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ABSTRACT

The precipitation forecasts at the Subseasonal-to-Seasonal (S2S) scale are valuable information to assist water
resources planning and decision-making at an extended range. But the raw S2S precipitation forecasts are rather
limited regarding their predictive skills, which hinders further hydrological applications. Many previous studies
were carried out to validate the S2S precipitation forecasts from the perspective of the ensemble “mean”, while
existing study, which evaluates and improves the ability of S2S forecasts in predicting extreme precipitation
events with their ensemble spreads, is rarely reported. This study aims to improve the S2S forecasts in predicting
the occurrence of weekly extreme precipitation events above 99% over the contiguous United States (CONUS).
The Random Forest Classifiers (RF) were employed and additional forecasts variables (i.e., surface air temper-
ature, geopotential heights at 500 hPa and 850 hPa) were included to post-process the raw S2S forecasts from the
NASA's Goddard Earth Observation System model version five (GEOSS5). Different RF training inputs and RF
hyperparameter sensitivity analysis are examined. We found that (7) using S2S precipitation forecast as the only
inputs to RF, the forecast quality is improved significantly only at week 1; (2) When additional forecasts variables
are included in RF training, the forecast skill tend to improve slightly at longer lead times after weeks 2; (3) The
tunning of the maximum tree depth of RFs combine with the inclusion of additional forecasts variables as inputs
to RF can improve the forecasts skill at all lead times over CONUS. In short, this study demonstrated the
effectiveness of the application of RF as well as the effectiveness of additional forecast variables in improving the
S2S extreme precipitation forecasts, which could be potentially useful for flood and river ensemble forecasting.
Multiple statistical metrics, including the ensemble probability of detections (EPOD), ensemble false alarm ratios
(EFAR), ensemble critical success index (ECSI), Brier Sill Score (BSS), and Area Under the Receiver Operating
Characteristics Curves (AUROC) are employed for a comprehensive evaluation of the predictive performances of
S28S extreme precipitation forecasts under different experiment scenarios.

1. Introduction

2005). Reliable precipitation forecasts are critical for decision-makers to
adaptively change their strategies to mitigate the impacts of such natural

Riverine flooding typically comes after heavy precipitation, causing disasters (Sorooshian et al., 2011).
impacts on human socio-economic activities, including loss of human Advanced weather forecasting and climate models can generate
lives (Begum et al., 2007; Singh and Kumar, 2013), water contamination precipitation forecasts at different timescales for water resources plan-
(Taylor et al., 2011; Yang et al., 2022), agricultural damage (Bremond ning. At lead times within a medium range (i.e., 2 weeks into the future),

et al., 2013), and disruption of transportation
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(NWP) models are the most widely adopted products (Kuligowski and
Barros, 1998; Robertson et al., 2013), which simulate the propagation
and evolution of atmospheres. At longer lead times, the General Circu-
lation Models (GCMs) coupled with dynamic components of the atmo-
sphere, ocean, and land surface are more suitable tools as compared to
the NWP models in producing seasonal, annual, or even decadal pre-
cipitation outlooks (Vitart, 2017; Xiang et al., 2019). Both NWP and
GCM-generated precipitation forecasts are widely studied and applied
by various mission agencies and research communities (Clark et al.,
2017; Wood and Lettenmaier, 2006; Yang et al., 2018).

However, a forecast gap lies in the Subseasonal-to-Seasonal (S2S)
timescale, defined explicitly as the transitional period of 10 to 30 days
between weather predictions and seasonal outlooks (White et al., 2017).
Previous studies found that the predictability of weather is either lost
already (i.e., initial conditions of the atmosphere) or has yet to start
dominating local weather (i.e., ocean-weather interactions) at S2S
timescales (Vitart et al., 2017). Such a lack of predictability sources
makes it extremely challenging to provide accurate S2S forecasts (White
etal., 2017).

Many efforts have been made to advance precipitation forecasts by
identifying additional predictability sources of the weather at the S2S
timescale. Series of initial conditions of land surface and atmosphere are
found to be associated with the variation of sub-seasonal weather (Asoka
and Mishra, 2015; Chelton and Wentz, 2005; Cohen et al., 2010; Guo
etal., 2011; Stockdale et al., 2015; Thomas et al., 2016). More recently,
multiple atmospheric variation modes over oceans are also found to be
significantly dominating the distribution and magnitude of subseasonal
precipitation events (Dai and Wigley, 2000; Hsiao et al., 2020; Mariotti
et al., 2020; Yang et al., 2017a; Zhang and Ling, 2017).

Additional efforts have been made by mission agencies all over the
globe to provide experiment S2S forecast datasets through coupled GCM
models (Kirtman et al., 2014; Pegion et al., 2019; Vitart, 2014; Vitart
etal., 2017; Yang et al., 2018). Available S2S forecast datasets include
European Center for Medium-Range Forecasts (ECMWEF), the S2S project
by the World Weather Research Program, and the North America Multi-
Model Ensemble Phase II (NMME-2), etc. Although existing S2S forecast
products offer a promising opportunity for seamless hydrologic pre-
dictions, it is commonly agreed that S2S precipitation forecasts suffer
from a substantial amount of forecasts biases and a marginal level of
predictive skills (Baker et al., 2019; de Andrade et al., 2019; de Andrade
et al., 2021; King et al., 2020; Tian et al., 2017; Vigaud et al., 2017;
Wang and Robertson, 2019; Tao et al., 2018; Yang et al., 2015).

More importantly, existing studies were mainly focused on investi-
gating the accuracy of ensemble means or medians of S2S precipitation
forecasts, while the ability of ensemble S2S forecasts to predict extreme
events with their ensemble spreads is rarely reported. Nevertheless,
from a practical perspective, extreme information is critically needed as
precipitation forecasts generally cannot be applied deterministically at
S2S ranges in hydrology (Day, 1985). From the standpoint of water
infrastructure operation (i.e., reservoirs and long-distance water trans-
ferring systems), decision-makers would desire the model-generated
ensemble forecasts to envelop and include future extreme precipita-
tion events as much as possible so that the potential risks of associated
natural disasters could be considered beforehand and avoid infrastruc-
ture failure (VanBuskirk et al., 2021; Wu et al., 2020; Yuan et al., 2015;
Yang et al., 2020).

As we mentioned earlier, there is only a limited number of studies
focused on S2S extreme precipitation forecasts over CONUS. Among
some recent studies, Cao et al. (2021) examined the hydrologic perfor-
mances of the ensemble means of S2S forecasts in forecasting flood
events at three watersheds in the western U.S. In addition, Zhang et al.
(2021) studied and examined the capability of S2S precipitation fore-
casts from NMME-2 in capturing the pattern of extreme rainfall with the
entire spreads of the ensembles. However, according to Zhang et al.
(2021), the skills of the S2S precipitation forecasts in predicting the
occurrence of weekly extreme precipitation events are marginal after
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two weeks into the future.

