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Abstract

Loss functions with a large number of saddle points are one of the major obstacles for training modern machine

learning (ML) models efficiently. First-order methods such as gradient descent (GD) are usually the methods of

choice for training ML models. However, these methods converge to saddle points for certain choices of initial

guesses. In this paper, we propose a modification of the recently proposed Laplacian smoothing gradient descent

(LSGD) [Osher et al., arXiv:1806.06317], called modified LSGD (mLSGD), and demonstrate its potential to avoid

saddle points without sacrificing the convergence rate. Our analysis is based on the attraction region, formed by all

starting points for which the considered numerical scheme converges to a saddle point. We investigate the attraction

region’s dimension both analytically and numerically. For a canonical class of quadratic functions, we show that

the dimension of the attraction region for mLSGD is �(n − 1)/2�, and hence it is significantly smaller than that of

GD whose dimension is n − 1.

1. Introduction

Training machine learning (ML) models often reduces to solving the empirical risk minimisation

problem [30]

min
x∈Rn

f (x), (1.1)

where f : Rn →R is the empirical risk functional, defined as

f (x) :=
1

N

N
∑

i=1

L(yi, g(di, x)).

Here, the training set {(di, yi)}N
i=1 with di ∈R

n, yi ∈R
m for n, m ∈N is given, g : Rn ×R

n →R
m denotes

the ML model parameterised by x and L(yi, g(di, x)) is the training loss between the ground-truth label

yi ∈R
m and the model prediction g(di, x) ∈R

m. The training loss function L is typically a cross-entropy

loss for classification and a root mean squared error for regression. For many practical applications,

f is a highly nonconvex function, and g is chosen among deep neural networks (DNNs), known for

their remarkable performance across various applications. DNN models are heavily overparametrised

and require large amounts of training data. Both the number of samples N and the dimension n of

x can scale up to millions or even billions [11, 27]. These complications pose serious computational

challenges. Gradient descent (GD), stochastic gradient descent (SGD) and their momentum-accelerated

variants are the method of choice for training high capacity ML models, since their merits include
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fast convergence, concurrence and an easy implementation [2, 26, 32]. However, GD, or more gener-

ally first-order optimisation algorithms relying only on gradient information, suffers from slow global

convergence when saddle points exist [15].

Saddle points are omnipresent in high-dimensional nonconvex optimisation problems and corre-

spond to highly suboptimal solutions of many ML models [6, 9, 10, 28]. Avoiding the convergence

to saddle points and the escape from saddle points are two interesting mathematical problems. The con-

vergence to saddle points can be avoided by changing the dynamics of the optimisation algorithms

in such a way that their iterates are less likely or do not converge to saddle points. Escaping from

saddle points ensures that iterates close to saddle points escape from them efficiently. Many meth-

ods have recently been proposed for the escape from saddle points. These methods are either based

on adding noise to gradients [7, 13, 14, 17] or leveraging high-order information, such as Hessian,

Hessian-vector product or relaxed Hessian information [1, 3, 4, 5, 6, 19, 20, 22, 23, 25]. To the best

of our knowledge, little work has been done in terms of avoiding saddle points with only first-order

information.

GD is guaranteed to converge to first-order stationary points. However, it may get stuck at saddle

points since only gradient information is leveraged. We call the region containing all starting points

from which the gradient-based algorithm converges to a saddle point the attraction region. While it is

known that the attraction region associated with any strict saddle points is of measure zero [15, 16] under

GD for sufficiently small step sizes, it is still one of the major obstacles for GD to achieve fast global

convergence, in particular when there exist exponentially many saddle points [8]. This work aims to

avoid saddle points by reducing the dimension of the attraction region and is motivated by the Laplacian

smoothing gradient descent (LSGD) [24].

1.1. Our contribution

We propose the first deterministic first-order algorithm for avoiding saddle points where no noisy gradi-

ents or any high-order information is required. We quantify the efficacy of the proposed new algorithm

in avoiding saddle points for a class of canonical quadratic functions and extend the results to general

quadratic functions. We summarise our major contributions below.

A small modification of LSGD

For solving minimisation problems of the form (1.1), GD with initial guess x0 ∈R
n can be applied,

resulting in the following GD iterates:

xk+1 = xk − η∇f (xk),

where η > 0 denotes the step size. LSGD pre-multiplies the gradient by a Laplacian smoothing matrix

with periodic boundary conditions and leads to the following iterates:

xk+1 = xk − η(I − σL)−1∇f (xk),

where I is the n × n identity matrix and L is the discrete one-dimensional Laplacian, defined as

L :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−2 1 0 . . . 0 1

1 −2 1 . . . 0 0

0 1 −2 . . . 0 0

. . . . . . . . . . . . . . . . . .

1 0 0 . . . 1 −2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

LSGD can achieve significant improvements in training ML models [12, 24, 29], ML with differential

privacy guarantees [31], federated learning [18] and Markov chain Monte Carlo sampling [33].
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In this work, we propose a small modification of LSGD to avoid saddle points efficiently. At its core

is the replacement of the constant σ in LSGD by an iteration-dependent function σ (k), resulting in the

modified LSGD (mLSGD)

xk+1 = xk − η(I − σ (k)L)−1∇f (xk). (1.2)

For the analysis, we assume that σ (k) is a non-constant, monotonic function such that σ = σ (k) is con-

stant for all k � k0 for some sufficiently large k0 ∈N. With such a small modification on LSGD, we show

that mLSGD has the same convergence rate as GD and can avoid saddle points efficiently.

Quantifying the avoidance of saddle points

It is well-known that stochastic first-order methods like SGD rarely get stuck in saddle points, while

standard first-order methods like GD may converge to saddle points. We show that small modifications

of standard gradient-based methods such as mLSGD in (1.2) outperform GD in terms of saddle point

avoidance due to its smaller attraction region. To quantify the set of initial data which leads to the

convergence to saddle points, we investigate the dimension of the attraction region. Low-dimensional

attraction regions are equivalent to high-dimensional subspaces of initial data which can avoid saddle

points. Since many nonconvex optimisation problems can locally be approximated by quadratic func-

tions, we restrict ourselves to quadratic functions with saddle points in the following which also reduces

additional technical difficulties arising with general functions. We consider the class of quadratic func-

tions f : Rn →R with f (x) = 1

2
xTBx where we assume that B has both positive and negative eigenvalues

to guarantee the existence of saddle points. For different matrices B, our numerical experiments indicate

that the dimension of the attraction region for the modified LSGD is a significantly smaller space than

that for GD.

Analysing the dimension of the attraction region

For our analytical investigation of the avoidance of saddle points, we consider a canonical class of

quadratic functions first, given by f : Rn →R with

f (x1, · · · , xn) =
c

2

(

n−1
∑

i=1

x2

i
− x2

n

)

(1.3)

with c > 0. We will show that the attraction regions of GD and the modified LSGD are given by

WGD =
{

x0 ∈R
n : xk+1 = xk − η∇f (xk) with lim

k→∞
xk = 0

}

and

WmLSGD =
{

x0 ∈R
n : xk+1 = xk − η(I − σ (k)L)−1∇f (xk) with lim

k→∞
xk = 0

}

,

respectively, and are of dimensions

dimWGD = n − 1, dimWmLSGD =
⌊

n − 1

2

⌋

.

