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Abstract

We discuss inference after data exploration, with a particular focus on

inference after model or variable selection. We review three popular ap-

proaches to this problem: sample splitting, simultaneous inference, and

conditional selective inference. For each approach, we explain how it

works, and highlight its advantages and disadvantages. We also provide

an illustration of these post-selection inference approaches.
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1. Introduction

The classical inferential theory of mathematical statistics is based on the philosophy that

all the models to fit, all the hypotheses to test, and all the parameters to do inference for

are fixed prior to seeing the data. This is not how statistics is practiced. The analyst often

explores the data to find the “right” model to fit to the data, the “right” hypothesis to test,

and so on. As Ronald Coase once said (Tullock 2001, page 205),

if you torture the data long enough, it will confess.

Once the data has been explored to find the hypothesis or model, the assumptions of a fixed

model and fixed hypothesis are no longer appropriate. Classical inference procedures may

no longer have the properties established by classical theory. This can invalidate inferences,

nullifying the claimed error rates or interpretations. Test statistics and estimators may

exhibit completely different distributions than what classical theory prescribes. There can

arise biases in estimation caused by data exploration. Procedures designed to control false

discovery rates may no longer achieve the desired error control. Power calculations which do

not account for data exploration should be viewed suspiciously. The selection of any aspect

of a model or hypothesis using the data introduces sampling variability into the model or

hypotheses, rendering random the specification process itself.

Many authors, e.g. Benjamini et al. (2009) and Gelman and Loken (2014), attribute

this failure of expected behavior of inferential processes as contributing to the failure of

scientific replicability, which is considered important by the American Statistical Association

(Kafadar 2021).

The potential problems for classical inference procedures arising from model selection

or data exploration procedures have long been acknowledged. For example, in the context

of variable selection, Hotelling (1940) warned against the “fallacies of selection among nu-

merous results of that one which appears most significant and treating it as if it were the

only one examined.” Breiman (1992) referred to this as the “quiet scandal in the statistical

community.”

Post-selection inference has a long and rich history, and the literature has grown beyond

what can reasonably be synthesized in our review. Our selection of topics and references

should not be misconstrued as a judgment about the relative merits of contributions. Rather

than embarking on a futile attempt at being comprehensive, we have chosen a subset of

topics that can be coherently presented and that we feel will be of greatest interest to

practitioners.

For the purposes of this review, we consider only the setting where the analyst gen-

uinely believes there is model uncertainty, and therefore uses the data to select a model to

be used for subsequent inference. There is an equally vast literature on inference for fixed,

high-dimensional parameters defined by a linear model containing the full set of observed

covariates. In that high-dimensional inference paradigm, what we call model selection is

alternatively viewed as dimension reduction or regularization, yielding a lower-dimensional

approximation to the original model in the sense of having fewer covariates, and hence a

lower-dimensional parameter. In this latter paradigm, post-regularization or post-dimension

reduction inference is sought for the full, often high-dimensional, parameter, based on a

lower-dimensional approximating model. Within this framework, one may consider either

inference for the original parameter, or inference for its appropriately defined representa-

tion in the lower-dimensional approximating model. Since the dimension reduction is not

considered as selecting a model and its corresponding parameters for subsequent inference,
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this framework represents an alternative view of what are the relevant inferential targets.

For more discussion of the differences, see the Appendix of Berk et al. (2013).

We consider frequentist post-selection inference in this review. The literature concerning

Bayesian post-selection inference is comparatively small and authors are not in agreement

about many fundamental issues that are essential to studying potential selection effects and

correcting for them. Some notable developments include Yekutieli (2012) and Rasines and

Young (2020); see the references therein. Selecting a single model for inference could even

be considered non-Bayesian according to some interpretations of Bayesian orthodoxy, in the

sense that the posterior distribution on the model space, as well as the posterior distributions

for all candidate model parameters, constitute a more complete representation of posterior

uncertainty than reporting the posterior only for a selected model.

We present post-selection inference as an example of the more general problem of pro-

viding Valid Inference after Data Exploration (VIDE). This includes inference after variable

selection using, e.g., correlation plots, lasso, or residual diagnostics (Moore and McCabe

1998, Pardoe 2008, Whittingham et al. 2006, Cole 2020). Other than variable selection,

data exploration can also include methods to choose a transformation for variables (Harri-

son and Rubinfeld 1978, Stine and Foster 2013, Weisberg 2005, Liquet and Riou 2013) or

cut-off points for discretizing variables (Liquet and Commenges 2001). These widely-used

data exploration methods are rarely accounted for when drawing statistical conclusions in

practice.

In Section 2, we formulate the post-selection inference problem. In Section 3, we discuss

three prominent solutions to VIDE in the literature: sample splitting, simultaneous, and

conditional selective inference. In the context of post-selection inference, we discuss their

advantages and disadvantages. Examples are presented for each approach. An on-line

supplement performs calculations utilizing R packages. In Section 4, we consider uniform

validity of these approaches and discuss the impossibility results of Leeb and Pötscher

(2006). Finally, in Section 5, we consider the implications for practical data analysis.

1.1. Notation

In this paper, we use the following notation. The set of real numbers is denoted by R

and the set of p-dimensional vectors of real numbers is denoted by R
p. Convergence in

distribution of a sequence of random variables/vectors Tn to T is denoted by Tn
dÑ T .

Convergence in probability of a sequence of random variables/vectors Tn to T is denoted

by Tn
PÑ T . A sequence of random variables Tn converging in probability to zero is also

written as Tn “ opp1q. We write a :“ b to define a to be a quantity taking the value of b.

Expectation and variance of a random variable/vector X are denoted by ErXs and VarpXq.
For any function f : X Ñ R, we denote the global minimizer of f by argminxPX fpxq. The
coordinate-wise inequality between two vectors a, b P R

p is denoted by a ĺ b, i.e., aj ď bj

for all j “ 1, . . . , p with aj , bj representing the j-th coordinates of a, b.

2. Formulation of the problem

The common practice of data analysis may be described as follows: Start with a question

of interest, obtain a dataset, explore the data to find a suitable model or find the subset of

covariates or find the transformations for variables, then fit the model to draw inferences

or statistical conclusions. For example, in the context of fitting a linear regression with a
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treatment variable, the question of interest could be “is there a non-zero treatment effect?”

In the presence of confounders, one might select a subset of confounders to be used in the

final model, or one might select a transformation for the response/confounders. Then one

fits the model with the selected set of confounders and transformations.

A mathematical formulation in the case of linear regression could be as follows. Suppose

we have observations pX1, Y1q, . . ., pXn, Ynq P R
p ˆ R; these need not be independent or

identically distributed.

1. For each M Ď t1, . . . , pu corresponding to indices of covariates, define the “target” of

estimation by

βM :“ argmin
θPR|M|

1

n

nÿ

i“1

E

”
pYi ´X

J
i,Mθq2

ı
, 1.

where Xi,M is the subvector of Xi with indices M of covariates.

2. Based on the data, select a subset pM Ď t1, . . . , pu of covariates using a method of the

analyst’s choice. The selection procedure could be formal (lasso, AIC, BIC, marginal

screening), informal (correlation plots, residual diagnostics), or even post-hoc (such

as changing the model because the conclusion is unexpected).

3. Calculate the estimator

pβxM :“ argmin
θPR|xM|

1

n

nÿ

i“1

pYi ´X
J
i,xMθq2. 2.

This estimator “targets” βxM (the evaluation of the map M ÞÑ βM at M “ pM).

4. A VIDE approach to inference for βxM based on pβxM is to construct a valid confidence

region xCIxM, i.e., one that satisfies

lim inf
nÑ8

P

´
βxM P xCIxM

¯
ě 1 ´ α, 3.

for the selection method leading to pM. In this context, the adjective “valid” means

both that the intended nominal error rate α of the procedure for constructing such

a confidence region is correct, which would require that the distribution used for the

probability calculation is correct asymptotically, and that this error rate is correct for

confidence regions xCIxM constructed by this procedure for any βxM.

The selected set of covariates pM is random through the data and hence potentially changes

with the sample size n. For notational simplicity, we do not index pM (and other selections

below) with the sample size n.

Selection of variables is only one of many outcomes of data exploration. As described

above, variable transformation can also be seen as an outcome. For each transformation

g : R Ñ R, define the “target”

βg :“ argmin
θPRp

1

n

nÿ

i“1

E

!
rgpYiq ´X

J
i θs2

)
. 4.