The poor quality of S2S precipitation forecasts in predicting extreme
events hinders a broader application of S2S forecasts in flood predictions
and sustainable water infrastructure operations. Various statistical-
based post-processing techniques are available, which can help correct
the forecast bias and improve S2S precipitation forecast accuracy. When
using these statistical-based post-processing tools, though the forecast
biases can often be removed nicely, many studies found that the forecast
skill tends to remain either unchanged or even deteriorate after
removing the biases (Baker et al., 2020; Li et al., 2017; Manzanas et al.,
2018; Zhao et al., 2017). This is because S2S precipitation forecast skill
is affected by multiple factors, including coarse spatial resolutions,
imperfect/unrealistic precipitation parameterization schemes, and the
computational errors originated in resolving the partial differential
equations of the atmosphere when generating rainfall forecast in the
physical models (Davis and Goadrich, 2006; Ebert and McBride, 2000).
Due to these reasons, existing statistical-based post-processing ap-
proaches are somewhat limited in improving the predictive skills of S2S
precipitation forecasts. Therefore, more advanced tools are still needed,
especially for extreme precipitation events at the S2S timescale.

As an alternative to the existing statistical-based post-processing
approaches, Machine Learning and Data Mining (ML&DM) techniques
are promising tools for improving the S2S extreme precipitation fore-
casts skill scores. The ML&DM techniques have the flexibility to include
an arbitrary set of input variables in the classification and regression
process (Yang et al., 2017a and 2017b). They can effectively identify the
complex relationships between selected input variables and target var-
iables, which may not be directly related to each other. Many re-
searchers have successfully applied ML&DM for precipitation forecast
adaptations. For example, Miao et al. (2019), Pan et al. (2021), Pan et al.
(2019), Wang et al. (2021) applied ML&DM to post-process precipita-
tion forecasts over different study regions and reported overall im-
provements in forecast skills. However, some other studies reported that
ML&DM tends to underestimate and limit the reproduction of extreme
values (Akbari Asanjan et al., 2018; Ban” o-Medina et al., 2020; Kim et al.,
2022; Sadeghi et al., 2020). Nevertheless, given the sensitive dynamics
of extreme precipitation events (Faridzad et al., 2018; Nie et al., 2020;
Pendergrass, 2020; Srinivas et al., 2018), we expect that the triggering of
extreme events should be easier to identify when it is compared to
regular precipitation events. Therefore, a popular ML&DM model, i.e.,
the Random Forest or RF classifier, is applied in this study to predict the
occurrence of extreme precipitation events over different regions of
CONUS. The RF is an ensemble-based tree algorithm. It can handle
correlated conditional variables and is robust against overfitting with
the presence of high-level noise in the training data (Breiman, 2001,
Strobl and Zeileis, 2008). As one of the most popular ML algorithms, the
RF has been widely applied in a variety of hydrometeorological studies,
including statistical downscaling (He et al., 2016, Tao et al., 2018),
reservoir release predictions (Yang et al. 2015, 2020, and 2021), and the
post-processing of precipitation forecasts (Herman and Schumacher,
2018a,b, Loken et al., 2019).

On top of using advanced ML techniques, the inclusion of additional
forecast variables into the ML training may further increase the pre-
dictive skill of precipitation forecasts. Precipitation forecasts from dy-
namic models are generated through a process called
“parameterization.” Instead of computing numerical values by resolving
the partial differential equations in forecast models, this “parameteri-
zation” process generates quantitative precipitation forecasts empiri-
cally based on the importance of other explicit atmospheric variables (i.
e., variables computed directly by resolving physical equations, such as
temperature, pressure, etc.). The reason for adopting such “parameter-
ization” schemes in dynamic models is because precipitation is formed
through complex micro-physical and chemical processes that surpass the
resolution and capability of current models (Stensrud, 2009). Such
“parameterization” schemes are generally considered of high uncer-
tainty and less reliable compared to the computations of explicit
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atmospheric variables (Bader and Roach, 1977; Best et al., 2011; Betts
et al., 1998; Bukovsky and Karoly, 2007; Tian et al., 2017; Vitart, 2004;
Yang etal., 2017a, 2017b). Thus, including additional forecast variables
together with a robust ML algorithm may lead to a higher chance of
identifying the dynamic, varying patterns of precipitation events over
space and time.

Therefore, in this study, multiple S2S forecast variables are included
in the training of RF to predict the occurrence of weekly extreme pre-
cipitation events over CONUS. The input forecast variables include each
individual and a combination of (1) precipitation, (2) surface air tem-
perature, (3) 500 hPa geopotential heights, and (4) 850 hPa geopotential
heights. The surface air temperature, 500 hPa, and 850 hPa geopotential
heights are related to the formation of precipitation events. These
meteorological variables have been commonly used in previous studies
to downscale and post-process precipitation forecasts (Li et al., 2022;
Miao et al., 2019; Pan et al., 2019). In this study, we chose 99% as the
threshold to identify weekly extreme precipitation events without a
universal standard.

Previously, Zhang et al. (2021) reported that the capability of
NMME-2 S28 forecast in capturing the occurrence of extreme precipi-
tation events is marginal after week 2. Following Zhang et al. (2021)’s
work, this study develops a prototype model to improve the capability of
S2S forecasts in predicting the occurrence of extreme precipitation
events. The experiment S2S forecast dataset used in this study is from
one contributing forecast model of NMME-2, i.e., the NASA Goddard
Earth Observing System version 5 model (GEOSS5). Building off of many
existing studies that focused on the ensemble means, we further consider
the entire ensemble of S2S forecasts. A few existing statistical metrics
were modified for the evaluation of ensemble forecasts. The contribu-
tion of this study also includes sensitivity tests on one RF hyper-
parameter, and different model input scenarios are also examined for
comparison.

In summary of our research goals, we intend to address research
questions: 1) Can the predictions on the occurrence of extreme precip-
itation events be improved at the S2S ranges through ML techniques
over CONUS? 2) Can additional atmospheric forecast variables improve
S2S extreme precipitation forecasts over CONUS? 3) Does tunning of ML
hyperparameter significantly affect the quality of extreme precipitation
forecasts over CONUS? And 4) Do the ML-enabled forecasts perform
consistently in different regions over CONUS?

The rest of this paper is organized as follows: In section 2, we present
data and study region. The experiment settings and evaluation metrics
are described in Section 3. Section 4 presents the results. The discussions
and main conclusions are presented and summarized in Section 5 and
Section 6, respectively.

2. Data and study region

The datasets used in this study include (1) the daily S2S forecast
variables from GEOSS5 and (2) a ground truth daily precipitation
observation dataset for validation, the AN81d daily precipitation dataset
from the Parameter-elevation Regressions on Independent Slopes Model
(PRISM). Both forecast and reference datasets are collected from 01/01/
1982 to 12/31/2011 to cover a 30-year study period.

The GEOSS produces 10-member ensemble forecasts on the first day
of each month during the study period. Each member of the GEOS5
dataset provides daily forecasts of multiple hydrometeorological vari-
ables with a lead time of up to 274 days. The 10-member ensemble
forecasts are generated with perturbed initial conditions (Borovikov
etal., 2019). Raw GEOSS forecasts have spatial resolutions of 1° (~100
km). Four GEOSS forecast variables are used in this study, including
precipitation (P), surface air temperature (T), and geopotential height at
500 hPa (G500) and 850 hPa (G850).

The PRISM is a gridded dataset that covers the entire CONUS with a

spatial resolution of ~0.04° (4 km). The PRISM combines a digital
elevation model with both surface and Radar precipitation
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measurements (Daly and Bryant, 2013). It is a reliable reference for
validating satellite precipitation estimation and precipitation forecast
products (Gowan et al., 2018; Mizukami and Smith, 2012; Prat and
Nelson, 2015).

