nεn

}

≤ C

(

δ−1
n +

ε2n
pn + εn

)

exp

(

−
Cnδnε

2
n

pn + εn

)

+ Cn
(
1 + pδnε

−1
n

)
δβ(1−δ)
n .

Define, for any r > 0, Br(ξp) = [ξp − r, ξp + r]. 405

LEMMA 2. Suppose that α(t) = O(t−β) for some β > 5 and n
− 4β+7

6(3β+5) ` → ∞. Then for any

arbitrarily small δ > 0, the following results hold uniformly over ε ∈
[
n−c0 , 1

)
.

(i) sup
x∈Bε(ξp)∩Np

∣
∣Fn(x)− F (x)

∣
∣ = Op

{

n
− β−1

2(β+1)
+3δ

ε
1

2(β+1)
+δ

}

for any c0 ∈ (0, 3).

(ii) sup
x∈Bε(ξp)∩Np

∣
∣F̃n(x)− Fn(x)

∣
∣ = Op

{

n−1ε
1

2(β+1)
+δ

`
β+3

2(β+1)
+3δ

}

for some c0 > 1/2.

(iii) sup
x∈Bε(ξp)∩Np

∣
∣Fn(x)− Fn(ξp)− F (x) + p

∣
∣ = Op

{

n
− β−1

2(β+1)
+δ

ε(1+δ)/2

}

for any c0 ∈ (0, 2). 410

LEMMA 3. Suppose that α(t) = O(t−β) for some β > 5 and n
− 4β+7

6(3β+5) ` → ∞. Then for any

arbitrarily small δ > 0,

(i) ξ̃n = ξp +Op

{

n−1/2 + n
− 2(β+1)

2β+1
+δ

`
β+3
2β+1

}

.

(ii) F̃n

(
ξ̃n
)
= p+ op

{
n
−β−3

β−1
+δ

+ n
− β(2β−3)

(β−1)(2β+1)
+δ

`
2(β+3)

(β−1)(2β+1) + n
− 4β+5

4(β+1)
+δ

`
β+3

2(β+1)

+n
− 2(β+1)

2β+1
+δ

`
β+3
2β+1

}
. 415
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LEMMA 4. For any arbitrarily small δ > 0 and any compact K ⊂ R,

pr
[
(b`)1/2

{
F ∗
n(x)− F̃n(x)

}
≤ y

∣
∣
∣X1, . . . , Xn

]
− Φ

{
(y/σ(x)

}

=

{

Op

{
`−1 + `1/2n−1/2 + (b`)−1/2`δ

}
if ` = O(b) and α(t) = O(t−β) for some β > 5,

Op

{
`−1 + `1/2n−1/2 + (b`)−1/2

}
if α(t) = O(e−Ct),

uniformly over (x, y) ∈ Np × K .

Proof of Lemma 4:

Denote by κ̂j(x) the jth conditional cumulant of (b`)1/2
{
F ∗
n(x)− F̃n(x)

}
given X1, . . . , Xn.

It is clear that κ̂1(x) = 0.420

Define, for j = 1, 2, . . . , Vj = (n− `+ 1)−1
∑n−`+1

i=1

{
Ui(x)− F (x)

}j
and

Aj = E

{{
1{X0 ≤ x} − F (x)

}[ ∑

|t|≤`−1

{
1{Xt ≤ x} − F (x)

}]j−1
}

.

Then we have, by stationarity and strong mixing properties, E (Vj) = E
[
{U1(x)− F (x)}j

]
=

O
(
`1−jAj

)
and nVar

(
Vj

)
= O

(
`1−β + `2−2jA2j

)
.

Consider first the case β < ∞. Expressing the jth conditional cumulant of U∗
1 (x) as a function

gj of (V1, . . . ,Vj), we obtain425

κ̂j(x) = (b`)j/2b1−jgj(V1, . . . ,Vj)

= (b`)j/2b1−j
[
gj(EV1, . . . ,EVj) +Op

{
n−1/2`(1−β)/2 + n−1/2`1−j |A2j |

1/2
}]

, (A2)

where gj(EV1, . . . ,EVj) identifies the jth cumulant of U1(x)− F (x). A comparison with the

case of independent data suggests that, for any arbitrarily small δ > 0,

gj(EV1, . . . ,EVj) = O
(
`−β + `1−j+δ

)
. (A3)