Similarly, the estimator pβg is obtained as the minimizer of n´1
řn

i“1
rgpYiq ´XJ

i θs2. Based
on the data, the analyst chooses a transformation pg P G from a class of transformations.

The class of Box-Cox transformations is one such example: ty ÞÑ pyλ ´ 1q{λ : λ ‰ 0u. The
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VIDE problem in this case is to construct a valid confidence region xCIpg for βpg in that it

satisfies

lim inf
nÑ8

P

´
βpg P xCIpg

¯
ě 1 ´ α, 5.

for the selection method leading to pg P G.

The VIDE problems 3. and 5. represent the prototypical problems we will consider.

Extensions are possible to logistic, Poisson, and Cox regression models. An even more

general VIDE problem can be described as follows. Suppose Z1, . . . , Zn are observations

taking values in a set Z. Consider a universe Q of all possible selections and for every q P Q

define the estimator

pθq :“ argmin
θPΘq

1

n

nÿ

i“1

`qpθ, Ziq,

for a loss function `qp¨, ¨q and a “parameter” set Θq that might depend on q. The data

analyst can now choose an element pq P Q and the inference is to be based on the estimator
pθpq. The VIDE problem is to construct a confidence region xCIpq such that

lim inf
nÑ8

P

´
θpq P xCIpq

¯
ě 1 ´ α, 6.

for the selection method leading to pq P Q. Here the “target” θpq is defined as the evaluation

of the map q ÞÑ θq, at q “ pq, given by

θq :“ argmin
θPΘq

1

n

nÿ

i“1

Er`qpθ, Ziqs. 7.

Covariate selection and transformation selection can be seen as special cases.

• For covariate selection, take Zi “ pXi, Yiq, Q “ tM : M Ď t1, . . . , puu, for q “ M P Q,

Θq “ R
|M|, and pθq “ pβM.

• For covariate selection, one can also take Zi “ pXi, Yiq, Q “ tM : M Ď t1, . . . , pu, |M| ď
ku. This represents selecting at most k covariates out of p covariates. See Berk et al.

(2013, Section 4.5) for more examples.

• For transformation selection, take Q “ tg : R Ñ R : g P Gu, for q “ g P G, Θq “ R
p, and

pθq “ pβg.

In the formulation of the problem, we have not assumed any parametric model for the

data. The targets defined in 1., 4. and 7. can be called misspecification-robust targets.

They are well-defined even if no parametric model is correct for the data. Further, if the

parametric model is correct, then these targets match the usual parametric targets.

The targets in 1., 4. and 7. have different meanings for different values of M, g, and

q. More concretely, in the context of variable selection, βM1
and βM2

for M1 “ t1, 2u and

M2 “ t1, 3u have different meanings. For example, the first coordinate of βM1
, β1¨M1

, is

the population partial correlation of the response and the first covariate X1 when adjusted

for X2, while the first coordinate of βM2
, β1¨M2

, is the partial correlation of βM2
is the

population partial correlation of the response and the first covariate X1 when adjusted for

X3. In general, β1¨M1
‰ β1¨M2

and they may not even have the same sign. The same logic

goes through for βg as different transformations g.

The major hurdle to solving the VIDE problem is that the estimator pθpq with a data-

driven choice of pq is random also through pq. In most cases, for every fixed q, pθq behaves

“nicely”, i.e. it is asymptotically normal at a
?
n-rate with mean zero and some finite
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variance depending on q. Because of data exploration, pθpq in general does not have a normal

distribution and can be quite biased, even asymptotically.

Figure 1 shows the distribution of the ordinary least squares estimator under forward

stepwise selection in a Monte Carlo experiment. The simulation setting is as follows: the

covariate vector X “ pX1, X2, X3q is multivariate Gaussian with mean zero and a non-

diagonal covariance matrix. The response Y is generated from a normal distribution with

mean 1 and variance 9, independently of X, so the population coefficients (except the

intercept) for linear regression of Y on any subset of covariates are zero. We select from

the three covariates by first running a forward stepwise regression. The final model pM is

the one with the smallest Cp criterion. Figure 1 shows the histogram of the estimated

coefficients of X1 when fitting the estimated linear model for Y on XxM. A density estimate

is also laid over the histogram. The histogram of the coefficient of X1 is drawn only from

replications where pM contains 1. A naive analyst who ignores the selection might use the

normal distribution as an approximation to the distribution of pβ1 when the selected model

contains X1. Figure 1 shows that such an approximation can be very misleading. The

bimodal distributions shown in Figure 1 are expected because X1 is selected by the variable

selection strategy only when it has a reasonably large coefficient in absolute value. This is

depicted in Figure 1 with the histogram spread away from zero.

β
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Figure 1: Distribution of pβ1 under forward stepwise selection.

3. Approaches to post-selection inference

Approaches that attempt to provide solutions to VIDE can be characterized by the following

terms, to be explained below,

1. sample splitting,

2. simultaneous inference, and

3. conditional selective inference.

These approaches increasingly restrict the selection method. To illustrate them, we use the
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Boston housing data available in R package MASS. This data set was introduced in Harrison

and Rubinfeld (1978) to understand the impact of air pollution (measured as concentration

of nitrogen oxide (nox) on the median value (medv) of houses in different census tracts in

Boston. This effect is estimated when adjusting with other covariates including crime rate

(crim), proportion of land zoned for lots (zn), vicinity of Charles river (chas), number of

rooms (rm), proportion of non-retail business acres per town (indus), proportion of owner-

occupied units built prior to 1940 (age), weighted distances to five Boston employment

centres (dis), index of accessibility to radial highways (rad), full-value property-tax rate

per $10,000 (tax), pupil-teacher ratio by town (ptratio), proportion of African-Americans

(black), and % lower status of the population (lstat).

3.1. Sample splitting

A classical and possibly the oldest solution for VIDE problems is sample splitting; see Ri-

naldo et al. (2019) for a brief history. The basic idea is to split the sample into two parts:

training and test data. These could be of different sizes but are usually taken to be of

almost equal sizes. First, the training data is used to explore the data and select pq. Once

the selection is made, one ignores the training data and computes the estimator pθpq based

on the test data with pq from the training data. In this context, one division of the data

is made, one model is selected, and standard inferential techniques are applied once. This

procedure is different from other procedures, such as the jackknife and cross-validation, that

repeatedly split the sample. Because pq is independent of the test data when the sample

consists of independent observations, Pppθpq ´ θpq P A | pq “ qq “ Pppθq ´ θq P Aq for all Borel

sets A, i.e. the usual asymptotics work on the test data as if no selection was performed. A

detailed presentation of sample splitting as a solution of VIDE was given in Zhang (2012,

Chapter 2). Sample splitting in light of increasing dimension is discussed in Rinaldo et al.

(2019).

3.1.1. Advantages. One major advantage of sample splitting in comparison to the other two

methods we discuss is the generality it allows on selection. There are no assumptions or

restrictions on the selection procedure provided it uses only the training data. If the training

and test data are approximately the same size, then the sample splitting confidence intervals

are at most
?
2 times wider than those ignoring the selection, provided

?
nppθq ´ θqq has

a limiting distribution for every q P Q. Hence, if sample splitting applies, it would be

recommended for reporting most statistically valid results.

3.1.2. Disadvantages. The two main disadvantages of sample splitting in comparison to the

other approaches we consider are:

• Sample splitting, in conjunction with some model selection procedure such as stepwise,

might select a set of variables violating the analyst’s “criterion” in the sense that a selected

model may exhibit parameter estimates that are inconsistent with known mechanisms

underlying the process generating the data. It is difficult to consistently apply sample

splitting in a way that avoids unacceptable models.

• Sample splitting is invalid for dependent data. It inherently assumes independence of

observations in the data. If the observations are dependent then sample splitting is invalid

and no such simple alternative yet exists. Dependent data can easily be accommodated in

the simultaneous inference method. Recently, Lunde (2019) proved that sample splitting
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guarantees can be extended to weakly dependent data. The subject, however, is not

mature enough to apply the results for a wide range of dependent data.

There are other more minor issues with sample splitting. The effect of split sizes is not

understood in many problems and there is no clear guidance for choosing the splits. The

randomness also causes trouble with interpretation, since with a change in the split sample

there can be a change in the selection and hence the target of estimation. This effect of

randomness is different from that of the randomness in bootstrap or subsampling, where

the randomness disappears with the number of replications diverging. The quantity being

estimated using test data changes with every split sample.