These results indicate that the set of initial data converging to a saddle point is significantly smaller for

the modified LSGD than for GD. We extend these results to quadratic functions of the form f (x) = 1

2
xTBx

where B ∈R
n×n has both positive and negative eigenvalues. In the two-dimensional case, the attraction

region reduces to the trivial non-empty space {0} for most choices of B unless a very peculiar condition

on eigenvectors of B is satisfied, implying that saddle points can be avoided for any starting point of the

iterative method (1.2).

1.2. Notation

We use boldface upper-case letters A, B to denote matrices and boldface lower-case letters x, y to denote

vectors. The vector of zeros of length n is denoted by 0 ∈R
n and Aij denotes the entry (i, j) of A. For
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vectors we use ‖ · ‖ to denote the Euclidean norm, and for matrices we use ‖ · ‖ to denote the spectral

norm, respectively. The eigenvalues of A are denoted by λi(A) where we assume that they are ordered

according to their real parts. For a function f : Rn →R, we use ∇f to denote its gradient.

1.3. Organisation

This paper is structured as follows. In Section 2, we revisit the LSGD algorithm and motivate the mod-

ified LSGD algorithm. For quadratic functions with saddle points, we rigorously prove in Section 3

that the modified LSGD can significantly reduce the dimension of the attraction region. We provide a

convergence analysis for the modified LSGD for nonconvex optimisation in Section 4. Furthermore, in

Section 5, we provide numerical results illustrating the avoidance of saddle points of the modified LSGD

in comparison to the standard GD. Finally, we conclude.

2. Algorithm

2.1. LSGD

Recently, Osher et al. [24] proposed to replace the standard or stochastic gradient vector y ∈R
n by the

Laplacian smoothed surrogate A−1
σ

y ∈R
n where

Aσ := I − σL =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 + 2σ −σ 0 . . . 0 −σ

−σ 1 + 2σ −σ . . . 0 0

0 −σ 1 + 2σ . . . 0 0

. . . . . . . . . . . . . . . . . .

−σ 0 0 . . . −σ 1 + 2σ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(2.1)

for a positive constant σ , identity matrix I ∈R
n×n and the discrete one-dimensional Laplacian L ∈R

n×n.

The resulting numerical scheme reads

xk+1 = xk − ηA−1

σ
∇f (xk), (2.2)

where GD is recovered for σ = 0. This simple Laplacian smoothing can help to avoid spurious minima,

reduce the variance of SGD on-the-fly and lead to better generalisations in training neural networks.

Computationally, Laplacian smoothing can be implemented either by the Thomas algorithm together

with the Sherman–Morrison formula in linear time or by the fast Fourier transform (FFT) in quasi-linear

time. For convenience, we use FFT to perform gradient smoothing where

A−1

σ
y = ifft

(

fft(y)

1 − σ · fft(d)

)

,

with d = [−2, 1, 0, · · · , 0, 1]T ∈R
n.

2.2. Motivation for modifying LSGD to avoid saddle points

To motivate the strength of modified LSGD methods in avoiding saddle points, we consider the two-

dimensional setting, show the impact of varying σ on the convergence to saddle points and compare it

to the convergence to saddle points for the standard LSGD with constant σ .

2.2.1. Convergence to saddle points for LSGD

For given initial data x0 ∈R
2, we apply LSGD (2.2) for any constant σ � 0 to a quadratic function of

the form f (x) = 1

2
xTBx where we suppose that B ∈R

2×2 has one positive and one negative eigenvalue
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for the existence of a saddle point. This yields

xk+1 =
(

I − ηA−1

σ
B
)

xk =
(

I − ηA−1

σ
B
)k+1

x0, (2.3)

where

Aσ =
[

1 + σ −σ

−σ 1 + σ

]

.

Since A−1
σ

is positive definite, A−1
σ

B has one positive and one negative eigenvalue, denoted by λ+ and

λ−, respectively. We write p+ and p− for the associated eigenvectors and we have x0 = α+p+ + α−p− for

scalars α+, α− ∈R. This implies

xk+1 = α+ (1 − ηλ+)
k+1

p+ + α− (1 − ηλ−)
k+1

p−.

If x0 ∈ span{p+} or, equivalently, α− = 0, we have limk→∞ xk = 0 for η > 0 chosen sufficiently small such

that |1 − ηλ+| < 1 is satisfied. Hence, we have convergence to the unique saddle point in this case.

Alternatively, we can study the convergence to the saddle point by considering the ordinary

differential equation associated with (2.2). For this, we investigate the limit η → 0 and obtain

dx

dt
= −A−1

σ
Bx (2.4)

with initial data x(0) = x0. Since x0 = α+p+ + α−p− for scalars α+, α− ∈R, the solution to (2.4) is

given by

x(t) = α+p+ exp(−λ+t) + α−p− exp(−λ−t).

If x0 ∈ span{p+}, the solution to (2.4) reduces to

x(t) = α+p+ exp(−λ+t)

and x(t) → 0 as t → ∞, i.e., LSGD for a constant σ converges to the unique saddle point of f .

This motivation can also be extended to the n-dimensional setting. For that, we consider f (x) = 1

2
xTBx

where B ∈R
n×n is a matrix with k negative and n − k positive eigenvalues. We assume that the eigenval-

ues are ordered, i.e. λ1 � . . .� λn−k > 0 > λn−k+1 � . . .� λn, and the associated eigenvectors are denoted

by p1, . . . , pn. One can easily show that for any starting point in span{p1, . . . , pn−k}, we have conver-

gence to the saddle point, implying that the attraction region for GD or the standard LSGD is given by

WLSGD = span{p1, . . . , pn−k} with dim WLSGD = n − k.

2.2.2. Avoidance of saddle points for the modified LSGD

In general, the eigenvectors and eigenvalues of A−1
σ

B depend on σ . Hence, the behaviour of the iterates xk

in (2.2) and their convergence to saddle points becomes more complicated for time-dependent functions

σ due to the additional time dependence of eigenvectors and eigenvalues. To illustrate the impact of a

time-dependent σ , we consider the special case f (x) = 1

2
xTBx for

B =
[

1 0

0 −1

]

,

i.e., f (x) = 1

2
(x2

1 − x2
2) for x = [x1, x2]T . The eigenvector p+ of A−1

σ
B, associated with the positive

eigenvalue λ+ of A−1
σ

B, is given by

p+ =
[

1

0

]

for σ = 0 and p+ =
1

√

(σ+1+
√

2σ+1)2+σ 2

σ 2

[

σ+1+
√

2σ+1

σ

1

]

for σ > 0.

It is easy to see that ν(σ ) = σ+1+
√

2σ+1

σ
is a strictly decreasing function in σ with ν → +∞ as σ → 0 and

ν → 1 as σ → ∞, implying that the corresponding normalised vector p+ is rotated counter-clockwise
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Figure 1. The attraction region when LSGD is applied to f (x) = 1

2
(x2

1 − x2
2). The black, blue and red

lines are the corresponding attraction regions for σ = 0, σ = 10 and σ = 100, respectively.

as σ increases. Since p+ is given by [cos φ, sin φ]T for some φ ∈ [0, π

4
], this implies that for σ1, σ2 with

σ1 �= σ2, the corresponding normalised eigenvectors p+ cannot be orthogonal and hence the associated

normalised eigenvectors p− cannot be orthogonal to each other. In particular, this is true for any bounded,

strictly monotonic function σ (k) of the iteration number k. Figure 1 depicts the attraction regions for

LSGD with constant values for σ , given by σ = 0, σ = 10 and σ = 100, respectively. Note that σ =
0 corresponds to the standard GD. Two attraction regions intersect only at the origin, indicating that

starting from any point except 0, LSGD results in a slight change of direction in every time step while σ is

strictly monotonic. This observation motivates that the modified LSGD for strictly monotonic σ perturbs

the gradient structure of f in a non-uniform way while in the standard GD and LSGD the gradient is

merely rescaled. In particular, the change of direction of the iterates in every time step motivates the

avoidance of the saddle point 0 in the two-dimensional setting, while for LSGD with σ constant, the

iterates will converge to the saddle point for any starting point in span{p+}.

