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Abstract

We present and review an algorithmic and theoretical framework for improving neural
network architecture design via momentum. As case studies, we consider how
momentum can improve the architecture design for recurrent neural networks (RNNs),
neural ordinary differential equations (ODEs), and transformers. We show that
integrating momentum into neural network architectures has several remarkable
theoretical and empirical benefits, including (1) integrating momentum into RNNs and
neural ODEs can overcome the vanishing gradient issues in training RNNs and neural
ODEs, resulting in effective learning long-term dependencies; (2) momentum in neural
ODEs can reduce the stiffness of the ODE dynamics, which significantly enhances the
computational efficiency in training and testing; (3) momentum can improve the
efficiency and accuracy of transformers.

1 Introduction
Deep learning has radically advanced artificial intelligence [49], which has achieved state-
of-the-art performance in various applications, including computer vision [23,99], natural
language processing [9,22], and control [87]. Nevertheless, deep neural network (DNNs)
designs aremostly heuristic, and the resulting architectures havemanywell-known issues:
(1) convolutional neural networks (CNNs) are not robust to unperceptible adversarial
attacks [92]; (2) recurrent neural networks (RNNs) cannot learn long-term dependencies
effectively due to vanishing gradients [69]; (3) training neural ordinary differential equa-
tions (ODEs) can take an excessive number of function evaluations (NFEs) [14]; and (4)
training transformers suffers from quadratic computational time andmemory costs [101].
See Sects. 2, 3, and 4, respectively, for the details of these problems (2)–(4).
Addressing the above grand challenges is at the forefront of deep learning research. (1)

Adversarial defense [56] has been proposed to train robust neural networks against adver-
sarial attacks; a survey of adversarial defense algorithms is available, see, e.g., [12]. Training
ResNets has also been interpreted as solving a control problem of the transport equation
[105,109], resulting in PDE-motivated adversarial defenses [104,107,109]. (2) Learning
long-term dependencies with improved RNNs has been an active research area for sev-
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eral decades; celebrated works include long short-term memory [37] and gated recurrent
unit [18]. (3) Several algorithms and techniques have been proposed to reduce NFEs in
training neural ODEs, including input augmentation [25], regularizing solvers and learn-
ing dynamics [27,29,41,66], high-order ODE [65], data control [57], and depth variance
[57]. (4) Transformers are the current state-of-the-art machine learning (ML) models for
sequential learning [101], which processes the input sequence concurrently and can learn
long-term dependencies effectively. However, transformers suffer from quadratic com-
putational time and memory costs with respect to the input sequence length; see Sect. 4
for details. In response, efficient attention has been proposed leveraging sparse and low-
rank approximation of the attention matrix [1,5,17,40,54,68,110,116], locality-sensitive
hashing [45], clustered attention [103], and decomposed near-field and far-field attention
[63].

1.1 Background: momentum acceleration for gradient descent

In this subsection, we review several well-established momentum techniques for accel-
erating gradient descent. Let us first recall the heavy-ball momentum, a.k.a. classical
momentum [71], for accelerating gradient descent in solving minx∈Rd F (x). Starting from
x0 and x1, the heavy-ball method iterates as follows:

xk+1 = xk − s∇F (xk ) + β(xk − xk−1), (1)

where s > 0 is the step size and 0 ≤ β < 1 is the momentum parameter. By introducing
the momentum statem, we can rewrite the HB method as

mk+1 = βmk + ∇F (xk ); xk+1 = xk − smk+1. (2)

In contrast, gradient descent updates at each step as follows

xk+1 = xk − s∇F (xk ). (3)

Anothermomentum due to Nesterov [60] accelerates gradient descent via the following
iteration

mk+1 = xk − s∇F (xk ); xk+1 = mk+1 + β(mk+1 − mk ), (4)

where s > 0 and 0 ≤ β < 1 are defined the same as that in (2). If we replace the constant
β in (4) with a time-dependent coefficient, e.g., (k − 1)/(k + 2) [90], we arrive at the
celebrated Nesterov’s accelerated gradient.
HB method (2) can also be integrated with adaptive step size via the second moment,

resulting in the following celebrated Adam algorithm [44]1

mk+1 = βmk + (1 − β)∇F (xk );
vk+1 = αvk + (1 − α)[∇F (xk )]2;

xk+1 = xk − s
mk+1

[vk+1]1/2
,

(5)

1Here, for the sake of exposition, we omit the bias corrections.
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where s > 0 and 0 ≤ β < 1 are two parameters inherited from (2), and 0 ≤ α < 1
is another parameter. [·]2 and [·]1/2 denote the element-wise square and square-root,
respectively.

1.2 Contribution

This paper aims to present and review an algorithmic and theoretical framework for
improving neural network architecture design via momentum, a well-established first-
order optimization tool [61,71]. In particular, we focus on leveragingmomentum todesign
new RNNs and neural ODEs to accelerate their training and testing and improve learning
long-term dependencies with theoretical guarantees. Moreover, we present a new effi-
cient attention mechanism with momentum augmentation, which significantly improves
computational efficiency over transformers [101] and accuracy over linear transformers
[40]. Finally, we present some perspectives of howmomentum can further improve neural
networks design and solve existing grand challenges.

1.3 Notations

We denote scalars by lower- or upper-case letters. We also denote vectors and matrices
by lower- and upper-case boldface letters, respectively. For a vector x = (x1, · · · , xd)� ∈
R
d , where (x1, · · · , xd)� denotes the transpose of the vector (x1, · · · , xd), we use ‖x‖ =

(
∑d

i=1 |xi|2)1/2 to denote its �2 norm. We denote the vector whose entries are all 0s as 0.
For a matrix A, we use A�, A−1, and ‖A‖ to denote its transpose, inverse, and spectral
norm, respectively. We use I to denote the identity matrix, whose dimension can be
determined in its context. For a function f (x) : Rd → R, we denote its gradient as ∇f (x).
Given two sequences {an} and {bn}, we write an = O(bn) if there exists a positive constant
0 < C < +∞ such that an ≤ Cbn.

1.4 Organization

Weorganize this paper as follows: In Sect. 2, we present RNNmodels and their difficulties
in learning long-term dependencies. We also show how to integrate momentum into
RNNs to accelerate training RNNs and enhance RNNs’ capability in learning long-term
dependencies. In Sect. 3, we show how the ODE limit of momentum can improve neural
ODEs in terms of training and test efficiency and learning long-term dependencies. In
Sect. 4,we showhowmomentumcanbe integrated into efficient transformers and improve
their accuracy. We conclude and present potential new directions in Sect. 5.

2 Recurrent neural networks
In this section, we present how to leverage momentum to improve RNN architecture
design. The main results have been presented at NeurIPS 2020 [62]. In Sect. 2.1, we recap
the architectures of RNN and LSTM in their standard forms to provide readers with some
essential background on RNN and LSTM. In Sect. 2.2, we rewrite the standard form of
the RNN into a different form to match the form of gradient descent, which motivates
the natural approach to integrating momentum into RNNs. In Sect. 2.3, we show that
integrating momentum into RNNs can effectively alleviate the vanishing gradient issue in
training RNNs using backpropagation through time. We discuss how to integrate other
types of momentum into RNNs and integrate momentum into LSTMs in Sects. 2.4 and
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Fig. 1 Illustration of the recurrent cell (left), momentum/NAG cell (middle), and Adam/RMSProp cell (right).
We draw a connection between the dynamics of hidden states in the recurrent cell and GD. We then
introduce momentum to recurrent cell as an analogy of the momentum-accelerated GD

2.5, respectively. Finally, we verify the efficacy of the RNNs and LSTMs with momentum
integration in Sect. 2.6.

2.1 Recap on RNNs and LSTM

Recurrent cells are the building blocks of RNNs. A recurrent cell employs a cyclic con-
nection to update the current hidden state (ht ) using the past hidden state (ht−1) and the
current input data (xt ) [26]; the dependence of ht on ht−1 and xt in a recurrent cell can
be written as

ht = σ (Uht−1 + Wxt + b), xt ∈ R
d, and ht−1,ht ∈ R

h, t = 1, 2, · · · , T, (6)

where U ∈ R
h×h,W ∈ R

h×d , and b ∈ R
h are trainable parameters; σ (·) is a nonlinear

activation function, e.g., sigmoid or hyperbolic tangent; see Fig. 1 (left) for an illustration
of the RNN cell. Error backpropagation through time is used to train RNN, but it tends
to result in exploding or vanishing gradients [6]. Thus, RNNs may fail to learn long-term
dependencies.
LSTM cells augment the recurrent cell with “gates” [37] and results in

it = σ (U ihht−1 + W ixxt + bi), (it : input gate)
c̃t = tanh (U c̃hht−1 + W c̃xxt + b̃c), (̃ct : cell input)
ct = ct−1 + it 	 c̃t , (ct : cell state)
ot = σ (Uohht−1 + W oxxt + bo), (ot : output gate)
ht = ot 	 tanh ct , (ht : hidden state)

(7)

where U∗ ∈ R
h×h, W ∗ ∈ R

h×d , and b∗ ∈ R
h are learnable parameters, and 	 denotes

the Hadamard product. The input gate decides what new information to be stored in the
cell state, and the output gate decides what information to output based on the cell state
value. The gating mechanism in LSTMs can lead to the issue of saturation [13,100].
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2.2 Gradient descent analogy for RNN andMomentumRNN

Now, we are going to establish a connection between RNN and gradient descent and
further leverage momentum to improve RNNs. Let W̃ = [W , b] and x̃t = [xt , 1]� in (6),
then we have ht = σ (Uht−1 + W̃ x̃t ). For the ease of notation, without ambiguity we
denoteW := W̃ and xt := x̃t . Then, the recurrent cell can be reformulated as:

ht = σ (Uht−1 + Wxt ). (8)

Moreover, let φ(·) := σ (U (·)) and ut := U−1Wxt , we can rewrite (8) as

ht = φ(ht−1 + ut ). (9)

If we regard −ut as the “gradient” at the t-th iteration, then we can consider (9) as the
dynamical systemwhich updates the hidden state by the gradient and then transforms the
updated hidden state by the nonlinear activation function φ. We propose the following
accelerated dynamical system to accelerate the dynamics of (9), which is principled by the
accelerated gradient descent theory (see Sect. 1.1):

pt = μpt−1 − sut ; ht = φ(ht−1 − pt ), (10)

where μ ≥ 0, s > 0 are two hyperparameters, which are the analogies of the momentum
coefficient and step size in the momentum-accelerated GD, respectively. Let vt := −Upt ;
we arrive at the following dynamical system:

vt = μvt−1 + sWxt ; ht = σ (Uht−1 + vt ). (11)

The architecture of the momentum cell that corresponds to the dynamical system (11) is
plotted in Fig. 1 (middle). Compared with the recurrent cell, the momentum cell intro-
duces an auxiliary momentum state in each update and scales the dynamical system with
two positive hyperparameters μ and s.

Remark 1 Different parameterizations of (10) can result in different momentum cell
architectures. For instance, if we let vt = −pt , we end up with the following dynamical
system:

vt = μvt−1 + sŴ xt ; ht = σ (Uht−1 + Uvt ), (12)

where Ŵ := U−1W is the trainable weight matrix. Even though (11) and (12) are math-
ematically equivalent, the training procedure might cause the MomentumRNNs that are
derived from different parameterizations to have different performances.

Remark 2 We put the nonlinear activation in the second equation of (10) to ensure that
the value of ht is in the same range as the original recurrent cell.