The collected S2S and PRISM datasets are pre-processed as follows.
All collected S2S forecasts are truncated to 28 days (4 weeks) to focus on
the S2S timescale specifically. The truncated forecasts are labeled with
individual lead times (1-28 days). Both S2S forecasts and PRISM were
then resampled to 0.25-degree pixels to match with each other. Specif-
ically, the S2S forecasts were downscaled using the nearest neighbor
approach. The PRISM was upscaled through aggregations (i.e., areal
averages of all origin PRISM pixels fall in the corresponding 0.25-degree
pixels) in order to match the coarse spatial resolution of GEOSS data.

To validate the experiment results, we conducted both pixel-based
and regional evaluations of the raw and improved forecasts to better
observe spatial patterns over CONUS. The regional assessment is per-
formed based on the nine climate regions defined by the National Cen-
ters for Environmental Information (NCEI) (Karl and Koss, 1984) shown
in Fig. 1. A few NCEI regions include the mountainous terrains. Specif-
ically, the Rocky Mountains span the Northwest, West, West North
Central, and Southeast regions; the Appalachian Mountainous regions
are included in parts of the Northeast and Southeast regions.

3. Experiment Settings and Evaluation Metrics
3.1. Experiment Settings

In this study, the RF classifiers are individually trained at each 0.25-
degree pixel over CONUS to identify weekly extreme precipitation
events beyond 99% using the 10-member ensemble S2S forecasts. The
employment of RF is based on the open-source package in Python. The
“leave-10-years-out” model across-validation strategy was adopted to
avoid overfitting of the ML model over the entire study period. This
strategy was commonly applied in the fields of hydrometeorology and
climate change for forecast correction and statistical downscaling (Li
etal., 2019; Manzanas et al., 2018). To perform the “leave-10-years-out”
cross-validation, the whole study period was divided into three 10-year
periods (i.e., 1982-1991, 1992-2001, and 2002-2011). When a partic-
ular 10 years are selected as the targeting period for forecast corrections,
the remaining 20 years' data will be used to train the RF model.

The training of RF was carried out at different lead times as well.
Taking week 1 forecasts as an example, the daily S2S forecasts with lead
times smaller than 1 week (lead times 1 to 7 days) from the reference
period are used as the inputs to train RF. The model training target is set
to be the weekly extreme events observed in the PRISM dataset. The
trained RF model is further used to produce categorial predictions upon
extreme events at the same lead time for the target period. We repeated
this training process at each 0.25-degree pixel over CONUS for week 2
(day 8 to 14), week 3 (day 15 to 21), and week 4 (day 22 to 28).

We expect that the S2S extreme precipitation forecasts can be
improved via 1) the inclusion of additional atmospheric forecast vari-
ables as inputs to RF, and 2) the tunning of the max tree depth of RF. To
test our hypothesis, a total of ten experiment scenarios were designed
and shown in Table 1.

Among all scenarios presented in Table 1, we first benchmark the
performances of the raw S2S precipitation forecasts in predicting the
occurrence of extreme events (E1). The weekly extreme events over
CONUS are identified by aggregating PRISM into weekly-averaged
values and sorting out weeks with averaged values above the 99%
threshold. Similarly, for the raw precipitation forecasts for all ensemble
members of GEOSS, we first aggregate them into weekly values. Then,
the positive predictions from GEOSS5 upon the occurrence of extreme
precipitation events are identified by sorting out weeks with averaged
forecast values above 99% according to their own statistics.

For experiment scenarios 2-5 (E2-E5) (Table 1), the hyper-
parameters of RF are controlled and remain unchanged, whereas the
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NCEI Climate Regions
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Fig. 1. nine NCEI climate regions.

Table 1

Designed experiment scenarios. “P” refers to Precipitation Forecasts; “T” refers to Temperature Forecasts; and “G” refers to Geopotential Heights.

Experiment Scenarios E1 (Raw) E2 E3 E4 ES E6 E7 E8 E9 El10
P P P P P

It variabl NA b P P P T T T T T

nput variable(s) T G500 G850 G500 G500 G500 G500 G500
G850 G850 G850 G850 G850

Maximum RF

3 3 3 3 3 6 9 12 15
Tree depth NA

“max_depth” parameter is set to be 3, “max_features” is set to be 0.6,
“n_estimators” is set to 150, and other hyperparameters remain as
default for the RF model. The scenarios E2-ES only differ in the variables
used as inputs to RF, where the same P, P and T, P and G500, or P and
G850 are used as the input variables under different scenarios E2-ES5,
respectively.

For experiment scenarios 6-10 (E6-E10), the input variables used to
train RF are controlled and remain unchanged, whereas all collected S2S
forecast variables are used as inputs to RF. However, under E6-E10, the
“max_depth” of RF is set to be 3, 5,7, 9, 12, and 15, respectively, while
other hyperparameters remain unchanged (i.e., max_features = 0.6,
n_estimators = 150).

3.2. Pixel-based and Event-based Forecast Evaluation Metrics

This study used three sets of evaluation metrics to compare the
corrected forecast results. The first set of metrics is pixel-based evalua-
tion metrics, including three popular categorical evaluation metrics of
Probability of Detection (POD), False Alarm Ratio (FAR), and Critical
Success Index (CSI). In the second set of metrics, an event-based prob-
abilistic evaluation metric termed the Brier Skill Score (BSS), is
employed. The last set of metrics is called the Area Under the Receiver
Operating Characteristics Curves (AUROC), which is a graphical index
used for spatial skill score evaluation for different climate regions over
the CONUS.

To apply the POD, FAR, and CSI, we further modified these metrics to
consider the entire ensemble of S2S forecasts and named the modified
metrics as Ensemble Probability of Detection (EPOD), Ensemble False
Alarm Ratio (EFAR), and Ensemble Critical Success Index (ECSI); The
BSS and the AUROC are two widely applied metrics to quantify the
model performances in the field of Hydrometeorology (Wilks, 2011) and
Machine Learning (Davis and Goadrich, 2006), respectively. In this

study, we choose BSS and AUROC to verify the performances of RF in
addition to EPOD, EFAR, and ECSI. The following sections introduce the
logic and detailed calculation of the employed metrics.

3.2.1. Mathematical definitions of EPOD, EFAR, and ECSI

Table 2 describes a so-called contingency table, which illustrates the
categorical relationship between the forecast and reference datasets. In
this contingency table, the occurrence of extreme precipitation events is
represented in the form of binary events with the possibility of two
scenarios, either 'True' or "False'. The “H” in the contingency table means
“hits,” and it refers to the number of successful predictions upon the
occurrence of extreme events. Similarly, “M” means “misses,” which
refers to the number of non-forecasted extreme events. “F” means “false
alarms,” and it refers to the number of false positive forecasts upon the
occurrence of extreme events. Based on the contingency table, three
evaluation metrics of POD, FAR, and CSI are computed as follows: POD
measures the fraction of accurate detection of events, and its calculation
equation is H/(H + M); FAR measures the fraction of erroneous detec-
tion of events and its equation becomes F/(F + H), and CSI determines
the fraction of correct event detection after ignoring the correct negative
events, and the equation of CSI is H/(H + F + M).

However, precipitation forecasts generally cannot be applied deter-
ministically on sub-seasonal timescales due to their uncertainties, and it

Table 2
Contingency table of all possible outcomes for categorical forecasts
of binary events.

