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The precipitation forecasts at the Subseasonal-to-Seasonal (S2S) scale are valuable information to assist water 

resources planning and decision-making at an extended range. But the raw S2S precipitation forecasts are rather 

limited regarding their predictive skills, which hinders further hydrological applications. Many previous studies 

were carried out to validate the S2S precipitation forecasts from the perspective of the ensemble “mean”, while 

existing study, which evaluates and improves the ability of S2S forecasts in predicting extreme precipitation 

events with their ensemble spreads, is rarely reported. This study aims to improve the S2S forecasts in predicting 

the occurrence of weekly extreme precipitation events above 99% over the contiguous United States (CONUS). 

The Random Forest Classifiers (RF) were employed and additional forecasts variables (i.e., surface air temper- 

ature, geopotential heights at 500 hPa and 850 hPa) were included to post-process the raw S2S forecasts from the 

NASA's Goddard Earth Observation System model version five (GEOS5). Different RF training inputs and RF 

hyperparameter sensitivity analysis are examined. We found that (1) using S2S precipitation forecast as the only 

inputs to RF, the forecast quality is improved significantly only at week 1; (2) When additional forecasts variables 

are included in RF training, the forecast skill tend to improve slightly at longer lead times after weeks 2; (3) The 

tunning of the maximum tree depth of RFs combine with the inclusion of additional forecasts variables as inputs 

to RF can improve the forecasts skill at all lead times over CONUS. In short, this study demonstrated the 

effectiveness of the application of RF as well as the effectiveness of additional forecast variables in improving the 

S2S extreme precipitation forecasts, which could be potentially useful for flood and river ensemble forecasting. 

Multiple statistical metrics, including the ensemble probability of detections (EPOD), ensemble false alarm ratios 

(EFAR), ensemble critical success index (ECSI), Brier Sill Score (BSS), and Area Under the Receiver Operating 

Characteristics Curves (AUROC) are employed for a comprehensive evaluation of the predictive performances of 

S2S extreme precipitation forecasts under different experiment scenarios. 
 

 

 

 
1. Introduction 

 
Riverine flooding typically comes after heavy precipitation, causing 

impacts on human socio-economic activities, including loss of human 

lives (Begum et al., 2007; Singh and Kumar, 2013), water contamination 

(Taylor et al., 2011; Yang et al., 2022), agricultural damage (Bremond 

et al., 2013), and disruption of transportation systems (Suarez et al., 

 
2005). Reliable precipitation forecasts are critical for decision-makers to 

adaptively change their strategies to mitigate the impacts of such natural 

disasters (Sorooshian et al., 2011). 

Advanced weather forecasting and climate models can generate 

precipitation forecasts at different timescales for water resources plan- 

ning. At lead times within a medium range (i.e., 2 weeks into the future), 

precipitation forecasts generated from Numerical Weather Prediction 
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(NWP) models are the most widely adopted products (Kuligowski and 

Barros, 1998; Robertson et al., 2013), which simulate the propagation 

and evolution of atmospheres. At longer lead times, the General Circu- 

lation Models (GCMs) coupled with dynamic components of the atmo- 

sphere, ocean, and land surface are more suitable tools as compared to 

the NWP models in producing seasonal, annual, or even decadal pre- 

cipitation outlooks (Vitart, 2017; Xiang et al., 2019). Both NWP and 

GCM-generated precipitation forecasts are widely studied and applied 

by various mission agencies and research communities (Clark et al., 

2017; Wood and Lettenmaier, 2006; Yang et al., 2018). 

However, a forecast gap lies in the Subseasonal-to-Seasonal (S2S) 

timescale, defined explicitly as the transitional period of 10 to 30 days 

between weather predictions and seasonal outlooks (White et al., 2017). 

Previous studies found that the predictability of weather is either lost 

already (i.e., initial conditions of the atmosphere) or has yet to start 

dominating local weather (i.e., ocean-weather interactions) at S2S 

timescales (Vitart et al., 2017). Such a lack of predictability sources 

makes it extremely challenging to provide accurate S2S forecasts (White 

et al., 2017). 

Many efforts have been made to advance precipitation forecasts by 

identifying additional predictability sources of the weather at the S2S 

timescale. Series of initial conditions of land surface and atmosphere are 

found to be associated with the variation of sub-seasonal weather (Asoka 

and Mishra, 2015; Chelton and Wentz, 2005; Cohen et al., 2010; Guo 

et al., 2011; Stockdale et al., 2015; Thomas et al., 2016). More recently, 

multiple atmospheric variation modes over oceans are also found to be 

significantly dominating the distribution and magnitude of subseasonal 

precipitation events (Dai and Wigley, 2000; Hsiao et al., 2020; Mariotti 

et al., 2020; Yang et al., 2017a; Zhang and Ling, 2017). 

Additional efforts have been made by mission agencies all over the 

globe to provide experiment S2S forecast datasets through coupled GCM 

models (Kirtman et al., 2014; Pegion et al., 2019; Vitart, 2014; Vitart 

et al., 2017; Yang et al., 2018). Available S2S forecast datasets include 

European Center for Medium-Range Forecasts (ECMWF), the S2S project 

by the World Weather Research Program, and the North America Multi- 

Model Ensemble Phase II (NMME-2), etc. Although existing S2S forecast 

products offer a promising opportunity for seamless hydrologic pre- 

dictions, it is commonly agreed that S2S precipitation forecasts suffer 

from a substantial amount of forecasts biases and a marginal level of 

predictive skills (Baker et al., 2019; de Andrade et al., 2019; de Andrade 

et al., 2021; King et al., 2020; Tian et al., 2017; Vigaud et al., 2017; 

Wang and Robertson, 2019; Tao et al., 2018; Yang et al., 2015). 

More importantly, existing studies were mainly focused on investi- 

gating the accuracy of ensemble means or medians of S2S precipitation 

forecasts, while the ability of ensemble S2S forecasts to predict extreme 

events with their ensemble spreads is rarely reported. Nevertheless, 

from a practical perspective, extreme information is critically needed as 

precipitation forecasts generally cannot be applied deterministically at 

S2S ranges in hydrology (Day, 1985). From the standpoint of water 

infrastructure operation (i.e., reservoirs and long-distance water trans- 

ferring systems), decision-makers would desire the model-generated 

ensemble forecasts to envelop and include future extreme precipita- 

tion events as much as possible so that the potential risks of associated 

natural disasters could be considered beforehand and avoid infrastruc- 

ture failure (VanBuskirk et al., 2021; Wu et al., 2020; Yuan et al., 2015; 

Yang et al., 2020). 