3.1.3. Application to the Boston housing example. We apply sample splitting, and other

VIDE approaches described below, to the Boston housing data. The dataset was randomly

split in half, with one subsample used for training and the other to be used for testing.

This particular split only chooses 10 covariates instead of the 11 selected based on the full

data. Table ?? contains incorrect p-values resulting from stepwise regression applied to the

training set, and p-values correctly calculated from the test set after model selection using

the training set.

All covariates selected are significant at level 0.05. The difference in inference implied

in the two columns of Table ?? points to a drawback in model splitting, in that the model

selected by the training sample may not match that based on the full data. One should

not compare the p-values from sample splitting to those in the model selected from the

full data. The p-values from training data are in general much smaller than those in the

testing data, indicating spurious significance; the test data must be used for inference on

the selected model.

3.2. Simultaneous inference approach to VIDE

The simultaneous inference approach, or the uniform inference approach, is proposed by

Berk et al. (2013) and extended by Bachoc et al. (2020). The basic idea is to express valid

post-selection inference as a simultaneous inference problem. Suppose tθq : q P Qu are real-

valued parameters (or functionals) indexed by the elements of Q. Based on the data, the

analyst selects pq P Q and uses pθpq as an estimator of θpq. To form a confidence region for θpq,

the simultaneous inference approach constructs the set of confidence regions txCIq : q P Qu
such that

lim inf
nÑ8

P

˜ č

qPQ

!
θq P xCIq

)¸
ě 1 ´ α, 8.

which implies for any pq P Q that

lim inf
nÑ8

P

´
θpq P xCIpq

¯
ě 1 ´ α, 9.

because for any pq P Q,

P

´
θpq P xCIpq

¯
ě P

˜ č

qPQ

!
θq P xCIq

)¸
. 10.

This bound can be conservative because the coverage guarantee is given for all models but

is needed only for one selected model. Setting this aside for the moment, simultaneous

inference has several interesting features.
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• Simultaneity implies valid confidence guarantees for arbitrary selection procedures pq, i.e.,
it does not restrict the practitioner except for the requirement pq P Q.

• Simultaneity implies infinite revisions of the selection. For example, one can perform an

initial selection, perform inference, and if this is not as expected, one can perform another

selection procedure on the data and proceed without any further correction.

• Simultaneity also guarantees validity if multiple models are reported. This is a common

occurrence in social sciences where the same question is investigated with several models

and a significant outcome in all of them is seen as strengthening the conclusion.

Getting back to the conservativeness of the simultaneous approach, one can always construct

a selection procedure pq P Q such that 10. is an equality; see Theorem 3.1 of Kuchibhotla

et al. (2020). This implies that if valid inference is required for an arbitrary selection

procedure, then one must perform simultaneous inference.

We now consider simultaneous inference. A generic method for obtaining simultaneous

confidence sets is based on the assumption of uniform linear representation of the estimators

around the target. This means that for the estimators tpθq : q P Qu based on observations

Z1, . . . , Zn, there exist functions tψqp¨q : q P Qu such that

max
qPQ

ˇ̌
ˇ̌
ˇΨ

´1{2
n,q

˜
pθq ´ θq ´ 1

n

nÿ

i“1

ψq pZiq
¸ˇ̌

ˇ̌
ˇ “ op

ˆ
1?
n

˙
, 11.

where
řn

i“1
ErψqpZiqs “ 0 and Ψn,q “ n´1

řn

i“1
VarrψqpZiqs for all q P Q. We call as-

sumption 11. the Uniform Asymptotic Linear Representation. Most widely-used

estimators satisfy 11. when Q is a singleton (Kuchibhotla 2018) and the functions ψqp¨q
play the role of influence functions for pθq for each q P Q. Assumption 11. implies that the

estimators pθq are approximately averages of n random variables, with the approximation

errors disappearing uniformly over q P Q.

There is a rich literature on uniform asymptotic linear representations and they have

been used in optimalM -estimation problems. See condition (2.3) of Theorem 2.1 in Arcones

(2005) and Sections 10.2, 10.3, and equation (10.25) of Dodge and Jurevckova (2000) for

examples where uniform asymptotic linear representations are obtained for a large class of

M -estimators indexed by a subset of R, an uncountably infinite index set. Their main goal is

to choose a tuning parameter that asymptotically leads to an estimator with the “smallest”

variance and to account for this randomness in proving that the resulting estimator has an

asymptotic normal distribution with the “smallest” variance.

Assumption 11 can be verified for a selection universeQ for a large class ofM -estimation

problems, with mild conditions on the “complexity” Q; see Kuchibhotla et al. (2021)

and Kuchibhotla (2018, Sections 7.2, 7.3). Although these works deal specifically with

covariate selection, their results can be used with variable transformations or a combina-

tion of covariate selection and variable transformations.

For each q P Q, assumption 11. under (weak) independence of Z1, . . . , Zn and integra-

bility conditions such as the Lindeberg–Feller condition imply that n1{2Ψ
´1{2
n,q ppθq ´ θqq dÑ

Np0, 1q, and if Q is finite with cardinality bounded by a constant independent of the sample

size n, then the vector

´
n
1{2Ψ´1{2

n,q ppθq ´ θqq : q P Q

¯
dÑ pGq : q P Qq , 12.

for a Gaussian random vector pGq : q P Qq satisfying ErGqs “ 0 and VarpGqq “ 1 for all
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q P Q. See, for example, Lemma 2.2 of Bachoc et al. (2020). Hence

max
qPQ

ˇ̌
ˇn1{2Ψ´1{2

n,q ppθq ´ θqq
ˇ̌
ˇ dÑ max

qPQ
|Gq|. 13.

Therefore, for a constant Kα ě 0 such that PpmaxqPQ |Gq| ď Kαq “ 1 ´ α,

lim
nÑ8

P

ˆ
max
qPQ

ˇ̌
ˇn1{2Ψ´1{2

n,q ppθq ´ θqq
ˇ̌
ˇ ď Kα

˙
“ 1 ´ α. 14.

Equivalently, xCIq “ rpθq ´Kα

a
Ψn,q{n, pθq `Kα

a
Ψn,q{ns, q P Q, forms a simultaneous con-

fidence region, i.e., it satisfies 11.. Usually, Ψn,q is unknown and has to be replaced by an

estimate pΨn,q which may be conservative (i.e., asymptotically larger than Ψn,q). One only

requires 13. and not the joint distributional convergence 12. for the simultaneous coverage

guarantee 14.. This is important because the convergence result 13. can hold even if the

cardinality of Q is growing with the sample size or infinite; see Paulauskas and Rac̆kauskas

(1989), Norvaǐsa and Paulauskas (1991), Chernozhukov et al. (2019, 2014), Kuchibhotla

et al. (2021), and Kuchibhotla and Rinaldo (2020). A practical way to estimate the con-

stant Kα and the variances Ψn,q is via a bootstrap, pseudocode for which is given in

Algorithm 1, whose validity for a selection universe Q of fixed cardinality follows from the

results of Bachoc et al. (2020). The validity of the bootstrap when Q grows with sample size

follows from Chernozhukov et al. (2014), Kuchibhotla et al. (2021, Section 4.1) and Belloni

et al. (2018). The inference procedure in Algorithm 1 depends on the max-t statistic

max
qPQ

ˇ̌
ˇn1{2 pΨ´1{2

n,q ppθq ´ θqq
ˇ̌
ˇ . 15.

Algorithm 1: Bootstrap Procedure for Simultaneous Inference

Input: Data Z1, . . . , Zn, coverage probability 1 ´ α, and the universe of selection

Q.

Output: Simultaneous confidence intervals xCIq, q P Q, satisfying 8..

1 Fix B ě 1. For b “ 1, . . . , B, generate a bootstrap sample Z˚,b
1 , . . . , Z˚,b

n from

Z1, . . . , Zn.

2 Compute the bootstrap estimators pθ˚b
q based on Z˚b

1 , . . . , Z˚b
n for b “ 1, . . . , B and

the bootstrap estimate of Ψn,q as pΨn,q :“ pB ´ 1q´1
řB

b“1
r?nppθ˚b

q ´ pθqqs2.
3 Compute the p1 ´ αq quantile pKα of T˚b :“ maxqPQ |n1{2 pΨ´1{2

n,q ppθ˚b
q ´ pθqq|, for

b “ 1, . . . , B.