Events o NO
P H F
NP M CR

O = observed; NO = not observed; P = predicted; NP = not predicted;
H = hit; F = false alarm; M = miss; CR = correct rejection.
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is not informative to use the original POD, FAR, and CSI metrics to
evaluate S2S precipitation forecasts as they do not consider the entire
ensemble spreads from different model outputs. Therefore, the use of
EPOD, EFAR, and ECSI as the evaluation metrics will be more realistic
and inclusive. The definitions of EPOD, EFAR, and ECSI generally follow
the definitions of traditional POD, FAR, and CSI but consider all
ensemble members of forecasts. By adopting modified EPOD, EFAR, and
ECSI, we would like to quantify if extreme precipitation events are well-

enveloped by the spreads of S2S forecasts.

To compute EPOD, EFAR, and ECSI, we define that successful cate-
gorical prediction made by any ensemble members upon extreme events
will be counted as a “hit.” Similarly, an unsuccessful categorical pre-
diction made by all ensemble members will be counted as a “miss.”
Following the same logic, if none of the ten ensemble members has
forecasted an extreme event above 99% while such event did not
happen, it will be counted as a “correct negative”. Finally, if all ensemble
members have forecasted an extreme event above 99% while such an
event did not happen, it will be counted as a “false alarm”. With such
modified definitions of “hit,” “miss,” and “false alarm,” the EPOD, EFAR,
and ECSI can be computed as follows:

[ 1
z; A""il(xi/,ANDyi)
EpoD ==L _ )
L 1ty
O X
Zr v b anp (NOT y)
EFAR ==L f[‘j € )] : ®)
I /\/71 Xij
5> [ ]

VARVAS (x ANDy)
Jj=1 i i

ECSI = g } 3)
2oy + =1 Ve N anp oryy !
=1

i =1

In the equations above, #n is the total number of categorical forecasts
with the same lead time; and m quantifies the full ensemble members of
the GEOSS (i.e., 10); x; is the categorical prediction (i.e., either "True" or
"False") made by the jth ensemble member of GEOSS for a particular
week. Similarly, y; is the reference categorical indicator of whether an
extreme event above 9the 9% threshold has happened or not at a
particular week. The symbol * and V represent large logical operations of
OR and AND respectively. / is the indicator function where /(7True) = 1
and I/(False) = 0.

3.2.2. Event-based Brier Skill Scores (BSS)

The Brier Skill Scores (BSS) is a probabilistic evaluation metric that
has been widely applied in the field of meteorology and atmospheric
science. The BSS describes the quality of categorical probabilistic fore-
casts (Wilks, 2011) and it quantifies the extent to which a forecast
strategy improves predictions with respect to a reference forecast. The
BSS is defined by the following Eq. (4):

BSS = 1-—20— @
BS,

where BS and BS,.; are the Brier Scores (Brier, 1950) of GEOSS (i.e.,
E1-E10) and reference forecast for a sample of n binary events, respec-
tively. In this study, we use climatology as the reference forecast. The BS
and BS,.rare computed with the following Eq. (5):

1z
_ﬂ

=1

BS (f; - 0)2 Q)]

where f; is the predicted probability of the event at time 7, and O, is equal
to 1 or 0, depending on whether the extreme event subsequently
occurred or not. However, it has been reported that the BSS could falsely
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inflate the skill when adopted for evaluations upon extreme events
(Wilks, 2011). This is because extreme events are natrually rare in data
records and too many negative predictions upon the occurrence of
extreme events could lead to favourable statistics. We therefore assigned
different weights to categorical events to derive a more realistic skill
socre of the forecasts. The BS and BS,.r are computed following Eq. (6):
C > D

BS== Ty~ Q? ©)
1

-
In Eq. (6), Wo,= 0.99 when O is equal to 1 and Wo = 0.01 when O, is

equal to 0, based on their probabilities in climatology. In this study,
when computing the BS of GEOSS forecast following Eq. (6), f; is
computed based on number of the positive categorical predictions
among all 10 ensemble forecast members at time ¢. For example, when
six out of ten GEOSS5 members gave positive predictions upon extreme
events, f; would equal to 0.6. On the other hand, the f; of reference
forecast would constantly be equal to 0.01, given the climatology
probability threshold of extreme events is 99%.

3.2.3. Area under the receiver operating characteristics curves (AUROC)
The last set of evaluation metric, i.e., AUROC, is defined as the Area
Under a Receiver Operating Characteristics (ROC) curve. Note that due
to the huge amount of computation at all 0.25-degree pixels across the
entire CONUS, we cannot plot and present ROC curves at each pixel and
with different probability thresholds of RF. Instead, we pooled the cat-
egorical predictions obtained from all ensemble forecasts under
different experiment scenarios at different NCEI climate regions to
calculate the area based AUROC. In other words, the ROC curves and
their corresponding AUROC were plotted and computed at nine NCEI
climate regions with the default probability threshold of RF of 50%.
The POD and POFD are needed to plot ROC curves and to compute
AUROC. According to the contingency Table 2, the calculation of POD
follows H/(H + M) and calculation of POFD follows F/(F + CR). For
example, assuming a classifier has made series of predictions upon a
certain “yes/no” type of event and resulted in POD of 0.8 and POFD of
0.3, then, such a classifier's corresponding ROC curve can be plotted as

10

0.8 1

0.6 1

0.4 -

0.2 1

Probability of Detections

DG -I T T T T T
0.0 02 0.4 0.6 08 10

Probability of False Detections

Fig. 2. An Illustrating figure of ROC and AUROC. Red line in the figure is the

ROC curve obtained by a conceptual RF classifier with POD = 0.8 and POFD =
0.3. The red shaded area is the ROC curve's corresponding AUROC. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 2. In Fig. 2, the red line is the ROC curve. The blue dotted diagonal
line indicates the skill of a classifier constantly making random guesses.
The red-shaded area below the ROC curve is defined as the AUROC. The

ideal value of AUROC would be equal to one (i.e., POD = 1 and POFD =
0). In this study, we only present the NCEI regional AUROC for
conciseness. The individual ROC curves at each NCEI climate region are
presented in the supplementary materials.

4. Results
4.1. Model's sensitivity on inputs (Comparison of Scenarios EI1-EG6)

In this section 4.1, we first present model's sensitivity analysis on
different combination of inputs based on the results obtained from
scenarios E1-E6. Then, in section 4.2, we further analyze how model's
correction performance changes over different ML hyperparameters
based on the results from scenarios E1, and E6-E10. Here, E1 bench-
marks the performances of raw precipitation forecasts in predicting the
occurrences of weekly extreme events above 99%. E2-E6 are the RF-
generated categorial predictions with different input variables, and
E6-E10 differs on the “max-depth” parameter of the RF model with same
input combination of using all meteorological predictors. The evalua-
tions and results are summarized with the order of previously defined
EPOD, EFAR, ECSI, BSS and AUROC metrics for both sensitivity analysis
cases. The individual ROC curves at NCEI climate region are provided in
the supplementary information section.

Fig. 3 presents the EPOD under E1-E6 with different forecast lead
times. The ideal value of EPOD is 1, indicating all extreme events have
been enveloped by the spreads of ensemble forecasts. In Fig. 3, darker
red colors indicate higher EPOD. The average EPOD over the entire

Atmospheric Research 281 (2023) 106502

CONUS is computed and presented in red in each subplot for
comparison.