Remark 3 The derivation above also applies to the dynamical systems in the LSTM cells,
and we can design the MomentumLSTM in the same way as designing the Momentum-
RNN.
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Fig. 2 �2 norm of the gradients of the loss L w.r.t. the state vector ht at each time step t for RNN (left) and
MomentumRNN (right). MomentumRNN does not suffer from vanishing gradients

2.3 Analysis of the vanishing gradient: momentum cell vs. recurrent cell

Let hT and ht be the state vectors at the time step T and t, respectively, and we suppose
T � t. Furthermore, assume that L is the objective to minimize, then

∂L
∂ht

= ∂L
∂hT

· ∂hT
∂ht

= ∂L
∂hT

·
T−1∏

k=t

∂hk+1
∂hk

= ∂L
∂hT

·
T−1∏

k=t
(DkU�), (13)

where U� is the transpose of U and Dk = diag(σ ′(Uhk + Wxk+1)) is a diagonal matrix
with σ ′(Uhk+Wxk+1) being its diagonal entries. ‖

∏T−1
k=t (DkU�)‖2 tends to either vanish

or explode [6]. We can use regularization or gradient clipping to mitigate the exploding
gradient, leaving vanishing gradient as the major obstacle to training RNN to learn long-
term dependency [69]. We can rewrite (11) as

ht = σ
(U (ht−1 − μht−2) + μσ−1(ht−1) + sWxt

)
, (14)

where σ−1(·) is the inverse function of σ (·). We compute ∂L/∂ht as follows

∂L
∂ht

= ∂L
∂hT

· ∂hT
∂ht

= ∂L
∂hT

·
T−1∏

k=t

∂hk+1
∂hk

= ∂L
∂hT

·
T−1∏

k=t
D̂k [U� + μ�k ], (15)

where D̂k = diag(σ ′(U (hk −μhk−1)+μσ−1(hk )+ sWxk+1)) and � = diag((σ−1)′(hk )).
For mostly used σ , e.g., sigmoid and tanh, (σ−1(·))′ > 1 and μ�k dominatesU�.2 There-
fore, with an appropriate choice ofμ, the momentum cell can alleviate vanishing gradient
and accelerate training.
We empirically corroborate that momentum cells can alleviate vanishing gradients by

training a MomentumRNN and its corresponding RNN on the PMNIST classification
task and plot ‖∂L/∂ht‖2 for each time step t. Figure 2 confirms that unlike in RNN, the
gradients in MomentumRNN do not vanish.

2.4 BeyondMomentumRNN: NAG and Adam principled RNNs

There are several other advanced formalisms of momentum existing in optimization,
which can be leveraged for RNN architecture design. In this subsection, we present two

2In the vanishing gradient scenario, ‖U‖2 is small; also it can be controlled by regularizing the loss function.
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additional variants of MomentumRNN that are derived from the Nesterov-accelerated
gradient (NAG)-style momentum with restart [61,106] and Adam [44].
NAG-PrincipledRNNs.Themomentum-acceleratedGD can be further accelerated by

replacing the constant momentum coefficient μ in (11) with the NAG-style momentum,
i.e., settingμ to (t−1)/(t+2) at the t-th iteration. Furthermore, we can accelerateNAGby
resetting the momentum to 0 after every F iterations, i.e., μ = (t mod F )/((t mod F )+
3), which is the NAG-style momentum with a scheduled restart of the appropriately
selected frequency F [106]. For convex optimization,NAGhas a convergence rateO(1/t2),
which is significantly faster thanGD orGDwith constantmomentumwhose convergence
rate is O(1/t). Scheduled restart not only accelerates NAG to a linear convergence rate
O(α−t )(0 < α < 1) under mild extra assumptions but also stabilizes the NAG iteration
[106].We call theMomentumRNNwith theNAG-stylemomentumand scheduled restart
momentum the NAG-based RNN and the scheduled restart RNN (SRRNN), respectively.
AdamPrincipledRNNs.Adam[44] leverages themoving averageofhistorical gradients

and entry-wise squared gradients to accelerate the stochastic gradient dynamics. We use
Adam to accelerate (9) and end up with the following iteration

pt = μpt−1 + (1 − μ)ut ,

mt = βmt−1 + (1 − β)ut 	 ut ,

ht = φ

(

ht−1 − s
pt√rt + ε

)

,

(16)

where μ, s,β > 0 are hyperparameters, ε is a small constant and chosen to be 10−8 by
default, and 	/

√· denotes the entry-wise product/square root3. Again, let vt = −Upt ,
we rewrite (16) as follows

vt = μvt−1 + (1 − μ)Wxt ,
mt = βmt−1 + (1 − β)ut 	 ut ,

ht = σ

(

Uht−1 + s
vt√mt + ε

)

.

As before, here ut := U−1Wxt . Computing U−1 is expensive. Our experiments suggest
that replacing ut 	 ut byWxt 	 Wxt is sufficient and more efficient to compute. In our
implementation, we also relax vt = μvt−1 + (1 − μ)Wxt to vt = μvt−1 + sWxt that
follows the momentum in the MomentumRNN (11) for better performance. Therefore,
we propose the AdamRNN that is given by

vt = μvt−1 + sWxt ,
mt = βmt−1 + (1 − β)(Wxt 	 Wxt ),

ht = σ

(

Uht−1 + vt√mt + ε

)

.

(17)

In AdamRNN, if μ is set to 0, we achieve another new RNN, which obeys the RMSProp
gradient update rule [97]; which we call RMSPropRNN.

3In contrast to Adam, we do not normalize pt andmt since they can be absorbed in the weight matrices.
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Remark 4 Both AdamRNN and RMSPropRNN can also be derived by letting vt = −pt
and Ŵ := U−1W as in Remark 1. This parameterization yields the following formulation
for AdamRNN

vt = μvt−1 + sŴ xt ,
mt = βmt−1 + (1 − β)(Ŵ xt 	 Ŵ xt ),

ht = σ

(

Uht−1 + Uvt√mt + ε

)

.

Here, we simply need to learn Ŵ and U without any relaxation. In contrast, we relaxed
U−1 to an identity matrix in (17). Our experiments suggest that both parameterizations
yield similar results.

2.5 Integrating momentum into LSTMs

Similar to integrating momentum into RNNs, we can integrate momentum into LSTMs
by handling the input gate, cell input, and output gate in the same way as outlined in
Sects. 2.2 and 2.4.

2.6 Experimental results

In this subsection, we evaluate the effectiveness of our momentum approach in designing
RNNs in terms of convergence speed and accuracy. We compare the performance of
the MomentumLSTM with the baseline LSTM [37] in the following tasks: (1) the object
classification task on pixel-permuted MNIST [47], (2) the speech prediction task on the
TIMIT dataset [3,34,35,58,113], (3) the celebrated copying and adding tasks [3,37], and
(4) the languagemodeling task on the Penn TreeBank (PTB) dataset [59]. These four tasks
are among standard benchmarks to measure the performance of RNNs and their ability
to handle long-term dependencies. Also, these tasks cover different data modalities—
image, speech, and text data—as well as a variety of model sizes, ranging from thousands
to millions of parameters with one (MNIST and TIMIT tasks) or multiple (PTB task)
recurrent cells in concatenation.Our experimental results confirm thatMomentumLSTM
converges faster and yields better test accuracy than the baseline LSTM across tasks and
settings. We also discuss the AdamLSTM, RMSPropLSTM, and scheduled restart LSTM
(SRLSTM) and show their advantage over MomentumLSTM in specific tasks. All of our
results are averaged over 5 runs with different seeds. ForMNIST and TIMIT experiments,
we use the baseline codebase provided by [10]. For PTB experiments, we use the baseline
codebase provided by [81].

2.6.1 Pixel-by-Pixel MNIST

In this task, we classify image samples of hand-written digits from theMNIST dataset [50]
into one of the ten classes. Following the implementation of [47], we flatten the image
of original size 28 × 28 pixels and feed it into the model as a sequence of length 784. In
the unpermuted task (MNIST), the sequence of pixels is processed row by row. In the
permuted task (PMNIST), a fixed permutation is selected at the beginning of the experi-
ments and then applied to both training and test sequences. We summarize the results in
Table 1. Our experiments show that MomentumLSTM achieves better test accuracy than
the baseline LSTM in both MNIST and PMNIST digit classification tasks using different
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Table 1 Best test accuracy at the MNIST and PMNIST tasks (%)

Model n # params (K) MNIST PMNIST

LSTM 128 ≈ 68 98.70[34],97.30 [102] 92.00 [34],92.62 [102]

LSTM 256 ≈ 270 98.90 [34], 98.50 [113] 92.29 [34], 92.10 [113]

MomentumLSTM 128 ≈ 68 9.04 ± 0.049 3.40 ± 0.259

MomentumLSTM 256 ≈ 270 9.08 ± 0.059 4.72 ± 0.169

AdamLSTM 256 ≈ 270 99.09 ± 0.03 95.05 ± 0.37

RMSPropLSTM 256 ≈ 270 9.15 ± 0.069 5.38 ± 0.199

SRLSTM 256 ≈ 270 99.01 ± 0.07 93.82 ± 1.85

We use the baseline results reported in [34,102,113]. Our proposed models outperform the baseline LSTM. Among the
models usingN = 256 hidden units, RMSPropLSTM yields the best results

Fig. 3 Train and test loss of MomentumLSTM, AdamLSTM, RMSPropLSTM, SRLSTM, and LSTM for MNIST (left
two panels) and TIMIT (right two panels) tasks. MomentumLSTM converges faster than LSTM in both tasks.
For MNIST, AdamLSTM and RMSPropLSTM converge fastest. For TIMIT, MomentumLSTM and SRLSTM
converge fastest

numbers of hidden units (i.e., N = 128, 256). Especially, the improvement is significant
on the PMNIST task, which is designed to test the performance of RNNs in the context of
long-term memory. Furthermore, we notice that MomentumLSTM converges faster than
LSTM in all settings. Figure 3 corroborates this observation when using N = 256 hidden
units.

2.6.2 TIMIT speech dataset

We study how MomentumLSTM performs on audio data with speech prediction exper-
iments on the TIMIT speech dataset [28], which is a collection of real-world speech
recordings. As first proposed by [113], the recordings are downsampled to 8kHz and then
transformed into log-magnitudes via a short-time Fourier transform (STFT). The task
accounts for predicting the next log-magnitude given the previous ones. We use the stan-
dard train/validation/test separation in [11,52,113], thereby having 3640 utterances for
the training set with a validation set of size 192 and a test set of size 400.
The results for this TIMIT speech prediction are shown in Table 2. Results are reported

on the test set using themodel parameters that yield the best validation loss. Again, we see
the advantage of MomentumLSTM over the baseline LSTM. In particular, MomentumL-
STM yields much better prediction accuracy and faster convergence speed compared
to LSTM. Figure 3 shows the convergence of MomentumLSTM vs. LSTM when using
N = 158 hidden units.