Noting that A2 = O(1) and430

Aj = O
{

`j−1gj(EV1, . . . ,EVj) + `
∑

2≤i≤j−2

∣
∣AiAj−i

∣
∣

}

, j ≥ 3,

it can be shown by induction and (A3) that

Aj = O
{
`j−1−β + `δ + `(j−2)/2−(1/2−δ)1{j odd}}, j ≥ 3. (A4)

It follows from (A2), (A3) and (A4) that

κ̂2(x) = `g2(V1,V2) = `(V2 − V2
1 )

=
∑

1≤|t|≤`−1

(1− |t|/`)Cov
(
1{X0 ≤ x}, 1{Xt ≤ x}

)
+Op

{
n−1/2(`1+(1−β)/2 + |A4|

1/2)
}

= σ(x)2 +O(`−1) +Op

{
n−1/2`(3−β)/2 + n−1/2`1/2

}
435

= σ(x)2 +Op

(
`−1 + n−1/2`1/2

)
(A5)

and, for j ≥ 3 and ` = O(b),

κ̂j(x) = (b`)j/2b1−j
[
gj(EV1, . . . ,EVj) +Op

{
n−1/2`(1−β)/2 + n−1/2`1−j |A2j |

1/2
}]

= b−(j−2)/2 ×Op

{
`j/2−β + `1−j/2+δ + n−1/2`(j+1−β)/2 + n−1/2`1/2

}

= Op

{
b−1/2`−1/2+δ + n−1/2`(3−β)/2 + n−1/2b−1/2`1/2

}
. (A6)440
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Without imposing the condition ` = O(b), the above arguments can similarly be applied to the

case of exponential mixing rates to establish (A5) and a stronger version of (A6), with δ = 0 and

β = ∞.

Following Arcones (2003), application of Esseen’s lemma (Feller, 1971, Lemma XVI.4.2) to

polygonal approximations of the conditional distribution function of (b`)1/2
{
F ∗
n(x)− F̃n(x)

}
445

and Φ
{
· /σ(x)

}
yields, for any arbitrarily large C ′ > 0,

sup
(x,y)∈Np×K

∣
∣
∣pr

[

(b`)1/2
{
F ∗
n(x)− F̃n(x)

}
≤ y

∣
∣
∣X1, . . . , Xn

]

− Φ
{
y/σ(x)

}
∣
∣
∣

≤ CC ′−1(b`)−1/2 + C

∫ C′
√
b`

−C′

√
b`
|t|−1e−t2/2

∣
∣eκ̂

∗

x(t)+t2/2 − 1
∣
∣

∣
∣
∣
∣

sin
{
2−1σ(x)−1(b`)−1/2t

}

2−1σ(x)−1(b`)−1/2t

∣
∣
∣
∣
dt,

where κ̂∗x(t) denotes the conditional characteristic function of (b`)1/2
{
F ∗
n(x)− F̃n(x)

}
/σ(x). 450

Lemma 4 then follows by bounding κ̂∗x(t) + t2/2 using (A5) and (A6) under polynomial mixing,

or using (A5) and the stronger version of (A6) under exponential mixing.

Proof of Theorem 1:

Consider first the case β < ∞. We have, by Lemmas 2, 3 and Taylor expansion of F about ξ̃n,

p− F̃n

{
ξ̃n + (b`)−1/2x

}

=
{

p− F̃n(ξ̃n)
}

+
[

F̃n(ξ̃n)− F̃n

{
ξ̃n + (b`)−1/2x

}]

= Fn(ξ̃n)− Fn

{
ξ̃n + (b`)−1/2x

}
+ op

{

n
−β−3

β−1
+δ

+ n
− β(2β−3)

(β−1)(2β+1)
+δ

`
2(β+3)

(β−1)(2β+1)

+n
− 4β+5

4(β+1)
+δ

`
β+3

2(β+1) + n
− 2(β+1)

2β+1
+δ

`
β+3
2β+1

}

+Op

{

n−1b
− 1

4(β+1)
−δ

`
2β+5
4(β+1)

+5δ
}

= −(b`)−1/2xf(ξ̃n) + op

{

n
−β−3

β−1
+δ

+ n
− 3β−1

4(β+1)
+δ

+ n
− β(2β−3)

(β−1)(2β+1)
+δ

`
2(β+3)