4 Return the confidence intervals

xCIq “
«

pθq ´ pKα

pΨ1{2
n,q?
n
, pθq ` pKα

pΨ1{2
n,q?
n

ff
, q P Q. 16.

One can compare the confidence intervals 16. to the unadjusted confidence intervals

xCIunadjq :“
«

pθq ´ zα{2

pΨ1{2
n,q?
n
, pθq ` zα{2

pΨ1{2
n,q?
n

ff
, 17.

10 Kuchibhotla, Kolassa & Kuffner



where zα{2 is the p1 ´ α{2q-th quantile of the Np0, 1q distribution. The simultaneous con-

fidence intervals 16. inflate the unadjusted confidence intervals 17. by pKα{zα{2 ě 1. In

general, there is no simple expression for the ratio pKα{zα{2, which depends on the cor-

relations of pGq : q P Qq. In a simple setting, Figure 2 shows the coverage and width

comparison of the unadjusted confidence interval 17. and the simultaneous confidence in-

terval 16. in the simulation setting: for d “ 1, . . . , 100, we generate 500 observations from

pXi, Yiq „ Nd`1p0, Id`1q, the standard Gaussian distribution in R
d`1. We select one covari-

ate pj P t1, . . . , du such that the absolute correlation between Y and Xpj is maximized; this is

same as the first step of forward stepwise selection. For this selection, Q “ t1, . . . , du. We

compute confidence intervals based on the slope estimator in the linear regression of Y on

Xpj . Figure 2 shows that an increase in the number of covariates d leads to a deterioration in

the coverage of the unadjusted interval and hence requires more adjustment, as evidenced

by the growth of the ratio of widths.
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Figure 2: Comparison of unadjusted and simultaneous inference when selecting one covari-

ate out of d. The comparison is based on 1000 replications for each dimension d. The right

panel shows the ratio of the width of simultaneous confidence interval 16. to that of the

unadjusted confidence interval 17., i.e., pKα{zα{2.

The bootstrap procedure used in Algorithm 1 is the classical bootstrap of Efron (1979)

which can be replaced by the m-out-of-n bootstrap or wild/multiplier bootstrap (Mam-

men 1992). The validity guarantee for a growing selection universe Q follows from the

results of Chernozhukov et al. (2013, 2014, 2017) and Belloni et al. (2018); these works

contain validity results for both the classical bootstrap and multiplier bootstrap. If the

random variables Z1, . . . , Zn are dependent, then the classical bootstrap cannot capture

the dependence and for asymptotic validity one must use a version of block bootstrap; see,

for example, Zhang and Cheng (2014), and Zhang and Cheng (2018) for a description of

the bootstrap and validity results under dependence. In general, subsampling procedures

of Politis and Romano (1994) and Politis et al. (1999) provide asymptotic validity. When Q

has infinite cardinality (e.g., Box-Cox variable transformation for the response), it suffices

to take an increasingly dense grid of Q while computing T˚b in step 3 of Algorithm 1. In

step 2 of Algorithm 1, we use bootstrap replication to estimate the asymptotic variance;

this can be skipped if an estimate is otherwise available.
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Max-t (in 15.) was one of the first aggregate statistics used for simultaneous inference.

Tukey (1949, 1953) used such a statistic for all pairwise differences in ANOVA; in this case,

Q is finite. Scheffé (1953) performed simultaneous inference for all contrasts in the ANOVA

model; in this case, Q is (uncountably) infinite. Both assume a correct parametric model

and approximate Gaussianity of the errors. One can use the bootstrap in Algorithm 1 to

avoid such restrictions. Both approaches are specific to inference on contrasts of model

parameters, and are not directly applicable to inference after model selection.

Any aggregate statistic such as the `2 or `p norms could be used instead of the maximum

over q P Q; see Giessing and Fan (2020). Moreover, even with the maximum, there are

different possibilities. For example, one can take maxqPQ fqr|n1{2Ψ
´1{2
n,q ppθq ´ θqq|s, for some

monotone functions fq : R` Ñ R`; see Kuchibhotla (2020, Chapter 5). Such transformed

max-t statistics can be motivated from the idea of balanced confidence intervals (Beran

1988) and using them can lead to significant shortening of the intervals.

3.2.1. Advantages. The simultaneous inference approach has several advantages compared

to sample splitting, such as infinite revisions of selection and the ease of reporting inferences

from multiple models. Furthermore, it applies to dependent data via subsampling or block

bootstrap methods. Because the simultaneous approach allows for selection and inference

based on the same data, it can lead to better selection than that from sample splitting.

This leads to a trade-off between, respectively, selection and inference properties, when

comparing sample splitting and simultaneous approaches; see Rinaldo et al. (2019, Section

3). Finally, simultaneity allows valid inference even when ad hoc selection is done via

graphical diagnostics on the full data.

3.2.2. Disadvantages. The simultaneous inference approach requires the specification of Q

before exploring the data, i.e., Q cannot depend on the data. This contrasts with sample

splitting, which places no restrictions on Q provided the selection depends only on the

first split. This restriction of simultaneous inference can prohibit its application when data

analysis involves sequential modeling, wherein later steps depend on earlier ones and hence

Q can expand without bound. If the selection method pq lies in a much smaller subset of Q

with high probability, then the simultaneous approach can lead to conservative confidence

intervals, thereby reducing the number of significant results. Finally, simultaneous inference

using Algorithm 1 requires computing the estimators pθq for all q P Q. In the context of linear

regression with covariate selection, there exists a computationally efficient simultaneous

inference procedure; see Kuchibhotla et al. (2020) for details.

3.2.3. Application to the Boston data set. As noted before, the methods of Tukey (1949,

1953) and Scheffé (1953) are appropriate for inference on contrasts. In the Boston housing

data, the variable rad is a categorical variable taking 9 different values. A priori knowledge

of the impact of rad is minimal; because convenience values of closeness to highways is

balanced against nuisances associated with highway proximity, one would not expect the

effect to be monotonic, let alone linear. In order to explore this effect, one might simulta-

neously bound all mean valuation differences for houses with differing accessibility to radial

highways. For simplicity, all values of rad above 5 are set to 5. There are 20, 24, 38, 110,

and 314 towns associated with values of this modified rad of 1 through 5, respectively.

Figure 3 shows the difference in sample means for each pair of values of rad. Simulta-

neous lower and upper confidence limits are also reported. Such intervals allow one to look

12 Kuchibhotla, Kolassa & Kuffner



at all differences and pick the largest or smallest and make a valid statistical claim. For

example, 5-3 yields the most negative difference in sample means, and because the corre-

sponding confidence interval does not contain zero, we can (at level 0.05) conclude that the

median house price is different for census tracts with rad 5 and 3, even after taking selection

into account. These contrasts can also be tested using the method of Scheffé (1953) (also

displayed in Figure 3), but because this provides simultaneous inference over all contrasts

(not just pairwise differences) it tends to be less powerful for pairwise differences than the

method of Tukey (1949).
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Figure 3: Tukey and Scheffé 95% confidence intervals for median housing value difference

by redefined rad.

As mentioned before, Scheffé’s test is based on Gaussianity and homoscedasticity as-

sumptions, which might be invalid. Under these assumptions Scheffé’s test is less powerful

than the output of Algorithm 1 when covariate selection is performed, because Sheffé’s

method provides simultaneous inference on more contrasts than needed; see Berk et al.

(2013, Section 4.8) for a detailed discussion. Algorithm 1 may be used for covariate selec-

tion under a well-specified linear model. Table 1 shows the pKα values to be used in 16..

This algorithm requires only the covariate matrix, because of the Gaussian linear model

assumption. The PoSI constant shown above under the column PoSI is the smallest. Note

that the Scheffé constant is also shown in the final column. Without specifying other ar-

guments, the output of this algorithm provides adjustments for the universe of selection
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Confidence Level PoSI Bonferroni Scheffé

95% 3.591 4.904 4.729

99% 4.075 5.211 5.262

Table 1: Values of pKα for Various Adjustments for Simultaneous Inference

Q “ tpj,Mq : j P M,M Ď t1, . . . , puu. Other arguments can be used to reduce the universe;

reducing the universe reduces the computational complexity.

To go beyond the linear model assumptions and allow for potentially misspecification,

we can use the bootstrap idea in Algorithm 1, which gives a value pK0.95 “ 4.624 corre-

sponding to 95% confidence. This approach may also be applied to the regression model

with covariates crim and chas to give results in Table 2.

Variable Lower Upper

Intercept 21.619 25.609

crim -0.717 -0.095

chas -3.864 15.020

Table 2: Confidence Intervals using the method of Berk et al. (2013).