2.6.3 Copying and adding tasks

Two other important tasks for measuring the ability of a model to learn long-term depen-
dency are the copying and adding tasks [3,37]. In both copying and adding tasks, avoiding
vanishing/exploding gradients becomes more relevant when the input sequence length
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Table 2 Test and validation MSEs at the end of the epoch with the lowest validation MSE for the
TIMIT task

Model n # params (K) Val. MSE Test MSE

LSTM 84 ≈ 83 14.87 ± 0.15 14.94 ± 0.15

LSTM 120 ≈ 135 11.77 ± 0.14 11.83 ± 0.12

LSTM 158 ≈ 200 9.33 ± 0.14 9.37 ± 0.14

MomentumLSTM 84 ≈ 83 0.90 ± 0.191 0.98 ± 0.181

MomentumLSTM 120 ≈ 135 .00 ± 0.308 .04 ± 0.308

MomentumLSTM 158 ≈ 200 .86 ± 0.145 .87 ± 0.155

AdamLSTM 158 ≈ 200 8.66 ± 0.15 8.69 ± 0.14

RMSPropLSTM 158 ≈ 200 9.13 ± 0.33 9.17 ± 0.33

SRLSTM 158 ≈ 200 .81 ± 0.105 .83 ± 0.105

All of our proposed models outperform the baseline LSTM. Among models usingN = 158 hidden units, SRLSTM performs
the best

Fig. 4 Train loss vs. iteration for (left) copying task with sequence length 2K and (right) adding task with
sequence length 750. AdamLSTM and RMSPropLSTM converge faster and to better final losses than other
models

increases. We compare the performance of MomentumLSTM over LSTM on these tasks.
We also examine the performance of AdamLSTM, RMSPropLSTM, and SRLSTM on the
same tasks.We summarize our results in Fig. 4. In copying task for sequences of length 2K,
MomentumLSTMobtains slightly better final training loss than the baseline LSTM (0.009
vs. 0.01). In adding task for sequence of length 750, both models achieve similar training
loss of 0.162. However, AdamLSTM and RMSPropLSTM significantly outperform the
baseline LSTM.

2.6.4 Word-level Penn TreeBank

To study the advantage of MomentumLSTM over LSTM on text data, we perform lan-
guage modeling on a preprocessed version of the PTB dataset [59], which has been a
standard benchmark for evaluating language models. Unlike the baselines used in the
(P)MNIST and TIMIT experiments which contain one LSTM cell, in this PTB experi-
ment, we use a three-layer LSTMmodel, which contains three concatenated LSTM cells,
as the baseline. The size of this model in terms of the number of parameters is also
much larger than those in the (P)MNIST and TIMIT experiments. Table 3 shows the test
and validation perplexity (PPL) using the model parameters that yield the best validation
loss. Again, MomentumLSTM achieves better perplexities and converges faster than the
baseline LSTM (see Fig. 5).
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Table 3 Model test perplexity at the end of the epoch with the lowest validation perplexity for the
Penn Treebank language modeling task (word level)

Model # params (M) Val. PPL Test PPL

lstm ≈ 24 61.96 ± 0.83 59.71 ± 0.99

MomentumLSTM ≈ 24 0.71 ± 0.246 8.62 ± 0.225

SRLSTM ≈ 24 61.12 ± 0.68 58.83 ± 0.62

Fig. 5 Train (left) and test loss (right) of MomentumLSTM (blue), SRLSTM (cyan), and LSTM (red) for the Penn
Treebank language modeling tasks at word level

2.6.5 NAG- and Adam-principled RNNs

Finally, we evaluate AdamLSTM, RMSPropLSTM, and SRLSTM on all tasks. For
(P)MNIST and TIMIT tasks, we summarize the test accuracy of the trained models
in Tables 1 and 2 and provide the plots of train and test losses in Fig. 3. We observe
that though AdamLSTM and RMSPropLSTM work better than the MomentumLSTM
at (P)MNIST task, they yield worse results at the TIMIT task. Interestingly, SRLSTM
shows an opposite behavior—better than MomentumLSTM at TIMIT task but worse at
(P)MNIST task. For the copying and adding tasks, Fig. 4 shows that AdamLSTM and
RMSPropLSTM converge faster and to better final training loss than other models in
both tasks. Finally, for the PTB task, both MomentumLSTM and SRLSTM outperform
the baseline LSTM (see Fig. 5 and Table 3). However, in this task, AdamLSTM and
RMSPropLSTM yield slightly worse performance than the baseline LSTM. In particular,
test PPL for AdamLSTM and RMSPropLSTM are 61.11 ± 0.31 and 64.53 ± 0.20, respec-
tively, which are higher than the test PPL for LSTM (59.71± 0.99). We observe that there
is nomodel that win in all tasks. This is somewhat expected, given the connection between
our model and its analogy to optimization algorithm. An optimizer needs to be chosen
for each particular task, and so is for our MomentumRNN. All of our models outperform
the baseline LSTM.

2.7 Summary of our contributions and limitations

We present a systematic approach to integrating momentum into RNNs and LSTMs,
resulting in more expressive neural network architectures for sequential learning. In par-
ticular, the new architecture canmitigate vanishing gradient issues and results in effective
learning of long-termdependencies.Oneparticular bottleneck is that the currentMomen-
tumRNNs require calibrating momentum-related hyperparameters. One approach to
avoid this is to develop adaptive schemes for these hyperparameters; see Sect. 4 for an
illustration.
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3 Neural ODEs
In this section, we derive the continuous limit of heavy-ball momentum and then present
a new class of neural ODEs, named heavy-ball neural ODEs (HBNODEs), which have
two properties that imply practical advantages over NODEs: (1) The adjoint state of
an HBNODE also satisfies an HBNODE, accelerating both forward and backward ODE
solvers, thus significantly reducing the NFEs and improving the utility of trained models.
(2) The spectrum ofHBNODEs is well structured, enabling effective learning of long-term
dependencies from complex sequential data. We verify the advantages of HBNODEs over
NODEs on benchmark tasks, including image classification, learning complex dynamics,
and sequential modeling. Our method requires remarkably fewer forward and backward
NFEs, is more accurate, and learns long-term dependencies more effectively than the
other ODE-based neural network models. Part of the results in this section has been
accepted for publication at NeurIPS 2021 [114]. We organize this section as follows:
In Sect. 3.1, we briefly review the neural ODE models and their bottlenecks and some
recent advances in neural ODEs. We present heavy-ball neural ODEs and their adjoint
equations in Sect. 3.2, and we show that heavy-ball neural ODEs help to learn long-term
dependencies in Sect. 3.3. We contrast the empirical performance of heavy-ball neural
ODEs with other benchmark models in Sect. 3.4.

3.1 Recap on neural ODEs

Neural ODEs (NODEs) are a family of continuous-depth machine learning models whose
forward and backward propagations rely on solving an ODE and its adjoint equation
[14]. NODEs model the dynamics of hidden features h(t) ∈ R

N using an ODE, which is
parametrized by a neural network f (h(t), t, θ ) ∈ R

N with learnable parameters θ , i.e.,

dh(t)
dt

= f (h(t), t, θ ). (18)

Starting from the inputh(t0),NODEs obtain the outputh(T ) by solving (18) for t0 ≤ t ≤ T
with the initial value h(t0), using a black-box numerical ODE solver. The NFEs that the
black-boxODE solver requires in a single forward pass are an analogue for the continuous-
depthmodels [14] to the depth of networks in ResNets [32]. The loss between h(T ) and the
ground truth is denoted by L(h(T )); we update parameters θ using the following gradient
[72]

dL(h(T ))
dθ

=
∫ T

t0
a(t)∂f (h(t), t, θ )

∂θ
dt, (19)

where a(t) := ∂L/∂h(t) satisfies the following adjoint equation

da(t)
dt

= −a(t)∂f (h(t), t, θ )
∂h . (20)

NODEs are flexible in learning from irregularly sampled sequential data and particu-
larly suitable for learning complex dynamical systems [14,24,42,65,80,117], which can be
trained by efficient algorithms [20,74,118]. The drawback of NODEs is also prominent. In
many ML tasks, NODEs require very high NFEs in both training and inference, especially
in high accuracy settings where a lower tolerance is needed. The NFEs increase rapidly
with training; high NFEs reduce computational speed and accuracy of NODEs and can
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Fig. 6 Contrasting NODE, ANODE, SONODE, HBNODE, and GHBNODE for CIFAR10 classification in NFEs,
training time, and test accuracy. (Tolerance: 10−5, see Sect. 3.4.2 for experimental details)

lead to blow-ups in the worst-case scenario [25,30,57,65]. As an illustration, we train
NODEs for CIFAR10 classification using the same model and experimental settings as in
[25], except using a tolerance of 10−5; Fig. 6 shows both forward and backward NFEs and
the training time of different ODE-based models; we see that NFEs and computational
times increase very rapidly for NODE, ANODE [25], and SONODE [65]. More results
on the large NFE and degrading utility issues for different benchmark experiments are
available in Sect. 3.4. Another issue is that NODEs often fail to effectively learn long-term
dependencies in sequential data [48], discussed in Sect. 3.3.

3.2 Heavy-ball neural ODEs

3.2.1 Heavy-ball ODE

The continuous limit of the heavy-ball method has been widely studied, see, e.g., [4,111].
For the ease of reading and completeness, we derive the HBODE from the heavy-ball
momentum method. For any fixed step size s, let mk := (xk+1 − xk )/√s, and let β :=
1 − γ

√
s, where γ ≥ 0 is another hyperparameter. Then we can rewrite (1) as

mk+1 = (1 − γ
√
s)mk − √

s∇F (xk ); xk+1 = xk + √
smk+1. (21)

Let s → 0 in (21); we obtain the following system of first-order ODEs,

dx(t)
dt

= m(t);
dm(t)
dt

= −γm(t) − ∇F (x(t)). (22)

This can be further rewritten as a second-order heavy-ball ODE (HBODE), which also
models a damped oscillator,

d2x(t)
dt2

+ γ
dx(t)
dt

= −∇F (x(t)). (23)

3.2.2 Heavy-ball neural ODEs

Similar to NODE, we parameterize −∇F in (23) using a neural network f (h(t), t, θ ),
resulting in the following HBNODE with initial position h(t0) and momentum m(t0) :=
dh/dt(t0),

d2h(t)
dt2

+ γ
dh(t)
dt

= f (h(t), t, θ ), (24)

where γ ≥ 0 is the damping parameter, which can be set as a tunable or a learnable
hyperparameter with positivity constraint. In the trainable case, we use γ = ε ·sigmoid(ω)
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for a trainable ω ∈ R and a fixed tunable upper bound ε (we set ε = 1 below). According
to (22), HBNODE (24) is equivalent to

dh(t)
dt

= m(t);
dm(t)
dt

= −γm(t) + f (h(t), t, θ ). (25)

Equation (24) (or equivalently, the system (25)) defines the forwardODE for theHBNODE,
and we can use either the first-order (Prop. 2) or the second-order (Prop. 1) adjoint
sensitivity method to update the parameter θ [65].

