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EFFICIENT AND RELIABLE OVERLAY NETWORKS FOR
DECENTRALIZED FEDERATED LEARNING\ast 

YIFAN HUA\dagger , KEVIN MILLER\ddagger , ANDREA L. BERTOZZI\S , CHEN QIAN\P , AND

BAO WANG\| 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We propose near-optimal overlay networks based on d-regular expander graphs to
accelerate decentralized federated learning (DFL) and improve its generalization. In DFL a massive
number of clients are connected by an overlay network, and they solve machine learning problems
collaboratively without sharing raw data. Our overlay network design integrates spectral graph
theory and the theoretical convergence and generalization bounds for DFL. As such, our proposed
overlay networks accelerate convergence, improve generalization, and enhance robustness to client
failures in DFL with theoretical guarantees. Also, we present an efficient algorithm to convert a
given graph to a practical overlay network and maintain the network topology after potential client
failures. We numerically verify the advantages of DFL with our proposed networks on various
benchmark tasks, ranging from image classification to language modeling using hundreds of clients.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . decentralized federated learning, overlay networks, random graphs

\bfM \bfS \bfC \bfc \bfo \bfd \bfe \bfs . 65B99, 68T01, 68T09, 68W15

\bfD \bfO \bfI . 10.1137/21M1465081

1. Introduction. Federated learning (FL) is a machine learning (ML) setting
where a massive number of entities (clients) solve an ML problem collaboratively
without transferring raw data, under the coordination of a central server [38, 23]. FL
trains ML models by exchanging the model parameters between clients and the cen-
tral server; in each communication round, the central server distributes parameters to
clients and aggregates the updated parameters from clients. FL decouples the model
training from the need for collecting or direct access to the private training data; there-
fore, FL significantly reduces privacy and security risks. Many algorithms have been
developed for FL, such as FedAvg [38], SCAFFOLD [24], FedProx [27], FedPD [72],
FedSplit [46], and FedOpt [51]. Compared to many distributed optimization settings
[42, 37, 6, 71, 48, 16, 53], FL has tremendous advantages in communication efficiency.
We can mathematically formulate FL as solving the following optimization problem:

(1.1) min
\bfitw \in \BbbR d

f(\bfitw ) :=
1

N

N\sum 
i=1

fi(\bfitw ),
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EFFICIENT AND RELIABLE OVERLAY NETWORKS FOR DFL 1559

where fi(\bfitw ) = \BbbE (\bfitx ,y)\sim \scrD i
\scrL (g(\bfitx ,\bfitw ), y) with (\bfitx , y) being a data-label pair sampled

from the data distribution \scrD i on the ith client, and g(\cdot ,\bfitw ) is the ML model. As
shown in Figure 1(a), in the ith communication round, FedAvg [38], one of the most
popular FL algorithms, iterates as follows: the server (node 1) sends the current
parameters \bfitw i to a small fraction of selected clients \{ kj | kj \in \{ 1, 2, . . . , N\} for j =
1, 2, . . . ,m\} . Each selected client then updates \bfitw i for T iterations by using its local
data and stochastic gradient-based algorithms. The server then aggregates these
locally updated parameters to get the updated model after the current communication
round. The existence of the central server raises several concerns about FL: (1) the
communication cost between the server and clients can be excessive since a large
number of clients are involved in a practical FL system, (2) the failure of the server
would disrupt the training process of all clients, and (3) the privacy of the whole FL
system can be fragile since the central server is exposed to adversaries.

(a) FL (b) Ring (c) Erd\"os-R\'enyi (d) Expander

Fig. 1. Illustration of the network topology for federated learning and decentralized federated
learning with Ring, Erd\"os--R\'enyi, and expander graphs.

Decentralized federated learning (DFL) replaces the server-clients communication
with client-client (peer-to-peer) communication, which significantly reduces the com-
munication burden and privacy risks [7, 18, 45, 61, 60, 67, 33, 39, 29, 9, 31, 62, 66,
30, 1, 59]. In DFL, all clients are connected by an overlay network, e.g., Figure 1(b)
Ring, (c) Erd\"os--R\'enyi, and (d) d-regular expander graphs. The clients update in the
same way as that in FL, and each client only sends its locally updated model to its
topological neighbors and aggregates the updated models from its neighbors. Network
topology has a profound impact on the convergence, generalization, and robustness of
DFL. In this paper, we focus on designing efficient network topologies that guarantee
fast and accurate DFL and are resilient to client failures.

1.1. Our contribution. Based on the theoretical convergence rate [68, 58, 59]
and our first established generalization bound of DFL, where each client trains ML
models using stochastic gradient descent with momentum, we design near-optimal
network topology to connect clients to train ML models collectively. In particular,
leveraging random graph theory, we propose d-regular expander graphs for the net-
work topologies, which is provably near-optimal. The major advantages of leveraging
d-regular expander graphs for the overlay networks design are threefold:
\bullet DFL with d-regular expander graphs converges remarkably faster and generalizes
better than DFL using other sparse graphs, including Ring and Erd\"o--R\'enyi graphs.

\bullet Expander graphs connect each node with d neighbors, resulting in low communica-
tion cost in DFL.

\bullet DFL with d-regular expander graphs enables robust DFL with respect to potential
client (node) failures.

1.2. Additional related works.
Network design. Chow et al. [10] have designed expander graphs for decentralized

optimization using deterministic local optimization algorithms. In [36], the authors
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1560 HUA, MILLER, BERTOZZI, QIAN, AND WANG

use theory of the max-plus linear systems and design-efficient topology for cross-
silo FL, in which close-by data silos can exchange information faster with the central
server. We focus on designing efficient networks for cross-device DFL that are scalable
to a massive number of devices.

Analysis of DFL/FL algorithms. The convergence properties of FedAvg or local
stochastic gradient descent (SGD) have been studied extensively [63, 57, 22], mainly
focusing on the independent and identically distributed (IID) case. Non-IID conver-
gence for FL has been shown in [22, 72, 68, 28]. Convergence analysis of DFL has
been shown in [64, 59]. While convergence analysis for the myriad of problem setups
has been provided, generalization guarantees have been more elusive.

Convergence analysis of DFL hinges on connectedness properties of the under-
lying graph topology, captured in the spectral properties of the associated mixing
matrix (see section 2). The authors of [63] discuss how different versions of local SGD
correspond to different graph topologies, and [64] provides an efficient decomposition
of graph topology for improved communication costs.

Practical network construction. Building overlay networks has been studied ex-
tensively in previous works. However, in the past, overlay networks are mainly used
for peer-to-peer file sharing [34], online social networks [20], and routing infrastruc-
tures [25, 49]. For peer-to-peer file-sharing networks, existing studies have proposed
utilizing random walks to achieve distributed d-regular expander graphs by assuming
each node could choose d neighbors at random [15, 26]. However, such an assumption
does not hold in DFL because no node can uniformly choose d neighbors among ex-
isting nodes at random since there is no central coordinator. However, it is possible
to build an expander graph with tight connectivity if the global information is given,
such as maintaining distributed Delaunay triangulation graphs for wireless sensor net-
works [25], metro Ethernet [49], random regular graphs for data center networks [69],
and memory interconnection networks [44].

1.3. Notation. We denote scalars by lowercase or uppercase letters and vectors
and matrices by lowercase and uppercase boldface letters, respectively. For a vector
\bfitx = (x1, . . . , xd)

\top \in \BbbR d, we use \| \bfitx \| := (
\sum d

i=1 | xi| 2)1/2 and \| \bfitx \| \infty := maxdi=1 | xi| to
denote its \ell 2- and \ell \infty -norm, respectively. We denote the vector whose entries are all
0's as 0. For a matrix \bfitA , we use \bfitA \top , \bfitA  - 1, and \| \bfitA \| to denote its transpose, inverse,
and spectral norm, respectively. We denote the identity matrix as \bfitI . For a function
f(\bfitx ) : \BbbR d \rightarrow \BbbR , we denote \nabla f(\bfitx ) as its gradient. Given two sequences \{ an\} and \{ bn\} ,
we write an = \scrO (bn) and an = \Omega (bn) if there exist positive constants C such that
an \leq Cbn and an \geq Cbn for n \geq n0, respectively.

1.4. Organization. We organize this paper as follows: In section 2, we present
the theoretical results for DFL on the convergence rate and generalization bound.
According to these theoretical results we present our network topology design and its
practical implementation in sections 3 and 4, respectively. We verify the efficiency and
robustness to the potential node failures of DFL with the designed network topology
on various benchmarks in section 5. Technical proofs are provided in the appendix.

2. Theory of DFedAvg. An important notion in DFL is the mixing matrix,
which is associated with an undirected connected graph \scrG = (\scrV , \scrE ), with vertex set
\scrV = \{ 1, 2, . . . , N\} := [N ] and edge set \scrE \subset \scrV \times \scrV , and the edge (i, j) \in \scrE represents
a communication channel between clients i and j.

Definition 2.1 (mixing matrix). A matrix \bfitM = [mi,j ] \in \BbbR N\times N is a mixing
matrix if it satisfies 1. (Graph) If i \not = j and (i, j) /\in \scrE , then mi,j = 0; otherwise,
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EFFICIENT AND RELIABLE OVERLAY NETWORKS FOR DFL 1561

mi,j > 0; 2. (Symmetry) \bfitM = \bfitM \top ; 3. (Null space property) null\{ \bfitI  - \bfitM \} =
span\{ 1\} , where \bfitI \in \BbbR N\times N and 1 \in \BbbR N are the identity matrix and the vector whose
entries are all 1's; 4. (Spectral property) \bfitI \succeq \bfitM \succ  - \bfitI , where \bfitI \succeq \bfitM means \bfitI  - \bfitM 
is positive semidefinite and \bfitM \succ  - \bfitI means \bfitM + \bfitI is positive definite.

Given the adjacency matrix of a network, its maximum-degree matrix and
Metropolis--Hastings matrix are both mixing matrices [8]. The symmetric property
of \bfitM indicates that its eigenvalues are real and can be sorted in nonincreasing or-
der. Let \lambda i(\bfitM ) denote the ith largest eigenvalue of \bfitM ; then we have \lambda 1(\bfitM ) = 1 >
\lambda 2(\bfitM ) \geq \cdot \cdot \cdot \geq \lambda N (\bfitM ) >  - 1 based on the spectral property of the mixing matrix.
The mixing matrix also serves as a probability transition matrix of a Markov chain.
An important constant is \lambda = \lambda (\bfitM ) := max\{ | \lambda 2(\bfitM )| , | \lambda N (\bfitM )| \} , which describes
the speed of the Markov chain, induced by the mixing matrix \bfitM , as it converges to
its stable state.

We consider DFL using the following update on client i:

(2.1) \bfitw t,k+1
i = \bfitw t,k

i  - \eta t\nabla fi(\bfitw 
t,k
i ; \xi t,ki ) + \beta (\bfitw t,k

i  - \bfitw t,k - 1
i ),

where t is the communication round, k is the local iteration, and \xi t,ki = (\bfitx t,k
i , yt,ki ) \sim 

\scrD i. After the Kth local iteration, communication happens according to the graph
topology of the mixing matrix, \bfitM ; that is, we have for each i \in [N ]

\bfitw t+1,0
i =

N\sum 
\ell =1

mi,\ell \bfitw 
t,K
\ell .