As we mentioned earlier, there is only a limited number of studies 

focused on S2S extreme precipitation forecasts over CONUS. Among 

some recent studies, Cao et al. (2021) examined the hydrologic perfor- 

mances of the ensemble means of S2S forecasts in forecasting flood 

events at three watersheds in the western U.S. In addition, Zhang et al. 

(2021) studied and examined the capability of S2S precipitation fore- 

casts from NMME-2 in capturing the pattern of extreme rainfall with the 

entire spreads of the ensembles. However, according to Zhang et al. 

(2021), the skills of the S2S precipitation forecasts in predicting the 

occurrence of weekly extreme precipitation events are marginal after 

two weeks into the future. 

The poor quality of S2S precipitation forecasts in predicting extreme 

events hinders a broader application of S2S forecasts in flood predictions 

and sustainable water infrastructure operations. Various statistical- 

based post-processing techniques are available, which can help correct 

the forecast bias and improve S2S precipitation forecast accuracy. When 

using these statistical-based post-processing tools, though the forecast 

biases can often be removed nicely, many studies found that the forecast 

skill tends to remain either unchanged or even deteriorate after 

removing the biases (Baker et al., 2020; Li et al., 2017; Manzanas et al., 

2018; Zhao et al., 2017). This is because S2S precipitation forecast skill 

is affected by multiple factors, including coarse spatial resolutions, 

imperfect/unrealistic precipitation parameterization schemes, and the 

computational errors originated in resolving the partial differential 

equations of the atmosphere when generating rainfall forecast in the 

physical models (Davis and Goadrich, 2006; Ebert and McBride, 2000). 

Due to these reasons, existing statistical-based post-processing ap- 

proaches are somewhat limited in improving the predictive skills of S2S 

precipitation forecasts. Therefore, more advanced tools are still needed, 

especially for extreme precipitation events at the S2S timescale. 

As an alternative to the existing statistical-based post-processing 

approaches, Machine Learning and Data Mining (ML&DM) techniques 

are promising tools for improving the S2S extreme precipitation fore- 

casts skill scores. The ML&DM techniques have the flexibility to include 

an arbitrary set of input variables in the classification and regression 

process (Yang et al., 2017a and 2017b). They can effectively identify the 

complex relationships between selected input variables and target var- 

iables, which may not be directly related to each other. Many re- 

searchers have successfully applied ML&DM for precipitation forecast 

adaptations. For example, Miao et al. (2019), Pan et al. (2021), Pan et al. 

(2019), Wang et al. (2021) applied ML&DM to post-process precipita- 

tion forecasts over different study regions and reported overall im- 

provements in forecast skills. However, some other studies reported that 

ML&DM tends to underestimate and limit the reproduction of extreme 

values (Akbari Asanjan et al., 2018; Ban˜o-Medina et al., 2020; Kim et al., 

2022; Sadeghi et al., 2020). Nevertheless, given the sensitive dynamics 

of extreme precipitation events (Faridzad et al., 2018; Nie et al., 2020; 

Pendergrass, 2020; Srinivas et al., 2018), we expect that the triggering of 

extreme events should be easier to identify when it is compared to 

regular precipitation events. Therefore, a popular ML&DM model, i.e., 

the Random Forest or RF classifier, is applied in this study to predict the 

occurrence of extreme precipitation events over different regions of 

CONUS. The RF is an ensemble-based tree algorithm. It can handle 

correlated conditional variables and is robust against overfitting with 

the presence of high-level noise in the training data (Breiman, 2001, 

Strobl and Zeileis, 2008). As one of the most popular ML algorithms, the 

RF has been widely applied in a variety of hydrometeorological studies, 

including statistical downscaling (He et al., 2016, Tao et al., 2018), 

reservoir release predictions (Yang et al. 2015, 2020, and 2021), and the 

post-processing of precipitation forecasts (Herman and Schumacher, 

2018a,b, Loken et al., 2019). 

On top of using advanced ML techniques, the inclusion of additional 

forecast variables into the ML training may further increase the pre- 

dictive skill of precipitation forecasts. Precipitation forecasts from dy- 

namic models are generated through a process called 

“parameterization.” Instead of computing numerical values by resolving 

the partial differential equations in forecast models, this “parameteri- 

zation” process generates quantitative precipitation forecasts empiri- 

cally based on the importance of other explicit atmospheric variables (i. 

e., variables computed directly by resolving physical equations, such as 

temperature, pressure, etc.). The reason for adopting such “parameter- 

ization” schemes in dynamic models is because precipitation is formed 

through complex micro-physical and chemical processes that surpass the 

resolution and capability of current models (Stensrud, 2009). Such 

“parameterization” schemes are generally considered of high uncer- 

tainty and less reliable compared to the computations of explicit 
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atmospheric variables (Bader and Roach, 1977; Best et al., 2011; Betts 

et al., 1998; Bukovsky and Karoly, 2007; Tian et al., 2017; Vitart, 2004; 

Yang et al., 2017a, 2017b). Thus, including additional forecast variables 

together with a robust ML algorithm may lead to a higher chance of 

identifying the dynamic, varying patterns of precipitation events over 

space and time. 

Therefore, in this study, multiple S2S forecast variables are included 

in the training of RF to predict the occurrence of weekly extreme pre- 

cipitation events over CONUS. The input forecast variables include each 

individual and a combination of (1) precipitation, (2) surface air tem- 

perature, (3) 500 hPa geopotential heights, and (4) 850 hPa geopotential 

heights. The surface air temperature, 500 hPa, and 850 hPa geopotential 

heights are related to the formation of precipitation events. These 

meteorological variables have been commonly used in previous studies 

to downscale and post-process precipitation forecasts (Li et al., 2022; 

Miao et al., 2019; Pan et al., 2019). In this study, we chose 99% as the 

threshold to identify weekly extreme precipitation events without a 

universal standard. 

Previously, Zhang et al. (2021) reported that the capability of 

NMME-2 S2S forecast in capturing the occurrence of extreme precipi- 

tation events is marginal after week 2. Following Zhang et al. (2021)’s 

work, this study develops a prototype model to improve the capability of 

S2S forecasts in predicting the occurrence of extreme precipitation 

events. The experiment S2S forecast dataset used in this study is from 

one contributing forecast model of NMME-2, i.e., the NASA Goddard 

Earth Observing System version 5 model (GEOS5). Building off of many 

existing studies that focused on the ensemble means, we further consider 

the entire ensemble of S2S forecasts. A few existing statistical metrics 

were modified for the evaluation of ensemble forecasts. The contribu- 

tion of this study also includes sensitivity tests on one RF hyper- 

parameter, and different model input scenarios are also examined for 

comparison. 