Proposition 1 (Adjoint equation for HBNODE) The adjoint state a(t) := ∂L/∂h(t) for
the HBNODE (24) satisfies the following HBODE with the same damping parameter γ as
that in (24),

d2a(t)
dt2

− γ
da(t)
dt

= a(t) ∂f
∂h (h(t), t, θ ). (26)

Proof Consider the following coupled first-order ODE system

∂

∂t

[
h
v

]

=
[

v
f (h(t), v(t), t, θ )

]

,
[
h
v

]

(t0) =
[
ht0
vt0

]

. (27)

Denote z =
[
h
v

]

and final state as

[
h(T )
v(T )

]

=
[
hT
vT

]

= zT . (28)

Then, the adjoint equation is given by

∂A(t)
∂t

= −A(t)
[
0 I
∂f
∂h

∂f
∂v

]

, A(T ) = −I , a(t) = − dL
dzT

A(t). (29)

By rewriting A =
[
Ah Av

]
, we have the following differential equations

∂Ah(t)
∂t

= −Av(t)
∂f
∂h ,

∂Av(t)
∂t

= −Ah(t) − Av(t)
∂f
∂v , (30)

with initial conditions

Ah(T ) = −
[
I
0

]

, Av(T ) = −
[
0
I

]

, (31)

and adjoint states

ah(t) = dL
dzT

Ah(t), av(t) = dL
dzT

Av(t). (32)

The gradient equations become

dL
dθ

=
∫ T

t0
a
[
0
∂f
∂θ

]

dt =
∫ T

t0
av

∂f
∂θ

dt,
dL
dht0

= ah(t0),
dL
dvt0

= av(t0). (33)
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Note ht0 is fixed, and thus, ah disappears in gradient computation. Therefore, we are only
interested in av . Thus, the adjoint Av satisfies the following second-order ODE

∂2Av(t)
∂t2

= Av(t)
∂f
∂h − ∂(Av(t) ∂f

∂v )
∂t

, (34)

and thus

∂2av(t)
∂t2

= av(t)
∂f
∂h − ∂(av(t) ∂f

∂v )
∂t

, (35)

with initial conditions

av(T ) = −dL
dz Av(T ) = dL

dvT
,

∂av(T )
∂t

= − dL
dhT

− av(T )
∂f
∂v (T ). (36)

As HBNODE takes the form

d2h(t)
dt2

+ γ
dh(t)
dt

= f (h(t), t, θ ), (37)

which can also be viewed as a SONODE. By applying the adjoint equation (35), we arrive
at

∂2a(t)
∂t2

= a(t) ∂f
∂h + γ

∂a(t)
∂t

. (38)

As HBNODE only carries its state h to the loss L, we have dL
dvT = 0, and thus, the initial

conditions in equation (36) become

a(T ) = 0, ∂a(T )
∂t

= − dL
dhT

, (39)

which concludes the proof of Proposition 1. ��

Remark 5 Note that we solve the adjoint equation (26) from time t = T to t = t0 in the
backward propagation. By letting τ = T − t and b(τ ) = a(T − τ ), we can rewrite (26) as
follows,

d2b(τ )
dτ 2

+ γ
db(τ )
dτ

= b(τ ) ∂f
∂h (h(T − τ ), T − τ , θ ). (40)

Therefore, the adjoint of theHBNODE is also aHBNODEand they have the samedamping
parameter.

Proposition 2 (Adjoint equations for the first-orderHBNODE system)The adjoint states
ah(t) := ∂L/∂h(t) and am(t) := ∂L/∂m(t) for the first-order HBNODE system (25) satisfy

dah(t)
dt

= −am(t)
∂f
∂h (h(t), t, θ );

dam(t)
dt

= −ah(t) + γam(t). (41)
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Proof The coupled form of HBNODE is a coupled first-order ODE system of the form

∂

∂t

[
h
m

]

=
[

m
−γm + f (h(t), t, θ )

]

,
[
h
m

]

(t0) =
[
ht0
mt0

]

. (42)

Denote the final state as
[
h(T )
m(T )

]

=
[
hT
mT

]

= z. (43)

Using the conclusions from the proof of Proposition 1, we have the adjoint equation

∂A(t)
∂t

= −A(t)
[
0 I
∂f
∂h −γ I

]

, A(T ) = −I , a(t) = −dL
dz A(t). (44)

Let
[
ah am

]
= a, by linearity we have

∂
[
ah am

]

∂t
= −

[
ah am

]
[
0 I
∂f
∂h −γ I

]

,
[
ah(T ) am(T )

]
=
[

dL
dhT

dL
dmT

]
, (45)

which gives us the initial conditions at t = T , and the simplified first-order ODE system

∂ah
∂t

= −am
∂f
∂h ,

∂am
∂t

= −ah + γam, (46)

concluding the proof of Proposition 2. ��

Remark 6 Let ãm(t) = dam(t)/dt, then am(t) and ãm(t) satisfies the following first-order
heavy-ball ODE system

dam(t)
dt

= ãm(t);
dãm(t)
dt

= am(t)
∂f
∂h (h(t), t, θ ) + γ ãm(t). (47)

Note that we solve this system backward in time in back-propagation. Moreover, we have
ah(t) = γam(t) − ãm(t).

Similar to [65], we use the coupled first-order HBNODE system (25) and its adjoint
first-order HBNODE system (41) for practical implementation, since the entangled rep-
resentation permits faster computation [65] of the gradients of the coupled ODE systems.

3.2.3 Generalized heavy-ball neural ODEs

In this part, we propose a generalized version of HBNODE (GHBNODE), see (48), to
mitigate the potential blow-up issue in training ODE-based models. We observe that h(t)
of ANODEs [25], SONODEs [65], and HBNODEs (25) usually grows much faster than
that of NODEs. The fast growth of h(t) can lead to finite-time blow-up. As an illustration,
we compare the performance of NODE, ANODE, SONODE, HBNODE, and GHBNODE
on the Silverbox task as in [65]. The goal of the task is to learn the voltage of an electronic
circuit that resembles a Duffing oscillator, where the input voltage V1(t) is used to predict
the output V2(t). Similar to the setting in [65], we first augment ANODE by 1 dimension
with 0-augmentation and augment SONODE, HBNODE, and GHBNODE with a dense



Wang et al. Res Math Sci            (2022) 9:57 Page 17 of 37    57 

Fig. 7 Contrasting h(t) for different models. h(t) in ANODE, SONODE, and HBNODE grows much faster than
that in NODE. GHBNODE controls the growth of h(t) effectively when t is large

network. We use a simple dense layer to parameterize f for all five models, with an extra
input term forV1(t)4. For both HBNODE andGHBNODE, we set the damping parameter
γ to be sigmoid(−3). ForGHBNODE (48) below, we set σ (·) to be thehardtanh function
with bound [−5, 5] and ξ = ln(2).As shown inFig. 7, compared to the vanillaNODE, the �2
norm of h(t) grows much faster when a higher-order NODE is used, which leads to blow-
up during training. Similar issues arise in the time-series experiments (see Sect. 3.4.4),
where SONODE blows up during long-term integration in time, and HBNODE suffers
from the same issue with some initialization.
To alleviate the problem above, we propose the following GHBNODE

dh(t)
dt

= σ (m(t)),

dm(t)
dt

= −γm(t) + f (h(t), t, θ ) − ξh(t),
(48)

where σ (·) is a nonlinear activation, which is set as tanh in our experiments. The positive
hyperparameters γ , ξ > 0 are tunable or learnable. In the trainable case, we let γ =
ε · sigmoid(ω) as in HBNODE, and ξ = softplus(χ ) to ensure that γ , ξ ≥ 0. Here, we
integrate two main ideas into the design of GHBNODE: (i) We incorporate the gating
mechanism used in LSTM [37] andGRU [16], which can suppress the aggregation ofm(t);
(ii) following the idea of skip connection [33], we add the term ξh(t) into the governing
equation of m(t), which benefits training and generalization of GHBNODEs. Figure 7
shows that GHBNODE can indeed control the growth of h(t) effectively.

Proposition 3 (Adjoint equations forGHBNODEs)Theadjoint statesah(t) := ∂L/∂h(t),
am(t) := ∂L/∂m(t) for the GHBNODE (48) satisfy the following first-order ODE system

∂ah(t)
∂t

= −am(t)
( ∂f

∂h (h(t), t, θ ) − ξI
)
,

∂am(t)
∂t

= −ah(t)σ ′(m(t)) + γam(t).
(49)

Proof GHBNODE can be written as the following first-order ODE system

∂

∂t

[
h
m

]

=
[

σ (m)
−γm + f (h(t), t, θ ) − ξh(t)

]

,
[
h
m

]

(t0) =
[
ht0
mt0

]

. (50)

4Here, we exclude an h3 term that appeared in the original Duffing oscillator model because including it would result
in finite-time explosion.
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Denote the final state as zT := [hTmT ]. We have the adjoint equation

∂A(t)
∂t

= −A(t)
[

0 σ ′(m)
∂f
∂h − ξI −γ I

]

, A(T ) = −I , a(t) = − dL
dzT

A(t). (51)

Let
[
ah am

]
= a, by linearity we have

∂
[
ah am

]

∂t
= −

[
ah am

]
[

0 σ ′(m)
∂f
∂h − ξI −γ I

]

,
[
ah(T ) am(T )

]
=
[

dL
dhT

dL
dmT

]
,

(52)

which gives us the initial conditions at t = T , and the simplified first-order ODE system

∂ah
∂t

= −am
( ∂f

∂h − ξI
)
,

∂am
∂t

= −ahσ ′(m) + γam, (53)

concluding the proof of Proposition 3. ��

Though the adjoint state of the GHBNODE (49) does not satisfy the exact heavy-ball
ODE, based on our empirical study, it also significantly reduces the backward NFEs.

3.3 Learning long-term dependencies: vanishing gradient

As mentioned in Sect. 2, the vanishing gradient is the main bottleneck for training RNNs
with long-term dependencies. As the continuous analogue of RNN, NODEs as well as
their hybrid ODE-RNNmodels, may also suffer from vanishing in the adjoint state a(t) :=
∂L/∂h(t) [48]. When the vanishing gradient issue happens, a(t) goes to 0 quickly as T − t
increases, then dL/dθ in (19) will be independent of these a(t). We have the following
expressions for the adjoint states of the NODE and HBNODE:

– For NODE, we have

∂L
∂ht

= ∂L
∂hT

∂hT
∂ht

= ∂L
∂hT

exp
{

−
∫ t

T

∂f
∂h (h(s), s, θ )ds

}
. (54)

– For GHBNODE5, from (41) we can derive

[
∂L
∂ht

∂L
∂mt

]
=
[

∂L
∂hT

∂L
∂mT

]
[

∂hT
∂ht

∂hT
∂mt

∂mT
∂ht

∂mT
∂mt

]

=
[

∂L
∂hT

∂L
∂mT

]
exp

{
−
∫ t

T

[
0 ∂σ

∂m(
∂f
∂h − ξI

)
−γ I

]

ds

︸ ︷︷ ︸
:=M

}
.

(55)

Note that the matrix exponential is directly related to its eigenvalues. By Schur decom-
position, there exists an orthogonal matrix Q and an upper triangular matrix U , where
the diagonal entries of U are eigenvalues of Q ordered by their real parts, such that

−M = QUQ� =⇒ exp{−M} = Q exp{U}Q�. (56)

5HBNODE can be seen as a special GHBNODE with ξ = 0 and σ be the identity map.
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Let v� :=
[

∂L
∂hT

∂L
∂mT

]
Q, then (55) can be rewritten as

[
∂L
∂ht

∂L
∂mt

]
=
[

∂L
∂hT

∂L
∂mT

]
exp{−M}

=
[

∂L
∂hT

∂L
∂mT

]
Q exp{U}Q� = v� exp{U}Q�.

(57)

Taking the �2 norm in (57) and dividing both sides by
∥
∥
∥
[

∂L
∂hT

∂L
∂mT

]∥
∥
∥
2
, we have

∥
∥
∥
[

∂L
∂ht

∂L
∂mt

]∥
∥
∥
2∥

∥
∥
[

∂L
∂hT

∂L
∂mT

]∥
∥
∥
2

=
∥
∥v� exp{U}Q�∥∥

2∥
∥v�Q�∥∥

2
=
∥
∥v� exp{U}∥∥2

‖v‖2 =
∥
∥
∥e� exp{U}

∥
∥
∥
2
, (58)

i.e.,
∥
∥
∥
[

∂L
∂ht

∂L
∂mt

]∥
∥
∥
2

= ∥∥e� exp{U}∥∥2
∥
∥
∥
[

∂L
∂hT

∂L
∂mT

]∥
∥
∥
2
where e = v/‖v‖2.

Proposition 4 The eigenvalues of −M can be paired so that the sum of each pair equals
(t − T )γ .

Proof Let F = 1
t−T

∫ t
T

∂f
∂h (h(s), s, θ )ds − ξI , J = 1

t−T
∫ t
T

∂σ
∂m (m(s))ds, and H = 1

t−TM;
then, we have the following equation

H = 1
t − T

M =
[
0 J
F −γ I

]

. (59)

As (λ + γ )I commutes with any matrix F , the characteristics polynomials of H and JF
satisfy the relation

chH (λ) = det(λI − H ) = det
[

λI −J
−F (λ + γ )I

]

= det(λ(λ + γ )I − JF ) = −chJF (λ(λ + γ )).