To ensure well-defined iterations, we set \bfitw t, - 1
i = \bfitw t,0

i for each i. These iterations are
referred to as DFedAvgM (decentralized federated averaging with momentum) [59]
because we apply heavy-ball momentum [47] to the local SGD updates. Including
the momentum term with parameter \beta \in (0, 1) can accelerate ML in practice with
provable acceleration when the objective function is quadratic or under other specific
circumstances [47, 65, 32].

To guarantee convergence of generalization of DFedAvgM, we collect below the
necessary assumptions on the local functions fi and global function f .

Assumption 1 (L-smooth). f1, . . . , fN are all L-smooth, i.e., fi(\bfitw ) \leq fi(\bfitv ) +
\langle \nabla fi(\bfitv ),\bfitw  - \bfitv \rangle + L

2 \| \bfitw  - \bfitv \| 22 for all \bfitw ,\bfitv .

Assumption 2 (bounded local gradient variance (BLGV)). Let \xi ti := (\bfitx t,k
i , yt,ki )

be sampled from the ith device's local data \scrD i uniformly at random. Then for all
i \in [N ], \BbbE \| \nabla fi(\bfitw 

t,k
i ; \xi t,ki )  - \nabla fi(\bfitw 

t,k
i )\| 22 \leq \sigma 2, i.e., the stochastic gradients have

bounded variance.

Assumption 3 (bounded global gradient variance (BGGV)). The global variance
is bounded, i.e., \| \nabla fi(\bfitw ) - \nabla f(\bfitw )\| 2 \leq \zeta 2.

Assumption 4 (bounded local gradient norm (BLGN)). At each node i \in [N ],
the norm of the gradients is uniformly bounded, i.e., max\bfitw \| \nabla fi(\bfitw )\| \leq B.

While convergence guarantees for FL and DFL have been studied extensively [63,
57, 22, 59], we provide stability analysis for DFedAvgM to give generalization guar-
antees under Assumptions 1--4. Along with related convergence guarantees, our work
here elucidates the importance of beneficial graph topology design.
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1562 HUA, MILLER, BERTOZZI, QIAN, AND WANG

2.1. Convergence of DFedAvgM. We state a convergence result for DFe-
dAvgM to highlight the effect of graph topology on convergence rates in DFL. This
result analyzes the convergence of the sequence \{ \=\bfitw t\} Tt=1 over the T communication

rounds, where \=\bfitw t := 1
N

\sum N
i=1 \bfitw 

t
i is the averaged weight vector over all the nodes.

The following result comes from [59] and highlights how the spectral properties of
the overlay network affect the balance between local updates at each client and the
communication effects of the graph topology for the convergence of the global weight
vector \=\bfitw t.

Theorem 2.2 (general nonconvexity [59]). Let the sequence \{ \=\bfitw t
i\} t\geq 0 be gener-

ated by the DFedAvgM for each i = 1, 2, . . . , N , and suppose Assumptions 1--4 hold.
Moreover, assume the constant stepsize \eta satisfies 0 < \eta \leq 1/8LK and 64L2K2\eta 2 +
64LK\eta < 1, where L is the Lipschitz constant from Assumption 1 and K is the
number of local updates before communication. Then,

(2.2) min
1\leq t\leq T

\BbbE \| \nabla f( \=\bfitw t)\| 2 \leq 2(f( \=\bfitw 1) - min f)

\gamma (K, \eta )T
+ \alpha (K, \eta ) +

\Xi (K, \eta )

(1 - \lambda )2
,

where T is the total number of communication rounds and \gamma (K, \eta ), \alpha (K, \eta ), and
\Xi (K, \eta ) are constants; the detailed forms are given in the appendix.1

In this result from [59], we can clearly see that the convergence of the auxiliary
sequence \=\bfitw t depends on the third term, which is determined by the value of the mixing
parameter \lambda \in (0, 1); namely, the closer that \lambda is to 1, the worse the convergence
bound of the final term of (2.2) becomes. In [68], a similar dependence on this graph-
dependent value \lambda appears in their convergence result for a slightly different version
of DFL with momentum. All this motivates selecting a graph topology that will
minimize \lambda .

The three terms involved in the bound of (2.2) collectively capture the balancing
between local updates at each client and the mixing of information between clients
through the graph topology. Namely, the final term that is dependent on \lambda represents
how the graph topology helps to propagate the information learned by each client.

While the first term explicitly depends on the total number of communication
rounds T , the other two terms do not explicitly have dependence on the number of
communication rounds. One can choose stepsize \eta that is dependent on T so that
each term can be seen to diminish as we choose greater T . As shown in [59], the
choice \eta = 1/LK

\surd 
T represents such a choice of stepsize, and we can then write

min
1\leq t\leq T

\BbbE \| \nabla f( \=\bfitw t)\| 2 \leq \scrO 

\Biggl( 
(1 - \beta )(f( \=\bfitw 1) - min f)\surd 

T

+
(1 - \beta )(\sigma 2 +K\zeta 2) + \beta 2

(1 - \beta )K(\sigma 2 +B2)

K
\surd 
T

+
(1 - \beta )(\sigma 2 +K\zeta 2 +KB2) + \beta 2

(1 - \beta )K(\sigma 2 +B2)

(1 - \lambda )2KT 3/2

\Biggr) 
.

With this special case, we can see how each term will diminish as the number of global
communication rounds (T ) and the number of local updates (K) increase. There still

1As of the writing of this paper, the current draft of [59] states a scaling of 1/(1 - \lambda ) on the last
term of (2.2). This is a typo and will be corrected soon; we state the correct scaling here.
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Table 1
Notation used in results of Theorems 2.2 and 2.5.

\bfS \bfy \bfm \bfb \bfo \bfl \bfD \bfe fi\bfn \bfi \bft \bfi \bfo \bfn 
N total no. of nodes in graph
n no. of datapoints available at each node
T no. of global communication rounds
K no. of local updates
\eta stepsize of local updates
L L-smoothness constant for f (Assumption 1)
\sigma BLGV constant (Assumption 2)
\zeta BGGV constant (Assumption 3)
B BLGN constant (Assumption 4)
\lambda Markov chain mixing constant, max\{ | \lambda 2(\bfitM )| , | \lambda N (\bfitM )| \} 
\epsilon uniform stability bound in Lemma 2.4

is a strong dependence of the third term on the mixing parameter \lambda , which further
motivates our choice of graph topology in section 3.

2.2. Generalization of DFedAvgM. In this section, we will establish a gener-
alization bound of DFedAvgM. Given an algorithm \scrA that acts on data \scrD with output
\scrA (\scrD ), the generalization error is given by \epsilon gen := \BbbE \scrD ,\scrA [F (\scrA (\scrD ))  - F\scrD (\scrA (\scrD ))], where
F (\bfitx ) = \BbbE \xi \sim \scrD f(\bfitx ; \xi ) is the true risk and F\scrD (\bfitx ) =

\sum n
i=1 f(\bfitx ; \xi )/n is the empirical risk

of the machine learning model with model parameter \bfitx and loss function f . Uniform
stability is a useful property used to bound the generalization error \epsilon gen; see, e.g.,
[19, 13].

Definition 2.3. A randomized algorithm \scrA is \epsilon -uniformly stable if for any two
data sets \scrD ,\scrD \prime with N samples, each differing in one example, we have

sup
\xi 

\BbbE \scrA [f(\scrA (\scrD ); \xi ) - f(\scrA (\scrD \prime ); \xi )] \leq \epsilon .

With this definition in hand, it has been proven that uniform stability implies
bounded generalization error.

Lemma 2.4 (see [52, 19]). Let \scrA be \epsilon -uniformly stable; then it follows that

| \BbbE \scrD ,\scrA [F (\scrA (\scrD )) - F\scrD (\scrA (\scrD ))]| \leq \epsilon .

Therefore, to ensure the generalization bound of a given random algorithm \scrA , we
simply compute the uniform stability bound \epsilon . To establish this result, we additionally
require Assumption 4, i.e., boundedness of the local gradients.

The following theorem summarizes our result of uniform stability for DFedAvgM
given the assumptions stated previously; the proof can be found in the appendix. To
aid in parsing the result of Theorem 2.5, we provide a table of notation in Table 1.

Theorem 2.5 (uniform stability). Under Assumptions 1--4, we have that for
any T if the stepsize \eta t \leq c

t and c is small enough, then DFedAvgM satisfies uniform
stability with

(2.3) \epsilon \leq T
cLK

1+cLK

\Biggl( 
(sup f)K(cLK)

1
1+cLK

n
+

2\sigma B

NL(cLK)
cLK

1+cLK

\Biggr) 
+

B(\sigma +B) (cK + 2C\lambda )

cLK
,

where sup f < \infty is the uniform bound on the size of the nonnegative global loss
function f , n is the local data set size, and

C\lambda := 2\lambda 2 + 4\lambda 2 ln
1

\lambda 
+ 2\lambda +

2

ln 1
\lambda 
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1564 HUA, MILLER, BERTOZZI, QIAN, AND WANG

is a constant depending on the graph topology.

Per Lemma 2.4, we have that the generalization error for DFedAvgM is bounded
by the same constant that bounds the uniform stability, \epsilon . Again, we note here the
explicit dependence of the generalization error on the corresponding value of \lambda for the
mixing matrix \bfitM of the graph topology. C\lambda is an increasing function of \lambda \in (0, 1),
which implies that the bound in (2.3) improves with smaller \lambda .

The result of Theorem 2.5 is an adaptation of Lemma 3.12 in [19] to the DFL
setting utilizing DFedAvgM updates. The most striking difference between these
results is the final, graph-dependent term on the right-hand side of the inequality
(2.3) that contains the constant C\lambda . Theorem 2.5 implies that good generalization
guarantees---as captured by uniform stability---in DFL not only require advantageous
properties for the function f (as does [19]), but also are significantly dependent on
the graph topology. That is, with all other assumptions about f held constant, a
graph topology with a large value of C\lambda can have significantly poor uniform stability
guarantees. This motivates careful choice of graph topology for DFL applications.

3. Network topology design. The results of section 2 show that the network
topology has a profound impact on both optimization and generalization of DFe-
dAvgM. According to Theorems 2.2 and 2.5, the closer \lambda is to 1, the more slowly
DFedAvgM converges (Theorem 2.2) and the worse it generalizes (Theorem 2.5). To
improve DFedAvgM, we propose a theoretically efficient and practical sparse network
topology whose \lambda is far away from 1.