2.3. Modified LSGD

Based on the above heuristics, we formulate the modified LSGD algorithm for positive, monotonic and

bounded functions σ (k). The numerical scheme for the modified LSGD is given by

xk+1 = xk − ηA−1

σ (k)∇f (xk), (2.5)

where Aσ (k) = I − σ (k)L. The Laplacian smoothed surrogate A−1
σ (k)∇f (xk) can be computed by using

either the Thomas algorithm or the FFT with the same computational complexity as the standard LSGD.

Remark 1. For σ (k) in the numerical scheme (2.5), we choose a positive function which is easy to

compute. Any positive, strictly monotonic and bounded function σ (k) guarantees the rotation of at least

one eigenvector in the example in Section 2.2.2.

3. Modified LSGD can avoid saddle points

In this section, we investigate the dimension of the attraction region for different classes of quadratic

functions.

3.1. Specific class of functions

We consider the canonical class of quadratic functions in (1.3) on R
n which has a unique saddle point

at 0. This class of functions can be written as f (x) = c

2
xTBx for some c > 0, where B is a diagonal matrix

with

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 . . . 0

0
. . .

. . .
...

...
. . . 1 0

0 . . . 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈R
n×n.
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Since c > 0 is a scaling factor which only influences the speed of convergence but not the direction of

the updates, we can assume without loss of generality that c = 1 in the following.

We consider the case of a unique saddle point as an illustration for the more general setting of multiple

saddle points which we will discuss in Section 3.2. The restriction to a unique saddle point is motivated

by the fact that the case of multiple saddle points requires more technicalities, but the main ideas remain

the same.

Starting from some point x0 ∈R
n and a given function σ (k), we apply the modified LSGD to f ,

resulting in the iterative scheme

xk+1 = (I − ηA−1

σ (k)B)xk, (3.1)

where Aσ (k) is defined in (2.1) for the function σ = σ (k).

Lemma 1. For any k ∈N fixed, the matrix A−1
σ (k)B is diagonalisable, its eigenvectors form a basis of Rn

and the eigenvalues of the matrix A−1
σ (k)B satisfy

1 � λ1(A
−1

σ (k)B) � . . .� λn−1(A
−1

σ (k)B) > 0 > λn(A
−1

σ (k)B) �−1,

where λi(A
−1
σ (k)B) denotes the ith largest eigenvalue of the matrix A−1

σ (k)B. In particular, A−1
σ (k)B has exactly

one negative eigenvalue.

Proof. For ease of notation, we denote σ (k) by σ in the following. As a first step, we show that A−1
σ

B

is diagonalisable and its eigenvalues λi(A
−1
σ

B) are real for i = 1, . . . , n. We prove this by showing that

A−1
σ

B is similar to a symmetric matrix. Note that A−1
σ

is a real, symmetric, positive definite matrix.

Hence, A−1
σ

is diagonalisable with A−1
σ

= UDUT for an orthogonal matrix U and a diagonal matrix D with

eigenvalues λi(A
−1
σ

) > 0 for i = 1, . . . , n on the diagonal. This implies that there exists a real, symmet-

ric, positive definite square root A−1/2
σ

= U
√

DUT with A−1/2
σ

A−1/2
σ

= A−1
σ

where
√

D denotes a diagonal

matrix with diagonal entries
√

λi(A−1
σ

) > 0. We have

A1/2

σ
A−1

σ
BA−1/2

σ
= A−1/2

σ
BA−1/2

σ
,

where A−1/2
σ

BA−1/2
σ

is symmetric due to the symmetry of A−1/2
σ

and B. Thus, A−1
σ

B is similar to the

symmetric matrix A−1/2
σ

BA−1/2
σ

. In particular, A−1
σ

B is diagonalisable and has real eigenvalues like

A−1/2
σ

BA−1/2
σ

.

Note that det(A−1
σ

B) = det(A−1
σ

) det(B) < 0 since det(A−1
σ

) > 0 and det(B) = −1. Since the determi-

nant of a matrix is equal to the product of its eigenvalues and all eigenvalues of A−1
σ

B are real, this

implies that A−1
σ

B has an odd number of negative eigenvalues. Next, we show that A−1
σ

B has exactly one

negative eigenvalue. Defining

B̃ :=

⎛

⎜

⎜

⎜

⎜

⎝

0 0 . . . 0

0
. . .

. . .
...

...
. . . 0 0

0 . . . 0 −2

⎞

⎟

⎟

⎟

⎟

⎠

we have

A−1

σ
B = A−1

σ
+ A−1

σ
B̃,

where the matrix A−1
σ

B̃ has n − 1-fold eigenvalue 0 and its last eigenvalue is given by −2[A−1
σ

]nn. We

can write A−1
σ

= 1

det Aσ
C̃ where C̃ij = (−1)i+jMij for the (i,j)-minor Mij, defined as the determinant of the

submatrix of Aσ by deleting the ith row and the jth column of Aσ . Since all leading principal minors are

positive for positive definite matrices, this implies that Mnn > 0 due to the positive definiteness of Aσ and

hence [Aσ ]nn > 0, implying that λi(A
−1
σ

B̃) = 0 for i = 1, . . . , n − 1 and λn(A
−1
σ

B̃) < 0. The eigenvalues

of A−1
σ

B can now be estimated by Weyl’s inequality for the sum of matrices, leading to

λn−2(A
−1

σ
B) � λn−1(A

−1

σ
) + λn−1(A

−1

σ
B̃) > 0

https://doi.org/10.1017/S0956792522000316 Published online by Cambridge University Press
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since the first term is positive and the second term is negative. Since A−1
σ

B has an odd number of negative

eigenvalues, this implies that λn−1(A
−1
σ

B) > 0 and λn(A
−1
σ

B) < 0. In particular, A−1
σ

B has exactly one

negative eigenvalue.

To estimate upper and lower bounds of the eigenvalues of A−1
σ

B, note that the eigenvalues of the

Laplacian L are given by 2 − 2 cos(2πk/n) ∈ [0, 4] for k = 0, . . . , n/2, implying that λi(Aσ ) ∈ [1, 1 +
4σ ] and in particular, we have

λi(A
−1

σ
) ∈

[

1

1 + 4σ
, 1

]

for i = 1, . . . , n. Besides, we have

|λi(A
−1

σ
B)| ≤ ρ(A−1

σ
B) = ‖A−1

σ
B‖ ≤ ‖A−1

σ
‖‖B‖ = ρ(A−1

σ
)ρ(B) ≤ 1

all i = 1, . . . , n, where ρ(B) denotes the spectral radius of B and ‖B‖ denotes the operator norm

of B.