(60)

Since the characteristics polynomial of JF splits in the field C of complex numbers, i.e.,
chJF (x) =∏n

i=1(x − λJF ,i), we have

chH (λ) = −chJF (λ(λ + γ )) = −
n∏

i=1
(λ(λ + γ ) − λJF ,i). (61)

Therefore, the eigenvalues of H appear in n pairs with each pair satisfying the quadratic
equation

λ(λ + γ ) − λJF ,i = 0. (62)

By Vieta’s formulas, the sum of these pairs are all −γ . Therefore, the eigenvalues of
M come in n pairs and the sum of each pair is −(t − T )γ , which finishes the proof of
Proposition 4. ��
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Fig. 8 Plot of the �2-norm of the adjoint states for ODE-RNN and (G)HBNODE-RNN back-propagated from
the last time stamp. The adjoint state of ODE-RNN vanishes quickly when the gap between the final time T
and intermediate time t becomes larger, while the adjoint states of (G)HBNODE-RNN decay much more
slowly. This implies that (G)HBNODE-RNN is more effective in learning long-term dependency than ODE-RNN

For a given constant a > 0, we can group the upper triangular matrix exp{U} as follows

exp{U} :=
[
exp{UL} P

0 exp{UV }

]

, (63)

where the diagonal ofUL (UV ) contains eigenvalues of−M that are no less (greater) than
(t −T )a. Then, we have ‖e� exp{U}‖2 ≥ ‖e�

L exp{UL}‖2 where the vector eL denotes the
firstm columns of e withm be the number of columns ofUL. By choosing 0 ≤ γ ≤ 2a, for
every pair of eigenvalues of −M there is at least one eigenvalue whose real part is no less
than (t −T )a. Therefore, exp{UL} decays at a rate at most (t −T )a, and the dimension of
UL is at leastN ×N . We avoid exploding gradients by clipping the �2 norm of the adjoint
states similar to that used for training RNNs.
In contrast, all eigenvalues of the matrix

∫ t
T ∂f /∂hds in (54) for NODE can be very

positive or negative, resulting in exploding or vanishing gradients. As an illustration,
we consider the benchmark Walker2D kinematic simulation task that requires learning
long-term dependencies effectively [8,48]. We train ODE-RNN [80] and (G)HBNODE-
RNN on this benchmark dataset, and the detailed experimental settings are provided
in Sect. 3.4.4. Figure 8 plots ‖∂L/∂ht‖2 for ODE-RNN and ‖[∂L/∂ht ∂L/∂mt ]‖2 for
(G)HBNODE-RNN, showing that the adjoint state of ODE-RNN vanishes quickly, while
that of (G)HBNODE-RNN does not vanish even when the gap between T and t is very
large.

3.4 Experimental results

In this section, we compare the performance of the proposed HBNODE and GHBNODE
with existing ODE-based models, including NODE [14], ANODE [25], and SONODE
[65] on the benchmark point cloud separation, image classification, learning dynamical
systems, and kinematic simulation. For all the experiments, we use Adam [44] as the
benchmark optimization solver (the learning rate and batch size for each experiment are
listed in Table 4). For HBNODE and GHBNODE, we set γ = sigmoid(θ ), where θ is a
trainable weight initialized as θ = −3.
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Table 4 The batch size and learning rate for different datasets

Dataset Point Cloud MNIST CIFAR10 Plane Vibration Walker2D

Batch Size 50 64 64 64 256

Learning Rate 0.01 0.001 0.001 0.0001 0.003

Fig. 9 Comparison between NODE, ANODE, SONODE, HBNODE, and GHBNODE for two-dimensional point
cloud separation. HBNODE and GHBNODE converge better and require less NFEs in both forward and
backward propagation than the other benchmark models

3.4.1 Point cloud separation

In this subsection, we consider the two-dimensional point cloud separation benchmark.
A total of 120 points are sampled, in which 40 points are drawn uniformly from the circle
‖r‖ < 0.5, and 80 points are drawn uniformly from the annulus 0.85 < ‖r‖ < 1.0. This
experiment aims to learn effective features to classify these two point clouds. Following
[25], we use a three-layer neural network to parameterize the right-hand side of each
ODE-based model, integrate the ODE-based model from t0 = 0 to T = 1, and pass the
integration results to a dense layer to generate the classification results. We set the size
of hidden layers so that the models have similar sizes, and the number of parameters of
NODE, ANODE, SONODE, HBNODE, and GHBNODE is 525, 567, 528, 568, and 568,
respectively. To avoid the effects of numerical error of the black-box ODE solver, we set
tolerance of ODE solver to be 10−7. Figure 9 plots a randomly selected evolution of the
point cloud separation for each model; we also compare the forward and backward NFEs
and the training loss of these models (100 independent runs). HBNODE and GHBNODE
improve training as the training loss consistently goes to zero over different runs, while
ANODE and SONODE often get stuck at local minima, and NODE cannot separate the
point cloud since it preserves the topology [25].

3.4.2 Image classification

We compare the performance of HBNODE andGHBNODEwith the existing ODE-based
models on MNIST and CIFAR10 classification tasks using the same setting as in [25].
We parameterize f (h(t), t, θ ) using a 3-layer convolutional network for each ODE-based
model, and the total number of parameters for each model is listed in Table 5. For a given
input image of the size c × h × w, we first augment the number of channel from c to
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Table5 The number of parameters for each models for image classification

Model NODE ANODE SONODE HBNODE GHBNODE

#Params (MNIST) 85,315 85,462 86,179 85,931 85,235

#Params (CIFAR10) 173,611 172,452 171,635 172,916 172,916

Fig. 10 Contrasting NODE [14], ANODE [25], SONODE [65], HBNODE, and GHBNODE for MNIST classification
in NFE, training time, and test accuracy. (Tolerance: 10−5)

Fig. 11 NFE vs. tolerance (shown in the colorbar) for training ODE-based models for CIFAR10 classification.
Both forward and backward NFEs of HBNODE and GHBNODE grow much more slowly than that of NODE,
ANODE, and SONODE; especially the backward NFEs. As the tolerance decreases, the advantage of HBNODE
and GHBNODE in reducing NFEs becomes more significant

c + p with the augmentation dimension p dependent on each method6. Moreover, for
SONODE, HBNODE and GHBNODE, we further include velocity or momentum with
the same shape as the augmented state.
NFEs. As shown in Figs. 6 and 10, the NFEs grow rapidly with training of the NODE,
resulting in an increasingly complex model with reduced performance and the possibility
of blow-up. Input augmentation has been verified to effectively reduce the NFEs, as both
ANODE and SONODE require fewer forward NFEs than NODE for the MNIST and
CIFAR10 classification. However, input augmentation is less effective in controlling their
backward NFEs. HBNODE and GHBNODE require much fewer NFEs than the existing
benchmarks, especially for backward NFEs. In practice, reducing NFEs implies reducing
both training and inference time, as shown in Figs. 6 and 10.
Accuracy. We also compare the accuracy of different ODE-based models for MNIST
and CIFAR10 classification. As shown in Figs. 6 and 10, HBNODE and GHBNODE have
slightly better classification accuracy than the other three models; this resonates with the
fact that less NFEs lead to simpler models which generalize better [25,65].
NFEs vs. tolerance. We further study the NFEs for different ODE-based models under
different tolerances of the ODE solver using the same approach as in [14]. Figure 11
depicts the forward and backward NFEs for different models under different tolerances.
We see that (i) both forward andbackwardNFEs growquicklywhen tolerance is decreased,

6We set p = 0, 5, 4, 4, 5/0, 10, 9, 9, 9 onMNIST/CIFAR10 for NODE, ANODE, SONODE, HBNODE, and GHBNODE,
respectively.
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Fig. 12 Contrasting ODE-RNN, ANODE-RNN, SONODE-RNN, HBNODE-RNN, and GHBNODE-RNN for learning
a vibrational dynamical system. Left most: The learned curves of each model vs. the ground truth (Time: <66
for training, 66–75 for testing)

and HBNODE and GHBNODE require much fewer NFEs than other models; (ii) under
different tolerances, the backward NFEs of NODE, ANODE, and SONODE are much
larger than the forward NFEs, and the difference becomes larger when the tolerance
decreases. In contrast, the forward and backwardNFEs ofHBNODEandGHBNODE scale
almost linearly with each other. This reflects that the advantage in NFEs of (G)HBNODE
over the benchmarks become more significant when a smaller tolerance is used.

3.4.3 Learning dynamical systems from irregularly sampled time series

In this subsection, we learn dynamical systems from experimental measurements. In
particular, we use the ODE-RNN framework [14,80], with the recognition model being
set to different ODE-based models, to study the vibration of an airplane dataset [64].
The dataset was acquired, from time 0 to 73627, by attaching a shaker underneath the
right wing to provide input signals, and 5 attributes are recorded per time stamp; these
attributes include voltage of input signal, force applied to aircraft, and acceleration at 3
different spots of the airplane. We randomly take out 10% of the data to make the time
series irregularly sampled. We use the first 50% of data as our train set, the next 25% as
validation set, and the rest as test set.We divide each set into non-overlapping segments of
consecutive 65 time stamps of the irregularly sampled time series, with each input instance
consisting of 64 time stamps of the irregularly sampled time series, andwe aim to forecast 8
consecutive time stamps starting from the last time stamp of the segment. The input is fed
through the hybrid methods in a recurrent fashion; by changing the time duration of the
last step of the ODE integration, we can forecast the output in the different time stamps.
The output of the hybrid method is passed to a single dense layer to generate the output
time series. In our experiments, we compare different ODE-based models hybrid with
RNNs. The ODE of each model is parametrized by a 3-layer network, whereas the RNN is
parametrized by a simple dense network; the total number of parameters for ODE-RNN,
ANODE-RNN, SONODE-RNN, HBNODE-RNN, and GHBNODE-RNN with 16, 22, 14,
15, 15 augmented dimensions are 15,986, 16,730, 16,649, 16,127, and 16,127, respectively.
To avoid potential error due to the ODE solver, we use a tolerance of 10−7.
In training those hybrid models, we regularize the models by penalizing the L2 distance

between the RNN output and the values of the next time stamp. Due to the second-
order natural of the underlying dynamics [65], ODE-RNN and ANODE-RNN learn the
dynamics very poorly withmuch larger training and test losses than the othermodels even
they take smallerNFEs.HBNODE-RNNandGHBNODE-RNNgive better prediction than
SONODE-RNN using less backward NFEs (Fig. 12).
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Fig. 13 Contrasting ODE-RNN, ANODE-RNN, SONODE-RNN, HBNODE-RNN, and GHBNODE-RNN for the
Walker-2D kinematic simulation

3.4.4 Walker2D kinematic simulation

We evaluate the performance of HBNODE-RNN andGHBNODE-RNNon theWalker2D
kinematic simulation task, which requires learning long-term dependency effectively [48].
The dataset [8] consists of a dynamical system from kinematic simulation of a person
walking fromapre-trained policy, aiming to learn the kinematic simulation of theMuJoCo
physics engine [98]. The dataset is irregularly sampled with 10% of the data removed from
the simulation. Each input consists of 64 time stamps fed though the hybrid methods in a
recurrent fashion, and the output is passed to a single dense layer to generate the output
time series. The goal is to provide an auto-regressive forecast so that the output time
series is as close as the input sequence shifted one time stamp to the right. We compare
ODE-RNN (with 7 augmentation), ANODE-RNN (with 7 ANODE style augmentation),
HBNODE-RNN (with 7 augmentation), and GHBNODE-RNN (with 7 augmentation).
The RNN is parametrized by a 3-layer network, whereas the ODE is parametrized by a
simple dense network. The number of parameters of the above fourmodels is 8,729, 8,815,
8,899, and 8,899, respectively. In Fig. 13, we compare the performance of the above four
models on the Walker2D benchmark; HBNODE-RNN and GHBNODE-RNN not only
require significantly less NFEs in both training (forward and backward) and in testing
than ODE-RNN and ANODE-RNN, but also have much smaller training and test losses.