(β−1)(2β+1)

+n
− 4β+5

4(β+1)
+δ

`
β+3

2(β+1) + n
− 2(β+1)

2β+1
+δ

`
β+3
2β+1 + n

− 4β2+3β+1
2(2β+1)(β+1)

+δ
`

β+3
2(2β+1)

}

+Op

{

(b`)−1 + n−1b
− 1

4(β+1)
−δ

`
2β+5
4(β+1)

+5δ
+ n

− β−1
2(β+1)

+δ
(b`)−(1+δ)/4

}

. (A7)

Note that (A7) holds under exponential mixing for any arbitrarily large β. Applying Lemma 4, 455

we have, for arbitrarily small δ > 0, that

pr
[

F ∗
n

{
ξ̃n + (b`)−1/2x

}
≤ p

∣
∣
∣X1, . . . , Xn

]

= pr
(

(b`)1/2
[
F ∗
n

{
ξ̃n + (b`)−1/2x

}
− F̃n

{
ξ̃n + (b`)−1/2x

}]

≤ (b`)1/2
[
p− F̃n

{
ξ̃n + (b`)−1/2x

}]
∣
∣
∣X1, . . . , Xn

)

= Φ
(

(b`)1/2
[
p− F̃n

{
ξ̃n + (b`)−1/2x

}]
/σ

{
ξ̃n + (b`)−1/2x

})

+

{

Op

{
`−1 + `1/2n−1/2 + (b`)−1/2`δ

}
if ` = O(b) and α(t) = O(t−β),

Op

{
`−1 + `1/2n−1/2 + (b`)−1/2

}
if α(t) = O(e−Ct).

(A8)
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It follows from (A7), (A8) and Lemma 3(i) that for arbitrarily small δ > 0,

pr
[

F ∗
n

{
ξ̃n + (b`)−1/2x

}
≤ p

∣
∣
∣X1, . . . , Xn

]

= Φ
{
− xf(ξp)/σ(ξp)

}
+Op

{

`−1 + `1/2n−1/2 + (b`)−1/2`δ + n
− β−1

2(β+1)
+δ

(b`)(1−δ)/4

+n−1b
2β+1
4(β+1)

−δ
`

4β+7
4(β+1)

+5δ
}

+ op

{

n
−β−3

β−1
+δ

(b`)1/2 + n
− 3β−1

4(β+1)
+δ

(b`)1/2

+n
− β(2β−3)

(β−1)(2β+1)
+δ

b
1
2 `

1
2
+

2(β+3)
(β−1)(2β+1) + n

− 4β+5
4(β+1)

+δ
b
1
2 `

β+2
β+1 + n

− 2(β+1)
2β+1

+δ
b
1
2 `

4β+7
2(2β+1)

+n
− 4β2+3β+1

2(2β+1)(β+1)
+δ

b
1
2 `

3β+4
2(2β+1)

}

(A9)

if β ∈ (5,∞) and ` = O(b), and

pr
[

F ∗
n

{
ξ̃n + (b`)−1/2x

}
≤ p

∣
∣
∣X1, . . . , Xn

]

= Φ
{
− xf(ξp)/σ(ξp)

}
+Op

{

`−1 + `1/2n−1/2 + (b`)−1/2 + n−1b
1
2
−δ`1+5δ

+n− 1
2
+δ(b`)(1−δ)/4

}

+ op

{

n− 3
4
+δ(b`)1/2 + n−1+δb

1
2 `
}

(A10)

under exponential mixing. Theorem 1 then follows by (A1), (A9), (A10) and noting that

pr
[

F ∗
n

{
ξ̃n + (b`)−1/2x

}
> p

∣
∣
∣X1, . . . , Xn

]

≤ pr
{

(b`)1/2
(
ξ∗n − ξ̃n

)
≤ x

∣
∣
∣X1, . . . , Xn

}

≤ pr
[

F ∗
n

{
ξ̃n + (b`)−1/2x

}
≥ p

∣
∣
∣X1, . . . , Xn

]

.