Case studies involving covariate selection and also transformation selection can be found

in Cai (2020). Finally, max-t style corrections in other VIDE problems including optimal

cut-off detection and transformations are discussed in Liquet and Commenges (2001), Liquet

and Riou (2013, 2019).

3.3. Conditional selective inference

The setting here is the same as in Section 3.2. Instead of considering the simultaneous

statement as in 8., selective inference constructs xCIpq such that for all q P Q,

lim inf
nÑ8

P

´
θpq P xCIpq | pq “ q

¯
ě 1 ´ α. 18.

Kuffner and Young (2018) explain that conditioning on the selection event can be justified

through the Fisherian proposition of relevance. Conventionally, this is achieved by following

the conditionality principle, that relevance of the inference to the actual data under study

requires the hypothetical repeated sampling to be conditioned on certain features of the

observed data. In this case, relevance is achieved by conditioning on the subset of the

sample space yielding the particular selection outcome. The construction of xCIpq proceeds

by approximating the conditional distribution of
?
nppθq ´ θqq given pq “ q for any q P Q and

computing/estimating the conditional quantile. For simplicity, we restrict our discussion to

inference for a univariate target θq. The conditional selective inference framework can be

understood using the following assumptions. Fix a q P Q.

(A1) There exists a random vector Dn,q P R
dD such that tpq “ qu ” tDn,q ĺ 0u, with the

symbol ĺ between two vectors representing coordinate-wise inequality. The integer

dD represents the dimension of Dn,q and the subscript is used to distinguish this from

d, the dimension of covariates in our regression examples.
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(A2) The selection event occurs with asymptotically non-zero probability, that is,

lim inf
nÑ8

PpDn,q ĺ 0q ą 0. 19.

(A3) There exist a vector µn,q P R
dD and a covariance matrix Ωq such that

«?
nppθq ´ θqq

Dn,q ´ µn,q

ff
dÑ

«
Gθ,q

GD,q

ff
„ N p0,Ωqq .

(A4) There exists a consistent estimator pΩq for Ωq, i.e.,

pΩq “
«

pω2
q

pΩθD

pΩDθ
pΩDD

ff
PÑ Ωq “

«
ω2
q ΩθD

ΩDθ ΩDD

ff
. 20.

These assumptions are modeled after the selective inference framework of Markovic et al.

(2017) and McCloskey (2020). All the assumptions relate only to q P Q individually.

Assumption (A1). requires that the selection of a “model” q can be written in terms of

a statistic Dn,q. The representation in terms of the negative orthant might seem very

restrictive, but any inequality of the form AqD
1
n,q ĺ pan,q can be written as AqD

1
n,q ´ pan,q ĺ

0, so (A1). applies to any “polyhedral” selection event. Condition 19. is equivalent to

insisting that the event tpq “ qu occurs with a non-zero probability asymptotically. This

has been relaxed in some works, but a condition on how fast the selection probability can

converge to zero (Tian and Taylor 2017) is required to ensure that the denominator in the

conditional probability 18. converges to its asymptotic counterpart; see 22. for an example.

The distributional assumption (A3). implicitly requires that the dimension of ppθq, Dn,qq is

fixed as the sample size n diverges to infinity. Assumption (A4). can be easily satisfied by

bootstrapping or subsampling the vector p?
nppθq ´ θqq, Dn,q ´ µn,qq.

Because µn,q in (A3). may depend on the sample size n, we need a “uniform” conver-

gence result in addition to (A3).. Assumption (A3). implies such a uniform convergence

result. If C is the set of all convex sets in R
1`dD , then Theorem 4.2 of Rao (1962) proves

that (A3). implies

sup
CPC

ˇ̌
ˇ̌
ˇP

˜«?
nppθq ´ θqq

Dn,q ´ µn,q

ff
P C

¸
´ P

˜«
Gθ,q

GD,q

ff
P C

¸ˇ̌
ˇ̌
ˇ Ñ 0, n Ñ 8. 21.

Here the set C must be a continuity set for rGJ
θ,q G

J
D,qsJ, as would be true if the covariance

matrix Ωq were positive definite.

Before describing the selective confidence interval, let us provide two simple selection

methods to which the framework applies.

3.3.1. Inference on Winners. The following example is discussed in Sampson and Sill

(2005), Sill and Sampson (2009), and Andrews et al. (2019). Suppose X1, . . . , Xn are

independent and identically distributed random vectors in R
d with mean µ. Consider the

selection of a coordinate among j “ 1, . . . , d with the largest mean. In this case, the universe

Q is t1, . . . , du and the event pq “ q can be written as

tpq “ qu “
!
e

J
j

sXn ď e
J
q

sXn, j “ 1, . . . , d
)

“ tAq
sXn ĺ 0u,
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where sXn “ n´1
řn

i“1
Xi and Aq P R

pd´1qˆd is a matrix with rows teJ
j ´ eJ

q : j ‰ qu.
Hence, assumption (A1). is satisfied with Dn,q “ ?

nAq
sXn. Note that PpDn,q ĺ 0q “

Pr?npAq
sXn ´Aqµq ĺ ´?

nAqµs. Define Σ “ Varp?
n sXnq. If AqΣA

J
q is non-singular, then

by the Berry–Esseen bound for all rectangles in Chernozhukov et al. (2020), we get that

ˇ̌
ˇPpDn,q P Sn,qq ´ PpNp0, AqΣA

J
q q ĺ ´

?
nAqµq

ˇ̌
ˇ ď CX,qpdq?

n
, 22.

for a constant CX,qpdq depending on the distribution of X, q, and also the dimension d.

Hence, inequality 19. holds if PrNp0, AqΣA
J
q q ĺ ´?

nAqµs stays away from zero as n Ñ 8.

This cannot hold if ´Aqµ ĺ 0 and }Aqµ}2 “ Op1q as n Ñ 8. Assumption (A3). is

readily satisfied using the central limit theorem. Here Σqq is the q-th diagonal element of

Σ. Assumption (A4). also holds by replacing Σ in Ωq by the sample covariance matrix of

X1, . . . , Xn.

3.3.2. Lasso selection. This example was discussed in Lee et al. (2016) and Tibshirani et al.

(2018), among others. The lasso selection procedure of Tibshirani (1996) selects a subset

of covariates via the optimization problem:

pβlasso :“ argmin
βPRp

1

2

nÿ

i“1

pYi ´X
J
i βq2 ` λ}β}1,

based on regression data pXi, Yiq P R
p ˆ R, i “ 1, . . . , n. The lasso estimator pβlasso has

some coefficients that are exactly zero, so the covariates selected are pM “ tj : pβj ‰ 0u. For
a data-independent λ, we consider the selection as selecting covariates and also the signs

of the lasso coefficients, which are included for easier expression for the selection event.

Thus pq “ p pM, psq, where ps is the vector of signs of pβLasso and pθpq is the ordinary least squares

linear regression estimator pβM defined in 2.. The analysis of Lee et al. (2016, Theorem

4.3), Markovic et al. (2017, Section 3), and McCloskey (2020, Section 5) shows that the

event tpq “ qu “ t pM “ M, ps “ su can be written as tAqD
1
n,q ĺ pan,qu “ tAqD

1
n,q ´ pan,q ĺ 0u,

where

Aq :“

¨
˚̋´diagpsMq 0

0 Ip´|M|

0 ´Ip´|M|

˛
‹‚, D

1
n,q :“

˜
n1{2pXJ

MXMq´1pXJ
MYq

n´1{2XJ
´MpIp ´ XMpXJ

MXMq´1XJ
MqY

¸
,

and

pan,q :“

¨
˚̋ ´λn1{2diagpsMqpXJ

MXMq´1sM

λn´1{2p1p´|M| ´ XJ
´MXMpXJ

MXMq´1sMq
λn´1{2p1p´|M| ` XJ

´MXMpXJ
MXMq´1sMq

˛
‹‚.

Hence, (A1). holds with Dn,q “ AqD
1
n,q ´ pan,q. It is easy to find an,q such that pan,q ´

an,q converges in probability to zero (McCloskey 2020, Section 5). Assumptions (A3).

and (A4). follow readily from moment assumptions and bootstrap/subsampling results.

Assumption (A2) can be verified using the distributional convergence result. Once again,

this assumption may fail.