Since A−1
σ (k)B is diagonalisable by Lemma 1, we can consider the invertible matrix Pσ (k) =

(p1,σ (k), . . . , pn,σ (k)) whose columns pi,σ (k) denote the normalised eigenvectors of A−1
σ (k)B, associated with

the eigenvalues λi(A
−1
σ (k)B), i.e.

λi(A
−1

σ (k)B)pi,σ (k) = A−1

σ (k)Bpi,σ (k)

for all i = 1, . . . , n, and {p1,σ (k), . . . , pn,σ (k)} forms a basis of unit vectors of Rn. In the following, pi,j,σ (k)

denotes the ith entry of the jth eigenvector pj,σ (k) of A−1
σ (k)B, i.e. pj,σ (k) = (p1,j,σ (k), . . . , pn,j,σ (k)).

Lemma 2. For any k ∈N fixed, the matrix A−1
σ (k)B has n − 1 eigenvectors pj,σ (k) associated with positive

eigenvalues. Of these, �n/2� have the same form where the lth entry pl,j,σ (k) of the jth eigenvector pj,σ (k)

satisfies

pl,j,σ (k)

{

= pn−l,j,σ (k), l = 1, . . . , n − 1,

�= 0, l = n.

For the remaining �(n − 1)/2� eigenvectors associated with positive eigenvalues, the entry pl,j,σ (k) of

eigenvector pj,σ (k) satisfies

pl,j,σ (k) = b sin(lθj), l = 1, . . . , n, (3.2)

where θj = 2πmj

n
for some mj ∈Z and b ∈R\{0} such that ‖pj,σ (k)‖ = 1, implying

pl,j,σ (k) =
{

−pn−l,j,σ (k), l = 1, . . . , n − 1,

0, l = n.

The eigenvector pn,σ (k) associated with the unique negative eigenvalue λn(A
−1
σ (k)B) satisfies

pl,n,σ (k)

{

= pn−l,n,σ (k), l = 1, . . . , n − 1,

�= 0, l = n.

Proof. Since k ∈N is fixed, we consider σ instead of σ (k) throughout the proof. Besides, we simplify the

notation by dropping the index σ = σ (k) in the notation of the eigenvectors pj,σ (k) = (p1,j,σ (k), . . . , pn,j,σ (k)),

and we write pj = (p1,j, . . . , pn,j) for j = 1, . . . , n.

Since A−1
σ

B and BAσ have the same eigenvectors and their eigenvalues are reciprocals, we can con-

sider BAσ for determining the eigenvectors pj for j = 1, . . . , n. Note that the n − 1 eigenvectors pj of BAσ

for j = 1, . . . , n − 1 are associated with positive eigenvalues λj(BAσ ) of BAσ , while the eigenvector pn

is associated with the only negative eigenvalue λn(BAσ ). By introducing a slack variable p0,j we rewrite

the eigenequation for the jth eigenvalue λj(BAσ ), given by

(BAσ − λj(BAσ ))pj = 0,
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as

−σpk−1,j + (1 + 2σ − λj(BA))pk,j − σpk+1,j = 0, k = 1, . . . , n − 1, (3.3)

with boundary conditions

σp1,j + σpn−1,j − (1 + 2σ + λj(BAσ ))pn,j = 0 (3.4)

and

p0,j = pn,j. (3.5)

Equation (3.3) is a difference equation which can be solved by making the ansatz pk,j = rk. Plugging this

ansatz into (3.3) results in the quadratic equation

1 −
1 + 2σ − λj(BAσ )

σ
r + r2 = 0

with solutions r+/− = d ±
√

d2 − 1 where

d :=
1 + 2σ − λj(BAσ )

2σ
.

Note that r+r− = d2 − (d2 − 1) = 1 and 2d = r+ + r− = r+ + (r+)−1.

Let us consider the eigenvector pn first. Since λn(BAσ ) < 0, this yields d > 1 and in particular r+ �= r−.

We set r := r+, implying r− = 1/r, and obtain the general solution of the form

pk,n = b1rk + b2r
−k, k = 0, . . . , n

for scalars b1, b2 ∈R which have to be determined from the boundary conditions (3.4),(3.5). From (3.5),

we obtain

b1 + b2 = b1rn + b2r−n,

implying that b1(1 − rn) = b2r−n(1 − rn) and in particular b1 = b2r−n since r = r+ > 1. Hence, we obtain

pk,n = b1(rk + rn−k), k = 0, . . . , n. (3.6)

For non-trivial solutions for the eigenvector pn we require b1 �= 0. Note that (3.6) implies that pk,n = pn−k,n

for k = 0, . . . , n. It follows from boundary condition (3.4) that pn,n �= 0 is necessary for non-trivial

solutions.

Next, we consider the n − 1 eigenvectors pj of BAσ associated with positive eigenvalues

λj(BAσ ) > 0 for j = 1, . . . , n − 1. Note that all positive eigenvalues of BAσ are in the interval [1, 1 + 4σ ]

since λj(Aσ ) ∈ [1, 1 + 4σ ] and

λj(BAσ ) =
1

λj(A−1
σ

B)
� 1

by Lemma 1. Hence, λj(BAσ ) ≤ ρ(BAσ ) = ‖BAσ‖ ≤ ‖B‖‖Aσ‖ = ρ(B)ρ(Aσ ) ≤ 1 + 4σ . Thus, it is suf-

ficient to consider three different cases λj(BAσ ) = 1, λj(BAσ ) = 1 + 4σ and λj(BAσ ) ∈ (1, 1 + 4σ ).

We start by showing that all eigenvalues satisfy in fact λj(BAσ ) ∈ (1, 1 + 4σ ). For this, assume that

there exists λj(BAσ ) = 1 for some j ∈ {1, . . . , n − 1}, implying that we have a single root r+ = r− = d = 1.

The general solution to the difference equation (3.3) with boundary conditions (3.4), (3.5) reads

pk,j = (b1,j + b2,jk)rk = b1,j + b2,jk, k = 0, . . . , n

for constants b1,j, b2,j ∈R. Summing up all equations in (3.3) and subtracting (3.4) implies that 2pn,j = 0,

i.e. pn,j = 0. Hence, (3.5) implies p0,j = pn,j and our ansatz yields 0 = pn,j = p0,j = b1,j. This results in pk,j =
b2,jk and pn,j = 0 = b2,jn implies b2,j = 0. In particular, there exists no non-trivial solution and λj(BAσ ) �= 1

for all j = 1, . . . , n − 1. Next, we show that λj(BAσ ) �= 1 + 4σ for all j = 1, . . . , n − 1 by contradiction.

We assume that there exists j ∈ {1, . . . , n − 1} such that λj(BAσ ) = 1 + 4σ , implying that r+ = r− = d =
−1. Due to the single root, the general solution is of the form

pk,j = (b1,j + b2,jk)rk = (b1,j + b2,jk)(−1)k, k = 0, . . . , n.
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For n even, (3.5) yields b1,j = p0,j = pn,j = b1,j + b2,jn, implying b2,j = 0. Hence, the solution is constant

with pk,j = b1,j but does not satisfy boundary condition (3.4) unless b1,j = 0, resulting in the trivial

solution. Similarly, we obtain for n odd that b1,j = p0,j = pn,j = −b1,j − b2,jn, implying b2,j = −2b1,j/n,

i.e. pk,j = b1,j(1 − 2k/n)(−1)k. Plugging this into the boundary condition (3.4) yields b1,j = 0 since

σ > 0 and n � 2. In particular, there exists no non-trivial solution and the positive eigenvalues sat-

isfy λj(BAσ ) < 1 + 4σ for all j = 1, . . . , n − 1. Hence, we can now assume that λj(BAσ ) ∈ (1, 1 + 4σ ).