3.5 Summary of our contributions and limitations

In this section, we present HBNODEs, a new class of continuous-depth neural networks
motivated by the continuous limit of the classical momentum method. HBNODE enjoys
computational efficiency since its adjoint equation is also an HBNODE. Also, HBNODE
can learn long-term dependencies effectively as the adjoint state of HBNODE does not
vanish. There are two open problems: (1) Are HBNODEs robust to noisy information,
and whether HBNODEs are more robust than NODEs? (2) Can we extend HBNODEs to
accelerate learning continuous normalizing flows [30]? One particular challenge is that
HBNODEs are not learning one-to-one maps.

4 Transformers
We further show that momentum can be integrated into transformers, which can signifi-
cantly reduce the computational andmemory costs of the standard transformer [101] and
enhance the performance of linear transformers [40].
The self-attentionmechanism is a fundamental building block of transformers [43,101].

Given an input sequence X = [x1, x2, · · · , xN ]� ∈ R
N×Dx of N feature vectors, the self-

attention transformers it into another sequence V̂ = [v̂1, v̂2, · · · , v̂N ]� ∈ R
N×Dv as follows
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v̂i =
N∑

j=1
softmax

(q�
i k j√
D

)
vj , for i = 1, · · · , N, (64)

where the scalar softmax((q�
i k j)/

√
D) can be understood as the attention v̂i pays to the

input feature xj . The vectors qi, k j , and vj are called the query, key, and value vectors,
respectively; these vectors are computed as follows:

[q1, q2, · · · , qN ]� := Q = XW�
Q ∈ R

N×D,

[k1, k2, · · · , kN ]� := K = XW�
K ∈ R

N×D,

[v1, v2, · · · , vN ]� := V = XW�
V ∈ R

N×Dv ,

(65)

where WQ,W K ∈ R
D×Dx , and W V ∈ R

Dv×Dx are the weight matrices. We can further
write (64) into the following compact form

V̂ = softmax
(QK�

√
D

)
V , (66)

where the softmax function is applied to each row of (QK�)/
√
D. Equation (66) is also

called the “scaled dot-product attention” or “softmax attention”. Each transformer layer
T�(·) is defined via the following residual connection,

T�(X ) = f�(V̂ + X ), (67)

where f� is a function that transforms each feature vector independently and usually
chosen to be a feedforward network. We call a transformer built with softmax attention
standard transformer or transformer. It is easy to see that bothmemory and computational
complexity of (66) are O(N 2) with N being the length of the input sequence. We can
further introduce causal masking into (66) for autoregressive applications [101].
Transformers have become the state-of-the-art model for solving many challenging

problems in natural language processing [2,9,19,22,38,76,101,112] and computer vision
[21,23,88,99]. Nevertheless, the quadratic memory and computational cost of computing
the softmax attention (66) are a major bottleneck for applying transformers to large-scale
applications that involve very long sequences, such as those in [39,55,68]. Thus, much
recent research on transformers has been focusing on developing efficient transformers,
aiming to reduce the memory and computational complexities of the model [1,5,7,15,
17,36,40,45,68,70,73,78,79,84,86,89,93,94,103,110,110,115,116]. A thorough survey of
recent advances in efficient transformers is available at [96]. These efficient transformers
have better memory and/or computational efficiency at the cost of a significant reduction
in accuracy.
In this section, we first present our motivation for integrating momentum into trans-

formers in Sect. 4.1. In Sect. 4.2, we review the idea of improving the efficiency of trans-
formers using low-rank approximation and formulating the low-rank version of trans-
formers into RNNs. In Sect. 4.3, we present our strategy for integrating momentum into
transformers. We show the advantages of momentum-integrated transformers over the
vanilla ones in Sect. 4.4.



   57 Page 26 of 37 Wang et al. Res Math Sci           (2022) 9:57 

4.1 Motivation

In [40], the authors have established a connection between transformers and RNNs
through the kernel trick. They proposed the linear transformer, which can be considered
a rank-one approximation of the softmax transformer. Linear transformers have compu-
tational advantages in training, test, and inference: the RNN formulation (see (71)) enjoys
fast inference, especially for autoregressive tasks, and the unrolled RNN formulation (see
(69)) is efficient for fast training. See Sect. 4.2 for a detailed review of the linear transformer
and its advantages. [62] proposes integratingmomentum into RNNs to accelerate training
RNNs and improve learning long-term dependencies. We notice that MomentumRNN
also enjoys a closed unrolling form, which is quite unique among existing techniques for
improving RNNs, enabling fast training, test, and inference; see Sect. 4.3 for details. As
such, in this section we study how momentum improves linear transformers?

4.2 Linear transformer

Transformers learn long-term dependencies in sequences effectively and concurrently
through the self-attention mechanism. Note we can write (64) as v̂i = (

∑N
j=1 k(qi, k j)vj)/

(
∑N

j=1 k(qi, k j)), where k(qi, k j) := exp(q�
i k j/

√
D). In linear transformers [17,40,86,110],

the feature map k(qi, k j) is linearized as the product of feature maps φ(·) on the vectors
qi and k j , i.e., k(qi, k j) = φ(qi)�φ(k j). The associative property of matrix multiplication
is then utilized to derive the following efficient computation of the attention map

v̂i =
∑N

j=1 k(qi, k j)vj
∑N

j=1 k(qi, k j)
=
∑N

j=1 φ(qi)�φ(k j)vj
∑N

j=1 φ(qi)�φ(k j)
= φ(qi)�

∑N
j=1 φ(k j)v�

j

φ(qi)�
∑N

j=1 φ(k j)
. (68)

In the matrix-product form, we can further write (68) as follows

V̂ = φ(Q)(φ(K )�V )
φ(Q)φ(K )�

. (69)

Replacing (φ(Q)φ(K�))V with φ(Q)(φ(K�)V ) reduces the memory and computational
cost of computing the attention map from O(N 2) to O(N ), making linear transformers
scalable to very long sequences.
Causal masking can be easily implemented in the linearized attention by truncating the

summation term in the last equation of (68), resulting in

v̂i = φ(qi)�
∑i

j=1 φ(k j)v�
j

φ(qi)�
∑i

j=1 φ(k j)
:= φ(qi)�si

φ(qi)�zi
, (70)

where si = ∑i
j=1 φ(k j)v�

j and zi = ∑i
j=1 φ(k j). The states si and zi can be computed

recurrently.
Efficient inference via the RNN formulation. Self-attention processes tokens of a sequence
concurrently, enabling fast training of transformers. However, during inference, the out-
put for timestep i is the input for timestep i + 1. As a result, the inference in standard
transformers cannot be parallelized and is thus inefficient. Linear transformers provide an
elegant approach to fixing this issue by leveraging their RNN formulation. In particular,
we can further write the linear attention with causal masking in (70) into the following
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RNN form7

si = si−1 + φ(k i)v�
i ;

zi = zi−1 + φ(k i);

v̂i = φ(qi)�si
φ(qi)�zi

,

(71)

where s0 = 0 and z0 = 0. Note that this RNN formulation of linear transformers with
causal masking contains two memory states si and zi.

4.3 Momentum transformer

In this section, we present themomentum transformer. We start by integrating the heavy-
ball momentum into the RNN formulation of causal linear attention in (71), resulting
in the causal momentum attention. Next, we generalize the causal momentum atten-
tion to momentum attention that can efficiently train the model. Moreover, we propose
the momentum connection to replace residual connections between the attention V̂ and
the input X in (67) to boost the model’s performance. Finally, we derive the adaptive
momentum attention from the theory of optimal choice of momentum for the heavy-ball
method.

4.3.1 Momentum transformer

Integratingmomentum into causal linear attention.Nowwe consider integratingmomen-
tum into causal linear attention. We integrate momentum into the state si in (71) only
since the denominator in causal linear attention is simply a normalizing scalar. If we regard
−φ(k i)v�

i as the gradient vector in (3), then we can add momentum into the state si by
following the heavy-ball method in (2), resulting in the following RNN formulation of
causal momentum attention,

mi = βmi−1 − φ(k i)v�
i ;

si = si−1 − γmi;

zi = zi−1 + φ(k i);

v̂i = φ(qi)�si
φ(qi)�zi

,

(72)

wherem0 = 0, and γ > 0 and 0 ≤ β < 1 are two hyperparameters. The RNN formulation
of causalmomentumattention in (72) is efficient for autoregressive inference. For training,
we need to rewrite (72) into a form that is similar to (70). To this end, we need to eliminate
mi, si, and zi from (72). Note that

si = si−1 − γmi︸︷︷︸
:=pi

= s0︸︷︷︸
=0

−
(
pi + pi−1 + · · · + p1

)
,

7We omit the nonlinearity (a two-layer feedforward network) compared to [40].
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sincemi = βmi−1 − φ(k i)v�
i , we have pi = βpi−1 − γφ(k i)v�

i . Therefore,

si = −(pi + pi−1 + · · · + p1) = γφ(k i)v�
i −

(
(1 + β)pi−1 + pi−2 + · · · + p1

)

= γφ(k i)v�
i + γ (1 + β)φ(k i)v�

i −
(
(1 + β)2pi−2 + · · · + p1

)

= · · ·

= γ

i∑

j=1

1 − β i−j+1

1 − β
φ(k j)v�

j for i ≥ 1.

We can then formulate the causal momentum attention as follows

v̂i =
γφ(qi)�

∑i
j=1

(
1−β i−j+1

1−β
φ(k j)v�

j

)

φ(qi)�zi
. (73)

Note that (73) is mathematically equivalent to (72), but it can be trained much more
efficiently in a concurrent fashion via layer-wise parallelism.

Remark 7 Comparing (73) with (70) , we see that momentum plays a role in reweighting
the terms {φ(k j)v�

j }ij=1. It is interesting tonote that this reweighting is opposite to that used
for reweighting the local attention [19]. It has also been noticed that low-rank attention
can complement local attention, resulting in improved performance [63].

Integrating momentum into linear attention. To obtain momentum attention without
causal masking, we can simply take the sum from 1 to N instead of summing from 1 to i.
Therefore, we obtain the following momentum attention

v̂i =
γφ(qi)�

∑N
j=1

(
1−βN−j+1

1−β
φ(k j)v�

j

)

φ(qi)�
∑N

j=1 φ(k j)
. (74)

Memory and computational complexity.Trainingmomentum transformers have the same
memory and computational complexities of O(N ) as the training of linear transformers.
For test and inference, momentum transformers also have the same memory and com-
putational complexities as linear transformers. However, in the RNN form, momentum
transformers require slightly more memory than linear transformers to store the extra
momentum statemi.