Lee et al. (2016) consider the problem under a homoscedastic Gaussian model for the

response vector Y and fixed covariates. The analyses in Markovic et al. (2017, Section 3)

and McCloskey (2020) allow random covariates and do not require Gaussianity of Y.
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Several other covariate selection strategies can be covered under assumptions (A1).–

(A4).; see Markovic et al. (2017) and Tibshirani et al. (2018, Lemma 3). These works

cover methods such as the cross-validated lasso, forward stepwise regression, least angle

regression (LAR), Akaike’s information criterion, and the randomized lasso.

3.3.3. Conditional selective inference methodology. Under assumptions (A1).–(A4)., a

confidence interval satisfying the asymptotic conditional coverage condition 18. can be ob-

tained following Algorithm 2. Under assumptions (A1).–(A4)., the confidence interval

Algorithm 2: Conditional Selective Inference under Polyhedral Selection

Input: Estimator pθq, consistent estimator pΩq, coverage probability 1 ´ α.

Output: Conditional confidence intervals xCIcondq satisfying 18..

1 Define pΓq “ pΩDθ{pω2
q and Nn,q “ Dn,q ´ ?

npΓq
pθq.

2 Define

V
´ “ max

j: pΓq,jă0

´Nn,q,j

pΓq,j

, V
` “ min

j: pΓq,ją0

´Nn,q,j

pΓq,j

.

Here Nn,q,j and pΓq,j refer to the j-th coordinate of Nn,q and pΓq.

3 Set F p¨;µ, σ2,L,Uq to be the cumulative distribution function of a normal

distribution with mean µ, variance σ2 conditional on belonging to rL,Us.
4 Define pLq,α and pUq,α, respectively, as solutions (in θ) to the equations

F p
?
nθ;

?
npθq, pω2

q ,V
´
,V

`q “ α

2
, F p

?
nθ;

?
npθq, pω2

q ,V
´
,V

`q “ 1 ´ α

2
.

return the confidence interval xCIcondq :“ rpLq,α, pUq,αs.

returned by Algorithm 2. has asymptotic coverage 1 ´ α; see Tian and Taylor (2017),

Markovic et al. (2017). The proof is based on an asymptotic version of a “polyhedral

lemma” (Lee et al. 2016). Proposition 1 of McCloskey (2020) (with γ “ 0) provides an

alternative coverage guarantee without requiring assumption (A2)..

Variations of the conditional selective inference method appear in the literature. The

vanilla version described in Examples 3.3.1 and 3.3.2 that considers selection on the whole

data without randomization can lead to much wider confidence intervals than the sample

splitting and simultaneous approaches. Kivaranovic and Leeb (2018) proved that the vanilla

version may yield confidence intervals with infinite width, prompting several modifications

that either consider selection based on a part of the data or by explicitly adding random-

ization to Dn,q in selection. This is called data carving (Fithian et al. 2014, Tian and

Taylor 2018) and is related to adaptive data analysis in machine learning and computer

science. Data carving can be regarded as a combination of sample splitting and vanilla

selective inference. Model selection in data carving differs from that in the vanilla version.

Kivaranovic and Leeb (2020) prove that, in contrast to the vanilla version, randomized se-

lective inference yields confidence intervals with bounded expected length. Andrews et al.

(2019) and McCloskey (2020) combine simultaneous and selective inference; their approach

conditions on the event that θq lies in a simultaneous confidence interval as well as on the

event tpq “ qu. This additional conditioning implies that the combined confidence interval

will be smaller than the simultaneous confidence interval; see McCloskey (2020) for more
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details. Finally, there is an approach to conditional selective inference from the Bayesian

perspective (Panigrahi et al. 2016). Also, there exist selective inference approaches that

can account for convex selection methods (Tian et al. 2016).

3.3.4. Advantages. Conditional selective inference allows for selection based on the whole

data, similarly to simultaneous inference and in contrast to sample splitting. It is also

computationally more similar to sample splitting than to simultaneous inference. With a

good choice of the selective inference method, the resulting selective confidence intervals can

vary between the naive unadjusted confidence intervals and the sample splitting confidence

intervals; see Figure 4 of Fithian et al. (2014). If the selection event tpq “ qu holds with

probability close to one (asymptotically), then there is no need to adjust the naive confidence

interval 17.. Unlike both sample splitting and simultaneous inference, the selective inference

approach accounts for the specific selection methodology employed by the practitioner.

3.3.5. Disadvantages. The selective inference approach relies heavily on the specific selec-

tion methodology used prior to inference. This limits its applicability in practice, and ex-

plains why the existence of a general theory of conditional selective inference, which applies

beyond the specialized settings where it has been studied, is open. This can be understood

from assumption (A1).. Although (A1). holds for several covariate selection methods, it

does not accommodate variable transformation and other exploration methods involving

graphical tools. Applying the conditional approach to a new selection method requires new

theoretical analysis to ensure validity of assumptions; Algorithm 1 and sample splitting can

be employed for any selection method and selection universe Q. Also, as mentioned before,

the vanilla version of the method can yield much wider confidence intervals than sample

splitting and simultaneous inference.

3.3.6. Selective Inference Applied to the Boston Housing Data. When the data follow a

Gaussian distribution, then the resulting procedure provides tests with the correct type I

error in finite samples; otherwise the guarantees are asymptotic. We begin with an appli-

cation to stepwise regression. This procedure sequentially adds variables, with the next

variable in each case chosen to maximize the increase in the regression sum of squares. This

is equivalent to using AIC to select the next variable, but in this case stopping only after

examining a certain number of larger models to avoid premature stopping. The p-values and

confidence intervals adjusted for stepwise selection are given in Table 3. The forward step-

wise implementation in this package selected all covariates instead of 10 variables obtained

via the step function.

Table 3 shows confidence intervals for linear parameters that are wider than the näive

intervals, to correctly allow for the effect of selection.

Selection bias associated with overfitting, as is a well-known problem when selecting

variables using AIC, can adversely affect post-selection uncertainty assessments, yielding

post-selection predictive and confidence intervals which tend to undercover if selection is

not accounted for; see Hong et al. (2018).

One might also consider application of the Lasso. First, apply cross-validation to mini-

mize squared error. Tibshirani et al. (2019) recommend applying the Lasso to centered and

scaled covariates. Results are in Table 4.
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Effect Adjusted p value Lower Bound Upper Bound

lstat 0.33550 -0.05246 0.053042

ptratio 0.24041 -0.04493 0.042796

crim 0.34545 -0.03413 0.025595

rm 0.32349 -0.24014 0.380779

dis 0.65175 -0.05189 0.301466

nox 0.09967 -4.78435 0.460184

black 0.62735 -Inf 0.007394

rad 0.44520 -0.03969 0.017964

tax 0.04415 -0.00113 -0.000023

chas 0.00387 0.16362 Inf

zn 0.25555 -0.00164 0.002741

indus 0.29829 -0.00957 0.020518

age 0.54697 -0.00418 0.002789

Table 3: Selective Inference applied to the Boston Housing Data. Units are given in the

text following Table ??

Order Entered Variable Adjusted p value Lower Bound Upper Bound

1 crim 2.49e-11 -0.012091 -0.006957

2 zn 2.72e-01 -0.000901 0.001283

3 age 1.40e-03 0.000578 0.002370

4 rad 5.28e-05 0.009575 0.020953

5 tax 3.19e-05 -0.000995 -0.000443

6 ptratio 0.00e+00 -0.050948 -0.031245

7 black 2.84e-04 0.000181 0.000605

8 lstat 1.35e-60 -0.040679 -0.034145

Table 4: Lasso applied to the Boston Housing Data

4. Honesty and uniform validity

In all the methods discussed in Section 3, we have discussed pointwise (asymptotic) validity,

i.e., validity of coverage is required and provided for a given probability distribution of the

data that is fixed as the sample size changes. In the context of data exploration, such

pointwise asymptotics are known to be misleading, as discussed by Leeb and Pötscher

(2005). The requirement of honesty or uniform validity for conditional and unconditional

post-selection inference (respectively) can be described as

lim inf
nÑ8

inf
PPPbn

P

´
θpq P xCIpq

¯
ě 1´α and lim inf

nÑ8
inf

PPPbn
P

´
θpq P xCIpq | pq “ q

¯
ě 1´α. 23.