We conclude that d ∈ (−1, 1) and r+/− = d ± i
√

1 − d2 have two distinct roots. Setting r := r+ with

|r| = 1, we can introduce an angle θ and write r = exp(iθ ) = cos θ + i sin θ , implying d = cos θ and

rk = exp(ikθ ). Due to the distinct roots, we consider the ansatz

pk,j = b1,jr
k + b2,jr

−k, k = 0, . . . , n.

The boundary condition (3.5) implies b1,jr
n(1 − rn) = b2,j(1 − rn) resulting in the two cases rn = 1 and

b1,jr
n = b2,j.

For the case rn = cos(nθ ) + i sin(nθ ) = 1, we conclude that θ = 2πm/n for some m ∈Z. This yields

pk,j = (b1,j + b2,j) cos(kθ ) + i(b1,j − b2,j) sin(kθ ),

k = 0, . . . , n,

and we obtain

p1,j = (b1,j + b2,j) cos(θ ) + i(b1,j − b2,j) sin(θ ),

pn−1,j = (b1,j + b2,j) cos (θ ) − i(b1,j − b2,j) sin(θ ),

pn,j = b1,j + b2,j.

From boundary condition (3.4), we obtain

2σ (b1,j + b2,j) cos (θ ) − (1 + 2σ + λj(BAσ ))(b1,j + b2,j) = 0,

implying that b1,j + b2,j = 0 or 2σ cos (θ ) = 1 + 2σ + λj(BAσ ). Since λj(BAσ ) > 0, the second case

cannot be satisfied and we conclude b1,j + b2,j = 0. This results in the general solution of the form

pk,j = 2ib1,j sin(kθ ) for k = 0, . . . , n for b1,j ∈C, i.e., pj = 2ib1,j( sin(θ ), . . . , sin(nθ )). Rescaling by 1/(2i)

results in the real eigenvectors pj = (p1,j, . . . , pn,j) whose entries are of the form (3.2) where b ∈R is cho-

sen such that ‖pj‖ = 1. Here, pk,j = −pn−k,j for k = 1, . . . , n − 1 and pn,j = 0. Further note that pn/2,j = 0

for n even. By writing θ as θj = (2πmj)/n for some mj ∈Z, we can construct (n − 1)/2 linearly inde-

pendent eigenvectors for n odd and (n − 2)/2 for n even, resulting in �(n − 1)/2� linearly independent

eigenvectors for any n ∈N. Since the matrix A−1
σ

B is diagonalisable, there exist exactly �(n − 1)/2�
normalised eigenvectors of the form (3.2).

For b1,jr
n = b2,j, we obtain

pk,j = b1,j(r
k + rn−k) = pn−k,j, k = 0, . . . , n,

i.e. the entries of pj are arranged in the same way as the entries of pn. Further note that we can always

set pn,j �= 0, and additionally pk,j with k = 1, . . . , n/2 for n even and pk,j with k = 1, . . . , (n − 1)/2 for n

odd, resulting in a space of dimension �n/2� + 1. Since p1, . . . , pn form a basis of Rn, there are �n/2�
eigenvectors of this form, associated with positive eigenvalues.

Lemma 2 implies that the matrix A−1
σ (k)B has one eigenvector pn,σ (k) associated with the unique negative

eigenvalue, �(n − 1)/2� eigenvectors of the form (3.2) and �n/2� eigenvalues associated with certain

positive eigenvalues which are of the same form as pn,σ (k). Note that 1 + �(n − 1)/2� + �n/2� = n for

any n ∈N.

In the following, we number the eigenvectors as follows. By pj,σ (k) for j = 1, . . . , �(n − 1)/2�, we

denote the �(n − 1)/2� eigenvectors of the form (3.2). By pj,σ (k) for j = �(n − 1)/2� + 1, . . . , n − 1, we

denote the �n/2� eigenvectors of the form pl,j,σ (k) = pn−l,j,σ (k) for l = 1, . . . , n − 1 and j = �(n − 1)/2� +
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1, . . . , n − 1. The eigenvectors pj,σ (k) for j = 1, . . . , n − 1, are associated with positive eigenvalues, and

pn,σ (k) denotes the eigenvector associated with the unique negative eigenvalue. Similarly, we relabel

the eigenvalues so that eigenvalue λj(A
−1
σ (k)B) is associated with eigenvector pj,σ (k). Using this basis of

eigenvectors, we can write Rn = V ⊕W with

V :=
{

xk = xn−k, k = 1, . . . ,

⌊

n − 1

2

⌋}

,

W :=
{

xk = −xn−k, k = 1, . . . ,

⌊

n − 1

2

⌋

; xn = 0

}

. (3.7)

The spaces V , W satisfy

V = span{p�(n−1)/2�+1,σ (k), . . . , pn,σ (k)}, W = span{p1,σ (k), . . . , p�(n−1)/2�,σ (k)},

where V ,W are orthogonal spaces and their definition is independent of σ = σ (k) for any k ∈N. For ease

of notation, we introduce the set of indices IV := {�(n − 1)/2� + 1, . . . , n} and IW := {1, . . . , �(n −
1)/2�} so that for all k ∈N we obtain pi,σ (k) ∈ V for all i ∈ IV and pi,σ (k) ∈W for all i ∈ IW . In particular,

pi,σ (k) for i ∈ IW is independent of σ .

Remark 2 (Property of pn,σ (k)). It follows immediately from the proof of Lemma 2 that pn,σ can be com-

puted for any σ � 0. For σ = 0, we have pn,0 = [0, . . . , 0, 1]T since A0 = I. For σ > 0, the kth entry of

pn,σ is given by pk,n,σ = b1(rk + rn−k) for k = 1, . . . , n, by (3.6), where the scalars r > 0 and b1 ∈R
n\{0}

depend on σ . Since all entries of pn are positive if b1 > 0 and negative if b1 < 0, this implies that for any

σ (k), σ (l) with σ (k) �= σ (l), we have pn,σ (k) · pn,σ (l) �= 0, i.e. the eigenvectors pn,σ (k), pn,σ (l) are not orthonor-

mal to each other. Since any y ∈ V can be written as a linear combination of pj,σ (k) for j ∈ IV , there exist

βj for j ∈ IV with βn �= 0 such that pn,σ (l) =
∑

j∈IV
βjpj,σ (k).

We have all the preliminary results to prove the main statement of this paper now:

Theorem 3.1. Suppose that there exists k0 > n − �(n − 1)/2� such that σ (k) = σ (k0) for all k � k0.

For any n � 2 and x0 /∈W\{0}, the modified LSGD scheme (3.1) converges to the minimiser of f. The

attraction region W satisfies (3.7) and is of dimension �(n − 1)/2�.

Proof. Let x0 /∈W\{0} and let k ∈N be given. We write xk =
∑n

i=1
αi,kpi,σ (k) as xk = wk + vk where

vk :=
∑

j∈IV

αj,kpj,σ (k) ∈ V , wk :=
∑

j∈IW

αj,kpj,σ (k) ∈W .

Here, V , W , defined in (3.7), are independent of σ with R
n = V ⊕W . We apply the modified LSGD

scheme (3.1) and consider the sequence xk+1 = (I − ηA−1
σ (k)B)xk = (I − ηA−1

σ (k)B)wk + (I − ηA−1
σ (k)B)vk.