Compared to the raw forecast performances (E1), the RF-generated
forecasts with P as the only input (E2) show significantly higher EPOD
at the shortest lead time of week 1 and slightly higher EPOD after week 1
(Fig. 3). The inclusion of additional forecast variables of T, G500, or
G850 (E3-ES5) can further increase the EPOD slightly at week 2, week 3
and week 4, as it is compared to the case where only P is used to train RF
(E2). When all forecast variables of P, T, G500, G850 are included
together as input to train RF model (E6), additional improvements of
EPOD at weeks 2-4 can be observed when comparing to the rest of the
cases where only using one or two forecast variables as inputs to train RF
(E2-ES). However, without additional tunning of the hyperparameter of
the RF model, the inclusion of additional forecast variables (E2- ES5) has
slightly decreased the EPOD after week 1 compared the raw GEOSS5
forecasts (E1).

Spatially, the raw precipitation forecasts (E1) deliver higher EPOD
values at the West Coastal regions of CONUS. But this advantage de-
creases rapidly over lead times. Different spatial patterns are also
observed between experiment scenarios using P, P and T, P and G500, or
P and G850 as the only input to the RF model (E2-E5). While using P as
the only input to the RF model (E2), higher EPOD can be observed at
West Coastal regions and Appalachian Mountainous regions. While
including T as an additional input to the RF model (E3), higher EPOD
can be observed at most of the NCEI climate regions except for the South
at week 2, week 3, and week 4. As a contrast, when including G500 or
G850 as an additional input to the RF model (E4 and ES), noticeable
higher EPOD values are only observed in the NCEI climate regions of
East North Central, Central, as well as Southeast at week 2, week 3, and
week 4. Finally, when using all available S2S forecast variables as inputs
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Fig. 3. The pattern of EPOD from experiment scenarios E1-E6, in predicting extreme precipitation events over the CONUS at different lead times (weeks 1 to 4).
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to RF classifiers (E6), the obtained EPOD values are increased at most of
the locations over CONUS at week 2, week 3, and week 4, compared to
the cases of using only one or two variables (E2-E5).

Fig. 4 presents the EFAR under E1-E6 at different forecast lead times.
The ideal value of EFAR is 0, indicating the ensemble spreads of fore-
casts are not under-dispersed and lead to ensemble false alarms. In
Fig. 4, darker blue colors indicate higher EFAR. The average EFAR over
the entire CONUS is computed and presented in red in each subplot for
comparison.

According to Fig. 4, the overall small EFAR values (< 0.1) of raw
forecast seem evenly presented over CONUS without any noticeable
high-value spots. Further, the utilization of RF model to correct extreme
precipitation events (E2-E5) has further reduced the overall EFAR values
over CONUS. However, the application of the RF model seems to in-
crease EFAR at some exceptional locations over CONUS. For example,
when including T as an additional input to the RF model (E3), a few
bluish pixels can be observed in the Rocky Mountain regions and in the
Florida Peninsula. This pattern has become more apparent when uti-
lizing all available forecast variables as inputs to the RF model (E6), as
more blue-colored pixels appeared in the Northwestern regions of
CONUS, Rocky Mountainous regions and in the Florida Peninsula.

Fig. 5 presents the ECSIunder E1-E6 at different forecast lead times.
The ECSI considers the number of ensemble detections and ensemble
false alarms at the same time. The ideal value of ECSI is 1, indicating all
forecasts have been enveloped by the spreads of ensemble forecasts
while no false alarms were issued due to the under-dispersion of
ensemble forecasts. In Fig. 5, darker green colors indicate higher ECSI.
The average ECSI over entire CONUS is computed and presented in red
in each subplot for comparison.

Comparing different experiment scenarios E1-E6 across entire

Week 1

F

=3
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CONUS, it is obvious to notice that when using P as the only input to RF
(E2), significantly higher skill over the raw forecasts (E1) can be
observed at week 1 lead time (Fig. 5). However, such advantages
become marginal at longer lead times of weeks 3 and 4. When including
additional variables of T, G500, or G850 as input to the RF model (E3-
ES5), we found that higher ECSI values can be observed at week 2, week
3, and week 4 lead times. However, the inclusion of additional forecast

variables (E3-E5) leads to a marginal level of decrease of ECSI at the
shortest lead time of week 1, compared to the case where only P is used
as input the RF model (E2). When all forecast variables are included as
inputs to the RF model (E6), further skill improvements at longer lead
times of weeks 2-4 are observed over CONUS. But the inclusion of all
variables still leads to a marginal level of ECSI decrease at lead time of
week 1 as it is compared to cases of using less input variables (E2-ES).

Fig. 6 presents the BSS under E1-E6 at different forecast lead times.

The BSS measures the agreement between forecast probability and
measured events. The ideal value of BSS is 1. In Fig. 6, darker purple
colors indicate higher BSS. The average BSS values over the entire
CONUS is computed and presented in red in each subplot for
comparison.

The application of the RF model with P as the only input (E2) has
significantly improved BSS over CONUS compared to the raw GEOSS5
forecast (E1) at week 1 lead time (Fig. 6). However, the BSS got
decreased over CONUS at weeks 2 to 4 with the applications of the RF
model. The inclusion of T as an additional input variable to the RF model
(E3) could slightly increase the BSS over CONUS at lead times of weeks 2
to 4, as it is compared to the case of using P as the only input to the RF
model (E2). The inclusion of G500 or G850 as an additional input var-
iable to the RF model (E4 and ES5) could only improve the BSS over
CONUS marginally at week 2 lead time, as it is compared to the case of
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g. 4. The pattern of EFAR from experiment scenarios E1-E6, in predicting extreme precipitation events over the CONUS at different lead times (weeks 1 to 4).
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Fig. 5. The pattern of ECSI from experiment scenarios E1-E6, in predicting extreme precipitation events over the CONUS at different lead times (weeks 1 to 4).

using P as the only input to the RF model (E2). When all available
forecast variables are used as inputs to the RF model, only a marginal
level of additional improvement of BSS can be observed at lead times of
week 2 and week 4, as it is compared to the case of using P as the only
input to the RF model (E2).

The spatial patterns of BSS over CONUS appear to be similar among
all experiment scenarios from E1 to E6. At lead time of week 1, higher
BSS values are observed along the western coastal regions over CONUS.
At lead time of week 2, higher BSS values are observed along the Rocky
mountainous regions and the Appalachian mountainous regions over
CONUS. At week 3 and week 4, higher BSS values are only observed at
some scattered spots in the NCEI climate regions of Southwest, West
North Central, Southeast, and Northeast, given an overall marginal level
improvement of BSS values over CONUS.

Fig. 7 presents the regional AUROC under E1 to E6 at different lead
times. The ideal value of AUROC is 1, indicating all ensemble forecast
members have performed perfectly with all extreme events detected
while making no false detections at all. In Fig. 7, darker red colors
represent higher AUROC. The fractional values that appeared in each
colored box are the computed AUROC values. Note that the “left-to-
right” sequence of 9 NCEI regions in Fig. 7 corresponds to the real-world
geographical layout of these climate regions in the U.S., i.e., the columns
from left to right of Fig. 9 correspond to the western coast to the eastern
coast of CONUS.

A major difference of AUROC is observed between the raw forecast
(E1) and the remaining experiment scenarios with the applications of
the RF model (E2-E6) (Fig. 7). For example, using P as the only input to
the RF model can bring noticeable improvement of AUROC at week 1
lead time at all NCEI climate regions over CONUS. However, such
improvement becomes marginal at longer lead times after week 2,

especially in the central regions of CONUS.