For the sake of notation, we recall graph definitions and properties to introduce
network construction. Given an undirected, connected graph \scrG = (\scrV , \scrE ), we define
the graph Laplacian \bfitL = \bfitD  - \bfitA , where \bfitA = [ai,j ] (with ai,j = 1 if (i, j) \in \scrE ) is the

adjacency matrix and \bfitD i,i =
\sum N

j=1 ai,j is the diagonal degree matrix of \scrG . Since \scrG 
is undirected, we have that both \bfitA and \bfitL are symmetric. Note that \bfitL is positive
semidefinite, with a trivial eigenvalue of 0 occurring with multiplicity equal to the
number of connected components in \scrG . As we assume that \scrG is connected, this means
that only the first eigenvalue \lambda 1(\bfitL ) = 0, and we can order the rest of the eigenvalues
as 0 = \lambda 1(\bfitL ) < \lambda 2(\bfitL ) \leq \lambda 3(\bfitL ) \leq \cdot \cdot \cdot \leq \lambda N (\bfitL ). Define the reduced condition number
of \bfitL as

(3.1) \kappa (\bfitL ) :=
\lambda N (\bfitL )

\lambda 2(\bfitL )
,

which is a measure of graph connectivity because a smaller \kappa (\bfitL ) corresponds to a
graph with higher connectivity. We note that graph connectivity is usually charac-
terized by the size of \lambda 2(\bfitL ) alone [12, 17], but this reduced condition number also
provides a relative view on the connectivity properties as it is inversely proportional
to \lambda 2(\bfitL ). Our focus on \kappa (\bfitL ) then is mainly motivated by our choice of mixing matrix
that we define here shortly, wherein this reduced condition number explicitly appears.

To illustrate the relationship between graph connectivity and \kappa (\bfitL ), we briefly
mention the values of \kappa (\bfitL ) for two extremes of connectivity---complete graphs and
Ring graphs. Consider the value of \kappa (\bfitL com) for a complete graph with corresponding
graph Laplacian matrix \bfitL com wherein each node is connected to every other node
in the graph. One can straightforwardly show that \lambda 2(\bfitL com) = \lambda N (\bfitL com) = N so
that \kappa (\bfitL com) = 1, the smallest possible value for the reduced condition number. A
complete graph represents one extreme of connectivity, being as connected as possible
for a simple graph and giving the most optimal mixing properties for an associated
Markov chain. At the other extreme---namely very low connectivity---the Ring graph
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on N nodes with associated graph Laplacian matrix \bfitL ring yields a reduced condition
number of \kappa (\bfitL ring) \geq N2/\pi 2 \gg 1 (see section 3.1). This is an important constant
that allows us to quantify how useful a given graph topology is for the purposes of
improving convergence and generalization of DFedAvgM.

We restrict our attention to graphs that are undirected (i.e., with symmetric ad-
jacency matrix \bfitA ) to ensure the desired symmetric property of the associated mixing
matrix \bfitM . An interesting direction for further study would be to consider directed
graphs, where the adjacency matrix is no longer symmetric as edges are not neces-
sarily reciprocated in the graph. As a result, the eigenvalues of the associated graph
Laplacian matrix \bfitL = \bfitD  - \bfitA are no longer guaranteed to be real-valued. In this
case, we lose much of the spectral graph theoretic guarantees that form the basis of
our analysis. For example, expander graphs by definition are undirected [35, 21]. We
do note that one could consider a symmetrization of the graph Laplacian matrix for
a directed graph [11], but we leave that as a direction for future work.

We focus on the following doubly stochastic mixing matrix that was used in [10],

\bfitM = \bfitI  - 2

(1 + \theta )\lambda N (\bfitL )
\bfitL , \theta \in [0, 1).

This simple choice of mixing matrix allows us to straightforwardly quantify the effect
of the reduced condition number \kappa (L) on the mixing properties of associated Markov
chain. Other choices of mixing matrices are possible [8, 70], but we restrict our analysis
to this choice. The eigenvalues of this mixing matrix \bfitM have a straightforward
relationship with eigenvalues of \bfitL :

\lambda i(\bfitM ) = 1 - 2

(1 + \theta )\lambda N (\bfitL )
\lambda i(\bfitL ).

Then it is clear that

\lambda = max\{ | \lambda 2(\bfitM )| , | \lambda N (\bfitM )| \} 

= max

\biggl\{ \bigm| \bigm| \bigm| \bigm| 1 - 2

(1 + \theta )\lambda N (\bfitL )
\lambda 2(\bfitL )

\bigm| \bigm| \bigm| \bigm| , \bigm| \bigm| \bigm| \bigm| 1 - 2

(1 + \theta )\lambda N (\bfitL )
\lambda N (\bfitL )

\bigm| \bigm| \bigm| \bigm| \biggr\} 

= max

\left\{   
\bigm| \bigm| \bigm| 1 + \theta  - 2

\kappa (\bfitL )

\bigm| \bigm| \bigm| 
1 + \theta 

,
1 - \theta 

1 + \theta 

\right\}   .

For a fixed \kappa (\bfitL ), we can view the Markov chain mixing constant \lambda as a function of
\theta that can be optimized to lead to the lowest value of \lambda . In Figure 2, we have plotted
the function | \lambda N (\bfitM )| = (1 - \theta )/(1+\theta ) along with | \lambda 2(\bfitM )| = | 1+\theta  - 2/\kappa (\bfitL )| /(1+\theta ) for
two values of \kappa (\bfitL ). For each fixed \kappa (\bfitL ), the corresponding lowest value of \lambda (\theta ) occurs
when | \lambda 2(\bfitM )| = | \lambda N (\bfitM )| , shown in Figure 2 as stars, that is, when \theta = \theta \ast (\kappa (\bfitL )).
It is clear that

| \lambda 2(\bfitM )| = | \lambda N (\bfitM )| 

\Leftarrow \Rightarrow 
1 + \theta \ast (\kappa (\bfitL )) - 2

\kappa (\bfitL )

1 + \theta \ast (\kappa (\bfitL ))
=

1 - \theta \ast (\kappa (\bfitL ))

1 + \theta \ast (\kappa (\bfitL ))

\Leftarrow \Rightarrow \theta \ast (\kappa (\bfitL )) - 2

\kappa (\bfitL )
=  - \theta \ast (\kappa (\bfitL ))

\Leftarrow \Rightarrow \theta \ast (\kappa (\bfitL )) =
1

\kappa (\bfitL )
,
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1566 HUA, MILLER, BERTOZZI, QIAN, AND WANG

Fig. 2. Plot of \lambda for the expander graph as a function of \theta . The stars indicate the optimal
choice of \theta = \theta \ast (\kappa ), given the value of \kappa (\bfitL ). Lower \kappa leads to a higher value of \theta \ast (\kappa ), which in
turn leads to a lower value of \lambda , which is desired.

which indeed gives that \theta \ast (\kappa (\bfitL )) \in (0, 1) since one can straightforwardly show that
\kappa (\bfitL ) > 1 (unless \scrG is the complete graph) due to standard bounds on \lambda 2(\bfitL ) and
\lambda N (\bfitL ) by Fiedler [17].

It is straightforward then that choosing a graph structure with a smaller value
of \kappa (\bfitL ) gives \scrG better connectivity properties. Somewhat in competition with this
connectivity is the communication cost of a given graph topology; that is, better
connectivity of a graph structure generally corresponds to more edges in the graph,
which increases the communication cost. Each node sends its updated model to each
of its neighbors, and so an increased number of edges results in more communication
that must happen between nodes.

We propose using d-regular expander graphs to balance this connectivity commu-
nication tradeoff. Expander graphs are an important topic of study in the intersection
of theoretical computer science and spectral graph theory with various applications
such as the design of communication networks and error correcting codes [21, 55, 56].
A d-regular graph has a fixed number degree d for each node; i.e., d(i) = d for all i.
Expander graphs are sparse graphs that have strong connectivity properties, of which
d-regular expander graphs (and the special case of Ramanujan graphs) are in a sense
``optimal"" graph connectivity structures (possessing a small constant \kappa (\bfitL )) with fixed
communication cost. While Ramanujan graphs are not known for every value of total
nodes N and degree d, with high probability most d-regular graphs are approximately
Ramanujan for large enough N [10]. We briefly note here that much has been done
to study the spectral properties of and the explicit construction of d-regular expander
graphs [2, 3, 4, 5]. We refer the reader to [35, 21] for more information about the rich
history of the analysis and application of expander graphs.

For d-regular graphs, there exists a convenient upper bound for \kappa (\bfitL ) per the
results of [12, 43]:

\kappa (\bfitL ) \leq d+ \lambda 2(\bfitA )

d - \lambda 2(\bfitA )
,

where \lambda 2(\bfitA ) is the first nontrivial eigenvalue of the corresponding adjacency matrix
\bfitA . Note that the eigenvalue \lambda 1(\bfitA ) = d is trivial and corresponds to the eigenvalue
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\lambda 1(\bfitL ) = 0 of \bfitL . If the d-regular graph in question is Ramanujan [40, 41], then
according to well-known results [41, 12, 43] we can bound the reduced condition
number of the corresponding graph Laplacian \bfitL R as follows:

(3.2) \kappa (\bfitL R) \leq 
d+ 2

\surd 
d - 1

d - 2
\surd 
d - 1

.

As the right-hand side of (3.2) is a decreasing function of d, this would suggest
choosing larger d in order to minimize \kappa (\bfitL R). However, increasing d will incur greater
communication costs. One can in practice choose the value of d according to a pre-
scribed bound on the total communication cost.

3.1. Comparison to Ring and Erd\"os--R\'enyi graphs. We show that other
graph topologies are in a sense suboptimal for the purposes of DFedAvgM, highlight-
ing two common examples: Ring and Erd\"os--R\'enyi graphs. We emphasize that using
d-regular Ramanujan graphs is in a sense ``optimal"" because they possess strong con-
nectivity properties in the graph topology while requiring low communication cost for
local node neighborhood communication (i.e., sparsity).

Ring graphs---poor connectivity. A Ring graph is an extremely sparse, but still
connected, 2-regular graph, where the graph structure constitutes a ring (see Fig-
ure 1(b)). While a very simple and sparse topology to impose on the nodes of the
graph, Ring graphs possess poor connectivity properties that we can directly compare
with d-regular Ramanujan graphs.

It is well known that the eigenvalues of the graph Laplacian \bfitL ring of the Ring
graph on N nodes are given by

\{ \lambda k(\bfitL ring)\} Nk=1 =

\biggl\{ 
2 - 2 cos

\biggl( 
2\pi \lfloor k/2\rfloor 

N

\biggr) \biggr\} N

k=1

,

where we note that each eigenvalue has geometric multiplicity 2, except for the first
eigenvalue \lambda 1(\bfitL ring) = 0 and possibly the last eigenvalue \lambda N (\bfitL ring), which have
geometric multiplicity 1. The last eigenvalue has geometric multiplicity 1 in the case
that N is even. Therefore, we can straightforwardly see that the reduced condition
number for a Ring graph on N nodes is

\kappa (\bfitL ring) =
\lambda N (\bfitL ring)

\lambda 2(\bfitL ring)
=

2 - 2 cos
\bigl( 
2\pi N
2N

\bigr) 
2 - 2 cos

\bigl( 
2\pi 
N

\bigr) 
=

4

2 - 2 cos
\bigl( 
2\pi 
N

\bigr) \geq 4

2 - 2
\Bigl( 
1 - 1

2

\bigl( 
2\pi 
N

\bigr) 2\Bigr) =
4N2

4\pi 2
=

N2

\pi 2
.