We define wk+1 = (I − ηA−1
σ (k)B)wk ∈W and vk+1 = (I − ηA−1

σ (k)B)vk ∈ V iteratively. Since pj,σ (k) and the

associated eigenvalues λj(A
−1
σ (k)B) are in fact independent of σ (k) for j ∈ IW , we have pj,σ (k+l) = pj,σ (k) for

any l � 0. We obtain

wk+l =
(

l
∏

j=1

(I − ηA−1

σ (k+j)B)

)

wk =
∑

j∈IW

αj,k(1 − ηλj(A
−1

σ (k)B))lpj,σ (k)

for any l � 0. By Lemma 1, the eigenvalues λj(A
−1
σ (k)B) satisfy 1 − ηλj(A

−1
σ (k)B) ∈ (0, 1) for j ∈ IW and

any η ∈ (0, 1), implying wk → 0 as k → ∞. For proving the unboundedness of xk as k → ∞ it is hence

sufficient to show that vk is unbounded as k → ∞ for any v0 ∈ V\{0}. Since σ = σ (k) is constant for all

k � k0, we have

vk0+l =
(

l
∏

j=1

(I − ηA−1

σ (k0+j)B)

)

vk0 =
∑

j∈IV

αj,k0
(1 − ηλj(A

−1

σ (k0)B))lpj,σ (k0)
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for any l � 0. Since |1 − ηλj(A
−1
σ (k0)B)| < 1 for η ∈ (0, 1) and all j = 1, . . . , n − 1, and |1 − ηλn(A

−1
σ (k0)B)| >

1 by Lemma 1, vk0+l is unbounded as l → ∞ if and only if αn,k0
�= 0. We show that starting from

v0 ∈ V\{0} there exists k � 0 such that vk =
∑

i∈IV
αi,kpi,σ (k) ∈ V\{0} with αn,k �= 0 and by Remark 2 this

guarantees αn,l �= 0 for all l � k.

Starting from v0 =
∑

i∈IV
αi,0pi,σ (0) �= 0 we can assume that αn,0 = 0. Note that v0 is a function of

|IV | = n − �(n − 1)/2� parameters where one of the parameter in the linear combination can be regarded

as a scaling parameter and thus, it can be set as any constant. This results in n − �(n − 1)/2� − 2

parameters which can be adjusted in such a way that vk =
∑

i∈IV
αi,kpi,σ (k) with αn,k = 0 for k = 0, . . . , ke

with ke = n − �(n − 1)/2� − 2. We can determine these n − �(n − 1)/2� − 1 parameters from n − �(n −
1)/2� − 1 conditions, resulting in a linear system of n − �(n − 1)/2� − 1 equations. However, the

additional condition

vke+1 = �
ke

i=0(I − ηA−1

σ (i)B)v0 =
∑

i∈IV

αi,ke+1pi,σ (ke)

with αn,ke+1 = 0 leads to the unique trivial solution of the full linear system of size n − �(n − 1)/2�, i.e.,

the assumption v0 �= 0 is not satisfied. This implies that for any v0 ∈ V\{0} a vector vk =
∑

i∈IV
αi,kpi,σ (k)

with αn,k �= 0 is reached in finitely (after at most n − �(n − 1)/2� − 1) steps.

To sum up, in Theorem 3.1 we have discussed the convergence of the modified LSGD for the

canonical class of quadratic functions in (1.3) on R
n. We showed:

• The attraction region W of the modified LSGD is given by (3.7) with dim W = �(n − 1)/2�.

• The definition of the attraction region W is given by the linear subspace of eigenvectors of A−1
σ

B

which are independent of σ .

• The attraction region of the modified LSGD is significantly smaller than for the attraction region

WLSGD of the standard GD or the standard LSGD with dim WLSGD = n − 1.

• For any x0 /∈W , the modified LSGD scheme in (3.1) converges to the minimiser.

• In the two-dimensional setting, the attraction region of the modified LSGD satisfies W = {0} and is

of dimension zero. For any x0 �= 0, the modified LSGD converges to the minimiser in this case.

• The proof of Theorem 3.1 only considers the subspaces V , W and uses the independence of σ of

the eigenvectors in W . This observation is crucial for extending the results in Theorem 3.1 to any

matrix B ∈R
n×n with at least one positive and one negative eigenvalue.

3.2. Extension to quadratic functions with saddle points

While we investigated the convergence to saddle points for a canonical class of quadratic functions in

Theorem 3.1, we consider quadratic functions of the form f (x) = 1

2
xTBx for B ∈R

n×n. First, we suppose

that the saddle points of f are non-degenerate, i.e., all eigenvalues of B ∈R
n×n are non-zero. For the

existence of saddle points, we require that there exist at least one positive and one negative eigenvalue

of B.

Suppose that B has k negative and n − k positive eigenvalues. Since Aσ is positive definite for any

σ � 0, all its eigenvalues are positive and hence A−1
σ

B has k negative and n − k positive eigenvalues.

Due to the conclusion from Theorem 3.1, it is sufficient to determine the space W , consisting of all

eigenvectors of A−1
σ

B which are independent of σ and are associated with positive eigenvalues.

Let σ > 0 be given and suppose that p ∈W\{0}. Then, p is an eigenvector of A−1
σ

B and B

corresponding to eigenvalues λ(A−1
σ

B) > 0 and λ(B) > 0, respectively. By the definition of p, we have

λ(B)p = Bp = λ(A−1

σ
B)Aσ p = λ(A−1

σ
B)p − σλ(A−1

σ
B)Lp,

where we used the definition of Aσ in (2.1). We conclude that p ∈W if and only if Lp ∈ span{p}.
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3.2.1. The two-dimensional setting

For n = 2, the eigenvectors of L are given by

v1 =
1

√
2

[

1

1

]

, v2 =
1

√
2

[

1

−1

]

,

associated with the eigenvalues 0 and −4, respectively. Since p ∈W can be written as p = α1v1 + α2v2

for coefficients α1, α2 ∈R, we have Lp = −4α2v2. The condition Lp ∈ span{p} implies that p ∈ span{v1}
or p ∈ span{v2}.

We require B ∈R
2×2 has one positive and one negative eigenvalue for the existence of saddle points,

i.e. B is diagonalisable. We conclude that dim W = 1 if and only if

B =
[

v w
]

[

µ1 0

0 µ2

]

[

v w
]T

,

where µ1 > 0 > µ2 with v ∈ span{v1} or v ∈ span{v2}. Examples of matrices with dim W = 1 include

B1 =
[

0 1

1 0

]

and B2 =
[

0 −1

−1 0

]

which correspond to the functions f (x) = x1x2 and f (x) = −x1x2 for x = [x1, x2]T , respectively. Since the

eigenvector associated with the positive eigenvalue does not satisfy the above condition for most matrices

B ∈R
2×2, we have dim W = 0 for most 2-dimensional examples, including the canonical class discussed

in Theorem 3.1.

3.2.2. The n-dimensional setting

Similar to the proof in Lemma 1, one can show that the eigenvalues of the positive semi-definite matrix

−L ∈R
n×n have a specific form. We denote the n eigenvalues of L by λ1, . . . , λn where 0 = λ1 > λ2 �

. . .� λn with λ2k = λ2k+1 for k = 1, . . . , �(n − 1)/2� and λ2k−1 > λ2k for k = 1, . . . , �n/2�. We denote by

vi the eigenvector associated with eigenvalue λi of L.