Compared to only using P as input to the RF model (E2), the inclusion
of additional forecast variable brings marginal improvement of AUROC
at longer lead times after week 2. The inclusion of T as input to the RF
model (E3) has slightly increased the AUROC at longer lead times after
week 2 at NCEI climate regions of Northwest, East North Central, Cen-
tral, Northeast, and Southeast. The inclusion of G500 or G850 as an
additional variable to the RF model has increased the AUROC after week
2 lead time at NCEI climate regions of Northwest, East North Central,
Central, and Northeast. However, with the default hyperparameter set-
tings of RF, the inclusion of all available forecast variables (E6) does not
show overall superior AUROC values over the entire CONUS. Compare
to using P as the only input to the RF model (E2), the inclusion of all
available forecasts variables (E6) is able to generate higher AUROC
values at lead times after week 2 over NCEI climate regions of North-
west, West North Central, East North Central, Northeast, and Southeast.

4.2. Model's sensitivity on hyperparameter (comparison of scenarios E1
and E6-E10)

In this section 4.2, we present the results from El, and E6-E10, where

E1 evaluates the raw precipitation forecast in predicting the occurrence
of weekly extreme events above 99% and scenarios E6-E10 evaluate RF-
generated categorial prediction upon weekly extreme precipitation
events above 99%. In addition to EPOD, EFAR, and ECSI, we also present
the regional AUROC over CONUS. The individual ROC curves at NCEI
climate region are provided in the supplementary information section.
Fig. 8 presents the EPOD values under E1, and E6-E10 at different
forecast lead times. The ideal value of EPOD is 1, indicating all extreme
events have been enveloped by the spreads of ensemble forecasts. In
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Fig. 6. The pattern of BSS from experiment scenarios E1-E6, in predicting extreme precipitation events over the CONUS at different lead times (weeks 1 to 4).
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Fig. 7. Spatially-averaged AUROC values at 9 NCEI climate regions from experiment scenarios E1-E6, over CONUS and at different lead times (weeks 1 to 4).

Fig. 8, darker red colors indicate higher EPOD. The average EPOD over
the entire CONUS are computed and presented in red in each subplot for
comparison.

Drastic differences are observed between the performances of raw
forecast (E1) and RF-generated forecasts from other experiment sce-
narios (E6- E10) (Fig. 8). This result agrees with previous EPOD values
presented in Fig. 3, indicating that the application of RF to incorporate

additional forecast variables can significantly improve the EPOD values
over CONUS.

Spatial differences are observed between experiment scenarios E6-
E10, in which the maximum tree depth of RF varies from 3 to 15,
respectively. The EPOD values steadily increase over CONUS with a
larger max tree depth used in the RF model (Fig. 8). But after the tree
depth is over 9 (E8), the improvement of EPOD becomes marginal.
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Fig. 8. The pattern of EPOD from experiment scenarios E1, and E6-E10, in predicting extreme precipitation events over the CONUS at different lead times (weeks 1

to 4).

Spatially, although a larger max tree depth leads to higher EPOD over
CONUS in general, the EPOD values in some regions remain unchanged.
For example, at lead time of weeks 2-4, the EPOD over Southern Cali-
fornia and Texas is not improved at all with a larger number of max tree
depth.

Fig. 9 presents the EFAR under E1, and E6-E10 at different forecast
lead times. The ideal value of EFAR is 0, indicating that the ensemble
spreads of forecasts are not under-dispersed and lead to ensemble false
alarms. In Fig. 9, darker blue colors indicate higher EFAR. The average
EFAR over entire CONUS are computed and presented in red in each
subplot for comparison.

The EFAR of the raw forecasts are spatially uniform over CONUS, and
they are without any noticeable high-value spots at all lead times, when
compared with other experiment scenarios (E6- E10) (Fig. 9). The uti-
lization of RF with a max tree depth of 3 (E6) reduced the EFAR values at
most of the regions over CONUS. However, higher EFAR values are
observed in Northwestern regions and Florida Peninsula at all lead times
from E6, when it is compared to the raw forecasts. We also notice that if
the tree depth is further increased (E7- E10), the EFAR will become
larger at the Northwestern regions of CONUS, the Florida Peninsula, as
well as the Appalachian Mountainous regions. Similarly, according to
Fig. 9, the increase of tree depth seems to only increase the EFAR at
certain regions (i.e., Northwestern regions, Appalachian Mountainous
regions, Florida Peninsula, as well as some scattered locations lies in the
Central regions of CONUS), while the EFAR over other regions seems to
be not sensitive to the increase of tree depth.

Fig. 10 presents the ECSI under E1, and E6-E10 at different forecast
lead times. The ideal value of ECSI is 1, indicating all forecasts have been
enveloped by the spreads of ensemble forecasts while ensemble forecasts

10

are not under-dispersed and lead to false alarms. In Fig. 10, darker green
colors indicate higher ECSI. The average ECSI over entire CONUS is
computed and presented in red in each subplot for comparison.

Results from Fig. 10 show an overall similar pattern to that of Fig. 8.
The major difference resides in between the ECSI plots of raw forecast
(E1) and remaining experiments E6-E10. According to the CONUS-
averaged ECSI, the application of RF with multiple S2S forecast vari-
ables (E6-E10) has significantly improved the overall skill in predicting
the occurrence of extreme precipitation events at all lead times. The
results obtained under scenarios E6-E10 also show some degree of dif-
ferences, which are mainly due to the increase of max tree depth used in
the RF model. It is obvious that as the max tree depth increases, the
overall ECSI over CONUS steadily increases. However, when tree depth
exceeds 9 (E8- E10), the improvement of ECSI becomes marginal over
CONUS. Among all experiment scenarios, the improvements of ECSI
values appear to be the most significant when the tree depth is set to 9
(E8). Compared to the baseline E1 of raw precipitation forecasts, the
relative ECSI improvements under Scenarios E6-10 are 120% (0.30 to
0.66), 155% (0.20 to 0.51), 187% (0.15 to 0.43), and 250% (0.14 to
0.49) at lead times of weeks 1-4, respectively. Spatially, we observe that
a larger max tree depth will likely result in larger ECSI values over most
of the regions across CONUS. But no improvements of ECSI can be
observed at some specific locations, e.g., Southern California, parts of
Nevada, and Texas.

Fig. 11 presents the BSS under E1 and E6-E10 at different forecast
lead times. The BSS measures the agreement between forecast proba-
bility and recorded extreme events. The ideal value of BSS is 1. In
Fig. 11, darker purple colors indicate higher BSS. The average BSS
values over the entire CONUS are computed and presented in red in each
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Fig. 9. The pattern of EFAR from experiment scenarios E1, and E6-10, in predicting extreme precipitation events over the CONUS at different lead times (weeks 1

to 4).

subplot for comparison.