In summary of our research goals, we intend to address research 

questions: 1) Can the predictions on the occurrence of extreme precip- 

itation events be improved at the S2S ranges through ML techniques 

over CONUS? 2) Can additional atmospheric forecast variables improve 

S2S extreme precipitation forecasts over CONUS? 3) Does tunning of ML 

hyperparameter significantly affect the quality of extreme precipitation 

forecasts over CONUS? And 4) Do the ML-enabled forecasts perform 

consistently in different regions over CONUS? 

The rest of this paper is organized as follows: In section 2, we present 

data and study region. The experiment settings and evaluation metrics 

are described in Section 3. Section 4 presents the results. The discussions 

and main conclusions are presented and summarized in Section 5 and 

Section 6, respectively. 

 
2. Data and study region 

 
The datasets used in this study include (1) the daily S2S forecast 

variables from GEOS5 and (2) a ground truth daily precipitation 

observation dataset for validation, the AN81d daily precipitation dataset 

from the Parameter-elevation Regressions on Independent Slopes Model 

(PRISM). Both forecast and reference datasets are collected from 01/01/ 

1982 to 12/31/2011 to cover a 30-year study period. 

The GEOS5 produces 10-member ensemble forecasts on the first day 

of each month during the study period. Each member of the GEOS5 

dataset provides daily forecasts of multiple hydrometeorological vari- 

ables with a lead time of up to 274 days. The 10-member ensemble 

forecasts are generated with perturbed initial conditions (Borovikov 

et al., 2019). Raw GEOS5 forecasts have spatial resolutions of 1◦ (~100 

km). Four GEOS5 forecast variables are used in this study, including 

precipitation (P), surface air temperature (T), and geopotential height at 

500 hPa (G500) and 850 hPa (G850). 

The PRISM is a gridded dataset that covers the entire CONUS with a 

spatial resolution of ~0.04◦ (4 km). The PRISM combines a digital 
elevation  model  with  both  surface  and  Radar  precipitation 

measurements (Daly and Bryant, 2013). It is a reliable reference for 

validating satellite precipitation estimation and precipitation forecast 

products (Gowan et al., 2018; Mizukami and Smith, 2012; Prat and 

Nelson, 2015). 

The collected S2S and PRISM datasets are pre-processed as follows. 

All collected S2S forecasts are truncated to 28 days (4 weeks) to focus on 

the S2S timescale specifically. The truncated forecasts are labeled with 

individual lead times (1–28 days). Both S2S forecasts and PRISM were 

then resampled to 0.25-degree pixels to match with each other. Specif- 

ically, the S2S forecasts were downscaled using the nearest neighbor 

approach. The PRISM was upscaled through aggregations (i.e., areal 

averages of all origin PRISM pixels fall in the corresponding 0.25-degree 

pixels) in order to match the coarse spatial resolution of GEOS5 data. 

To validate the experiment results, we conducted both pixel-based 

and regional evaluations of the raw and improved forecasts to better 

observe spatial patterns over CONUS. The regional assessment is per- 

formed based on the nine climate regions defined by the National Cen- 

ters for Environmental Information (NCEI) (Karl and Koss, 1984) shown 

in Fig. 1. A few NCEI regions include the mountainous terrains. Specif- 

ically, the Rocky Mountains span the Northwest, West, West North 

Central, and Southeast regions; the Appalachian Mountainous regions 

are included in parts of the Northeast and Southeast regions. 

 
3. Experiment Settings and Evaluation Metrics 

 
3.1. Experiment Settings 

 
In this study, the RF classifiers are individually trained at each 0.25- 

degree pixel over CONUS to identify weekly extreme precipitation 

events beyond 99% using the 10-member ensemble S2S forecasts. The 

employment of RF is based on the open-source package in Python. The 

“leave-10-years-out” model across-validation strategy was adopted to 

avoid overfitting of the ML model over the entire study period. This 

strategy was commonly applied in the fields of hydrometeorology and 

climate change for forecast correction and statistical downscaling (Li 

et al., 2019; Manzanas et al., 2018). To perform the “leave-10-years-out” 

cross-validation, the whole study period was divided into three 10-year 

periods (i.e., 1982–1991, 1992–2001, and 2002–2011). When a partic- 

ular 10 years are selected as the targeting period for forecast corrections, 

the remaining 20 years' data will be used to train the RF model. 

The training of RF was carried out at different lead times as well. 

Taking week 1 forecasts as an example, the daily S2S forecasts with lead 

times smaller than 1 week (lead times 1 to 7 days) from the reference 

period are used as the inputs to train RF. The model training target is set 

to be the weekly extreme events observed in the PRISM dataset. The 

trained RF model is further used to produce categorial predictions upon 

extreme events at the same lead time for the target period. We repeated 

this training process at each 0.25-degree pixel over CONUS for week 2 

(day 8 to 14), week 3 (day 15 to 21), and week 4 (day 22 to 28). 

We expect that the S2S extreme precipitation forecasts can be 

improved via 1) the inclusion of additional atmospheric forecast vari- 

ables as inputs to RF, and 2) the tunning of the max tree depth of RF. To 

test our hypothesis, a total of ten experiment scenarios were designed 

and shown in Table 1. 

Among all scenarios presented in Table 1, we first benchmark the 

performances of the raw S2S precipitation forecasts in predicting the 

occurrence of extreme events (E1). The weekly extreme events over 

CONUS are identified by aggregating PRISM into weekly-averaged 

values and sorting out weeks with averaged values above the 99% 

threshold. Similarly, for the raw precipitation forecasts for all ensemble 

members of GEOS5, we first aggregate them into weekly values. Then, 

the positive predictions from GEOS5 upon the occurrence of extreme 

precipitation events are identified by sorting out weeks with averaged 

forecast values above 99% according to their own statistics. 

For experiment scenarios 2–5 (E2-E5) (Table 1), the hyper- 

parameters of RF are controlled and remain unchanged, whereas the 
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Fig. 1. nine NCEI climate regions. 

 
Table 1 

Designed experiment scenarios. “P” refers to Precipitation Forecasts; “T” refers to Temperature Forecasts; and “G” refers to Geopotential Heights. 

Experiment Scenarios E1 (Raw) E2 E3 E4 E5 E6 E7 E8 E9 E10 

      P P P P P 

Input variable(s) N/A P 
P P

 
P T T T T T 

 

 
Tree depth 

 
 

“max_depth” parameter is set to be 3, “max_features” is set to be 0.6, 

“n_estimators” is set to 150, and other hyperparameters remain as 

default for the RF model. The scenarios E2-E5 only differ in the variables 

used as inputs to RF, where the same P, P and T, P and G500, or P and 

G850 are used as the input variables under different scenarios E2-E5, 

respectively. 