To generalise the results in Theorem 3.1, we consider B ∈R
n×n with n − k positive eigenvalues and k

negative eigenvalues. We denote the eigenvectors associated with positive eigenvalues by p1, . . . , pn−k

and we have W ⊂ span{p1, . . . , pn−k} implying dim W ≤ n − k. In the worst-case scenario, we have

dim W = n − k which is equal to the dimension of the attraction region of GD and the standard LSGD.

However, only a small number of eigenvectors pj for j ∈ {1, . . . , n − k} usually satisfy Lpj ∈ span{pj} and

hence dim W is much smaller in practice. To see this, note that for any eigenvector pj associated with a

positive eigenvalue of B, we can write pj =
∑n

i=1
αivi for α1, . . . , αn ∈R where vi are the n eigenvectors

of L. Since Lpj =
∑n

i=2
αiλivi, we have Lpj ∈ span{pj} if and only if pj ∈ span{v1} or pj ∈ span{v2k, v2k+1}

for some k ∈ {1, . . . , �(n − 1)/2�} or, provided n even, pj ∈ span{vn}.

3.2.3. Degenerate Hessians

While our approach is very promising for Hessians with both positive and negative eigenvalues, it does

not resolve issues of GD or LSGD related to degenerate saddle points where at least one eigenvalue is 0.

Let f (x) = 1

2
xTBx where B ∈R

n×n has at least one eigenvalue 0 and let p denote an eigenvector associated

with eigenvalue 0. Then, Aσ Bp = 0 for any σ � 0 and hence choosing x0 ∈ span{p} as the starting point

for the modified LSGD (3.1) will result in xk = x0 for all k � 0 like for GD and LSGD. The investigation

of appropriate deterministic perturbations of first-order methods for saddle points where at least one

eigenvalue is 0 is subject of future research.
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4. Convergence rate of the modified LSGD

In this section, we discuss the convergence rate of the modified LSGD for iteration-dependent functions

σ when applied to 
-smooth nonconvex functions f : Rn →R. Our analysis follows the standard con-

vergence analysis framework. We start with the definitions of the smoothness of the objective function

f and a convergence criterion for nonconvex optimisation.

Definition 1. A differentiable function f is 
-smooth (or 
-gradient Lipschitz), if for all x, y ∈R
n f

satisfies

f (y) ≤ f (x) + ∇f (x) · (y − x) +



2
‖x − y‖2.

Definition 2. For a differentiable function f, we say that x is an ε-first-order stationary point if

‖∇f (x)‖ ≤ ε.

Theorem 4.1. Assume that the function f is 
-smooth and let σ be a positive, bounded function, i.e.,

there exists a constant C > 0 such that |σ (k)| ≤ C for all k ∈N. Then, for any ε > 0, the modified LSGD

with step size η = 1/
 and termination condition ‖∇f (x)‖ ≤ ε has an ε-first-order stationary point as

an output and stops within
⌈

2(1 + 4C)2
(f (x0) − f ∗)

(1 + 8C)ε2

⌉

iterations, where f ∗ denotes a global minimum of f.

Proof. First, we will establish an estimate for f (xk+1) − f (xk) for all k � 0. By the 
-smoothness of f and

the LSGD scheme (3.1), we have

f (xk+1) − f (xk) ≤ 〈∇f (xk),
(

xk+1 − xk
)

〉 +



2
‖xk+1 − xk‖2

=
〈

∇f (xk), −
1



A−1

σ (k)∇f (xk)

〉

+
1

2

‖A−1

σ (k)∇f (xk)‖2

=
1

2


∥

∥

(

A−1

σ (k) − I
)

∇f (xk)
∥

∥

2 −
1

2

‖∇f (xk)‖2

≤
1

2


∥

∥I − A−1

σ (k)

∥

∥

2 ‖∇f (xk)‖2 −
1

2

‖∇f (xk)‖2.

To estimate ‖I − A−1
σ (k)‖, we note that A−1

σ (k) is diagonalisable, i.e., there exists an orthogonal matrix Q ∈
R

n×n and a diagonal matrix � with diagonal entries λj(A
−1
σ (k)) ∈ [1, 1 + 4σ (k)] such that A−1

σ (k) = QT
�Q.

We have

‖I − A−1

σ (k)‖2 = ‖I − �‖2 ≤
(

1 −
1

1 + 4σ (k)

)2

≤
(

4C

1 + 4C

)2

.

Plugging this estimate into the previous estimate yields

f (xk+1) − f (xk) ≤ −
1 + 8C

2(1 + 4C)2

‖∇f (xk)‖2.

Based on the above estimate, the function value of the iterates decays by at least

1 + 8C

2(1 + 4C)2

‖∇f (xk)‖2

�
(1 + 8C)ε2

2(1 + 4C)2


in each iteration before an ε-first-order stationary point is reached. Denoting the global minimum of f by

f ∗, f (x0) can at most decrease by f (x0) − f ∗ and the modified LSGD is guaranteed to reach an ε-first-order

stationary point within
⌈

2(1 + 4C)2
(f (x0) − f ∗)

(1 + 8C)ε2

⌉

iterations.
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Figure 2. Distance field for the saddle point 0 after 100 iterations for GD and modified LSGD with step

size η = 0.1 for the function f (x1, x2) = x2
1 − x2

2 where the coordinates of each pixel denote the starting

point and the colour shows the distance to the saddle point after 100 iterations.

We note that the above convergence rate for nonconvex optimisation is consistent with the GD [21],

and thus mLSGD converges as fast as GD.

5. Numerical examples

In this section, we verify numerically that the modified LSGD does not converge to the unique sad-

dle point in the two-dimensional setting, provided the matrices are not of the special case discussed in

Section 3.2.1. We consider the bounded function σ (k) = k+1

k+2
for the modified LSGD. For both GD and

the modified LSGD, we perform an exhaustive search with very fine grid sizes to confirm our theoret-

ical results empirically. The exhaustive search is computationally expensive, and thus we restrict our

numerical examples to the two-dimensional setting.

5.1. Example 1

We consider the optimisation problem

min
x1 ,x2

f (x1, x2) := x2

1 − x2

2. (5.1)

It is easy to see that [0, 0]T is the unique saddle point of f . We run 100 iterations of GD and the modified

LSGD with step size η = 0.1 for solving (5.1). For GD, the attraction region is given by {[x1, x2]T : x1 ∈
R, x2 = 0}. To demonstrate GD’s behaviour in terms of its convergence to saddle points, we start GD

from any point in the set {[x1, x2]T : x1 = r cos θ , x2 = r sin θ , r ∈ [0.1, 10], θ ∈ [−1e-6◦, 1e-6◦)}, with a

grid spacing of 0.1 and 2e-8◦ for r and θ , respectively. As shown in Figure 2(a), the distance to the saddle

point [0, 0]T is 0 after 100 GD iterations for any starting point with θ = 0. For starting points close to

[0, 0]T , given by small values of r and any θ , the iterates are still very close to the saddle point after 100

GD iterations with distances less than 0.1.