[Received on 2 January 2017. Editorial decision on 1 April 2017]
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1. SOME TECHNICAL REMARKS 15

The type of weak dependence we assume is strong mixing. Because this is not the only type

of weak dependence in common use (Wu, 2005a, 2011; Dedecker & Prieur, 2005; Doukhan &

Louhichi, 1999), some justification for the choice of strong mixing is warranted. First, the vast

majority of relevant block bootstrap literature relies on strong mixing assumptions; see, e.g., the

monographs on block bootstrap (Lahiri, 2003) and subsampling (Politis et al., 1999). As a second 20

reason, there is a rich literature which exploits the mixing rate to differentiate asymptotic orders

when studying higher-order asymptotic properties of the bootstrap for statistical functionals with

dependent data (Götze & Hipp, 1983; Lahiri, 2007).

Sample quantiles are often associated with empirical process theory, and the Bahadur repre-

sentation of sample quantiles for dependent data can facilitate the study of limit theory (Sen, 25

1972; Wu, 2005b). However, while the Bahadur representation and corresponding empirical pro-

cess theory is often useful for proving basic results such as consistency, asymptotic normality,

or the law of the iterated logarithm, the question of optimal convergence rates requires a differ-

ent approach utilizing higher-order asymptotics. We are not aware of any established empirical

process results which can lead to the asymptotic orders derived herein. Specifically, the order, as 30

a function of the available sample size n, of the remainder term in the Bahadur representation

of sample quantiles under strong mixing is not necessarily informative about the asymptotic or-

der of error in the block bootstrap approximation. Even if the remainder can be made as small as

n−3/4, this error will be transmitted to an error of order n1/2n−3/4
= n−1/4 when approximating

the cumulative distribution function of the sample quantile by that of the empirical distribution. 35

Such an error term will swamp the more precise orders established using our approach: see Fig-

ure 1 in § 4 of the paper, which shows that the optimal order is far below n−1/4 for most values

of the mixing rate parameter β. The main difference in our approach is that we study the event

C© 2018 Biometrika Trust
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{n1/2(sample quantile − population quantile) ≤ x} directly without having to approximate the

quantile process by the empirical process via the Bahadur representation. The latter approxima-40

tion causes an unnecessary loss of precision in assessing the convergence rate of the distribution.

2. BACKGROUND

To understand how our results fit into the bootstrap landscape, consider the following. A broad

categorization of settings for bootstrap methods is suggested by Lahiri (2003): (i) smooth func-

tionals of independent data; (ii) nonsmooth functionals of independent data; (iii) smooth func-45

tionals of dependent data; and (iv) nonsmooth functionals of dependent data. Setting (i) is the

classic setting of the bootstrap, with Hall (1992) being an authoritative reference. In setting

(ii), bootstrap methods for approximating distributions of sample quantiles have been studied

by Efron (1979); Bickel & Freedman (1981); Singh (1981); Babu (1986); Efron (1982); Ghosh

et al. (1984); Hall & Sheather (1988); Hall et al. (1989); Hall & Martin (1991); De Angelis et al.50

(1993) and Falk & Janas (1992).

In setting (iii), i.e. smooth functionals of dependent data, the existing literature is concentrated

on block bootstrap methods, beginning with Hall (1985), and Carlstein (1986). Subsequently,

the moving block bootstrap was proposed by Künsch (1989) and Liu & Singh (1992). Other

variants of the block bootstrap for smooth functionals have been suggested by Paparoditis &55

Politis (2001); Politis & Romano (1992, 1994) and Politis et al. (1997), to name a few. The

various existing block bootstrap methods and their properties for weakly dependent sequences

have been investigated by, for example, Bühlmann (1994); Naik-Nimbalkar & Rajarshi (1994);

Hall et al. (1995); Götze & Künsch (1996); Lahiri (1992, 1996, 1999) and Bühlmann & Künsch

(1999).60

A distinct literature exists concerning the Bahadur representation of sample quantiles for

strong mixing sequences. When such a representation exists, i.e. there is a nice relationship be-

tween the sample quantiles and empirical distribution function, then block bootstrap consistency

properties will be implied by consistency properties of bootstrapping the empirical (quantile)

process. Some recent work in this area is due to Sharipov & Wendler (2013), who proved weak65

consistency of circular block bootstrap under some additional conditions regarding mixing, block

length and differentiability.