For experiment scenarios 6–10 (E6-E10), the input variables used to 

train RF are controlled and remain unchanged, whereas all collected S2S 

forecast variables are used as inputs to RF. However, under E6-E10, the 

“max_depth” of RF is set to be 3, 5, 7, 9, 12, and 15, respectively, while 

other hyperparameters remain unchanged (i.e., max_features = 0.6, 

n_estimators = 150). 

 
 

3.2. Pixel-based and Event-based Forecast Evaluation Metrics 

 
This study used three sets of evaluation metrics to compare the 

corrected forecast results. The first set of metrics is pixel-based evalua- 

tion metrics, including three popular categorical evaluation metrics of 

Probability of Detection (POD), False Alarm Ratio (FAR), and Critical 

Success Index (CSI). In the second set of metrics, an event-based prob- 

abilistic evaluation metric termed the Brier Skill Score (BSS), is 

employed. The last set of metrics is called the Area Under the Receiver 

Operating Characteristics Curves (AUROC), which is a graphical index 

used for spatial skill score evaluation for different climate regions over 

the CONUS. 

To apply the POD, FAR, and CSI, we further modified these metrics to 

consider the entire ensemble of S2S forecasts and named the modified 

metrics as Ensemble Probability of Detection (EPOD), Ensemble False 

Alarm Ratio (EFAR), and Ensemble Critical Success Index (ECSI); The 

BSS and the AUROC are two widely applied metrics to quantify the 

model performances in the field of Hydrometeorology (Wilks, 2011) and 

Machine Learning (Davis and Goadrich, 2006), respectively. In this 

 
study, we choose BSS and AUROC to verify the performances of RF in 

addition to EPOD, EFAR, and ECSI. The following sections introduce the 

logic and detailed calculation of the employed metrics. 

 
3.2.1. Mathematical definitions of EPOD, EFAR, and ECSI 

Table 2 describes a so-called contingency table, which illustrates the 

categorical relationship between the forecast and reference datasets. In 

this contingency table, the occurrence of extreme precipitation events is 

represented in the form of binary events with the possibility of two 

scenarios, either "True" or "False". The “H” in the contingency table means 

“hits,” and it refers to the number of successful predictions upon the 

occurrence of extreme events. Similarly, “M” means “misses,” which 

refers to the number of non-forecasted extreme events. “F” means “false 

alarms,” and it refers to the number of false positive forecasts upon the 

occurrence of extreme events. Based on the contingency table, three 

evaluation metrics of POD, FAR, and CSI are computed as follows: POD 

measures the fraction of accurate detection of events, and its calculation 

equation is H/(H + M); FAR measures the fraction of erroneous detec- 

tion of events and its equation becomes F/(F + H), and CSI determines 
the fraction of correct event detection after ignoring the correct negative 

events, and the equation of CSI is H/(H + F + M). 

However, precipitation forecasts generally cannot be applied deter- 

ministically on sub-seasonal timescales due to their uncertainties, and it 

 

Table 2 

Contingency table of all possible outcomes for categorical forecasts 

of binary events. 
 

Events O NO 

P H F 

NP M CR 

O = observed; NO = not observed; P = predicted; NP = not predicted; 

H = hit; F = false alarm; M = miss; CR = correct rejection. 

 T G500 G850 G500 

G850 

G500 

G850 

G500 

G850 

G500 

G850 

G500 

G850 

Maximum RF 
N/A

 
3 3 3 3 3 6 9 12 15 
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is not informative to use the original POD, FAR, and CSI metrics to 

evaluate S2S precipitation forecasts as they do not consider the entire 

ensemble spreads from different model outputs. Therefore, the use of 

EPOD, EFAR, and ECSI as the evaluation metrics will be more realistic 

and inclusive. The definitions of EPOD, EFAR, and ECSI generally follow 

the definitions of traditional POD, FAR, and CSI but consider all 

ensemble members of forecasts. By adopting modified EPOD, EFAR, and 

ECSI, we would like to quantify if extreme precipitation events are well- 

 

inflate the skill when adopted for evaluations upon extreme events 

(Wilks, 2011). This is because extreme events are natrually rare in data 

records and too many negative predictions upon the occurrence of 

extreme events could lead to favourable statistics. We therefore assigned 

different weights to categorical events to derive a more realistic skill 

socre of the forecasts. The BS and BSref are computed following Eq. (6): 

BS  
1 

( 
∑n 

W  f  O 2 

)

 
 

To compute EPOD, EFAR, and ECSI, we define that successful cate- In Eq. (6), WO = 0.99 when Ot is equal to 1 and WO = 0.01 when Ot is 
gorical prediction made by any ensemble members upon extreme events t t

 

will be counted as a “hit.” Similarly, an unsuccessful categorical pre- 

diction made by all ensemble members will be counted as a “miss.” 

Following the same logic, if none of the ten ensemble members has 

forecasted an extreme event above 99% while such event did not 

happen, it will be counted as a “correct negative”. Finally, if all ensemble 

members have forecasted an extreme event above 99% while such an 

event did not happen, it will be counted as a “false alarm”. With such 

modified definitions of “hit,” “miss,” and “false alarm,” the EPOD, EFAR, 

and ECSI can be computed as follows: 

∑n 

I 

[ 

⋀m 
(
x AND y 

) 
]

 

 
 

equal to 0, based on their probabilities in climatology. In this study, 

when computing the BS of GEOS5 forecast following Eq. (6), ft is 

computed based on number of the positive categorical predictions 

among all 10 ensemble forecast members at time t. For example, when 

six out of ten GEOS5 members gave positive predictions upon extreme 

events, ft would equal to 0.6. On the other hand, the ft of reference 

forecast would constantly be equal to 0.01, given the climatology 

probability threshold of extreme events is 99%. 

