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We congratulate the authors on these illuminating and thought-provoking arti-
cles.

1. SCORING RULES AND WELL-SPECIFICATION IN PREDICTIVE

MODELING

In the context of prediction, the objective is often to minimize a particular
criterion or scoring rule. If the conditional distribution is known and correctly
specified, then maximum likelihood is the criterion that should be used for esti-
mation, even if the Kullback-Leibler divergence is not the scoring rule that the
forecaster has chosen to minimize. In the more likely case of misspecification, it
is not clear which criterion should be used for estimation. In the context of fore-
casting conditional probabilities of binary outcomes, Elliott et al. (2016) examine
this question and illustrate that the choice of scoring rule yields different best
approximations to the true conditional probability function of the outcome of
interest under misspecification, except under restrictive conditions. Interestingly,
these conditions under which the choice of objective function used for estimation
does not change the best approximation to the true conditional probability func-
tion imposes symmetry conditions on the regressor distribution as well as the
conditional mean.

2. CAUSAL INFERENCE, WELL-SPECIFICATION AND EXTERNAL

VALIDITY

In causal inference, we often consider fully nonseparable models. For simplicity,
we will consider the case where ~X = T , where T is a scalar binary variable, which
we refer to as the treatment variable. The model equation is specified as

Y = m(T, ~U).(1)

In this simple example, the structural function could be written in terms of po-
tential outcomes (Imbens and Rubin 2015),

Y = (1− T )Y0 + TY1,(2)
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where Y0 = m(0, ~U) and Y1 = m(1, ~U). We can also write the conditional distri-
bution of Y given T in terms of the potential outcomes,

FY |T (y|t) =

∫

1{m(t, ~u) ≤ y}dF~U |T=t
= FYt|T (y|t), for t = 0, 1.(3)

Due to potential selection, ~U may not be independent of T in general. In this
case, we cannot identify the average treatment effect (ATE), i.e.

∆(P ) = EP [Y1 − Y0] =

∫

(m(1, ~u)−m(0, ~u))dF~U
,(4)

from the observed difference in mean outcomes,

EP [Y |T = 1]− EP [Y |T = 0] =

∫

m(1, ~u)dF~U |T=1
−

∫

m(0, ~u)dF~U |T=0
.(5)

Hence, the independence of U and T are critical, i.e. F~U |T = F~U
, for the identifi-

cation of the ATE in (4) from the difference in mean outcomes in (5).
Randomized experiments or randomly assigned interventions ensure this inde-

pendence assumption holds and thereby allow us to learn about internally valid
estimands of causal impact, such as the ATE. In general, these estimands may
not be externally valid (for further discussion of the distinction between internal
and external validity, see Athey and Imbens 2017). For instance, the ATE in a
given experiment can depend on the environment. To allow for this dependence
in our notation, let e ∈ E denote an environment, then

Y e = me(T e, ~U e),

∆e(P e) = EP e [Y e
1 − Y e

0 ] =

∫

(me(1, ~ue)−me(0, ~ue))dF ~Ue ,(6)

where ∆e(P e) denotes the ATE for the environment e. Note that every function
in the above may vary with e. The above notation also clarifies that while the
independence between T and ~U e ensures that we identify the ATE for the envi-
ronment e, i.e. an internally valid estimand, it is not sufficient for ∆e(P e) = ∆0

for all e ∈ E , a non-singleton set.
The authors point to an interesting connection between well-specification in

the context of causal inference and invariance to regressor distributions (Peters
et al. 2016). We conjecture that this connection relates to external validity. We
provide a simple example to support our conjecture. To do so, we present the
assumptions maintained in Peters et al. (2016), while adapting their notation
slightly to remain consistent with ours. We observe i.i.d. realizations of (Xe, Y e)
in each environment, where Xe ∈ R

p and Y e ∈ R is the target variable. Peters
et al. (2016) assume that if a subset S∗ ⊆ {1, . . . , p} is causal, then

Y e = g( ~Xe
S∗ , ~εe), ~εe ∼ F~ε, ~εe ⊥ ~Xe

S∗ .(7)

The goal of Peters et al. (2016) is to use different types of interventions in different
environments for causal identification. Here we will apply their assumption to our
treatment effect problem, where we only consider interventions that randomly
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assign T e within each environment, i.e. T e ⊥ (~Ze,~εe) for all e ∈ E . To do so, we

let ~Xe =
(

T e, ~Ze
)′
, assuming (7) implies that

Y e = g

(

(

T e, ~Ze
)′

, ~εe
)

.(8)

We can identify the following

EP e

[

Y e
1 − Y e

0 |~Z
e = ~z

]

=

∫

(g((1, ~z′)′, v)− g((0, ~z′)′, v)dF~ε(v) = CATE(~z),(9)

which is the conditional average treatment effect given ~Ze = ~z. As we can see
from the first equality, this object does not vary across environments. Hence, it
is not only internally but also externally valid for e ∈ E . This is not surprising,
since (7) assumes that the function g, the distribution of unobservables F~ε and
the regressors ~Ze are the same across environments, even though the distribution
of ~Ze can vary arbitrarily across environments.

Even though in the above example CATE(~z) is externally valid, we can easily
show that this is not true for the ATE. To see this, note that

∆e(P e) =

∫

CATE(~z)dF~Ze(~z).(10)

It clearly varies across environments depending on the distribution of ~Ze. Hence,
it is not externally valid.

This simple example supports our conjecture that the relationship between the
invariance principle introduced in these papers is indeed related to the concept
of external validity. We thank the authors for this important insight.
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