Therefore, we see that with this lower bound, the Ring graph has a \kappa (\bfitL ring)
that grows quadratically with the size N of the graph! The corresponding value for
\lambda approaches 1 for increasing values of N , which implies slower convergence rates
(Theorem 2.2) and worse generalization bounds (Theorem 2.5). It is clear then that

\kappa (\bfitL R) \leq 
d+ 2

\surd 
d - 1

d - 2
\surd 
d - 1

\ll N2

\pi 2
\leq \kappa (\bfitL ring),

which shows superior convergence properties of Ramanujan expander graphs com-
pared to the sparse Ring graph structure.
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Erd\"os--R\'enyi graph---high communication cost. Another type of graph topology
one could impose for DFedAvgM is an Erd\"os--R\'enyi (E-R) random graph structure,
wherein each edge (i, j) \in \scrV \times \scrV is sampled IID with probability p \in (0, 1). It is well
known that as long as p = \Omega (lnN/N), the resulting graph \scrG is connected with high
probability [14].

While the connectivity properties of E-R graphs are nearly guaranteed to be better
than d-regular Ramanujan graphs (with d relatively small), the communication cost
of E-R graphs is prohibitively large for large network size N . To see this, the expected
degree di of a node i \in \scrV in an E-R graph with large enough edge probability p is
simply \=d = Np = \Omega (lnN), which grows with the size of the graph N . This incurs a
much larger communication cost than the constant cost of d-regular expander graphs
as it is assumed that d \ll N , with d < lnN as N is large.

In section 5, we empirically verify the superior connectivity-communication cost
balance exemplified by the d-regular expander graph structure compared to Ring and
E-R graphs for DFedAvgM. These d-regular expander graphs have better connec-
tivity properties than Ring graphs while at the same time being sparser (i.e., lower
communication costs) than E-R graphs.

4. Practical network design. In this section, we discuss how to convert a given
graph to a practical overlay network topology for DFL. We illustrate our proposed
d-regular network topology in Figure 3. For a d-regular graph, suppose d is even, and
let L = d/2. We assign to each node a set of virtual coordinates represented by an
L-dimensional vector \langle x1, x2, . . . , xL\rangle , where each element xi is a randomly generated
real number 0 \leq xi < 1, as shown in Figure 3(a). There are L virtual ring spaces
such as the two shown in Figure 3(b). In the ith space, a node is virtually placed
on a ring based on the value of its ith coordinate xi. Coordinates in each space are
circular, and 0 and 1 are superposed. In the ith space, a node connects to the two
adjacent nodes that have closest values according to the coordinate xi; for example,
B connects to A and C in space 1 and G and F in space 2 in Figure 3. Hence each
node has at most d = 2L neighbors. Neighboring nodes may happen to be adjacent in
multiple spaces, such as A and D. In such a case, A can connect to another node in
the same situation, such as E. In the end, the equivalent network topology is shown
in Figure 3(c).

Node ID Coor. 1 Coor. 2
A 0.05 0.17
B 0.13 0.62
C 0.23 0.91
D 0.36 0.53
E 0.42 0.42
F 0.51 0.58
G 0.63 0.73
H 0.78 0.26
I 0.91 0.97

A
B

C

D
EF

G

H

I

Space 1 Space 2

A

B

I

E
D

F

G
H

C A
B

C

D

EF

G

H

I

(b) Virtual spaces(a) Coordinates (c) Actual topology

Fig. 3. DFL network topology in working systems. Each node generates a set of coordinates,
and the network is generated in a distributed manner by allowing each node to execute the proposed
protocols locally.

The proposed network is a close proximal construction for a random d-regular
network [69]. Note that in practice there does not exist a perfect construction of a
random d-regular graph [54], and there is no way for a network node to verify whether
the entire network is Ramanujan only based on its local information.
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The construction of a correct topology can be achieved by allowing each node
to maintain the two closest nodes on each virtual ring. When a new node joins the
network, it can always succeed to find the two closest nodes on each virtual ring by
recursive queries [25].

4.1. Network recovery from node failures. To maintain a correct DFL
topology for a dynamic set of nodes, protocols should be designed to recover er-
rors from node failures and leaves. Here an error is defined as a node that has a
wrong neighbor set compared to a correct DFL network topology. If a node x fails
from the network, in each virtual space i, its adjacent nodes yi and zi should remove
x from their neighbors and add each other as a new neighbor. To recover from such
single-node failure, the proposed recovery protocol allows each node to store the IP
addresses of the two-hop neighbors. Hence if a node is detected to fail, its two adjacent
nodes can directly connect as new neighbors.

5. Experimental results.

5.1. Convergence and generalization. We evaluate the training loss, test
loss, test accuracy, and the communication cost versus the communication round for
Ring, Erd\"os--R\'enyi (E-R), fully connected (complete), and the proposed expander
graphs. Namely, we use d = 3 regular expander graphs (called Ramanujan). The
communication cost is estimated by the size of the parameters of the models. In
all experimental settings, the topology is generated by a central server before the
training starts and is stored in each client, but the central host is not involved in
the actual training process. The expander graph is generated by adding extra edges
on top of the Ring graph in virtual spaces according to 4. The Erd\"os--R\'enyi graph
is generated by selecting random edges from all possible edges with the probability
p = lnN

N , where N is the total number of clients. The expander graphs result in faster
convergence and better generalization for DFedAvgM in training different models on
different datasets. To conduct more comprehensive experiments and testing, both
the real network settings and the simulation are used in our evaluation. To exclude
other factors, no tuned optimization or data compression algorithms are used in the
experiments. In the evaluation, fully connected graphs are shown as a baseline but
are hardly practical in real-world applications considering the communication cost and
availability of such a topology. The Ring topology is easy to implement and widely
used in previous works, so it is also shown as a baseline. Due to the randomness
of Erd\"os--R\'enyi graph construction, the experimental results are inconsistent when
there are relatively few nodes in the graph. Consequently, we do not include the
Erd\"os--R\'enyi graph in every MNIST experiment below.

MNIST IID. We randomly split the MNIST dataset without any biases into 10
different subsets (i.e., the number of clients is N = 10). Each client owns a local
multilayer perceptron (MLP) model with one hidden layer of size 200. Each client
has access to only one local subset as its training set. We train the local model with a
batch size of 20 and use the cross-entropy loss function. We use SGD with a learning
rate of \eta = 0.01 and momentum \beta = 0.9. After K = 3 epochs of local training, each
node communicates with its topological neighbors and averages all the parameters of
the MLP model. After each communication round, the test accuracy and test loss of
each client are recorded and averaged in Figure 4. Based on our experiments in this
IID setting, the fully connected and expander graphs converge at round 16, which is a
significant improvement over the 26 rounds that the Ring graph requires to converge.
According to the test accuracy shown in Figure 4, the fully connected graph has the
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best test accuracy of 98.2\%, while the expander graph reaches a similar 98.0\% with
only one third of the communication cost. The Ring graph reaches 97.7\% accuracy
due to the ideal distribution of the data.
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Comp
Rama
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Ring

0 20 40 
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Ring        Comp      Rama        E-R       0
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17500
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MNIST Comm Cost(KiB)

Test Accuracy Test Loss Comm. Cost
Fig. 4. The test accuracy, test loss, and communication cost of the Ring/E-R/ 3-regular ex-

pander (Ramanujan)/fully connected graphs on IID MNIST. All of the graphs enable DFL to reach
over 92\% accuracy, but DFL using the expander graph converges faster than DFL using the E-R or
Ring graphs.

MNIST non-IID. In this experiment, all settings are similar to the IID experi-
ment except each node owns a local dataset consisting of only one label (one digit in
MNIST). We note that this distribution is extremely unfavorable for generalization.
The test dataset is sampled in a balanced form from the original dataset as the IID
settings. As shown in Figure 5, the expander graph reaches 88.8\% accuracy, which is
much higher than the Ring graph (73.68\%). As is expected, the fully connected graph
reaches the best accuracy of 94\%. Again, while the expander graph's final accuracy
is lower than the fully connected graph's, it only incurs 33\% of the communication
cost. After each communication round, the testing accuracy and loss of each client
are recorded and averaged and shown in Figure 5. In summary, the expander graph
achieves both faster convergence as well as better generalization than the Ring graph,
and the expander graph's performance is comparable to that of the fully connected
graph, but with a more manageable communication cost. In addition, while the E-R
graph can occasionally achieve accuracy comparable to that attained by the expander
graph, it has an unstable performance in practical cases due to the random nature of
its construction.
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Fig. 5. The test accuracy, test loss, and communication cost of the Ring/E-R/ 3-regular Ra-

manujan/fully connected graphs on non-IID MNIST. The expander graph reaches 88.79\% accuracy,
which is higher than the Ring graph's 73.68\%. The E-R graph achieves a maximum accuracy of
86.33\% (which is comparable to the expander graph's accuracy), but the minimum accuracy for the
E-R graph is 79.42\%. The communication cost of the expander graph is only one third of the fully
connected graph's.

Language modeling. We further conduct an experiment to evaluate the effect of
different graph topologies for DFL applied to language modeling on the Shakespeare
dataset [38]. First, we split the original dataset into 100 subsets. Each subset contains
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only a small fraction of the roles' dialogue. Because of the unique characteristics and
language of each role, the dataset can be considered as non-IID. We then create
100 long short-term memory (LSTM) models that each have 256 hidden units and
2 layers. We use the cross-entropy loss function and train each LSTM with the
corresponding local non-IID dataset with the learning rate \eta = 0.5 and momentum
\beta = 0.9. Similar to the MNIST experiments, after 3 epochs of local training, each
node communicates with its neighbors, through which is averaged all the parameters
of the LSTM model. After each communication round, the test loss and accuracy of
each client are recorded and averaged in Figure 6. The Erd\"os--R\'enyi graph achieves an
accuracy of 45.3\%, which is close to the fully connected graph's 45.8\%. The expander
graph reaches an accuracy of 40.4\%, and the Ring graph only reaches 36.2\%. In this
unfavorable data distribution, the Ring graph generalizes significantly worse than the
expander graph. We note that the Erd\"os--R\'enyi graph has better test accuracy and
loss than the expander graph because it results in significantly higher degrees to ensure
connectivity of the graph. Thus, the Erd\"os--R\'enyi graph has a higher communication
cost (Figure 6). Also, similar to previous experiments, DFedAvgM with an expander
graph topology converges faster than the Ring graph. In this case, we can see that the
communication cost for the complete graph is roughly 16 times higher than that of
the expander graph. With some moderate communication costs, the expander graph
seems to generalize better than the Ring graph topology while also having similar
convergence to the fully connected graph.
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Shakespeare Comm Cost(KiB)

Test Accuracy Test Loss Comm. Cost
Fig. 6. The test accuracy, test loss, and communication cost of the Ring/ 3-regular Ramanu-

jan/Erd\"os--R\'enyi/complete graph on non-IID Shakespeare dataset. The Erd\"os--R\'enyi graph achieves
an accuracy rate of 45.3\%. The expander graph reaches an accuracy rate of 40.4\%, while the Ring
graph only reaches 36.2\%.