Another recent development in dependent data bootstrap methodology is the convolved sub-

sampling bootstrap (Tewes et al., 2017). This bootstrap estimator is defined by the k-fold self-

convolution of a subsampling distribution. In the special case of the sample means problem, this70

corresponds to our hybrid bootstrap. For the sample quantile problem which is the particular

focus here, convolved subsampling bootstrap essentially computes the average of within-block

sample quantiles over the b resampled blocks. By contrast, our estimator is the sample quantile

of a single series formed by joining b blocks. Further theoretical comparison of these approaches

will be undertaken elsewhere.75

Other indirectly-related work includes Lahiri (2005), who studied consistency of jackknife-

after-bootstrap variance estimation for bootstrap quantiles, and Gregory et al. (2015), who

showed that the Sun & Lahiri (2006) strong consistency results for distribution and variance

estimation via the moving block bootstrap also hold for the smoothed extended tapered block

bootstrap (SETBB). The SETBB has been further developed for quantile regression by Gregory80

et al. (2018), though again only consistency is established, rather than optimal convergence rates.

We mention that Shao & Politis (2013) employed a fixed b subsampling procedure to estimate

confidence sets for statistics adhering to the smooth function model. In Section 3 they also con-
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sider functionals of the form T (F ) that can be linearly approximated as an average of influence

functions. The quantile T (F ) = F−1(p) would be covered by this framework, and their simula- 85

tion study reported includes the median as an example. However, all of the papers cited above do

not go beyond first-order consistency.

3. A FURTHER EXAMPLE

In this example, we construct a process whose mixing coefficients decay at a polynomial rate,

but not an exponential rate. This is accomplished through Theorem 2.1 of Chanda (1974); see 90

also Bandyopadhyay (2006) and §3 of Chen et al. (2016).

Example 3 (Polynomial Mixing Rate). Let the sequence {Xt}t∈Z be generated according to

Xt =

∞∑

j=0

cjZt−j ,

where the Zi are independent, identically distributed N(0, 1) and cj = ( 1

j+1
)ν . Then Xt is strong

mixing with a polynomial rate, and Chanda (1974) may be used to deduce that β < ν − 2.

In practice, we cannot simulate from the above process exactly because it is expressed as an in- 95

finite series. Therefore, we approximate the process by truncating the series at 100 terms, which

means that in reality Xt is approximated by a very high order MA process. For our numeri-

cal example, ν = 10.0 and n = 200. As before, we consider p = 1/2, corresponding to ξp = 0.

Simulation yields an approximation to the true value Gn(2) ≈ 0.95229. The heatmap for this

example shown in Figure 1 is based on 10,000 replications, and 10,000 bootstrap samples for 100

each replication of the experiment. As with the previous two examples, the heatmap supports our

Fig. 1. Heatmap for the polynomial mixing rate example;
n = 200.

Hybrid MBB, polynomial mixing n=200
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finding of suboptimality of the choices of (b, `) suggested by the subsampling bootstrap and the

MBB.

4. PROOFS

Proof of Lemma 2:

Define mn =

⌈

n
β−1

2(β+1)
−3δ

ε
1− 1

2(β+1)
−δ

⌉

and εn = ε/mn. Then we have105

sup
x∈Bε(ξp)

∣

∣Fn(x)− F (x)
∣

∣ ≤ max
k∈{0,±1,...,±mn}

∣

∣Fn(ξp + kεn)− F (ξp + kεn)
∣

∣+ Cεn. (1)

For each k ∈ {0,±1, . . . ,±mn}, application of Lemma 1 with Vn,t = 111{Xt ≤ ξp + kεn}, pn =

F (ξp + kεn) and δn =
(

εn2−∆1
)

−1
1+β(1−∆2) , for arbitrarily small ∆1,∆2 > 0, yields

P

{
∣

∣

∣
Fn(ξp + kεn)− F (ξp + kεn)

∣

∣

∣
> εn

}

≤ Cn
4

2+β exp
{

−Cn(3−c0)δ
}

+ Cε
− 1+3β+2β2

2(1+β)2
− δ

β+1
−C∆2

n
− β−1

2(β+1)
−

(β+3)δ
β+1

+C∆2 .