For the modified LSGD when applied to solve (5.1), the attraction region associated with the saddle

point [0, 0]T is of dimension zero, see Theorem 3.1. To verify this numerically, we consider any start-

ing point in {[x1, x2]T |x1 = r cos θ , x2 = r sin θ , r ∈ [0.1, 1], θ ∈ [−180◦, 180◦)} with a grid spacing of 0.1

and 1e-6◦ for r and θ , respectively. We observe that the minimum distance to [0, 0]T is achieved when

we start from the point [r0 cos θ0, r0 sin θ0]T for r0 = 0.1 and θ0 = 166.8522◦. Then, we perform a finer

grid search on the interval [θ0 − 1◦, θ0 + 1◦] using grid spacing �θ = 2e-8◦. This two-scale search sig-

nificantly reduces the computational cost. Figure 2(b) shows a similar region as in Figure 2(a), but with

θ centred at θ0. If r = 0.1, the distance to the saddle point is less than 0.3 but larger than 0.2, implying
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Figure 3. Visualisation of the trajectories of GD and the modified LSGD with step size η = 0.1 for the

function f (x1, x2) = x2
1 − x2

2 and initial point [1, 0]T . We see that GD converges to the saddle point [0, 0]T ,

but the modified LSGD does not.

that the distance to the saddle point increases by applying 100 iterations of the modified LSGD. For any

starting point with r > 0.1, the distance is larger than 0.3 after 100 iterations. This illustrates that the

iterates do not converge to the saddle point [0, 0]T .

For the two-dimensional setting, our numerical experiments demonstrate that the modified LSGD

does not converge to the saddle point for any starting point provided the conditions in Section 3.2.1 are

not satisfied. While there exists a region of starting points for GD with a slow escape from the saddle

point, this region of slow escape is significantly smaller for the modified LSGD. These results are con-

sistent with the dimension �(n − 1)/2� = 0 of the attraction region for the modified LSGD in Theorem

3.1. While the analysis is based on the assumption that σ is constant at some point, the numerical results

indicate that the theoretical results also hold for strictly monotonic, bounded functions σ , provided σ (k)

for k large enough is close to being stationary.

Figure 3 shows the optimisation trajectories of GD and the modified LSGD for the specific example

when the initial point is [1, 0]T . We see that GD converges to the saddle point [0, 0]T , but the modified

LSGD does not.

5.2. Example 2

To corroborate our theoretical findings numerically, we consider a two-dimensional problem where all

entries of the coefficient matrix are non-zero. We consider

min
x1 ,x2

f (x1, x2) := x2

1 + 6x1x2 + 2x2

2 (5.2)

which satisfies f (x1, x2) = 1

2
[x1x2]B[x1x2]T with

B =
[

2 6

6 4

]

.

We apply GD with step size η = 0.1 and starting from [x0
1, x0

2]T for solving (5.2), resulting in the iterations

[

xk+1
1

xk+1
2

]

=
[

xk
1

xk
2

]

− η

[

2xk
1 + 6xk

2

6xk
1 + 4xk

2

]

=
[

xk
1

xk
2

]

+ η

[

−2 −6

−6 −4

] [

xk
1

xk
2

]

. (5.3)
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Figure 4. Distance field to the saddle point 0 after 100 iterations for GD and the modified LSGD

with step size η = 0.1 for the function f (x1, x2) = x2
1 + 6x1x2 + 2x2

2 where the coordinates of each pixel

denote the starting point and the colour shows the distance to the saddle point after 100 iterations

(θ0 = arctan
(

6√
37−1

)

, θ1 = −132.635976◦).

The eigenvalues of the coefficient matrix B are λ1 =
√

37 + 3 and λ2 = −
√

37 + 3, and the associated

eigenvectors are

v1 =
[√

37−1

6

1

]

and v2 =
[

−
√

37−1

6

1

]

,

respectively. If [x0
1, x0

2]T is in span{v1}, GD converges to the saddle point [0, 0]T . As shown in Figure 4(a),

starting from any point in span{[cos θ , sin θ ]T} with

θ = arctan

(

6
√

37 − 1

)

,

[xk
1, xk

2]T converges to the unique saddle point after 100 iteration. To corroborate our theoretical result

that the modified LSGD does not converge to the saddle point in two dimensions, we perform a two-

scale exhaustive search. First, we search over the initial point set {[x1, x2]T |x1 = r cos θ , x2 = r sin θ , r ∈
[0.1, 1], θ ∈ [−180◦, 180◦)} with grid spacing of 0.1 and 1e-6◦ for r and θ , respectively. We observe that

the minimum distance to [0, 0]T is achieved when we start from the point [r0 cos θ0, r0 sin θ0]
T for r0 = 0.1

and θ0 = −132.635976◦. Then, we perform a finer grid search on the interval [θ0 − 1◦, θ0 + 1◦] using the

grid spacing �θ = 2e-8◦. Figure 4(b) shows a similar region as in Figure 4(a), but with θ centred at θ0.

After 100 LSGD iterations, the iterates do not converge to the saddle point [0, 0]T , and we note that the

minimum distance to the saddle point [0, 0]T is 0.83.

Figure 5 contrasts the optimisation trajectories of GD and the modified LSGD when the initial point

is [(
√

37 − 1)/6, 1]T . We see that GD converges to the saddle point [0, 0]T , whereas the modified LSGD

does not converge to [0, 0]T .

5.3. LSGD vs. noise-injected GD

In this subsection, we compare the modified LSGD with the noise-injected GD, which can be regarded

as a surrogate of the SGD. We apply the noise-injected GD, using Gaussian noise with different standard

derivations, for solving the optimisation problem in Section 5.1. Figure 6 shows the trajectories of the

Gaussian noise-injected GD with different standard deviations. We see that the Gaussian noise-injected

GD can still converge to the saddle point for small standard deviations and only escapes from the saddle

point for sufficiently big standard deviations, which is different from the effects of the modified LSGD,
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Figure 5. Visualisation of the trajectories of GD and the modified LSGD with step size η = 0.1 for the

function f (x1, x2) = x2
1 + 6x1x2 + 2x2

2 and initial point [(
√

37 − 1)/6, 1]T . We see that GD converges to

the saddle point [0, 0]T , but the modified LSGD does not.
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Figure 6. Visualisation of the trajectories of the Gaussian noise-injected GD with step size η = 0.1 for

the function f (x1, x2) = x2
1 − x2

2 and initial point [1, 0]T . We see that the noise-injected GD can escape

from the saddle point when the standard deviation (std.) of the Gaussian noise is big enough.

aiming to avoid saddle points. The noise-injected GD becomes more effective in escaping from the

saddle point when the variance of the noise gets larger, which, however, is related to slower convergence

rates.

6. Concluding remarks

In this paper, we presented a simple modification of the LSGD to avoid saddle points. We showed that

the modified LSGD can efficiently avoid saddle points both theoretically and empirically. In particular,

we proved that the modified LSGD can significantly reduce the dimension of GD’s attraction region for

a class of quadratic objective functions. Nevertheless, our current modified LSGD does not reduce the

attraction region when applied to minimise some objective functions, e.g., f (x1, x2) = x1x2. It is interest-

ing to extend the idea of modified LSGD to avoid saddle points for general objective functions in the

future.

To the best of our knowledge, our algorithm is the first deterministic gradient-based algorithm for

avoiding saddle points that leverages only first-order information without any stochastic perturbation

or noise. Our approach differs from existing perturbed or noisy gradient-based approaches for avoiding

saddle points. It is of great interest to investigate the efficacy of a combination of these approaches in

the future. A possible avenue is to integrate Laplacian smoothing with perturbed/noisy GD to escape

and circumvent saddle points more efficiently.
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