Contrasting computational time of DFL with different graphs. We further validate
the advantage of Ramanujan graphs for DFL in terms of compute time efficiency. In
particular, we consider training the aforementioned DFL models using different graphs
for IID and non-IID MNIST classification. Figure 7 shows the computational time---
including initialization of the DFL system, model aggregation, and model training---
of DFL using different graphs for communication to reach a given test accuracy. We
see that DFL using 3-regular Ramanujan graphs remarkably improves computational
time over the other graph topologies (complete, Erd\"os--R\'enyi, and Ring graphs) to
reach 75\% and 98\% testing accuracies for non-IID and IID MNIST classification,
respectively (Table 2).

5.2. Robustness to client failures. To test the robustness to client failures
of DFedAvgM with different network topologies, we drop 10\% and 20\% of clients
during the communication round and compare the performance of Ring, expander,
Erd\"os--R\'enyi, and fully connected graphs. In the language modeling task with the
Shakespeare dataset, we mask the input of the dropped nodes to simulate the com-
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Fig. 7. The computational time---including initialization of the DFL system, model aggregation,
and model training---of DFL uses different graphs for communication to reach a given test accuracy.
Left: Training DFL for non-IID MNIST classification with 75\% test accuracy. Right: Training DFL
for IID MNIST classification with 98\% test accuracy. Here we assume the computational resource
is close to the end device and has a limited 2MB/s bandwidth. (Unit: seconds)

Table 2
The runtime of DFL using different graphs to reach a target test accuracy for both IID and

non-IID MNIST classification. (Unit: seconds.)

Dataset Non-IID MNIST IID MNIST

Accuracy 75\% 70\% 65\% 98\% 97.5\% 97\%

Complete 1130 882 882 1865 1130 876
Ramanujan 939 817 681 943 553 420
Erd\"os--R\'enyi 1452 1125 998 1716 932 735
Ring 3717 2763 2021 2127 802 594
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Fig. 8. The test accuracy and test loss of the Ring/ 3-regular Ramanujan/complete graphs on

non-IID MNIST with client failures.

munication failure. All the dropped nodes are randomly selected and excluded from
the final results.

MNIST non-IID. As shown in Figure 8, communication failure not only causes
the loss of corresponding training samples globally but also breaks the connection
of the topology. With the weakest connectivity, the Ring graph degrades to 51.3\%
accuracy when 20\% of the nodes are dropped. The clients are partitioned when
multiple nodes fail in a Ring graph. On the other hand, the expander graph reaches
an accuracy of 65.3\% due to its high connectivity and lack of a partition.

Language modeling. In Figure 9, we have a similar situation as Figure 8. With
the weakest connectivity, the Ring graph degrades to 33.7\% accuracy when 20\% of the
nodes are dropped. Similar to the MNIST non-IID communication failure experiment,
the clients are partitioned when multiple nodes fail in a Ring graph. The expander
graph, however, reaches an accuracy of 41.5\%. Additionally, although the Erd\"os--
R\'enyi graph performs slightly better than the expander graph with 10\% client failures,
it performs worse than the expander graph with a 20\% client failure because of its
weaker connectivity property.
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Fig. 9. The test accuracy and test loss of the Ring/ 3-regular Ramanujan/complete/Erd\"os--

R\'enyi graphs on non-IID MNIST with client failures.

6. Concluding remarks. In this paper, we presented the theoretical advan-
tages of expander graph-based overlay networks and their practical construction. We
numerically verified the efficacy in accelerating training, improving generalization,
and enhancing robustness to client failures of decentralized federated learning by us-
ing expander graph-based overlay networks on various benchmarks. How to establish
the theoretical robustness guarantees of the expander graph-based overlay networks to
the node failure is an interesting future direction. Other interesting future directions
include integrating the decentralized federated learning framework with decentralized
stochastic algorithms other than decentralized stochastic gradient descent, e.g., Push-
SAGA [50], and designing the corresponding efficient and reliable overlay networks.

Appendix A. Technical proofs. We repeat Table 1 here for the reader's
convenience.

Table 3
Notation used in proof of Theorem A.1.

\bfS \bfy \bfm \bfb \bfo \bfl \bfD \bfe fi\bfn \bfi \bft \bfi \bfo \bfn 
N total no. of nodes in graph
n no. of datapoints available at each node
T no. of global communication rounds
K no. of local updates
\eta stepsize of local updates
L L-smoothness constant for f (Assumption 1)
\sigma BLGV constant (Assumption 2)
\zeta BGGV constant (Assumption 3)
B BLGN constant (Assumption 4)
\lambda Markov chain mixing constant, max\{ | \lambda 2(\bfitM )| , | \lambda N (\bfitM )| \} 
\epsilon uniform stability bound in Lemma 2.4

Theorem A.1 (uniform stability (Theorem 2.5 restated)). Under Assumptions 1--
4, we have that for any T if the stepsize \eta t \leq c

t and c is small enough, then DFedAvg
satisfies uniform stability with

\epsilon stab \leq T
cLK

1+cLK

\Biggl( 
(sup f)K(cLK)

1
1+cLK

n
+

2\sigma B
NL

(cLK)
cLK

1+cLK

\Biggr) 
+

B(\sigma +B) (cK + 2C\lambda )

cLK
,

where sup f < \infty is the uniform bound on the size of the nonnegative loss function.

Proof. Assume that each node i has access to local datasets \scrD i = \{ (\bfitx \ell 
i , y

\ell 
i )\} 

ni

\ell =1

of size ni = n, and let \scrD = \cup N
i=1\scrD i be the set of Nn datapoints over the whole graph.

Assume then that the datasets \scrD , \~\scrD differ by only one point; that is, there exists
exactly one i\ast \in \{ 1, . . . , N\} such that \scrD i and \~\scrD i differ in exactly one point. Define
the random variables

\xi t,ki \sim Unif(\scrD i),
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where \{ \xi t,ki \} Kk=1 are sampled IID (with replacement). We denote the collection of

random variables sampled from \scrD at all N nodes in the graph as \Xi (t,k) := \{ \xi t,ki \} Ni=1.

Likewise, define \~\Xi (t,k) = \{ \xi t,ki \} Ni=1 to be the collection of samples from \~\scrD at all N
nodes in the graph.

Now define \=\bfitw t, \=\bfitv t to be the averages generated by DFedAvgM with training data
\scrD , \~\scrD , respectively; that is,

\=\bfitw t =
1

N

N\sum 
i=1

\bfitw t,0
i , \=\bfitv t =

1

N

N\sum 
i=1

\bfitv t,0
i .

Further, define the matrices

\bfitX (t,k) := [\bfitw t,k
1 \bfitw t,k

2 . . . \bfitw t,k
N ], \bfitY (t,k) := [\bfitv t,k

1 \bfitv t,k
2 . . . \bfitv t,k

N ]

and the gradient matrices

\bfitG (t,k)
\Bigl( 
\bfitX (t,k); \Xi (t,k)

\Bigr) 
:= [\nabla f1(\bfitw 

t,k
1 ; \xi t,k1 ) \nabla f2(\bfitw 

t,k
2 ; \xi t,k2 ) . . . \nabla fN (\bfitw t,k

N ; \xi t,kN )],

\bfitG (t,k)
\Bigl( 
\bfitY (t,k); \~\Xi (t,k)

\Bigr) 
:= [\nabla f1(\bfitv 

t,k
1 ; \~\xi t,k1 ) \nabla f2(\bfitv 

t,k
2 ; \~\xi t,k2 ) . . . \nabla fN (\bfitv t,k

N ; \~\xi t,kN )].

We have that by definition of the DFedAvgM iterations

\bfitw t,k+1
i  - \bfitw t,k

i

=  - \eta t\nabla fi(\bfitw 
t,k
i ; \xi t,ki ) + \theta (\bfitw t,k

i  - \bfitw t,k - 1
i )

=  - \eta t\nabla fi(\bfitw 
t,k
i ; \xi t,ki ) + \theta 

\Bigl( 
 - \eta t\nabla fi(\bfitw 

t,k - 1
i ; \xi t,k - 1

i ) + \theta (\bfitw t,k - 1
i  - \bfitw t,k - 2

i )
\Bigr) 

= . . .

=  - \eta t

\Biggl( 
k\sum 

s=0

\theta k - s\nabla fi(\bfitw 
t,s
i ; \xi t,si )

\Biggr) 
and that

\bfitw t,k+1
i  - \bfitw t,k

i =  - \eta t\nabla fi(\bfitw 
t,k
i ; \xi t,ki ) + \theta (\bfitw t,k

i  - \bfitw t,k - 1
i )

=\Rightarrow \bfitw t,K
i  - \bfitw t,0

i =

K - 1\sum 
k=0

 - \eta t\nabla fi(\bfitw 
t,k
i ; \xi t,ki ) + \theta (\bfitw t,k

i  - \bfitw t,k - 1
i )

=

K - 1\sum 
k=0

 - \eta t\nabla fi(\bfitw 
t,k
i ; \xi t,ki ) + \theta (\bfitw t,K - 1

i  - \bfitw t,0
i )

=\Rightarrow \bfitw t,K
i  - \bfitw t,0

i =
 - \eta t
1 - \theta 

K - 1\sum 
k=0

\nabla fi(\bfitw 
t,k
i ; \xi t,ki ) - \theta 

1 - \theta 
(\bfitw t,K

i  - \bfitw t,K - 1
i )

=
 - \eta t
1 - \theta 

K - 1\sum 
k=0

\nabla fi(\bfitw 
t,k
i ; \xi t,ki ) -  - \eta t\theta 

1 - \theta 

K - 1\sum 
k=0

k\sum 
s=0

\theta k - s\nabla fi(\bfitw 
t,s
i ; \xi t,si )

=
 - \eta t
1 - \theta 

\Biggl( 
K - 1\sum 
k=0

\nabla fi(\bfitw 
t,k
i ; \xi t,ki ) - \theta 

K - 1\sum 
k=0

\nabla fi(\bfitw 
t,k
i ; \xi t,ki )

K - k - 1\sum 
s=0

\theta s

\Biggr) 

=
 - \eta t
1 - \theta 

K - 1\sum 
k=0

\biggl( 
1 - \theta  - \theta K - k+1

1 - \theta 

\biggr) 
\nabla fi(\bfitw 

t,k
i ; \xi t,ki )
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=
\eta t

(1 - \theta )2

K - 1\sum 
k=0

(1 - 2\theta + \theta K - k+1)\nabla fi(\bfitw 
t,k
i ; \xi t,ki ).(A.1)