It follows by Bonferroni’s inequality that

P

{

max
k∈{0,±1,...,±mn}

∣

∣Fn(ξp + kεn)− F (ξp + kεn)
∣

∣ > εn

}

≤ (2mn + 1)P
{∣

∣

∣
Fn(ξp + kεn)− F (ξp + kεn)

∣

∣

∣
> εn

}

≤ Cn
4

2+β
+ β−1

2(β+1)
−3δ

exp
{

−Cn(3−c0)δ
}

+ Cn
−

{

(4−c0)β+6−2c0
β+1

}

δ+C∆2
= o(1)

for sufficiently small ∆2, uniformly over ε ∈
[

n−c0 , 1
)

. This, in conjunction with (1), implies

that sup
x∈Bε(ξp)

∣

∣Fn(x)− F (x)
∣

∣ = Op(εn), which proves part (i) of Lemma 2.110

To prove part (ii), write n′ = n− `+ 1 and note that

Fn(x)− F̃n(x) =
1

`n′

`−1
∑

i=1

(

`n′

n
− i

)

{

111{Xi ≤ x}+111{Xn+1−i ≤ x} − 2F (x)
}

−
`− 1

nn′

n′

∑

i=`

{

111{Xi ≤ x} − F (x)
}

. (2)

Define, for c0 > 1/2, m = n
−

c0
4(1+β)

−
c0δ

2 `
3β+5
4(β+1)

+ 3δ
2 . It is clear that m = o(`). Noting that for

sufficiently large n and sufficiently small ∆ > 0,

ln `

lnn
>

4β + 7

6(3β + 5)
+ ∆,

we have

lnm

lnn
> −c0

{

1

4(β + 1)
+

δ

2

}

+

{

3β + 5

4(β + 1)
+

3δ

2

}{

4β + 7

6(3β + 5)
+ ∆

}

= −(c0 − 1/2)

{

1

4(β + 1)
+

δ

2

}

+
1

6
+

(3β + 5)∆

4(β + 1)
+

δ

4

{

β + 2

3β + 5
+ 6∆

}

.
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We may therefore choose c0 sufficiently close to 1/2 and some K < 6 such that lnn/ lnm ≤ K 115

and c0K < 3. It follows that for any ε ≥ n−c0 ,

ε ≥ n−c0 ≥ m−c0K > `−c0K .

Consider

1

`n′

`−1
∑

i=1

{

`n′

n
− i

}

(

111{Xi ≤ x} − F (x)
)

=
1

n

`−1
∑

i=1

{

111{Xi ≤ x} − F (x)
}

−
1

`n′

`−m
∑

j=1





`−1
∑

i=j

{

111{Xi ≤ x} − F (x)
}





−
1

`n′

`−1
∑

j=`−m+1





`−1
∑

i=j

{

111{Xi ≤ x} − F (x)
}



 = I1 − I2 − I3, say.

Applying part (i), we have, uniformly over ε ∈
[

n−c0 , 1
)

, that

I1 = Op

{

n−1`
β+3

2(β+1)
+3δ

ε
1

2(β+1)
+δ

}

and

I2 = Op







1

`n′

`−m
∑

j=1

(`− j)
β+3

2(β+1)
+3δ

ε
1

2(β+1)
+δ







= Op

{

n−1`
β+3

2(β+1)
+3δ

ε
1

2(β+1)
+δ

}

.

It is clear that 120

I3 = Op

{

(n`)−1m2
}

= Op

{

n
−1−

c0
2(1+β)

−c0δ`
β+3

2(β+1)
+3δ

}

= Op

{

n−1`
β+3

2(β+1)
+3δ

ε
1

2(β+1)
+δ

}

.

The bounds on I1, I2, I3 therefore imply that

1

`n′

`−1
∑

i=1

(

`n′

n
− i

)

{

111{Xi ≤ x}+111{Xn+1−i ≤ x} − 2F (x)
}

= Op

{

n−1`
β+3

2(β+1)
+3δ

ε
1

2(β+1)
+δ

}

.

(3)

It follows by part (i) again that 125

`− 1

nn′

n′

∑

i=`

{

111{Xi ≤ x} − F (x)
}

= Op

{

`n
−1−

β−1
2(β+1)

+3δ
ε

1
2(β+1)

+δ

}

= op

{

n−1`
β+3

2(β+1)
+3δ

ε
1

2(β+1)
+δ

}

. (4)

Part (ii) then follows by combining (2), (3) and (4).
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For the proof of part (iii), define Mn =

⌈

n
β−1

2(β+1)
−δ

ε(1−δ)/2

⌉

and εn = ε/Mn. Then we have

sup
x∈Bε(ξp)