 
3.2.3. Area under the receiver operating characteristics curves (AUROC) 

The last set of evaluation metric, i.e., AUROC, is defined as the Area 
 

 

I(yi) 
=1 

∑n 

I

{ 

⋁m 
[
x AND (NOT y ) 

] 
}

 

to the huge amount of computation at all 0.25-degree pixels across the 

entire CONUS, we cannot plot and present ROC curves at each pixel and 

with different probability thresholds of RF. Instead, we pooled the cat- 

egorical predictions obtained from all ensemble forecasts under 

EFAR = i=1 
j=1  ij i 

∑ 
[  

m  ( ) 
]
 (2) 

different experiment scenarios at different NCEI climate regions to 
calculate the area based AUROC. In other words, the ROC curves and 

I 
i=1 

⋀
j=1 

xij their corresponding AUROC were plotted and computed at nine NCEI 

climate regions with the default probability threshold of RF of 50%. 
∑n 

I 

[ 

⋁m 
(
x AND y 

) 
]

 The POD and POFD are needed to plot ROC curves and to compute 

ECSI = 
∑ 

 

 

i=1 

∑ 

j=1  ij i 

{  
m [ ] 

} (3) 
AUROC. According to the contingency Table 2, the calculation of POD 

follows H/(H + M) and calculation of POFD follows F/(F + CR). For 
 

In the equations above, n is the total number of categorical forecasts 

with the same lead time; and m quantifies the full ensemble members of 

the GEOS5 (i.e., 10); xij is the categorical prediction (i.e., either "True" or 
"False") made by the jth ensemble member of GEOS5 for a particular 

week. Similarly, yi is the reference categorical indicator of whether an 

extreme event above 9the 9% threshold has happened or not at a 

particular week. The symbol ^ and ˅ represent large logical operations of 

OR and AND respectively. I is the indicator function where I(True) = 1 

and I(False) = 0. 

 
3.2.2. Event-based Brier Skill Scores (BSS) 

The Brier Skill Scores (BSS) is a probabilistic evaluation metric that 

has been widely applied in the field of meteorology and atmospheric 

science. The BSS describes the quality of categorical probabilistic fore- 

casts (Wilks, 2011) and it quantifies the extent to which a forecast 

strategy improves predictions with respect to a reference forecast. The 

BSS is defined by the following Eq. (4): 

certain “yes/no” type of event and resulted in POD of 0.8 and POFD of 

0.3, then, such a classifier's corresponding ROC curve can be plotted as 

BSS = 1 - 
 BS 

 
BSref 

 
(4) 

 

where BS and BSref are the Brier Scores (Brier, 1950) of GEOS5 (i.e., 

E1-E10) and reference forecast for a sample of n binary events, respec- 

tively. In this study, we use climatology as the reference forecast. The BS 

and BSref are computed with the following Eq. (5): 

 
 

 

n 
t=1 

where ft is the predicted probability of the event at time t, and Ot is equal 

to 1 or 0, depending on whether the extreme event subsequently 

occurred or not. However, it has been reported that the BSS could falsely 

Fig. 2. An Illustrating figure of ROC and AUROC. Red line in the figure is the 

ROC curve obtained by a conceptual RF classifier with POD = 0.8 and POFD = 
0.3. The red shaded area is the ROC curve's corresponding AUROC. (For 

interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

n 

example, assuming a classifier has made series of predictions upon a i=1 

Under a Receiver Operating Characteristics (ROC) curve. Note that due 

t=1 enveloped by the spreads of S2S forecasts. 

n 

(6) 

EPOD = i=1 
(1) 

I 
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Fig. 2. In Fig. 2, the red line is the ROC curve. The blue dotted diagonal 

line indicates the skill of a classifier constantly making random guesses. 

The red-shaded area below the ROC curve is defined as the AUROC. The 

ideal value of AUROC would be equal to one (i.e., POD = 1 and POFD = 
0). In this study, we only present the NCEI regional AUROC for 

conciseness. The individual ROC curves at each NCEI climate region are 

presented in the supplementary materials. 

 
4. Results 

 
4.1. Model's sensitivity on inputs (Comparison of Scenarios E1-E6) 

 
In this section 4.1, we first present model's sensitivity analysis on 

different combination of inputs based on the results obtained from 

scenarios E1-E6. Then, in section 4.2, we further analyze how model's 

correction performance changes over different ML hyperparameters 

based on the results from scenarios E1, and E6-E10. Here, E1 bench- 

marks the performances of raw precipitation forecasts in predicting the 

occurrences of weekly extreme events above 99%. E2-E6 are the RF- 

generated categorial predictions with different input variables, and 

E6-E10 differs on the “max-depth” parameter of the RF model with same 

input combination of using all meteorological predictors. The evalua- 

tions and results are summarized with the order of previously defined 

EPOD, EFAR, ECSI, BSS and AUROC metrics for both sensitivity analysis 

cases. The individual ROC curves at NCEI climate region are provided in 

the supplementary information section. 

Fig. 3 presents the EPOD under E1-E6 with different forecast lead 

times. The ideal value of EPOD is 1, indicating all extreme events have 

been enveloped by the spreads of ensemble forecasts. In Fig. 3, darker 

red colors indicate higher EPOD. The average EPOD over the entire 

CONUS is computed and presented in red in each subplot for 

comparison. 

Compared to the raw forecast performances (E1), the RF-generated 

forecasts with P as the only input (E2) show significantly higher EPOD 

at the shortest lead time of week 1 and slightly higher EPOD after week 1 

(Fig. 3). The inclusion of additional forecast variables of T, G500, or 

G850 (E3-E5) can further increase the EPOD slightly at week 2, week 3 

and week 4, as it is compared to the case where only P is used to train RF 

(E2). When all forecast variables of P, T, G500, G850 are included 

together as input to train RF model (E6), additional improvements of 

EPOD at weeks 2–4 can be observed when comparing to the rest of the 

cases where only using one or two forecast variables as inputs to train RF 

(E2-E5). However, without additional tunning of the hyperparameter of 

the RF model, the inclusion of additional forecast variables (E2- E5) has 

slightly decreased the EPOD after week 1 compared the raw GEOS5 

forecasts (E1). 

Spatially, the raw precipitation forecasts (E1) deliver higher EPOD 

values at the West Coastal regions of CONUS. But this advantage de- 

creases rapidly over lead times. Different spatial patterns are also 

observed between experiment scenarios using P, P and T, P and G500, or 

P and G850 as the only input to the RF model (E2-E5). While using P as 

the only input to the RF model (E2), higher EPOD can be observed at 

West Coastal regions and Appalachian Mountainous regions. While 

including T as an additional input to the RF model (E3), higher EPOD 

can be observed at most of the NCEI climate regions except for the South 

at week 2, week 3, and week 4. As a contrast, when including G500 or 

G850 as an additional input to the RF model (E4 and E5), noticeable 

higher EPOD values are only observed in the NCEI climate regions of 

East North Central, Central, as well as Southeast at week 2, week 3, and 

week 4. Finally, when using all available S2S forecast variables as inputs 

 
 

 
 

Fig. 3. The pattern of EPOD from experiment scenarios E1-E6, in predicting extreme precipitation events over the CONUS at different lead times (weeks 1 to 4). 
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to RF classifiers (E6), the obtained EPOD values are increased at most of 

the locations over CONUS at week 2, week 3, and week 4, compared to 

the cases of using only one or two variables (E2-E5). 