Then by A.1 we can write

\bfitX (t,K)  - \bfitX (t,0) =
\eta t

(1 - \theta )2

K - 1\sum 
k=0

pk(\theta )\bfitG 
(t,k)(\bfitX (t,k); \Xi (t,k)),

\bfitY (t,K)  - \bfitY (t,0) =
\eta t

(1 - \theta )2

K - 1\sum 
k=0

pk(\theta )\bfitG 
(t,k)(\bfitY (t,k); \~\Xi (t,k)),

where we have defined pk(\theta ) = 1 - 2\theta + \theta K - k+1.
Letting 1 \in \BbbR N denote the vector of all ones, then the mixing matrix \bfitM satis-

fies \bfitM 1

N = 1

N . Then we have with probability
\bigl( 
n - 1
n

\bigr) K
that the random variables

\{ \Xi (t,k)\} Kk=1 = \{ \~\Xi (t,k)\} Kk=1 are exactly the same:

\=\bfitw 
t+1  - \=\bfitv 

t+1

(A.2)

= \bfitX 
(t,K)

\bfitM 
1

N
 - \bfitY 

(t,K)
\bfitM 

1

N

=
\Bigl( 
\bfitX 

(t,0)
+
\Bigl( 
\bfitX 

(t,K)  - \bfitX 
(t,0)

\Bigr) \Bigr) 
1

N
 - 
\Bigl( 
\bfitY 

(t,0)
+
\Bigl( 
\bfitY 

(t,K)  - \bfitY 
(t,0)

\Bigr) \Bigr) 
1

N

=

\Biggl( 
\bfitX 

(t,0)  - \bfitY 
(t,0)

+
\eta t

(1  - \theta )2

\Biggl( 
K - 1\sum 
k=0

pk(\theta )\bfitG 
(t,k)

(\bfitX 
(t,k)

; \Xi 
(t,k)

)  - 
K - 1\sum 
k=0

pk(\theta )\bfitG 
(t,k)

(\bfitY 
(t,k)

; \Xi 
(t,k)

)

\Biggr) \Biggr) 
1

N

=
\Bigl( \Bigl( 

\bfitX 
(t,0)  - \bfitY 

(t,0)
\Bigr) 
(\bfitI  - \bfitP ) +

\Bigl( 
\bfitX 

(t,0)  - \bfitY 
(t,0)

\Bigr) 
P
\Bigr) 
1

N

+
\eta t

(1  - \theta )2

\Biggl( 
K - 1\sum 
k=0

pk(\theta )
\Bigl[ 
\bfitG 

(t,k)
(\bfitX 

(t,k)
; \Xi 

(t,k)
)  - \bfitG 

(t,k)
( \=\bfitw 

t
1
T
; \Xi 

(t,k)
) + \bfitG 

(t,k)
( \=\bfitw 

t
1
T
; \Xi 

(t,k)
)
\Bigr] \Biggr) 

1

N

 - 
\eta t

(1  - \theta )2

\Biggl( 
K - 1\sum 
k=0

pk(\theta )
\Bigl[ 
\bfitG 

(t,k)
(\bfitY 

(t,k)
; \Xi 

(t,k)
)  - \bfitG 

(t,k)
(\=\bfitv 

t
1
T
; \Xi 

(t,k)
) + \bfitG 

(t,k)
(\=\bfitv 

t
1
T
; \Xi 

(t,k)
)
\Bigr] \Biggr) 

1

N

=
\eta t

N(1  - \theta )2

N\sum 
i=1

K - 1\sum 
k=0

pk(\theta )
\Bigl[ \Bigl( 

\nabla fi( \=\bfitw 
t
; \xi 

t,k
i )  - \nabla fi(\bfitw 

t,k
i ; \xi 

t,k
i )

\Bigr) 
 - 
\Bigl( 
\nabla fi(\=\bfitv 

t
; \xi 

t,k
i )  - \nabla fi(\bfitv 

t,k
i ; \xi 

t,k
i )

\Bigr) \Bigr] 
\underbrace{}  \underbrace{}  

=:A1

+
1

N

N\sum 
i=1

\Biggl( 
\=\bfitw 
t  - 

\eta t

(1  - \theta )2

K - 1\sum 
k=0

pk(\theta )\nabla fi( \=\bfitw 
t
; \xi 

t,k
i )

\Biggr) 
 - 
\Biggl( 

\=\bfitv 
t  - 

\eta t

(1  - \theta )2

K - 1\sum 
k=0

pk(\theta )\nabla fi(\=\bfitv 
t
; \xi 

t,k
i )

\Biggr) 
,

(A.3)

where we note that (\bfitI  - \bfitP ) 1N = 0. Now, we have that since \theta \in [0, 1), then | pk(\theta )| =
pk(\theta ) \leq pK - 1(\theta ) = (1 - \theta )2 for each k = 0, 1, . . . ,K  - 1. This means we can calculate

\| A1\| 

\leq \eta t
N

N\sum 
i=1

K - 1\sum 
k=0

\| \nabla fi( \=\bfitw 
t; \xi t,ki ) - \nabla fi(\bfitw 

t,k
i ; \xi t,ki )\| + \| \nabla fi(\=\bfitv 

t; \xi t,ki ) - \nabla fi(\bfitv 
t,0
i ; \xi t,ki )\| 

\leq \eta tL

N

N\sum 
i=1

K - 1\sum 
k=0

\| \=\bfitw t  - \bfitw t,k
i \| + \| \=\bfitv t  - \bfitv t,k

i \| 

\leq \eta tL

N

K - 1\sum 
k=0

N\sum 
i=1

\Bigl( 
\| \=\bfitw t  - \bfitw t,0

i \| + \| \=\bfitv t  - \bfitv t,0
i \| 
\Bigr) D
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+
\eta tL

N

K - 1\sum 
k=1

N\sum 
i=1

\Bigl( 
\| \bfitw t,0

i  - \bfitw t,k
i \| + \| \bfitv t,0

i  - \bfitv t,k
i \| 
\Bigr) 

\leq \eta tL\surd 
N

K - 1\sum 
k=0

\Bigl( 
\| \bfitX (t,0)(\bfitI  - \bfitP )\| F + \| \bfitY (t,0)(\bfitI  - \bfitP )\| F

\Bigr) 
+

\eta 2tL

N(1 - \theta )2

N\sum 
i=1

K - 1\sum 
k=1

k - 1\sum 
s=0

ps(\theta )
\bigl( 
\| \nabla fi(\bfitw 

t,s
i ; \xi t,si )\| + \| \nabla fi(\bfitv 

t,s
i ; \xi t,si )\| 

\bigr) 
\leq \eta tL\surd 

N

K - 1\sum 
k=0

\Bigl( 
\| \bfitX (t,0)(\bfitI  - \bfitP )\| F + \| \bfitY (t,0)(\bfitI  - \bfitP )\| F

\Bigr) 
+

\eta 2tL

N

N\sum 
i=1

K - 1\sum 
k=1

k - 1\sum 
s=0

\bigl( 
\| \nabla fi(\bfitw 

t,s
i ; \xi t,si )\| + \| \nabla fi(\bfitv 

t,s
i ; \xi t,si )\| 

\bigr) 
.

Then, we have

1

N

N\sum 
i=1

\| \nabla fi(\bfitw 
t,s
i ; \xi t,si )\| \leq 1

N

N\sum 
i=1

\| \nabla fi(\bfitw 
t,s
i ; \xi t,si ) - \nabla fi(\bfitw 

t,s
i )\| + \| \nabla fi(\bfitw 

t,s
i )\| 

\leq 1\surd 
N

\Biggl( 
N\sum 
i=1

\| \nabla fi(\bfitw 
t,s
i ; \xi t,si ) - \nabla fi(\bfitw 

t,s
i )\| 2

\Biggr) 1
2

+B

=\Rightarrow \BbbE 
1

N

N\sum 
i=1

\| \nabla fi(\bfitw 
t,s
i ; \xi t,si )\| \leq 1\surd 

N

\Biggl( 
N\sum 
i=1

\BbbE \| \nabla fi(\bfitw 
t,s
i ; \xi t,si ) - \nabla fi(\bfitw 

t,s
i )\| 2

\Biggr) 1
2

+B

\leq 1\surd 
N

\bigl( 
N\sigma 2

\bigr) 1
2 +B = \sigma +B,

so that by applying Lemma A.2 we obtain

\| A1\| \leq 2\eta tLK(\sigma +B)

\left(  t\sum 
j=1

\eta t - j\lambda 
j

\right)  + 2\eta 2tL(\sigma +B)

K - 1\sum 
k=1

k

= 2\eta tLK(\sigma +B)

\left(  t\sum 
j=1

\eta t - j\lambda 
j

\right)  + \eta 2tL(\sigma +B)K(K  - 1)

\leq \eta tLK(\sigma +B)

\left(  2

t - 1\sum 
j=1

\eta t - j\lambda 
j + \eta tK

\right)  .

Now, noticing that with each fi being L-smooth, we can calculate\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \=\bfitw t  - \eta t
(1 - \theta )2

K - 1\sum 
k=0

pk(\theta )\nabla fi( \=\bfitw 
t; \xi t,ki ) - 

\Biggl( 
\=\bfitv t  - \eta t

(1 - \theta )2

K - 1\sum 
k=0

pk(\theta )\nabla fi(\=\bfitv 
t; \xi t,ki )

\Biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\leq \| \=\bfitw t  - \=\bfitv t\| + \eta t

K - 1\sum 
k=0

\bigm\| \bigm\| \bigm\| \nabla fi( \=\bfitw 
t; \xi t,ki ) - \nabla fi(\=\bfitv 

t; \xi t,ki )
\bigm\| \bigm\| \bigm\| 

\leq (1 + \eta tLK)\| \=\bfitw t  - \=\bfitv t\| .
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Plugging everything into (A.2), we obtain

\BbbE \| \=\bfitw t+1  - \=\bfitv t+1\| \leq (1 + \eta tLK)\| \=\bfitw t  - \=\bfitv t\| + \eta tLK(\sigma +B)

\left(  2

t - 1\sum 
j=1

\eta t - j\lambda 
j + \eta tK

\right)  .