∣

∣Fn(x)− Fn(ξp)− F (x) + p
∣

∣

≤ max
k∈{0,±1,...,±Mn}

∣

∣Fn(ξp + kεn)− Fn(ξp)− F (ξp + kεn) + p
∣

∣+ Cεn. (5)

For each k ∈ {±1, . . . ,±mn}, set, for the application of Lemma 1, Vn,t =
∣

∣111{Xt ≤ ξp +

kεn} − 111{Xt ≤ ξp}
∣

∣, pn =
∣

∣F (ξp + kεn)− p
∣

∣ and δn =
(

n2−∆1ε∆2
)−1/(β(1−∆2)+1)

, for arbi-

trarily small ∆1,∆2 > 0. Noting that C−1εn ≤ pn ≤ Cε, we have, by Lemma 1, that for any130

∆ ∈ (0, 1),

P

{∣

∣

∣
Fn(ξp + kεn)− Fn(ξp)− F (ξp + kεn) + p

∣

∣

∣
> εn

}

≤ C
(

n2−∆1ε∆2
)1/(β(1−∆2)+1)

exp
{

−C
(

n2−∆1ε∆2
)−1/(β(1−∆2)+1)

n
2

β+1
+2δ

εδ
}

+Cn
3β+1
2(β+1)

−δ
ε−(1+δ)/2+∆

(

n2−∆1ε∆2
)−β(1−∆)/(β(1−∆2)+1)

.

It follows by Bonferroni’s inequality that for sufficiently small ∆′ > 0 and for any c0 ∈ (0, 2),

P

{

max
k∈{0,±1,...,±mn}

∣

∣Fn(ξp + kεn)− Fn(ξ0)− F (ξp + kεn) + p
∣

∣ > εn

}

≤ (2Mn + 1)P
{∣

∣

∣
Fn(ξp + kεn)− Fn(ξ0)− F (ξp + kεn) + p

∣

∣

∣
> εn

}

≤ Cn
β+3

2(β+1) exp
{

−Cn(2−c0)δ/2
}

+ Cn−(2−c0)δ+∆′

= o(1),

uniformly over ε ∈
[

n−c0 , 1
)

. This, in conjunction with (5), implies that sup
x∈Bε(ξp)

∣

∣Fn(x)−

Fn(ξp)− F (x) + p
∣

∣ = Op(εn), which proves part (iii) of Lemma 2.

Proof of Lemma 3:135

Let c0 > 1/2 be as specified in Lemma 2(ii). Define, for ε ∈ [n−c0 , 1),

δn(ε) = n−1ε
1

2(β+1)
+δ

`
β+3

2(β+1)
+3δ

,

ε1 =

{

n−1`
β+3

2(β+1)
+3δ

}

2(β+1)
2β+1−2δ(β+1)

and ε2 = n−1/2 + ε1.

Note that δn(ε1) = ε1. Using Lemma 2(ii), we have, for some α ∈ (0, 1), any M > 0 and suffi-

ciently large n, M̃ ,

P
(

ξ̃n − ξp > Mε2
)

≤ P

{

sup
x∈BMε2

(ξp)∩Np

|F̃n(x)− Fn(x)| > M̃δn(Mε2)
}

+P
{

Fn(ξp +Mε2) ≤ p+ M̃δn(Mε2)
}

≤ M̃−1 + P

(

n1/2
{

Fn(ξp +Mε2)− F (ξp +Mε2)
}

≤ −2−1Mf(ξp)
[

1 + n1/2ε1 − CM−(1−α)M̃n1/2
{

δn(n
−1/2) + ε1

}]

)

. (6)
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Note that if ε1 = o(n−1/2), then δn(n
−1/2) = o(n−1/2), so that 140

lim
n→∞

− 2−1Mf(ξp)
[

]1 + n1/2ε1 − CM−(1−α)M̃n1/2
{

δn(n
−1/2) + ε1

}]

= −2−1Mf(ξp).

If ε1 ≥ C0n
−1/2 for some C0 > 0, then δn(n

−1/2) ≤ C−α
0 δn(ε1) = C−α

0 ε1, so that for M suffi-

ciently large, we have

n1/2ε1 − CM−(1−α)M̃n1/2
{

δn(n
−1/2) + ε1

}

≥ C0

{

1− CM−(1−α)M̃
(

C−α
0 + 1

)

}

≥ C0/2.