Here P
bn is a subset of all probability distributions for a sample of n observations, often

satisfying certain moment conditions and P P P
bn represents the true distribution of the

data. For all the methods described in Section 3, uniform validity holds under regularity

conditions on P
bn. For sample splitting and the simultaneous approach, uniform validity

(first part of 23.) follows from Berry–Esseen bounds, e.g. 22. (Belloni et al. 2018, Rinaldo
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et al. 2019, Bachoc et al. 2020, Kuchibhotla et al. 2021). For the selective inference approach,

uniform validity (second part of 23.) was proved in Tibshirani et al. (2018), Andrews et al.

(2019), and McCloskey (2020).

The impossibility results of Leeb and Pötscher (2006, 2008) seem to be at odds with

uniform validity of the simultaneous and selective approaches. Before we explain the dis-

crepancy, we describe these impossibility results. Let pX,Y q P R
d ˆ R satisfy the lin-

ear model Y “ XJβ0 ` ξ for ξ „ Np0, 1q, and let pM be a subset of covariates cho-

sen using the data. We have the least squares estimator pβxM P R
|xM| from 2.. Define

rβxM P R
d as the augmentation of pβxM with zeroes for components corresponding to non-

selected covariates. In Leeb and Pötscher (2006, 2008), the authors consider estimating

Gpt | pMq “ Pp?
nAprβxM ´ β0q ĺ t | pM “ Mq and Gptq “ Pp?

nAprβxM ´ β0q ĺ tq, respectively,
for a given non-random A P R

sˆd and t P R
s. Their results imply that no estimator of

Gpt | pMq and Gptq can be consistent uniformly over all β0 satisfying }β0 ´ β‹}2 ď Cn´1{2

(for any fixed β‹ P R
d); note that the data generating distributions in this case are indexed

by β0. As shown in Leeb and Pötscher (2006, Section 2.2), it is possible to construct esti-

mators that are consistent for each β0 P R
d (fixed as n Ñ 8), but the impossibility refers

to uniform consistency over all β0 (in a shrinking neighborhood). With this understand-

ing of the impossibility results, the discrepancy with uniform validity of simultaneous and

selective inference can be explained rather easily. The target we use for VIDE differs for

different selected models. For instance, in linear regression, our target is defined as βxM,

which is βM in 1. evaluated at M “ pM. If pM1 “ t1, 2u and pM2 “ t1, 3u, then the first

coordinate of βxM1
can be different from that of βxM2

. They are both coefficients of covariate

X1 but in two different models, as described in Berk et al. (2013). In contrast, the target

in Leeb and Pötscher (2006, 2008) is the coefficient vector β0 in a well-specified full model.

This difference in targets is also described in Bachoc et al. (2019), where the VIDE target

θpq is called a non-standard target. This difference is the main cause of impossibility results.

Furthermore, the results of Leeb and Pötscher (2006, 2008) only refer to the estimator rβxM
in the selected model. It is possible to define other estimators for the full model parameter

β0 that use a model selection procedure (such as lasso) while also providing uniformly valid

inference; see Belloni et al. (2015, 2016) and Chernozhukov et al. (2015).

These considerations of uniformity are important. Procedures that provide only approx-

imate pointwise error control potentially break down in contexts involving more complex

universes of models, and may fail to hold at more difficult parameter values for a fixed

model. More difficult here refers to parameter settings where model selection procedures

lead to high variability in selection; for example, in a linear regression model with true

parameter values around 1{?
n. See Leeb and Pötscher (2005) for a detailed discussion on

uniform validity in the context of model selection.

5. What are the implications for statistical practice?

Our current understanding of the scope of the problems caused by selection on subsequent

inferences is limited. It is easy to understand why using the data for both selection and

inference may invalidate subsequent inference methods which pretend that no selection took

place, and many papers contain simple simulation experiments to illustrate that naive in-

ference after selection can be misleading or incorrect; see, e.g., Freedman (1983), Freedman

(2009, Chapter 5), and Austin et al. (2006). However, there has been little effort to demon-

strate that failing to account for selection can have negative effects in high-stakes decisions.
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As a community, statisticians need to provide more practical guidance about when it is truly

important to account for selection, and when it is likely to make little difference. With all

three approaches we presented, there are significant challenges to implementation even in

relatively simple linear regression problems with popular variable selection procedures. Re-

searchers in this area have a virtually endless horizon of open problems, as all existing data

exploration techniques could be studied again within the post-selection framework, from

the perspective of inference, prediction, classification, or other statistical decisions. The

mathematical frameworks of both simultaneous and conditional selective inference prohibit

their employment in practice, because practical data analysis often tends to be dynamic,

with future exploration methods dictated by past explorations of the same data. See, for

example, the analysis of the realtor data in Pardoe (2008), or Gelman et al. (2020). Neither

the selection universe nor the method of selection is decided before analyzing the data;

the data dictate both. Sample splitting is the only general practical solution allowing such

dynamic data analysis, but it requires splitting the data only once at the beginning, and

only applies to independent data; a general solution for time series or other dependent data

is yet to emerge.

If one wants to employ the simultaneous inference techniques discussed in Section 3

in data analysis, then decisions about either the universe or method of selection must be

made in advance. This is much like writing a protocol and sticking to it. Even if the

protocol is complicated, a selection universe can be created and the simultaneous inference

approach 3.2 applies. This yields better model selection (because more data is used) than

sample splitting and also provides valid inference.
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Abstract

This document supplements our review of VIDE techniques, by provid-

ing R code for performing calculations.
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1. Introduction

Several approaches attempt to provide solutions to VIDE. They can be characterized by

the following terms, to be explained below:

1. Sample Splitting,

2. Simultaneous Inference, and,

3. Conditional Selective Inference.

To illustrate the approaches, we use the Boston housing data available in R package MASS.

This data set was introduced in Harrison and Rubinfeld (1978) to understand the impact of

air pollution (measured as concentration of nitrogen oxide NOX) on the median value (MEDV)

of houses in different census tracts in Boston. This effect is estimated when adjusting with

other covariates including crime rate (CRIM), proportion of land zoned for lots (ZN), vicin-

ity of Charles river (CHAS), number of rooms (RM), proportion of non-retail business acres

per town (INDUS), proportion of owner-occupied units built prior to 1940 (AGE), weighted

distances to five Boston employment centres (DIS), index of accessibility to radial highways

(RAD), full-value property-tax rate per $10,000 (TAX), pupil-teacher ratio by town (PTRATIO),

proportion of African-Americans (Black), and % lower status of the population (LSTAT).

2. Sample splitting

The package caTools Tuszynski (2021) includes a function for random sample splitting. In

the interest of reproducibility, the random seed is fixed.

data(Boston, package="MASS")

library(caTools)

set.seed(27032021)

split_indicator <- sample.split(Boston$medv, SplitRatio = 1/2)

## Initial fit

lm0 <- lm(log(medv) ~ ., data = Boston)

## forward stepwise fixing 'nox' on split_indicator data

stepout <- step(lm(log(medv) ~ nox, data = Boston, subset = split_indicator),

scope = formula(lm0), direction = "forward", trace = 0)

## p-values from stepout model using training data ignoring selection

print(summary(stepout)$coeff[-1, 4], digits=3)

## nox lstat ptratio dis crim rm chas black

## 2.69e-05 1.31e-28 2.42e-11 3.48e-07 1.41e-08 7.63e-05 4.20e-03 1.31e-02

## rad tax

## 1.96e-04 1.34e-03

## p-values from stepout model using test data

print(summary(lm(formula(stepout), data = Boston,

subset = !split_indicator))$coeff[-1, 4], digits = 3)

## nox lstat ptratio dis crim rm chas black

## 9.63e-03 2.77e-14 2.44e-05 1.28e-04 1.74e-06 4.65e-05 1.62e-01 3.91e-03
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## rad tax

## 3.39e-04 3.52e-02

Similar splitting tools exist in other packages including splithalfr Pronk (2020).

3. Simultaneous inference approach to VIDE

As noted before, the methods of Tukey (1949, 1953) and Scheffé (1953) are appropriate for

inference on contrasts; they are available in R, via the functions TukeyHSD and scheffe.test

or ScheffeTest respectively. The latter functions require the packages by de Mendiburu

(2020) and Andri et al. (2021), respectively. In the Boston housing data, the variable rad

is a categorical variable taking 9 different values. One might simultaneously bound all

mean valuation differences for houses with differing accessibility to radial highways. For

simplicity, all values of rad above 5 are set to 5.