4.3.2 Momentum connection

Each transformer layer has a residual connection between the self-attention output and
the input as shown in (67). We further integrate momentum into (67) and derive the
momentum connection as follows:

T�(X ) = f�
(V̂ + X + β̃(X − T�−1(X))

)
, 0 ≤ β̃ < 1. (75)

Adaptive momentum. Our momentum transformer introduces additional hyperparame-
ters γ and β , as well as β̃ , compared to the linear transformer. Often γ can be simply
set to 1. However, tuning β and β̃ can introduce extra computational cost for training
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Fig. 14 Convergence comparison of adaptive momentum, momentum, reformer, linear, and softmax
transformer on the sequence copy task. Momentum and adaptive momentum transformers converge faster
and achieve better training loss than both linear transformer and reformer. Softmax transformer converges
the fastest but suffers from quadratic memory and computational complexity. Adaptive momentum
transformer performs as well as momentum transformer without intensively searching for momentum values

transformers. Moreover, using a constant momentum may not give us optimal perfor-
mance. In this part, we will introduce an adaptive momentum formula for computing the
momentum hyperparameter in momentum connection and thus eliminating the compu-
tational overhead for tuning β̃ . Here, the adaptive momentum does not apply to β since
it will break the closed unrolling form in (73). Adaptive momentum has been used in
optimization, see, e.g., [91,108]; here, we use the later one for its simplicity.
In practice, for a given step size γ , we restrict the adaptivemomentum to be in the range

[0, 1 − δ] with δ being the threshold parameter, and we choose it to be 10−3 in this work.
Hence, we have the following adaptive momentum

proj[0,1−δ]

⎛

⎝1 −
√

γ
‖∇f (xk ) − ∇f (xk−1)‖

‖xk − xk−1‖

⎞

⎠

2

, (76)

where proj[0,1−δ](·) := max(0,min(1 − δ, ·)). To simplify our computation, we apply the
gradient descent update to approximate xk − xk−1, i.e., we approximate xk − xk−1 by
γ∇f (xk−1), and we end up with

βk := proj[0,1−δ]

⎛

⎝1 −
√

‖∇f (xk ) − ∇f (xk−1)‖
‖∇f (xk−1)‖

⎞

⎠

2

. (77)

Remark 8 The adaptive momentum in (77) can also be used for the MomentumRNNs
but not for heavy-ball neural ODEs since such a choice for momentum hyperparameter
will destroy the nice properties of the adjoint equation of heavy-ball neural ODEs.

4.4 Experimental results

We evaluate the benefits of our momentum transformers in terms of convergence speed,
efficiency, and accuracy. We compare the performance of momentum and adaptive
momentum transformers with the baseline standard softmax transformer and several
other efficient transformers in the following tasks: (1) the synthetic copy task, (2) the
MNIST and CIFAR image generation task, (3) Long-Range Arena [95], and (4) the non-
autoregressive machine translation task. These tasks are among standard benchmarks for
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measuring the performance of transformers and their efficiency. The tasks we choose also
cover different data modalities—text and image—and a variety of model sizes. Our exper-
imental results confirm that momentum and adaptive momentum transformers outper-
formmany existing efficient transformers, including linear transformers and reformers, in
accuracy and converge faster. Furthermore, adaptive momentum transformer improves
over momentum transformer without the need of searching for momentum hyperparam-
eter.

4.4.1 Copy task

We trainmomentum transformers and baselinemodels on a synthetic copy task to analyze
their convergence speed. In this task, the model has to duplicate a sequence of symbols.
Each training and test sample has the form 0w0w where w is a sequence of symbols
collected from the set {1, . . . , N }.
In our experiments, we follow the same experimental setting as that used in [40]. In

particular, we use a sequence of maximum length 128 with 10 different symbols separated
by a separator symbol. The baseline architecture for all methods is a 4-layer transformer
with 8 attention heads and D = 32. The models are trained with the RAdam optimizer
using a batch size of 64 and a learning rate of 10−3 which is reduced to 10−4 after 3000
iterations. Figure 14 shows the training loss and the test accuracy over epochs and over
GPU time. Both the momentum and the adaptive momentum transformers converge
much faster and achieve better training loss than the linear transformer. Notice that while
the standard transformer converges the fastest, it has quadratic complexity. Adaptive
momentum transformer has similar performance as the momentum transformer without
the need of tuning for the momentum value.

4.4.2 Image generation

Transformers have showngreat promise in autoregressive generation applications [15,75],
such as autoregressive image generation [77]. However, the training and sampling proce-
dure using transformers are quite slow for these tasks due to the quadratic computational
time complexity and the memory scaling with respect to the sequence length. In this
section, we train our momentum-based transformers and the baselines with causal mask-
ing to predict images pixel by pixel and compare their performance. In particular, we
demonstrate that, like linear transformers, both momentum and adaptive momentum
transformers are able to generate images much faster than the standard softmax trans-
former. Furthermore, we show thatmomentum-based transformers convergemuch faster
than linear transformerswhile achieving better bits per dimension (bits/dim).Momentum
and adaptive momentum transformers also generate images with constant memory per
image like linear transformers.
MNIST.We first examine our momentum-based transformers on theMNIST image gen-
eration task. For all methods, we train a 8-layer transformerwith 8 attention heads and the
embedding size of 256, which corresponds to 32 dimensions per head. The feedforward
dimensions are 4 times larger than the embedding size. A mixture of 10 logistics is used
to model the output as in [82]. For training, we use the RAdam optimizer with a learn-
ing rate of 10−4 and train all models for 250 epochs except for the adaptive momentum
transformer.
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Fig. 15 Momentum transformers outperform linear transformers on the MNIST image generation task.
Adaptive momentum transformer achieves the best test bits/dim

Table 6 Momentum transformers achieve better test bits/dim than both softmax and linear
transformers on MNIST generation

Method Bits/dim Images/s

Standard softmax transformer 0.84 0.45 (1×)

Linear transformer 0.85 142.8 (317×)

Momentum transformer 0.84 139.7 (310×)

Momentum transformer + momentum connection 0.82 135.5 (301×)

Adaptive momentum transformer 0.80 134.9 (300×)

We report the bits/dim and image generation throughput in Table 6. Compared to the
linear transformer, all momentum-based transformers not only attain better bits/dim but
also have comparable image generation throughput, justifying the linear complexity of our
models. In addition, we demonstrate that the adaptivemomentum transformer converges
much faster than the baseline models in Fig. 15. Momentum-based transformers even
outperform softmax transformers in this task (Table 7).
CIFAR10. Next, we investigate the advantages of our momentum-based transformers
when the sequence length and the number of layers in the model increase. We consider
the CIFAR-10 image generation task, in which we train 16-layer transformers to gen-
erate CIFAR-10 images. The configuration for each layer is the same as in the MNIST
experiment. For the linear transformer and our momentum-based transformer, we use a
batch size of 4 while using a batch size of 1 for the standard softmax transformer due to
the memory limit of the largest GPU available to us, i.e., NVIDIA V100. This is similar
to the setting in [40]. Like in the MNIST image generation task, our momentum-based
transformers outperform the linear transformer in terms of bits/dim while maintaining
comparable image generation throughput. This is a very expensive task, limiting us to per-
form a thorough hyperparameter search; we believe better results can be obtained with a
more thorough hyperparameter search.

4.4.3 Long-Range Arena

In this experiment, we evaluate our model on tasks that involve longer sequence lengths
in the long-range Arena (LRA) benchmark [95]. We show that the momentum-based
transformer outperforms the baseline linear transformer and standard softmax trans-
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Table 7 Momentum-based transformers achieve better test bits/dim than linear transformer on
CIFAR10 image generation task

Method Bits/dim Images/s

Standard softmax transformer 3.20 0.004 (1×)

Linear transformer 3.44 17.85 (4462×)

Momentum transformer 3.43 17.52 (4380×)

Momentum transformer + momentum connection 3.41 17.11 (4277×)

Adaptive momentum transformer 3.38 17.07 (4267×)

Table 8 Results on the LRA tasks

Model ListOps (2K) Text (4K) Retrieval (4K)Image (1K) Pathfinder (1K)Avg

Softmax [101] 37.10 (37.10)64.17 (65.02)80.71 (79.35) 39.06 (38.20)72.48 (74.16) 58.70 (58.77)

Linear [40] 18.30 64.22 81.37 38.29 71.17 54.67

Performer [17] 18.80 63.81 78.62 37.07 69.87 53.63

Reformer [45] 19.05 64.88 78.64 43.29 69.36 55.04

Linformer [110] 37.25 55.91 79.37 37.84 67.60 55.59

Momentum transformer 19.56 64.35 81.95 39.40 73.12 55.68

Adaptive momentum transformer20.16 64.45 82.07 39.53 74.00 56.04

We report the test classification accuracy for each task and average accuracy across all tasks. The momentum-based
transformers, in particular, the adaptive momentum transformer, outperforms all other transformers except on the ListOps.
The numbers in the parenthesis are from the paper [115]. Unit: %

Table 9 BLEU scores and tokens per second from machine translation models trained on IWSLT
show the advantages of our momentum-based transformers

Method BLEU Score Speed (tokens/s)

Standard softmax transformer 24.34 5104

Linear transformer 21.37 1382

Momentum transformer 22.11 1398

Momentum transformer + momentum connection 22.14 1403

Adaptive momentum transformer 22.20 1410

The number of trainable parameters is almost the same for all models, up to the small difference introduced by the
momentummechanism in our models. Momentum-based transformers outperform the linear transformer in generation
quality in terms of BLEU score and obtain comparable generation efficiency in terms of tokens per second

former [101], justifying the advantage of our momentum-based transformers in capturing
long-term dependency.
Datasets and metrics. We consider all five tasks in the LRA benchmark [95], includ-

ing ListOps, byte-level IMDb reviews text classification, byte-level document retrieval,
CIFAR-10 classification on sequences of pixels, and Pathfinder. These tasks involve long
sequences of length 2K , 4K , 4K , 1K , and 1K , respectively.We follow the setup/evaluation
protocol in [95] and report test accuracy for each task and the average result across all
tasks.
Models and training. All models have 2 layers, 64 embedding dimension, 128 hidden

dimension, 2 attention heads. Mean pooling is applied in all models. Also, we use the
nonlinear activation elu(x) + 1 for the linear transformer. Our implementation uses the
public code in [115] as a starting point, and we follow their training procedures. The
training setting and additional baseline model details are provided in the configuration
file used in [115].
Results. We summarize our results in Table 8. Both momentum-based transformers

outperform linear transformers in all tasks andyieldbetter accuracy than the standard soft-
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max transformer in most tasks except the ListOps. The adaptive momentum transformer
performs the best on every task except the LipsOps, far behind the softmax transformer
and Linformer.

4.4.4 Non-autoregressivemachine translation

All of the above experiments are for auto-regressive tasks. In this last experiment, we
demonstrate that the benefits of our momentum-based transformers also hold for a non-
autoregressive task.We consider amachine translation task on the popular IWSLT’ 16 En-
De dataset. We follow the setting in [51]. In particular, we tokenize each sentence using a
script fromMoses [46] and segment eachword into subword units using BPE [85].We also
use 40K tokens from both source and target. Our baselinemodel is the small transformer-
based network in [51]. This model has 5 layers, and each layer has 2 attention heads.
We replace the softmax attention in this network with the linear and momentum-based
attention to obtain the linear transformer baseline and themomentum-based transformer
models, respectively.
Table 9 reports the results in terms of generation quality, measured by the BLEU

score [67], and generation efficiency, measured by the number of generated tokens per
second. Consistent with other experiments above, our momentum-based transformers
obtain better BLEU scores than the linear transformer in this non-autoregressive setting.
Furthermore, in terms of generation efficiency, momentum-based models are compa-
rable with the linear transformer and much more efficient than the standard softmax
transformer.

4.5 Summary of our contributions and limitations

We develop a new class of efficient transformers, i.e., momentum transformers, which
have the same memory and computational complexity as the recently developed linear
transformer. We develop momentum transformers based on an analogy between the
RNN formulation of causal linear attention and gradient descent. Then, we integrate
the momentum into causal linear attention following the heavy ball method. There are
numerous avenues for future work: (1) Can we develop momentum transformers based
on other popular optimization algorithms beyond the heavy ball method, e.g., Adam? (2)
Can we design better weighting schemes to improve the performance of transformers?