Fig. 4 presents the EFAR under E1-E6 at different forecast lead times. 

The ideal value of EFAR is 0, indicating the ensemble spreads of fore- 

casts are not under-dispersed and lead to ensemble false alarms. In 

Fig. 4, darker blue colors indicate higher EFAR. The average EFAR over 

the entire CONUS is computed and presented in red in each subplot for 

comparison. 

According to Fig. 4, the overall small EFAR values (< 0.1) of raw 

forecast seem evenly presented over CONUS without any noticeable 

high-value spots. Further, the utilization of RF model to correct extreme 

precipitation events (E2-E5) has further reduced the overall EFAR values 

over CONUS. However, the application of the RF model seems to in- 

crease EFAR at some exceptional locations over CONUS. For example, 

when including T as an additional input to the RF model (E3), a few 

bluish pixels can be observed in the Rocky Mountain regions and in the 

Florida Peninsula. This pattern has become more apparent when uti- 

lizing all available forecast variables as inputs to the RF model (E6), as 

more blue-colored pixels appeared in the Northwestern regions of 

CONUS, Rocky Mountainous regions and in the Florida Peninsula. 

Fig. 5 presents the ECSI under E1-E6 at different forecast lead times. 

The ECSI considers the number of ensemble detections and ensemble 

false alarms at the same time. The ideal value of ECSI is 1, indicating all 

forecasts have been enveloped by the spreads of ensemble forecasts 

while no false alarms were issued due to the under-dispersion of 

ensemble forecasts. In Fig. 5, darker green colors indicate higher ECSI. 

The average ECSI over entire CONUS is computed and presented in red 

in each subplot for comparison. 

Comparing different experiment scenarios E1-E6 across entire 

CONUS, it is obvious to notice that when using P as the only input to RF 

(E2), significantly higher skill over the raw forecasts (E1) can be 

observed at week 1 lead time (Fig. 5). However, such advantages 

become marginal at longer lead times of weeks 3 and 4. When including 

additional variables of T, G500, or G850 as input to the RF model (E3- 

E5), we found that higher ECSI values can be observed at week 2, week 

3, and week 4 lead times. However, the inclusion of additional forecast 

variables (E3-E5) leads to a marginal level of decrease of ECSI at the 

shortest lead time of week 1, compared to the case where only P is used 

as input the RF model (E2). When all forecast variables are included as 

inputs to the RF model (E6), further skill improvements at longer lead 

times of weeks 2–4 are observed over CONUS. But the inclusion of all 

variables still leads to a marginal level of ECSI decrease at lead time of 

week 1 as it is compared to cases of using less input variables (E2-E5). 

Fig. 6 presents the BSS under E1-E6 at different forecast lead times. 

The BSS measures the agreement between forecast probability and 

measured events. The ideal value of BSS is 1. In Fig. 6, darker purple 

colors indicate higher BSS. The average BSS values over the entire 

CONUS is computed and presented in red in each subplot for 

comparison. 

The application of the RF model with P as the only input (E2) has 

significantly improved BSS over CONUS compared to the raw GEOS5 

forecast (E1) at week 1 lead time (Fig. 6). However, the BSS got 

decreased over CONUS at weeks 2 to 4 with the applications of the RF 

model. The inclusion of T as an additional input variable to the RF model 

(E3) could slightly increase the BSS over CONUS at lead times of weeks 2 

to 4, as it is compared to the case of using P as the only input to the RF 

model (E2). The inclusion of G500 or G850 as an additional input var- 

iable to the RF model (E4 and E5) could only improve the BSS over 

CONUS marginally at week 2 lead time, as it is compared to the case of 

 
 

 
 

Fig. 4. The pattern of EFAR from experiment scenarios E1-E6, in predicting extreme precipitation events over the CONUS at different lead times (weeks 1 to 4). 
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Fig. 5. The pattern of ECSI from experiment scenarios E1-E6, in predicting extreme precipitation events over the CONUS at different lead times (weeks 1 to 4). 

 

using P as the only input to the RF model (E2). When all available 

forecast variables are used as inputs to the RF model, only a marginal 

level of additional improvement of BSS can be observed at lead times of 

week 2 and week 4, as it is compared to the case of using P as the only 

input to the RF model (E2). 

The spatial patterns of BSS over CONUS appear to be similar among 

all experiment scenarios from E1 to E6. At lead time of week 1, higher 

BSS values are observed along the western coastal regions over CONUS. 

At lead time of week 2, higher BSS values are observed along the Rocky 

mountainous regions and the Appalachian mountainous regions over 

CONUS. At week 3 and week 4, higher BSS values are only observed at 

some scattered spots in the NCEI climate regions of Southwest, West 

North Central, Southeast, and Northeast, given an overall marginal level 

improvement of BSS values over CONUS. 

Fig. 7 presents the regional AUROC under E1 to E6 at different lead 

times. The ideal value of AUROC is 1, indicating all ensemble forecast 

members have performed perfectly with all extreme events detected 

while making no false detections at all. In Fig. 7, darker red colors 

represent higher AUROC. The fractional values that appeared in each 

colored box are the computed AUROC values. Note that the “left-to- 

right” sequence of 9 NCEI regions in Fig. 7 corresponds to the real-world 

geographical layout of these climate regions in the U.S., i.e., the columns 

from left to right of Fig. 9 correspond to the western coast to the eastern 

coast of CONUS. 

A major difference of AUROC is observed between the raw forecast 

(E1) and the remaining experiment scenarios with the applications of 

the RF model (E2-E6) (Fig. 7). For example, using P as the only input to 

the RF model can bring noticeable improvement of AUROC at week 1 

lead time at all NCEI climate regions over CONUS. However, such 

improvement becomes marginal at longer lead times after week 2, 

especially in the central regions of CONUS. 

Compared to only using P as input to the RF model (E2), the inclusion 

of additional forecast variable brings marginal improvement of AUROC 

at longer lead times after week 2. The inclusion of T as input to the RF 

model (E3) has slightly increased the AUROC at longer lead times after 

week 2 at NCEI climate regions of Northwest, East North Central, Cen- 

tral, Northeast, and Southeast. The inclusion of G500 or G850 as an 

additional variable to the RF model has increased the AUROC after week 

2 lead time at NCEI climate regions of Northwest, East North Central, 

Central, and Northeast. However, with the default hyperparameter set- 

tings of RF, the inclusion of all available forecast variables (E6) does not 

show overall superior AUROC values over the entire CONUS. Compare 

to using P as the only input to the RF model (E2), the inclusion of all 

available forecasts variables (E6) is able to generate higher AUROC 

values at lead times after week 2 over NCEI climate regions of North- 

west, West North Central, East North Central, Northeast, and Southeast. 