The above results suggest that

−2−1Mf(ξp)
[

1 + n1/2ε1 − CM−(1−α)M̃n1/2
{

δn(n
−1/2) + ε1

}]

≤ −4−1Mf(ξp)

for M,n sufficiently large. It then follows from (6) that P
(

ξ̃n − ξp > Mε2
)

can be made ar-

bitrarily small if we choose n,M and M̃ large enough, using the fact that Fn(ξp +Mε2)− 145

F (ξp +Mε2) = Op(n
−1/2). The same arguments can be applied to the lower tail probability

P
(

ξ̃n − ξp < −Mε2
)

. Thus we have ξ̃n = ξp +Op(ε2). Lemma 3(i) then follows as δ can be

made arbitrarily small.

To prove part (ii), write

ε0(n, `) = n−1/2 + n
−

2(β+1)
2β+1 `

β+3
2β+1 , 150

ε1(n, `) = n
−

4β+5
4(β+1) `

β+3
2(β+1) + n

−
2(β+1)
2β+1 `

β+3
2β+1 ,

ε2(n, `) = n
−

β−3
β−1 + n

−
β(2β−3)

(β−1)(2β+1) `
2(β+3)

(β−1)(2β+1) ,

ε(n, `) = ε1(n, `) + ε2(n, `).

Denote by X(1) ≤ · · · ≤ X(n) the ordered sequence of X1, . . . , Xn. For any arbitrarily small

∆,∆′ > 0, P
{

F̃n(ξ̃n) ≥ p+ nδε(n, `)
}

is bounded above by 155

P

{

Fn(X(j+1)) = · · · = Fn(X(j+k)) ≥ p+ nδε(n, `)− n∆ε1(n, `),

Fn(X(j)) < p+ n∆ε1(n, `),
∣

∣X(j+1) − ξp
∣

∣ ≤ n∆′

ε0(n, `) some j, k ≥ 1
}

+P

{

∣

∣ξ̃n − ξp
∣

∣ > n∆′

ε0(n, `)
}

+ P

{

sup
∣

∣F̃n(x)− Fn(x)
∣

∣ > n∆ε1(n, `)
}

,

(7)

where the supremum in the last probability is taken over x ∈ Bn∆′
ε0(n,`)

(ξp) ∩ Np. Noting that

n4−βε0(n, `)
2 = O

{

ε2(n, `)
β−1

}

= O
{

ε(n, `)β−1
}

, we have

n−(β−2−∆′)ε0(n, `)
{

nδε(n, `)
}

−(β−1)

= O
{

n−(β−2−∆′)−δ(β−1)ε0(n, `)n
β−4ε0(n, `)

−2
}

= O
{

n−2+∆′
−δ(β−1)ε0(n, `)

−1
}

= o
{

n−2−∆′

ε0(n, `)
−1

}

for sufficiently small ∆′ > 0. Thus we may find a positive sequence {ηn} satisfying

ηn = o
{

n−2−∆′

ε0(n, `)
−1

}

and n−(β−2−∆′)ε0(n, `)
{

nδε(n, `)
}

−(β−1)
= o(ηn) (8)



8 T. A. KUFFNER ET AL.

for sufficiently small ∆′ > 0. Noting that n∆ε1(n, `) = o
(

nδε(n, `)
)

for sufficiently small ∆,

following the proof of Lemma 5.4(iv) of Sun and Lahiri (2006) and using (8), the first probability160

in (7) can be bounded above, for sufficiently large n and sufficiently small ∆′ > 0, by

n
∑

j>2−1n1+δε(n,`)

P

{

X1 = Xj ∈ Bn∆′
ε0(n,`)

(ξp) ∩ Np

}

≤ Cn2+∆′

ε0(n, `)ηn + Cn2−β+∆′

ε0(n, `)
{

nδε(n, `)
}

−(β−1)
η−1
n = o(1).

That the last two probabilities in (7) converge to 0 follows from Lemma 3(i) and Lemma 2(ii),

respectively. From the above results we derive that P
{

F̃n(ξ̃n) ≥ p+ nδε(n, `)
}

= o(1). Similar

arguments show also that P
{

F̃n(ξ̃n) ≤ p− nδε(n, `)
}

= o(1), which completes the proof of

part (ii).165
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