Now, with probability 1 - 
\bigl( 
n - 1
n

\bigr) K
, we have that the random variables \{ \~\Xi (t,k)\} Kk=1

might be different from \{ \Xi (t,k)\} Kk=1 in the draws from node i\ast . We calculate, similarly
to the previous case,

\=\bfitw t+1  - \=\bfitv t+1

=
\eta t

N(1 - \theta )2

N\sum 
i=1

K - 1\sum 
k=0

pk(\theta )
\Bigl[ \Bigl( 

\nabla fi( \=\bfitw 
t; \xi t,ki ) - \nabla fi(\bfitw 

t,k
i ; \xi t,ki )

\Bigr) 
 - 
\Bigl( 
\nabla fi(\=\bfitv 

t; \~\xi t,ki ) - \nabla fi(\bfitv 
t,k
i ; \~\xi t,ki )

\Bigr) \Bigr] 

+
1

N

N\sum 
i=1

\Biggl( 
\=\bfitw t  - 

\eta t

(1 - \theta )2

K - 1\sum 
k=0

pk(\theta )\nabla fi( \=\bfitw 
t; \xi t,ki )

\Biggr) 
 - 
\Biggl( 
\=\bfitv t  - 

\eta t

(1 - \theta )2

K - 1\sum 
k=0

pk(\theta )\nabla fi(\=\bfitv 
t; \~\xi t,ki )

\Biggr) 
,

which allows us to conclude by performing the same calculations we did on A1:

=\Rightarrow \BbbE \| \=\bfitw t+1  - \=\bfitv t+1\| \leq \eta tLK(\sigma +B)

\left(  2

t - 1\sum 
j=1

\eta t - j\lambda 
j + \eta tK

\right)  
(A.4)

+ \BbbE 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
1

N

N\sum 
i=1

\Biggl( 
\=\bfitw t  - 

\eta t

(1 - \theta )2

K - 1\sum 
k=0

pk(\theta )\nabla fi( \=\bfitw 
t; \xi t,ki )

\Biggr) 
 - 
\Biggl( 
\=\bfitv t  - 

\eta t

(1 - \theta )2

K - 1\sum 
k=0

pk(\theta )\nabla fi(\=\bfitv 
t; \~\xi t,ki )

\Biggr) 
\underbrace{}  \underbrace{}  

=:A2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
.

(A.5)

Now, turning our attention to the term A2, we can calculate

A2 =
1

N

N\sum 
i=1

\Biggl[ 
\=\bfitw t  - \=\bfitv t +

\eta t

(1 - \theta )2

K - 1\sum 
k=0

pk(\theta )
\Bigl( 
\nabla fi( \=\bfitw 

t; \xi t,ki ) - \nabla fi(\=\bfitv 
t; \~\xi t,ki )

\Bigr) \Biggr] 

= \=\bfitw t  - \=\bfitv t +
\eta t

N(1 - \theta )2

\sum 
i \not =i\ast 

K - 1\sum 
k=0

pk(\theta )
\Bigl( 
\nabla fi( \=\bfitw 

t; \xi t,ki ) - \nabla fi(\=\bfitv 
t; \xi t,ki )

\Bigr) 

+
\eta t

N(1 - \theta )2

K - 1\sum 
k=0

pk(\theta )
\Bigl( 
\nabla fi\ast ( \=\bfitw 

t; \xi t,ki\ast ) - \nabla fi\ast (\=\bfitv 
t; \~\xi t,ki\ast )

\Bigr) 

=\Rightarrow \| A2\| \leq \| \=\bfitw t  - \=\bfitv t\| +
\eta tLK(m - 1)

N
\| \=\bfitw t  - \=\bfitv t\| +

\eta t

N

K - 1\sum 
k=0

\| \nabla fi\ast ( \=\bfitw 
t; \xi t,ki\ast ) - \nabla fi\ast ( \=\bfitw 

t)\| 

+
\eta t

N

K - 1\sum 
k=0

\| \nabla fi\ast ( \=\bfitw 
t) - \nabla fi\ast (\=\bfitv 

t)\| + \| \nabla fi\ast (\=\bfitv 
t) - \nabla fi\ast (\=\bfitv 

t; \~\xi t,ki\ast )\| 

=\Rightarrow \BbbE \| A2\| \leq 
\biggl( 
1 +

\eta tLK(m - 1)

N

\biggr) 
\BbbE \| \=\bfitw t  - \=\bfitv t\| +

\eta tK

N

\bigl( 
2\sigma + L\BbbE \| \=\bfitw t  - \=\bfitv t\| 

\bigr) 
= (1 + \eta tLK)\BbbE \| \=\bfitw t  - \=\bfitv t\| +

2\eta t\sigma K

N
,

where in the second to last line we have used the fact that by Jensen's inequality

\BbbE 
\bigl( 
\| z\| 2

\bigr) 1
2 \leq 

\bigl( 
\BbbE \| z\| 2

\bigr) 1
2

combined with the assumption of bounded variance of stochastic gradients.
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By defining \delta t := \| \=\bfitw t  - \=\bfitv t\| and t0 \in \{ 1, 2, . . . , n\} as in Lemma A.3, we can
combine both cases to obtain

\BbbE (\delta t+1| \delta t0 = 0)

\leq 
\biggl( 
n - 1

n

\biggr) K
\left(  (1 + \eta tLK)\BbbE (\delta t| \delta t0 = 0) + \eta tLK(\sigma +B)

\left(  2

t - 1\sum 
j=1

\eta t - j\lambda 
j + \eta tK

\right)  \right)  
+

\Biggl( 
1 - 

\biggl( 
n - 1

n

\biggr) K
\Biggr) \left(  \eta tLK(\sigma +B)

\left(  2

t - 1\sum 
j=1

\eta t - j\lambda 
j + \eta t(K + 1)

\right)  \right)  
+

\Biggl( 
1 - 

\biggl( 
n - 1

n

\biggr) K
\Biggr) \biggl( 

(1 + \eta tLK)\BbbE (\delta t| \delta t0 = 0) +
2\eta t\sigma K

N

\biggr) 

= (1 + \eta tLK)\BbbE (\delta t| \delta t0 = 0) + \eta tLK(\sigma +B)

\left(  2

t - 1\sum 
j=1

\eta t - j\lambda 
j + \eta tK

\right)  
+

\Biggl( 
1 - 

\biggl( 
n - 1

n

\biggr) K
\Biggr) 

2\eta t\sigma K

N
.

With a similar result to bound the sum
\sum t - 1

j=1 \eta t - j\lambda 
j to that of [59], if we set

\eta t \leq 
c

t
,

then we should be able to calculate

\BbbE (\delta t+1| \delta t0 = 0) \leq 
\biggl( 
1 +

cLK

t

\biggr) 
\BbbE (\delta t| \delta t0 = 0) +

cLK

t
(\sigma +B)

\biggl( 
2
C\lambda 

t
+

cK

t

\biggr) 
+

\Biggl( 
1 - 

\biggl( 
n - 1

n

\biggr) K
\Biggr) 

2c\sigma K

Nt

\leq 
\biggl( 
1 +

cLK

t

\biggr) 
\BbbE (\delta t| \delta t0 = 0) +

2cK\sigma 

N\underbrace{}  \underbrace{}  
=:C1

1

t
+ cLK(\sigma +B) (cK + 2C\lambda )\underbrace{}  \underbrace{}  

=:C2

1

t2

\leq exp

\biggl( 
cLK

t

\biggr) 
\BbbE (\delta t| \delta t0 = 0) +

C1

t
+

C2

t2
.

Unraveling this recursion, we obtain

\BbbE (\delta T | \delta t0 = 0) \leq 
T\sum 

t=t0+1

exp

\Biggl( 
cLK

T\sum 
k=t+1

1

k

\Biggr) \biggl( 
C1

t
+

C2

t2

\biggr) 

\leq 
T\sum 

t=t0+1

exp

\biggl( 
cLK ln

T

t

\biggr) \biggl( 
C1

t
+

C2

t2

\biggr) 

= T cLK

\Biggl( 
T\sum 

t=t0+1

1

tcLK+1

\biggl( 
C1 +

C2

t

\biggr) \Biggr) 

\leq T cLK

\biggl( 
C1

cLKtcLK
0

+
C2

(cLK + 1)tcLK+1
0

\biggr) D
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\leq 
\biggl( 
T

t0

\biggr) cLK
1

cLK

\biggl( 
C1 +

C2

t0

\biggr) 
.

Plugging in the definitions of C1, C2, we get

\BbbE (\delta T | \delta t0 = 0) \leq 
\biggl( 
T

t0

\biggr) cLK
1

cLK

\biggl[ 
2cK\sigma 

N
+

cLK(\sigma +B) (cK + 2C\lambda )

t0

\biggr] 
=

\biggl( 
T

t0

\biggr) cLK \biggl[ 
2\sigma 

NL
+

(\sigma +B) (cK + 2C\lambda )

t0

\biggr] 
,

which gives by Lemma A.3

\BbbE | f( \=\bfitw T ; \Xi ) - f(\=\bfitv T ; \Xi )| \leq t0(sup f)

\Biggl( 
1 - 

\biggl( 
n - 1

n

\biggr) K
\Biggr) 

+B

\biggl( 
T

t0

\biggr) cLK \biggl[ 
2\sigma 

NL
+

(\sigma +B) (cK + 2C\lambda )

t0

\biggr] 
\leq t0K

n
(sup f) +

\biggl( 
T

t0

\biggr) cLK \biggl[ 
2\sigma B

NL
+

B(\sigma +B) (cK + 2C\lambda )

t0

\biggr] 
.

The right-hand side is approximately minimized if we choose

t0 = T
cLK

1+cLK (cLK)
1

1+cLK ,

which we can ensure is less than n for c sufficiently small. We then can calculate

\BbbE | f( \=\bfitw T ; \Xi ) - f(\=\bfitv T ; \Xi )| \leq (sup f)K(cLK)
1

1+cLK

n
T

cLK
1+cLK +

2\sigma B
NL

(cLK)
cLK

1+cLK

T
cLK

1+cLK

+
B(\sigma +B) (cK + 2C\lambda )T

cLK\Bigl( 
(cLK)

1
1+cLK T

cLK
1+cLK

\Bigr) cLK+1

= T
cLK

1+cLK

\Biggl( 
(sup f)K(cLK)

1
1+cLK

n
+

2\sigma B
NL

(cLK)
cLK

1+cLK

\Biggr) 

+
B(\sigma +B) (cK + 2C\lambda )

cLK
,

as desired.

Lemma A.2. Under Assumptions 1--4 and on the mixing matrix \bfitM , we have that

\| \bfitX (t,0)(\bfitI  - \bfitP )\| F \leq K
\surd 
N(\sigma +B)

t - 1\sum 
j=1

\eta t - j\lambda 
j ,

where \sigma , B, and \lambda are constants from our assumptions and K is the number of local
updates performed before aggregation via the graph topology.