Boston_dat <- Boston

Boston_dat$rad[Boston_dat$rad >= 5] <- 5

table(Boston_dat$rad)

##

## 1 2 3 4 5

## 20 24 38 110 314

print(TukeyHSD(aov(log(medv) ~ as.factor(rad), data = Boston_dat)),

digits = 3)

## Tukey multiple comparisons of means

## 95% family-wise confidence level

##

## Fit: aov(formula = log(medv) ~ as.factor(rad), data = Boston_dat)

##

## $`as.factor(rad)`

## diff lwr upr p adj

## 2-1 0.1020 -0.229 0.4328 0.917

## 3-1 0.1379 -0.164 0.4398 0.721

## 4-1 -0.1316 -0.397 0.1340 0.656

## 5-1 -0.1621 -0.414 0.0899 0.398

## 3-2 0.0360 -0.249 0.3209 0.997

## 4-2 -0.2336 -0.480 0.0126 0.072

## 5-2 -0.2641 -0.496 -0.0327 0.016

## 4-3 -0.2696 -0.475 -0.0640 0.003

## 5-3 -0.3001 -0.488 -0.1124 0.000

## 5-4 -0.0305 -0.152 0.0906 0.959

The output shows the difference in sample means for each pair of values of rad. These

contrasts can also be tested using scheffe.test, but because it provides simultaneous infer-

ence over all contrasts (not just pairwise differences) it tends to be less powerful compared

to TukeyHSD for pairwise differences.
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library(agricolae)

print(scheffe.test(aov(log(medv) ~ rad, data = Boston_dat), "rad",

group = FALSE)$comparison[,-3], digits=3)

## Difference pvalue LCL UCL

## 1 - 2 -0.1020 0.9508 -0.47795 0.274

## 1 - 3 -0.1379 0.8184 -0.48099 0.205

## 1 - 4 0.1316 0.7691 -0.17022 0.434

## 1 - 5 0.1621 0.5478 -0.12425 0.449

## 2 - 3 -0.0360 0.9983 -0.35975 0.288

## 2 - 4 0.2336 0.1565 -0.04615 0.513

## 2 - 5 0.2641 0.0484 0.00111 0.527

## 3 - 4 0.2696 0.0135 0.03592 0.503

## 3 - 5 0.3001 0.0009 0.08679 0.513

## 4 - 5 0.0305 0.9764 -0.10710 0.168

Note that the p-values here are larger than those obtained from TukeyHSD function. The

function ScheffeTest in the DescTools package offers more flexibility in specifying contrasts

(i.e., more general contrasts than pairwise means).

Algorithm 1 for covariate selection under a well-specified linear model is implemented

in the package PoSI (Buja and Zhang 2020).

library("PoSI")

summary(PoSI(Boston[,-14], verbose = 0))

## K.PoSI K.Bonferroni K.Scheffe

## 95% 3.591 4.904 4.729

## 99% 4.075 5.211 5.262

The output shows the pKα values to be used. We only need to provide the covariate

matrix to PoSI, because of the Gaussian linear model assumption. The PoSI constant

shown above under the column K.PoSI is the smallest. Note that the Scheffe’s constant

is also shown under K.Scheffe. Without specifying other arguments, the output of PoSI

provides adjustments for the universe of selection Q “ tpj,Mq : j P M,M Ď t1, 2, . . . , puu.

The argument ModelSZ in PoSI can be used to reduce the universe, which also reduces the

computational complexity.

To go beyond the linear model assumptions and use Algorithm 1 , we can use the tmax

package (in development) Cai (2020).

#install.packages("tmax_1.0.tar.gz", repos=NULL, dependencies=T)

library("tmax")

XX <- cbind(1, as.matrix(Boston[,-14]))

YY <- as.vector(Boston[,14])

tmp <- maxt_posi(XX, YY, sandwich = TRUE, alpha = 0.05, Nboot = 200)

## The PoSI constant under potential misspecification is

tmp$k
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## 95%

## 4.624482

## If Mhat is the selected model, then adjusted confidence intervals are

Mhat <- c(1, 2, 5)

posi.PoSI_Berk(tmp, Mhat)$intervals.M

## Lower Upper

## 21.6190440 25.609018

## crim -0.7167384 -0.095231

## chas -3.8644235 15.019861

The function maxt posi with sandwich = TRUE implements exactly Algorithm 1 with
pΨn,q equal to the sandwich variance estimator. Setting sandwich = FALSE will use the

linear model based variance estimator. Case studies involving covariate selection and also

transformation selection can be found in the package website of Cai (2020). Finally, max-t

style correction in other VIDE problems including optimal cut-off detection and transforma-

tions are discussed in Liquet and Commenges (2001), Liquet and Riou (2013, 2019). These

works also include illustrations of the R package CPMCGLM (Riou and Liquet 2017).

4. Conditional selective inference

The primary R package for conditional selective inference is selectiveInference (Tibshirani

et al. 2019). The package selectiveInference provides valid post-selection inference after

using common model-selection techniques including forward stepwise regression and the

lasso. The package includes functions that perform model selection, sometimes using crite-

ria different from similarly-named criteria implemented by other packages. These techniques

include groupwise techniques such as group lasso. When the data follow a Gaussian distri-

bution, then the resulting procedure provides tests with the correct type I error in finite

samples, otherwise the guarantees are asymptotic. We begin with an application to stepwise

regression.

library("selectiveInference")

## Center the covariates, but do not standardize

scaled_x <- scale(Boston[,-14], TRUE, FALSE)

fsout <- fs(scaled_x, log(Boston[,14]))

This procedure sequentially adds variables, with the next variable in each case chosen

to maximize the increase in the regression sum of squares. This is equivalent to using AIC

to select the next variable, but in this case stopping only after examining a certain number

of larger models to avoid premature stopping, and gives the same model. The p-values and

confidence intervals adjusted to stepwise selection can be obtained using

fsinf_out <- fsInf(fsout, type = "aic")

mat <- cbind(fsinf_out$pv, fsinf_out$ci)

dimnames(mat) <- list(colnames(Boston[,-14])[fsinf_out$vars],

c("p adj", "lwr", "upr"))

print(mat, digits = 3)
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## p adj lwr upr

## lstat 0.33550 -0.05246 0.053042

## ptratio 0.24041 -0.04493 0.042796

## crim 0.34545 -0.03413 0.025595

## rm 0.32349 -0.24014 0.380779

## dis 0.65175 -0.05189 0.301466

## nox 0.09967 -4.78435 0.460184

## black 0.62735 -Inf 0.007394

## rad 0.44520 -0.03969 0.017964

## tax 0.04415 -0.00113 -0.000023

## chas 0.00387 0.16362 Inf

## zn 0.25555 -0.00164 0.002741

## indus 0.29829 -0.00957 0.020518

## age 0.54697 -0.00418 0.002789

Note that the forward stepwise implementation in this package selected all covariates

instead of 10 variables obtained via the step function. The output shows that confidence

intervals for linear parameters are wider, to correctly allow for the effect of selection.

Apply the Lasso by first using package glmnet to apply cross-validation to minimize

squared error. The package authors (Tibshirani et al. 2019) recommend applying the Lasso

to centered and scaled covariates.

library("glmnet")

cv_out <- cv.glmnet(scaled_x, log(Boston[,14]), standardize = FALSE,

grouped = FALSE)

n <- dim(scaled_x)[1]

lambda <- 0.1

beta <- coef(cv_out$glmnet.fit, x = scaled_x,

y = log(Boston[,14]), s = lambda, exact = TRUE)[-1]

sigmahat <- estimateSigma(scaled_x, log(Boston[,14]))$sigmahat

# Note that lambda is scaled differently in glmnet

# and selectiveInference packages.

# For the fixedLassoInf function, one CANNOT use cross-validated

# lambda value.

lasso_out <- fixedLassoInf(scaled_x, log(Boston[,14]),

beta, n*lambda, alpha = 0.05)

print(data.frame(vars = names(lasso_out$vars),

p_adj = lasso_out$pv, lwr = lasso_out$ci[,1],

upr = lasso_out$ci[,2]), digits = 3)

## vars p_adj lwr upr

## 1 crim 2.49e-11 -0.012091 -0.006957

## 2 zn 2.72e-01 -0.000901 0.001283

## 3 age 1.40e-03 0.000578 0.002370

## 4 rad 5.28e-05 0.009575 0.020953

## 5 tax 3.19e-05 -0.000995 -0.000443
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## 6 ptratio 0.00e+00 -0.050948 -0.031245

## 7 black 2.84e-04 0.000181 0.000605

## 8 lstat 1.35e-60 -0.040679 -0.034145
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