Compared to the raw GEOS5 forecasts (E1), the utilization of the RF
model with a max tree depth of 3 (E6) significantly increases the BSS at
lead time of week 1 but slightly decreases the BSS at lead times of weeks
2 to 4 over the entire CONUS (Fig. 11). However, as the maximum tree

depth increases (E7-E10), the post-processed forecasts present overall
higher BSS at all lead times compared to the raw GEOS5 forecasts (E1)
over CONUS. Among all experiment scenarios, the improvement of BSS
is the most significant when the tree depth is set to 12 or 15 (E9 or E10).
For all RF-involved experiment scenarios (E6-10), the spatial pat-
terns of BSS are similar to that of Fig. 6 (i.e., BSS from E1-E6). At lead
time of week 1, the BSS values at parts of the NCEI regions of West,
Southwest, South, and West North Central are consistently lower than at
other regions. At week 2 lead time, higher BSS values are only observed
at locations in the Rocky mountainous regions and Appalachian

mountainous regions over CONUS. At lead times of week 3 and week 4, a
few scattered spots show higher BSS values in the NCEI climate regions

of Southwest, West North Central, Southeast, and Northeast. In general,
the tunning of the maximum tree depth of RF does not improve BSS at
certain locations and lead times over CONUS.

Fig. 12 presents the regional AUROC under El, and E6-E10 at
different lead times. The ideal value of AUROC is 1, indicating all
ensemble forecast members have performed perfectly with all extreme
events detected while making no false detections at all. In Fig. 12, darker
red colors represent higher AUROC. The fractional values that appeared
in each colored box are the computed AUROC values. Note that the “left-
to-right” sequence of 9 NCEI regions in Fig. 12 corresponds to the real-
world geographical layout of these climate regions in the U.S., i.e., the
columns from left to right of Fig. 9 correspond to the western coast to the

11

eastern coast of CONUS.

Similar to previous results, we also compare the AUROC values RF-
generated forecasts from E6-E10 with the raw forecast performance
(E1). It is apparent that the application of the RF model along with
additional atmospheric variables (E6-E10) resulted in improved values
of AUROC in all regions over CONUS and at all lead times (Fig. 12),
which were similar to our previously presented results of EPOD, EFAR,
and ECSI.

Fig. 12 also shows that the larger the tree depths of the RF, the higher
AUROC over CONUS in general. However, some regions show less im-
provements of the AUROC as the max tree depth increases. These NCEI
regions include West North Central, Southwest, and South (Fig. 1).
Within these regions, the improvement of AUROC seems to be neglect-
able after the tree depth exceeds 9 (E8 to E10). Among all NCEI climate
regions, the AUROC values are significantly higher in the western and
eastern coastal regions of U.S. than that over other regions in the middle
of the continent. The results of AUROC values indicate that the
employed RF model performed the best in the NCEI region of Northwest

(Fig. 1).
5. Discussion

The results from section 4.1 (E1-E6) show that without the tunning of
the hyperparameter of the RF model, the post-processed S28S precipita-
tion forecasts present mixed performances that are subject to different
evaluation statistics. With the inclusion of additional forecast variables
of T, G500, and/or G850, the evaluation metrics of EPOD, EFAR, and
ECSI were improved in general, which were also consistent through all
lead times over CONUS. But the BSS and AUROC only showed a
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Fig. 10. The pattern of ECSI from experiment scenarios El, and E6-E10, in predicting extreme precipitation events over the CONUS at different lead times (weeks 1

to 4).

marginal level of improvement after week 2 and sometimes slightly
deteriorated at week 1 lead time. We reckon such mixed performances of
the post-processed forecasts show that the inclusion of additional
meteorological forecast variables is still informative, especially at longer
lead times after week 2. However, the tunning of the hyperparameter of
the RF model is critical when additional forecast variables are included
as inputs to the RF model.

The BSS and the regional AUROC from section 4.2 (E6-E10) confirm
the effectiveness of the inclusion of additional variables as well as our
proposed RF model in post-processing S2S extreme precipitation fore-
cast over CONUS. With a proper tunning scheme for the hyperparameter
of the RF model, all evaluation statistics have shown noticeable im-
provements over CONUS. However, we also noticed that once the max
maximum tree depth of the RF model exceeds 12, the overall improve-
ments of S2S forecasts become neglectable and the EFAR values at some
locations even got slightly deteriorated. We suspect this indicates an
overfitting of the RF model. Although the RF model does not overfit
when the number of trees of RF model is large enough (Breiman, 2001),
we did not test it in our study to keep the study focus. On the other hand,
when the depth of trees of RF model become too deep but train with
relatively too few input variables, it is also possible that the RF model
can no longer generalize over unseen points in the test dataset (Tang
et al., 2018).

Nevertheless, combining all evaluation statistics from both section
4.1 and section 4.2, we reckon that the S2S extreme precipitation fore-
casts can be improved through the employment of RF when (1) addi-
tional atmospheric forecast variables other than precipitation are
included as inputs to the RF model; and with (2) the hyperparameter of
RF classifiers is manually tunned to allow the model better to capture the

12

spatial and temporal patterns of the extreme precipitation events.

The combined use of ML model with the inclusion of additional
forecast variables to improve S2S precipitation forecasts has a potential
value in assisting flood predictions and river forecasts, especially at an
extended range. Before the emergence of available S2S forecasts, the
classical approach in predicting streamflow at the S2S timescale is to
create an ensemble of multiple precipitation timeseries and by randomly
resampling historical rainfall measurements. Although S2S forecasts
provide an alternative to the classical approach, the accuracy and reli-
ability of the raw S2S forecasts are rather limited as indicated by existing
research, especially in predicting extreme precipitation events. Many
practitioners argue that the traditional way of resampling hydromete-
orological measurements is less computationally expensive and could
easily gain higher probability of enveloping extreme events by creating a
large ensemble size through resampling. But this study demonstrated
that the employment of the RF model can improve S2S extreme pre-
cipitation forecasts without increasing the size of ensemble forecasts.

In this study, we demonstrated that additional atmospheric infor-
mation, i.e., T, G500 and G850, could greatly benefit extreme precipi-
tation forecasts at the S2S timescale. Given the fact that heavy
precipitation events could be triggered through different mechanisms of
convections, orographic lifts, and/or large-scale synoptic systems, it is
reasonable to expect additional information could further improve the
extreme precipitation forecasts at the S2S scale. We suspect that addi-
tional slope and DEM information might be helpful in identifying
orographic precipitations. Additional atmospheric forecast variables (e.
g., wind direction and speed, specific humidity, sea level pressure, etc.)
might be able to improve the prediction upon stratiform precipitation
events brought by synoptic systems. As for convective precipitation
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Fig. 11. The pattern of BSS from experiment scenarios E1, and E6-E10, in predicting extreme precipitation events over the CONUS at different lead times (weeks 1

to 4).
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Fig. 12. Spatially-averaged AUROC values at 9 NCEI climate regions from experiment scenarios E1, and E6-E10, over CONUS and at different lead times (weeks 1

to 4).

events at the subseasonal timescales, they are sometimes considered as some patterns of convective precipitation given different local infor-
unpredictable given our currently limited understanding in the mation (e.g., land cover types) as well as the projected atmospheric
geographical distribution of their predictability (Moron and Robertson, conditions at subseasonal timescales.