5 Conclusion and future work
In this paper, we reviewed how to integrate momentum into neural networks to enhance
their theoretical and practical performances. In particular, we showed that momentum
improves learning long-term dependencies of RNNs and neural ODEs and significantly
reduces their computational costs.Moreover,we showed thatmomentumcan also be used
to improve the efficiency and accuracy of transformers. There are numerous directions
for future work: (1) Can we leverage the momentum-augmented neural network compo-
nent to aid the neural architecture search? (2) Can we further improve the momentum-
integrated architectures by using the numerical ODE insights [31]? (3) Momentum has
also been used in designing CNNs [53,83]; it is also worth further studying the benefits of
momentum for CNNs.

Acknowledgements



   57 Page 34 of 37 Wang et al. Res Math Sci           (2022) 9:57 

This material is based on research sponsored by NSF Grants DMS-1924935, DMS-1952339, DMS-2110145, DMS-2152762,
DMS-2208361, DOE Grant DE-SC0021142, and ONR grant N00014-18-1-2527 and the ONR MURI Grant N00014-20-1-2787.

Data and Code Availability
All related code and data have been made available on Github.
Author details
1Department of Mathematics, Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA,
2Department of Mathematics, UCLA, Los Angeles, CA, USA.

Declarations

Conflict of interest
There is no conflict of interest.

Received: 13 October 2021 Accepted: 31 July 2022

References
1. Ainslie, J., Ontanon, S., Alberti, C., Cvicek, V., Fisher, Z., Pham, P., Ravula, A., Sanghai, S., Wang, Q., Yang, L.: ETC: Encoding

long and structured inputs in transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing, pp. 268–284 (2020)

2. Al-Rfou, R., Choe, D.K., Constant, N., Guo, M., Jones, L.: Character-level language modeling with deeper self-attention.
In: Thirty-Third AAAI Conference on Artificial Intelligence (2019)

3. Arjovsky, M., Shah, A., Bengio, Y.: Unitary evolution recurrent neural networks. In: International Conference onMachine
Learning, pp. 1120–1128 (2016)

4. Attouch, H., Goudou, X., Redont, P.: The heavy ball with friction method, I. The continuous dynamical system: global
exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system.
Commun. Contemp. Math. 2(01), 1–34 (2000)

5. Beltagy, I., Peters, M.E., Cohan, A.: Longformer: The long-document transformer. (2020). arXiv preprint arXiv:2004.05150
6. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans.

Neural Netw. 5(2), 157–166 (1994)
7. Blanc, G., Rendle, S.: Adaptive sampled softmax with kernel based sampling. In: Dy, J., Krause, A. (eds.), Proceedings of

the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pp. 590–599. PMLR (2018)

8. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.: OpenAI Gym (2016). cite
arxiv:1606.01540

9. Brown, T., et al.: Language models are few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H.
(eds), Advances in Neural Information Processing Systems, Vol. 33, pp. 1877–1901 (2020)

10. Casado, M.L.: Optimization with orthogonal constraints and on general manifolds. (2019). https://github.com/
Lezcano/expRNN

11. Casado, M.L.: Trivializations for gradient-based optimization on manifolds. In: Advances in Neural Information Pro-
cessing Systems, pp. 9154–9164 (2019)

12. Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., Mukhopadhyay, D.: Adversarial attacks and defences: a survey.
(2018). arXiv preprint arXiv:1810.00069

13. Chandar, S., Sankar, C., Vorontsov, E., Kahou, S.E., Bengio, Y.: Towards non-saturating recurrent units for modelling
long-term dependencies. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, pp. 3280–3287
(2019)

14. Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differential equations. In: Proceedings of the
32nd International Conference on Neural Information Processing Systems, pp. 6572–6583 (2018)

15. Child, R., Gray, S., Radford, A., Sutskever, I.: Generating long sequences with sparse transformers. (2019). arXiv preprint
arXiv:1904.10509

16. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase
representations using rnn encoder-decoder for statistical machine translation. (2014). arXiv preprint arXiv:1406.1078

17. Choromanski, K.M., et al.: Rethinking attention with performers. In: International Conference on Learning Representa-
tions (2021)

18. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Gated feedback recurrent neural networks. In: International Conference on
Machine Learning, pp. 2067–2075 (2015)

19. Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q.V., Salakhutdinov, R.: Transformer-xl: Attentive language models beyond
a fixed-length context. (2019). arXiv preprint arXiv:1901.02860

20. Daulbaev, T., Katrutsa, A., Markeeva, L., Gusak, J., Cichocki, A., Oseledets, I.: Interpolation technique to speed up
gradients propagation in neural odes. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds), Advances in
Neural Information Processing Systems, volume 33, pp. 16689–16700. Curran Associates, Inc. (2020)

21. Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., Kaiser, L.: Universal transformers. (2018). arXiv preprint
arXiv:1807.03819

22. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language
understanding. (2018). arXiv preprint arXiv:1810.04805

23. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold,
G., Gelly, S., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. (2020). arXiv preprint
arXiv:2010.11929

http://arxiv.org/abs/2004.05150
http://arxiv.org/abs/1606.01540
https://github.com/Lezcano/expRNN
https://github.com/Lezcano/expRNN
http://arxiv.org/abs/1810.00069
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/1807.03819
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2010.11929


Wang et al. Res Math Sci            (2022) 9:57 Page 35 of 37    57 

24. Du, J., Joseph, D.-V., Finale: Model-based reinforcement learning for semi-markov decision processes with neural
odes. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.), Advances in Neural Information Processing
Systems, Vol. 33, pp. 19805–19816. Curran Associates, Inc. (2020)

25. Dupont, E., Doucet, A., Teh, Y.W.: Augmented neural odes. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc,
F., Fox, E., Garnett, R. (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.
(2019)

26. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)
27. Finlay, C., Jacobsen, J.-H., Nurbekyan, L., Oberman, A.: How to train your neural ODE: the world of Jacobian and kinetic

regularization. In: Hal Daumé, III., Singh, A. (eds.), Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pp. 3154–3164. PMLR, 13–18 (2020)

28. Garofolo, J.S.: Timit acoustic phonetic continuous speech corpus. Linguistic Data Consortium (1993)
29. Ghosh, A., Behl, H., Dupont, E., Torr, P., Namboodiri, V.: Steer : Simple temporal regularization for neural ode. In:

Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds), Advances in Neural Information Processing Systems,
volume 33, pp. 14831–14843. Curran Associates, Inc. (2020)

30. Grathwohl, W., Chen, R.T.Q., Bettencourt, J., Duvenaud, D.: Scalable reversible generative models with free-form
continuous dynamics. In: International Conference on Learning Representations (2019)

31. Haber, E., Ruthotto, L.: Stable architectures for deep neural networks. Inverse Prob. 34(1), 014004 (2017)
32. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)
33. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: European Conference on Computer

Vision, pp. 630–645. Springer (2016)
34. Helfrich, K., Willmott, D., Ye, Q.: Orthogonal recurrent neural networks with scaled Cayley transform. In: Dy, J., Krause, A.,

(eds), Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 1969–1978, Stockholmsmässan, Stockholm Sweden, 10–15 (2018). PMLR

35. Henaff, M., Szlam, A., LeCun, Y.: Recurrent orthogonal networks and long-memory tasks. In: Balcan, M.F., Weinberger,
K.Q. (eds), Proceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of
Machine Learning Research, pp. 2034–2042. New York, New York, USA 20–22 (2016). PMLR

36. Ho, J., Kalchbrenner, N., Weissenborn, D., Salimans, T.: Axial attention in multidimensional transformers. (2019). arXiv
preprint arXiv:1912.12180

37. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
38. Howard, J., Ruder, S.: Universal language model fine-tuning for text classification. In: Proceedings of the 56th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 328–339. Melbourne, Australia
(2018). Association for Computational Linguistics

39. Huang, C.-Z.A., Vaswani, A., Uszkoreit, J., Simon, I., Hawthorne, C., Shazeer, N., Dai, A.M., Hoffman, M.D., Dinculescu,
M, Eck, D.: Music transformer: Generating music with long-term structure. In: International Conference on Learning
Representations (2018)

40. Katharopoulos, A., Vyas, A., Pappas, N., Fleuret, F.: Transformers are rnns: Fast autoregressive transformers with linear
attention. In: International Conference on Machine Learning, pp. 5156–5165. PMLR (2020)

41. Kelly, J., Bettencourt, J., Johnson, M.J., Duvenaud, D.K.: Learning differential equations that are easy to solve. In:
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 4370–4380. Curran Associates, Inc. (2020)

42. Kidger, P., Morrill, J., Foster, J., Lyons, T.J.: Neural controlled differential equations for irregular time series. In: NeurIPS
(2020)

43. Kim, Y., Denton, C., Hoang, L., Rush, A.M.: Structured attention networks. (2017). arXiv preprint arXiv:1702.00887
44. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. (2014). arXiv preprint arXiv:1412.6980
45. Kitaev, N., Kaiser, L., Levskaya, A.: Reformer: The efficient transformer. (2020). arXiv preprint arXiv:2001.04451
46. Koehn, P., et al.: Moses: Open source toolkit for statistical machine translation. In: Proceedings of the 45th Annual

Meeting of the Association for Computational Linguistics Companion Volume Proceedings of the Demo and Poster
Sessions, pp. 177–180 (2007)

47. Le, Q.V., Jaitly, N., Hinton, G.E: A simpleway to initialize recurrent networks of rectified linear units. (2015). arXiv preprint
arXiv:1504.00941

48. Lechner, M., Hasani, R.: Learning long-term dependencies in irregularly-sampled time series (2020)
49. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015)
50. LeCun, Y., Cortes, C., Burges, C.J.: MNIST handwritten digit database. 2, (2010). ATT Labs [Online]. Available: http://

yann.lecun.com/exdb/mnist
51. Lee, J., Mansimov, E., Cho, K.: Deterministic non-autoregressive neural sequence modeling by iterative refinement. In:

Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 1173–1182 (2018)
52. Lezcano-Casado, M., Martínez-Rubio, D.: Cheap orthogonal constraints in neural networks: A simple parametrization

of the orthogonal and unitary group. In: International Conference on Machine Learning (ICML), pp. 3794–3803 (2019)
53. Li, H., Yang, Y., Chen, D., Lin, Z.: Optimization algorithm inspired deep neural network structure design. In: Asian

Conference on Machine Learning, pp. 614–629. PMLR (2018)
54. Liu, P.J., Saleh, M., Pot, E., Goodrich, B., Sepassi, R., Kaiser, L., Shazeer, N.: Generating wikipedia by summarizing long

sequences. In: International Conference on Learning Representations (2018)
55. Liu, P.J., Saleh, M., Pot, E., Goodrich, B., Sepassi, R., Kaiser, L., Shazeer, N.: Generating wikipedia by summarizing long

sequences. (2018). arXiv preprint arXiv:1801.10198
56. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks.

In: International Conference on Learning Representations (2018)
57. Massaroli, S., Poli, M., Park, J., Yamashita, A., Asma, H.: Dissecting neural odes. In: 34th Conference onNeural Information

Processing Systems, NeurIPS 2020. The Neural Information Processing Systems (2020)
58. Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks

using householder reflections. In: Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 2401–2409. JMLR. org (2017)

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1912.12180
http://arxiv.org/abs/1702.00887
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2001.04451
http://arxiv.org/abs/1504.00941
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://arxiv.org/abs/1801.10198


   57 Page 36 of 37 Wang et al. Res Math Sci           (2022) 9:57 
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