 
4.2. Model's sensitivity on hyperparameter (comparison of scenarios E1 

and E6-E10) 

 
In this section 4.2, we present the results from E1, and E6-E10, where 

E1 evaluates the raw precipitation forecast in predicting the occurrence 

of weekly extreme events above 99% and scenarios E6-E10 evaluate RF- 

generated categorial prediction upon weekly extreme precipitation 

events above 99%. In addition to EPOD, EFAR, and ECSI, we also present 

the regional AUROC over CONUS. The individual ROC curves at NCEI 

climate region are provided in the supplementary information section. 

Fig. 8 presents the EPOD values under E1, and E6-E10 at different 

forecast lead times. The ideal value of EPOD is 1, indicating all extreme 

events have been enveloped by the spreads of ensemble forecasts. In 
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Fig. 6. The pattern of BSS from experiment scenarios E1-E6, in predicting extreme precipitation events over the CONUS at different lead times (weeks 1 to 4). 

 
 

 

Fig. 7. Spatially-averaged AUROC values at 9 NCEI climate regions from experiment scenarios E1-E6, over CONUS and at different lead times (weeks 1 to 4). 

 

Fig. 8, darker red colors indicate higher EPOD. The average EPOD over 

the entire CONUS are computed and presented in red in each subplot for 

comparison. 

Drastic differences are observed between the performances of raw 

forecast (E1) and RF-generated forecasts from other experiment sce- 

narios (E6- E10) (Fig. 8). This result agrees with previous EPOD values 

presented in Fig. 3, indicating that the application of RF to incorporate 

additional forecast variables can significantly improve the EPOD values 

over CONUS. 

Spatial differences are observed between experiment scenarios E6- 

E10, in which the maximum tree depth of RF varies from 3 to 15, 

respectively. The EPOD values steadily increase over CONUS with a 

larger max tree depth used in the RF model (Fig. 8). But after the tree 

depth is over 9 (E8), the improvement of EPOD becomes marginal. 
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Fig. 8. The pattern of EPOD from experiment scenarios E1, and E6-E10, in predicting extreme precipitation events over the CONUS at different lead times (weeks 1 

to 4). 

 

Spatially, although a larger max tree depth leads to higher EPOD over 

CONUS in general, the EPOD values in some regions remain unchanged. 

For example, at lead time of weeks 2–4, the EPOD over Southern Cali- 

fornia and Texas is not improved at all with a larger number of max tree 

depth. 

Fig. 9 presents the EFAR under E1, and E6-E10 at different forecast 

lead times. The ideal value of EFAR is 0, indicating that the ensemble 

spreads of forecasts are not under-dispersed and lead to ensemble false 

alarms. In Fig. 9, darker blue colors indicate higher EFAR. The average 

EFAR over entire CONUS are computed and presented in red in each 

subplot for comparison. 

The EFAR of the raw forecasts are spatially uniform over CONUS, and 

they are without any noticeable high-value spots at all lead times, when 

compared with other experiment scenarios (E6- E10) (Fig. 9). The uti- 

lization of RF with a max tree depth of 3 (E6) reduced the EFAR values at 

most of the regions over CONUS. However, higher EFAR values are 

observed in Northwestern regions and Florida Peninsula at all lead times 

from E6, when it is compared to the raw forecasts. We also notice that if 

the tree depth is further increased (E7- E10), the EFAR will become 

larger at the Northwestern regions of CONUS, the Florida Peninsula, as 

well as the Appalachian Mountainous regions. Similarly, according to 

Fig. 9, the increase of tree depth seems to only increase the EFAR at 

certain regions (i.e., Northwestern regions, Appalachian Mountainous 

regions, Florida Peninsula, as well as some scattered locations lies in the 

Central regions of CONUS), while the EFAR over other regions seems to 

be not sensitive to the increase of tree depth. 

Fig. 10 presents the ECSI under E1, and E6-E10 at different forecast 

lead times. The ideal value of ECSI is 1, indicating all forecasts have been 

enveloped by the spreads of ensemble forecasts while ensemble forecasts 

are not under-dispersed and lead to false alarms. In Fig. 10, darker green 

colors indicate higher ECSI. The average ECSI over entire CONUS is 

computed and presented in red in each subplot for comparison. 

Results from Fig. 10 show an overall similar pattern to that of Fig. 8. 

The major difference resides in between the ECSI plots of raw forecast 

(E1) and remaining experiments E6-E10. According to the CONUS- 

averaged ECSI, the application of RF with multiple S2S forecast vari- 

ables (E6-E10) has significantly improved the overall skill in predicting 

the occurrence of extreme precipitation events at all lead times. The 

results obtained under scenarios E6-E10 also show some degree of dif- 

ferences, which are mainly due to the increase of max tree depth used in 

the RF model. It is obvious that as the max tree depth increases, the 

overall ECSI over CONUS steadily increases. However, when tree depth 

exceeds 9 (E8- E10), the improvement of ECSI becomes marginal over 

CONUS. Among all experiment scenarios, the improvements of ECSI 

values appear to be the most significant when the tree depth is set to 9 

(E8). Compared to the baseline E1 of raw precipitation forecasts, the 

relative ECSI improvements under Scenarios E6–10 are 120% (0.30 to 

0.66), 155% (0.20 to 0.51), 187% (0.15 to 0.43), and 250% (0.14 to 

0.49) at lead times of weeks 1–4, respectively. Spatially, we observe that 

a larger max tree depth will likely result in larger ECSI values over most 

of the regions across CONUS. But no improvements of ECSI can be 

observed at some specific locations, e.g., Southern California, parts of 

Nevada, and Texas. 

Fig. 11 presents the BSS under E1 and E6-E10 at different forecast 

lead times. The BSS measures the agreement between forecast proba- 

bility and recorded extreme events. The ideal value of BSS is 1. In 

Fig. 11, darker purple colors indicate higher BSS. The average BSS 

values over the entire CONUS are computed and presented in red in each 
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Fig. 9. The pattern of EFAR from experiment scenarios E1, and E6–10, in predicting extreme precipitation events over the CONUS at different lead times (weeks 1 

to 4). 

 

subplot for comparison. 

Compared to the raw GEOS5 forecasts (E1), the utilization of the RF 

model with a max tree depth of 3 (E6) significantly increases the BSS at 

lead time of week 1 but slightly decreases the BSS at lead times of weeks 

2 to 4 over the entire CONUS (Fig. 11). However, as the maximum tree 

depth increases (E7-E10), the post-processed forecasts present overall 

higher BSS at all lead times compared to the raw GEOS5 forecasts (E1) 

over CONUS. Among all experiment scenarios, the improvement of BSS 

is the most significant when the tree depth is set to 12 or 15 (E9 or E10). 