2020). Therefore, we could only hope that through the inclusion of In this study, we also conducted a sensitivity test on the maximum

multiple additional variables, ML&DM models may be able to identify of tree depth of the RF model (section 4.2). The sensitivity test result shows

13
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that the occurrence of extreme precipitation events can be better pre-
dicted by slightly tunning one RF model hyperparameter. According to
our results, a larger tree depth of the RF model can increase the overall
predictive performance on the occurrence of weekly extreme events.
However, such improvement becomes marginal after the tree depth
reaches 9. Further increase of the tree depth does not bring significant
improvement of the forecast statistical measures. For decision tree
models, there are many other hyperparameters left un-tested in this
study, such as the number of leaves, maximum data samples in one leaf,
splitting criteria, etc. We also did not compare the predictive perfor-
mance of RF with other popular ML models, such as Supportive Vector
Machine, K-mean clusters, etc. There are some existing studies
comparing popular ML models for interested readers in the field of hy-
drometeorology and water resources management (Hess and Boers,
2022; Moon et al., 2019; Nayak and Ghosh, 2013; Yang et al., 2016;
Yangetal., 2021; Zhang et al., 2018). It will be a future effort to identify
which ML is more capable of improving the S2S extreme precipitation
forecasts together with a larger-scale model sensitivity study.

In this study, different spatial patterns of the categorial predictions
are observed over CONUS. According to our regional AUROC results, as
well as the obtained BSS values from section 4.2, we can confidently
conclude that, in general, the extreme precipitation events that
happened in the NCEI climate regions of Southwest, West North Central,
and South tend to be harder to predict even with a larger tree depth of
the RF model. This spatial pattern is probably because extreme precip-
itation events at different regions over CONUS are dominated by
different meteorological mechanisms. Extreme precipitation events in
the coastal regions of CONUS are largely due to or associated with
synoptic-scale events, such as extratropical cyclones and atmospheric
rivers (Chen et al., 2018; Kunkel et al., 2012; Mahoney et al., 2016).
These types of extreme events have enormous spatial (horizontal length
> 100 km) and temporal (multiple days) extent thus might be easier for
GCMs to consider with their coarse spatial resolutions. In contrast,
mesoscale convective systems, such as thunderstorms that occur more
frequently in the NCEI regions of West North Central, Southwest, South,
and Central regions (Kunkel et al., 2012), are generally smaller in spatial
(smaller than 100 km horizontally) and temporal (often sub-daily)
scales. Thus, these convective systems are very difficult for GCMs to
simulate and thus challenging for the ML&DM models to capture their
spatial and temporal variabilities.

One limitation of this study is that only precipitation events above
99% threshold were examined. However, heavy precipitation events at
other quantiles (e.g., above 95%, 90%, 75%, etc.) are also capable of
causing floods, which should be further studied separately. Due to the
limited length of this study, it will be a future effort to examine the
available S2S precipitation forecasts in predicting heavy precipitation
events at other quantiles.

Another follow-on study could be devoted to restoring the positive
categorical predictions upon extreme events back to numerical values, i.
e., rain rates. Afterall, categorical predictions cannot be directly used for
hydrologic simulations to provide information on the magnitude of
future streamflow. One simple way to resolve this issue is utilizing
popular distribution-based approaches, such as quantile mapping
(Cannon et al., 2015; Maraun, 2013), to conduct bias corrections upon
S2S precipitation forecasts. Specifically, the RF-categorized extreme and
non-extreme events will be corrected/restored to numerical values ac-
cording to historical records and thus ready for next-step hydrologic
forecasts. However, we expect that the treating of extreme values might
be challenging, since a few recent studies identified that the extreme
precipitation events over the globe exhibited significant changes in
frequency and magnitudes under global climate change (Fan et al.,
2021; Kunkel et al., 2003; Madsen et al., 2014; Sun et al., 2017). Thus,
when bias-correcting the extreme precipitation forecasts from S2S
models, the considerations on the “non-stationary” of climate and its
impacts are also needed. (AghaKouchak etal., 2011; Cheng et al., 2014;
Tao et al., 2018).
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Finally, the application of S2S precipitation forecast products in
hydrologic forecasts at watershed scales is still an ongoing effort due to
the raw forecasts' coarse spatial resolutions. We encourage practitioners
to further evaluate and apply S2S precipitation forecasts for riverine
flood predictions at a daily time step (Cao et al., 2021; Li et al., 2017;
Mclnerney et al., 2020; Quedi and Fan, 2020; Kim et al., 2021). This will
help overcome the pitfall of the current study that only evaluates the S2S
forecasts limited number of statistical metrics on a weekly basis. We
encourage future research to be devoted to answering the questions of
how post-processed S2S ensemble precipitation forecasts perform in
predicting floods induced by extreme precipitation events.

In summary, future research could be devoted to (1) investigating
how additional variables further help ML models to better post-process
S2S forecasts and identify the intrinsic physical dynamics related to
extreme precipitation over CONUS; (2) quantifying the influences of
different ML hyperparameters on the predictive performance upon
extreme precipitation events at the S2S timescale; (3) capturing the
structural and random errors associated with different S2S forecast
models at different spatial and temporal domains; and (4) linking the
S2S forecasts to ensemble hydrologic forecasting and further investi-
gating the usefulness of S2S forecasts in assisting ensemble streamflow
forecasting of riverine floods.

6. Conclusion

In the current research, we conducted comprehensive evaluations
regarding the performance of GEOS5 S2S forecasts with a specific focus
on weekly extreme precipitation events over CONUS. We developed a
proof-of-concept forecast adaptation framework using the Random
Forest (RF) classifier to post-process the raw S28 forecasts at each 0.25-
degree pixel over CONUS. Four S2S forecast variables are used,
including precipitation, surface air temperature, and geopotential
height at 500 hPa and 850 hPa. We examined the performance of RF
with respect to different maximum tree depths over CONUS. A total of
ten different experiment scenarios are created to identify the ideal input
variable combination and maximum tree depth that leads to the best
predictions upon extreme precipitation events.

To evaluate the skill and demonstrate the potential hydrologic
effectiveness of S2S ensemble forecast, we employed modified categor-
ical metrics of ensemble probability of detections (EPOD), ensemble
false alarm ratios (EFAR), and ensemble critical success index (ECSI).
The probabilistic evaluation metric of Brier Skill Score (BSS), as well as
the regional Area Under the Receiver Operating Characteristics Curves
(AUROC) are computed to confirm the improvements of S2S precipita-
tion forecast. The improved S2S forecasts will be useful for future hy-
drologic studies in different spatial and temporal domains. Our research
conclusions are listed as follows:

1. The application of RF can significantly improve S2S forecasts in
terms of predicting the occurrence of weekly extreme precipitation
events. The improvement is most significant at lead time of week 1
and deteriorates rapidly after week 2 lead time. We found out that by
including additional S2S forecast variables as the RF inputs, the
forecast performance is further improved at longer lead times (i.e.,
weeks 2-4). Compared to the raw forecasts, RF could improve ECSI
up to 116% (0.31 t0 0.67), 165% (0.20 to 0.53), 200% (0.15 to 0.45),
and 257% (0.14 to 0.50), at weeks 1-4, respectively.

2. We also found that the extreme precipitation events in West North
Central, Southwest, and South regions, per NCEI definition, are
harder to predict than that in other regions. We speculate such dif-
ferences are due to different dominating precipitation mechanisms,
which may result in different spatial and temporal scales of extreme
precipitation events.

3. Sensitivity analysis indicates that increasing the maximum tree
depth of RF would result in overall better forecasts at all lead times
over CONUS. However, the improvements become neglectable once
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the tree depth exceeds nine in our study. We suspect this indicates an
overfitting of the RF model. The obtained BSS and AUROC show
consistent conclusions as indicated by EPOD, EFAR, and ECSI, which
confirms the improvement of S2S forecast is not subject to the defi-
nitions of modified evaluation metrics.
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