Proof. Let the vector \=\bfitw t,k =
\sum N

i=1 \bfitw 
t,k
i /N be the average parameter vector dur-

ing intermediate, local updates. Then, let the matrix of ``true gradients"" of the global
objective function f be

\nabla \bfitF (\bfitX (t,k)) := [\nabla f( \=\bfitw t,k) \nabla f( \=\bfitw t,k) . . .\nabla f( \=\bfitw t,k)],
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which is obtained by horizontally concatenating the true gradient vector \nabla f( \=\bfitw t,k).
Recalling that pk(\theta ) \leq (1 - \theta )2 for k = 0, . . . ,K  - 1, we have

\| \bfitX (t,0)(\bfitI  - \bfitP )\| F

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
t\sum 

j=1

\eta t - j

(1 - \theta )2

K - 1\sum 
k=0

pk(\theta )\bfitG 
(t,k)(\bfitX (t,k); \Xi (t,k))

\Bigl( 
\bfitM j  - P

\Bigr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
F

\leq 
t\sum 

j=1

\eta t - j

\bigm\| \bigm\| \bigm\| \bfitM j  - P
\bigm\| \bigm\| \bigm\| 
F

K - 1\sum 
k=0

\bigm\| \bigm\| \bigm\| \bfitG (t - j,k)(\bfitX (t - j,k); \Xi (t,k)) - \nabla \bfitF (\bfitX (t - j,k)) +\nabla \bfitF (\bfitX (t - j,k))
\bigm\| \bigm\| \bigm\| 
F

\leq 
t\sum 

j=1

\eta t - j\lambda 
j
K - 1\sum 
k=0

\Biggl( 
N\sum 
i=1

\| \nabla fi(\bfitw 
t - j,k
i ; \xi t - j,k

i ) - \nabla fi(\bfitw 
t - j,k
i )\| 2

\Biggr) 1
2

+

\Biggl( 
N\sum 
i=1

\| \nabla fi(\bfitw 
t - j,k
i )\| 2

\Biggr) 1
2

\leq 
t\sum 

j=1

\eta t - j\lambda 
j
K - 1\sum 
k=0

\left[  \Biggl( N\sum 
i=1

\| \nabla fi(\bfitw 
t - j,k
i ; \xi t - j,k

i ) - \nabla fi(\bfitw 
t - j,k
i )\| 2

\Biggr) 1
2

+B
\surd 
N

\right]  ,

=\Rightarrow \BbbE \| \bfitX (t,0)(\bfitI  - \bfitP )\| F

\leq 
t\sum 

j=1

\eta t - j\lambda 
j
K - 1\sum 
k=0

\left[  \Biggl( N\sum 
i=1

\BbbE \| \nabla fi(\bfitw 
t - j,k
i ; \xi t - j,k

i ) - \nabla fi(\bfitw 
t - j,k
i )\| 2

\Biggr) 1
2

+B
\surd 
N

\right]  
\leq 

t\sum 
j=1

\eta t - j\lambda 
j
K - 1\sum 
k=0

\Bigl[ 
\sigma 
\surd 
N +B

\surd 
N
\Bigr] 

= K
\surd 
N(\sigma +B)

t\sum 
j=1

\eta t - j\lambda 
j ,

where in the third line from the bottom we have used Jensen's inequality, since the
square root function is concave.

Lemma A.3. Assume that the loss function f(\cdot ; \Xi ) is nonnegative and B-Lipschitz
for all \Xi . Let \scrD , \~\scrD be two samples of size Nn differing in only a single example. Let
\=\bfitw T , \=\bfitv T denote the output of DFedAvgM after T steps with the dataset samples \scrD and
\~\scrD , respectively. Then, for every \Xi and every t0 \in \{ 0, 1, . . . , n\} , under the random
selection rule, we have

\BbbE | f( \=\bfitw T ; \Xi ) - f(\=\bfitv T ; \Xi )| \leq t0(sup f)

\Biggl( 
1 - 

\biggl( 
n - 1

n

\biggr) K
\Biggr) 

+B\BbbE (\delta T | \delta t0 = 0).

Proof. Our proof closely follows that of Lemma 3.11 of [19], with only a small dis-
tinction. By virtue of the nonnegativity of f and the Lipschitz continuity assumption
on f , we obtain the inequality

\BbbE | f( \=\bfitw T ; \Xi ) - f(\=\bfitv T ; \Xi )| = \BbbP \{ \scrE \} \BbbE (\delta T | \scrE ) + \BbbP \{ \scrE c\} \BbbE (\delta T | \scrE c)

\leq B\BbbE (\delta T | \delta t0 = 0) + \BbbP \{ \scrE c\} (sup f),

where the event \scrE denotes the event that \delta t0 := \| \=\bfitw t0  - \=\bfitv t0\| = 0. Now, we must
bound P\{ \scrE c\} . Defining the random variable I to assume the index of the first time
step in which DFedAvg uses the example \xi \ast , which occurs at node i\ast \in [N ] and is
located in the j\ast \in [n] entry of \~\scrD i\ast , we have

P\{ \scrE c\} = \BbbP \{ \delta t0 \not = 0\} \leq \BbbP \{ I \leq t0\} \leq 
t0\sum 
t=1

\BbbP \{ I = t\} .
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Now since the draws at each round t of DFedAvgM are sampled uniformly at ran-
dom across both the nodes and the local datasets (that is, \xi t,ki \sim Unif(Di) with
replacement across iterations k), we have that

\BbbP \{ I = t\} = 1 - \BbbP \{ I \not = t\} = 1 - 
\biggl( 
n - 1

n

\biggr) K

,

from which we conclude the proof.

Lemma A.4. If \eta t \leq c
t for t = 1, 2, . . . , then

t\sum 
j=1

\eta t - j\lambda 
j \leq C\lambda 

t
,

where

C\lambda := min

\biggl\{ 
2\lambda ,

1

ln 1
\lambda 

\lambda 
1

ln 1
\lambda 

\biggr\} 
+min

\biggl\{ 
4\lambda ln

1

\lambda 
,

4

ln 1
\lambda 

\lambda 
2

ln 1
\lambda 

\biggr\} 
+min

\biggl\{ 
2\lambda ,

1

ln 1
\lambda 

\lambda 
1

ln 1
\lambda 

\biggr\} 
+

2

ln 1
\lambda 

.

Proof. First, we can compute

t\sum 
j=1

\eta t - j\lambda 
j =

t\sum 
j=1

\eta j\lambda 
t - j \leq \lambda t

t\sum 
j=1

\lambda  - j

j
= \lambda t + \lambda t

t\sum 
j=2

\lambda  - j

j

\leq \lambda t + \lambda t
t\sum 

j=2

\int j

j - 1

\lambda  - x

x
dx

= \lambda t + \lambda t

\int t

1

\lambda  - x

x
dx = \lambda t - 1 + \lambda t

\Biggl( \int t/2

1

\lambda  - x

x
dx+

\int t

t/2

exp(x ln( 1\lambda ))

x
dx

\Biggr) 
,(A.6)

from which with \lambda < 1 we have that ln(1/\lambda ) > 0, and so we can simplify the integrals
as

\int t/2

1

\lambda  - x

x
dx \leq 2

t

\int t/2

1

\lambda  - xdx =
2

t ln 1
\lambda 

\Bigl( 
\lambda  - t/2  - \lambda  - t

\Bigr) 
\leq 2\lambda  - t/2

t ln 1
\lambda 
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and

\int t

t/2

exp(x ln( 1\lambda ))

x
dx =

\int t/2

1

1

x

\infty \sum 
k=0

(ln 1
\lambda )

kxk

k!
dx

=

\int t/2

1

1

x
dx+

\biggl( 
ln

1

\lambda 

\biggr) \int t/2

1

1dx+

\infty \sum 
k=2

(ln 1
\lambda )

k

k!

\int t/2

1

xk - 1dx

= 1 - 4

t2
+

1

2
(t - 2) ln

1

\lambda 
+

\infty \sum 
k=2

(ln 1
\lambda )

k

(k)k!

\Biggl( \biggl( 
t

2

\biggr) k

 - 1

\Biggr) 

\leq 1 - 4

t2
+

1

2
(t - 2) ln

1

\lambda 
+

1

2

\infty \sum 
k=2

(ln 1
\lambda )

k

k!

\Biggl( \biggl( 
t

2

\biggr) k

 - 1

\Biggr) 

= 1 - 4

t2
+

1

2
(t - 2) ln

1

\lambda 

+
1

2

\biggl( 
1

\lambda t/2
 - 1 +

t

2
ln

1

\lambda 
 - 
\biggl[ 
1

\lambda 
 - 1 + ln

1

\lambda 

\biggr] \biggr) 
= 1 - 4

t2
+

1

2
(t - 2) ln

1

\lambda 
+

1

2

\biggl( 
1

\lambda t/2
 - 1

\lambda 
+

1

2
(t - 2) ln

1

\lambda 

\biggr) 
= 1 - 4

t2
+

3

4
(t - 2) ln

1

\lambda 
+

1

2\lambda t/2
 - 1

2\lambda 
.

Plugging this result into (A.6), we obtain

t\sum 
j=1

\eta t - j\lambda 
j \leq \lambda t - 1 + \lambda t

\biggl( 
1 - 4

t2
+

3

4
(t - 2) ln

1

\lambda 
+

1

2\lambda t/2
 - 1

2\lambda 
+

2\lambda  - t/2

t ln 1
\lambda 

\biggr) 

=
\lambda t - 1

2
+ \lambda t

\biggl( 
1 - 4

t2
+

3

4
(t - 2) ln

1

\lambda 

\biggr) 
+ \lambda t/2

\biggl( 
1

2
+

2

t ln 1
\lambda 

\biggr) 
\leq 1

t

\biggl[ 
\lambda t

\biggl( 
t+ ln

1

\lambda 
t2
\biggr) 
+ \lambda t/2

\biggl( 
t+

2

ln 1
\lambda 

\biggr) \biggr] 
,(A.7)

where in the last line we have used that t - 1 \geq t/2 for t \geq 2.
Seeking a uniform bound over t = 2, 3, . . . , we bound each of the last two terms

of the right-hand side of the above equation. It is easy to check that

t\lambda t \leq min

\biggl\{ 
2\lambda 2,

1

ln 1
\lambda 

\lambda 
1

ln 1
\lambda 

\biggr\} 
,

t2\lambda t \leq min

\Biggl\{ 
4\lambda 2,

4\bigl( 
ln 1

\lambda 

\bigr) 2\lambda 2

ln 1
\lambda 

\Biggr\} 
,

t\lambda t/2 \leq min

\biggl\{ 
2\lambda ,

1

ln 1
\lambda 

\lambda 
1

ln 1
\lambda 

\biggr\} 
,

where we have noted that each of these functions is a decreasing function of t. There-
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fore, our bound becomes

t\sum 
j=1

\eta t - j\lambda 
j

\leq 1

t

\biggl[ 
min

\biggl\{ 
2\lambda 2,

1

ln 1
\lambda 

\lambda 
1

ln 1
\lambda 

\biggr\} 
+min

\biggl\{ 
4\lambda 2 ln

1

\lambda 
,

4

ln 1
\lambda 

\lambda 
2

ln 1
\lambda 

\biggr\} 
+min

\biggl\{ 
2\lambda ,

1

ln 1
\lambda 

\lambda 
1

ln 1
\lambda 

\biggr\} \biggr] 
+

2

t ln 1
\lambda 

=
1

t

\biggl[ 
2\lambda 2 + 4\lambda 2 ln

1

\lambda 
+

2

ln 1
\lambda 

+min

\biggl\{ 
2\lambda ,

1

ln 1
\lambda 

\lambda 
1

ln 1
\lambda 

\biggr\} \biggr] 
=:

C\lambda 

t
.

We note that all terms of C\lambda except for 2/ ln 1
\lambda are uniformly bounded on \lambda \in (0, 1).

It is true that 2/ ln 1
\lambda \rightarrow \infty as \lambda \rightarrow 1 - , but for each \lambda < 1 this bound C\lambda is valid.
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