For all RF-involved experiment scenarios (E6–10), the spatial pat- 

terns of BSS are similar to that of Fig. 6 (i.e., BSS from E1-E6). At lead 

time of week 1, the BSS values at parts of the NCEI regions of West, 

Southwest, South, and West North Central are consistently lower than at 

other regions. At week 2 lead time, higher BSS values are only observed 

at locations in the Rocky mountainous regions and Appalachian 

mountainous regions over CONUS. At lead times of week 3 and week 4, a 

few scattered spots show higher BSS values in the NCEI climate regions 

of Southwest, West North Central, Southeast, and Northeast. In general, 

the tunning of the maximum tree depth of RF does not improve BSS at 

certain locations and lead times over CONUS. 

Fig. 12 presents the regional AUROC under E1, and E6-E10 at 

different lead times. The ideal value of AUROC is 1, indicating all 

ensemble forecast members have performed perfectly with all extreme 

events detected while making no false detections at all. In Fig. 12, darker 

red colors represent higher AUROC. The fractional values that appeared 

in each colored box are the computed AUROC values. Note that the “left- 

to-right” sequence of 9 NCEI regions in Fig. 12 corresponds to the real- 

world geographical layout of these climate regions in the U.S., i.e., the 

columns from left to right of Fig. 9 correspond to the western coast to the 

eastern coast of CONUS. 

Similar to previous results, we also compare the AUROC values RF- 

generated forecasts from E6-E10 with the raw forecast performance 

(E1). It is apparent that the application of the RF model along with 

additional atmospheric variables (E6-E10) resulted in improved values 

of AUROC in all regions over CONUS and at all lead times (Fig. 12), 

which were similar to our previously presented results of EPOD, EFAR, 

and ECSI. 

Fig. 12 also shows that the larger the tree depths of the RF, the higher 

AUROC over CONUS in general. However, some regions show less im- 

provements of the AUROC as the max tree depth increases. These NCEI 

regions include West North Central, Southwest, and South (Fig. 1). 

Within these regions, the improvement of AUROC seems to be neglect- 

able after the tree depth exceeds 9 (E8 to E10). Among all NCEI climate 

regions, the AUROC values are significantly higher in the western and 

eastern coastal regions of U.S. than that over other regions in the middle 

of the continent. The results of AUROC values indicate that the 

employed RF model performed the best in the NCEI region of Northwest 

(Fig. 1). 

 
5. Discussion 

 
The results from section 4.1 (E1-E6) show that without the tunning of 

the hyperparameter of the RF model, the post-processed S2S precipita- 

tion forecasts present mixed performances that are subject to different 

evaluation statistics. With the inclusion of additional forecast variables 

of T, G500, and/or G850, the evaluation metrics of EPOD, EFAR, and 

ECSI were improved in general, which were also consistent through all 

lead times over CONUS. But the BSS and AUROC only showed a 
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Fig. 10. The pattern of ECSI from experiment scenarios E1, and E6-E10, in predicting extreme precipitation events over the CONUS at different lead times (weeks 1 

to 4). 

 

marginal level of improvement after week 2 and sometimes slightly 

deteriorated at week 1 lead time. We reckon such mixed performances of 

the post-processed forecasts show that the inclusion of additional 

meteorological forecast variables is still informative, especially at longer 

lead times after week 2. However, the tunning of the hyperparameter of 

the RF model is critical when additional forecast variables are included 

as inputs to the RF model. 

The BSS and the regional AUROC from section 4.2 (E6-E10) confirm 

the effectiveness of the inclusion of additional variables as well as our 

proposed RF model in post-processing S2S extreme precipitation fore- 

cast over CONUS. With a proper tunning scheme for the hyperparameter 

of the RF model, all evaluation statistics have shown noticeable im- 

provements over CONUS. However, we also noticed that once the max 

maximum tree depth of the RF model exceeds 12, the overall improve- 

ments of S2S forecasts become neglectable and the EFAR values at some 

locations even got slightly deteriorated. We suspect this indicates an 

overfitting of the RF model. Although the RF model does not overfit 

when the number of trees of RF model is large enough (Breiman, 2001), 

we did not test it in our study to keep the study focus. On the other hand, 

when the depth of trees of RF model become too deep but train with 

relatively too few input variables, it is also possible that the RF model 

can no longer generalize over unseen points in the test dataset (Tang 

et al., 2018). 

Nevertheless, combining all evaluation statistics from both section 

4.1 and section 4.2, we reckon that the S2S extreme precipitation fore- 

casts can be improved through the employment of RF when (1) addi- 

tional atmospheric forecast variables other than precipitation are 

included as inputs to the RF model; and with (2) the hyperparameter of 

RF classifiers is manually tunned to allow the model better to capture the 

spatial and temporal patterns of the extreme precipitation events. 

The combined use of ML model with the inclusion of additional 

forecast variables to improve S2S precipitation forecasts has a potential 

value in assisting flood predictions and river forecasts, especially at an 

extended range. Before the emergence of available S2S forecasts, the 

classical approach in predicting streamflow at the S2S timescale is to 

create an ensemble of multiple precipitation timeseries and by randomly 

resampling historical rainfall measurements. Although S2S forecasts 

provide an alternative to the classical approach, the accuracy and reli- 

ability of the raw S2S forecasts are rather limited as indicated by existing 

research, especially in predicting extreme precipitation events. Many 

practitioners argue that the traditional way of resampling hydromete- 

orological measurements is less computationally expensive and could 

easily gain higher probability of enveloping extreme events by creating a 

large ensemble size through resampling. But this study demonstrated 

that the employment of the RF model can improve S2S extreme pre- 

cipitation forecasts without increasing the size of ensemble forecasts. 

In this study, we demonstrated that additional atmospheric infor- 

mation, i.e., T, G500 and G850, could greatly benefit extreme precipi- 

tation forecasts at the S2S timescale. Given the fact that heavy 

precipitation events could be triggered through different mechanisms of 

convections, orographic lifts, and/or large-scale synoptic systems, it is 

reasonable to expect additional information could further improve the 

extreme precipitation forecasts at the S2S scale. We suspect that addi- 

tional slope and DEM information might be helpful in identifying 

orographic precipitations. Additional atmospheric forecast variables (e. 

g., wind direction and speed, specific humidity, sea level pressure, etc.) 

might be able to improve the prediction upon stratiform precipitation 

events brought by synoptic systems. As for convective precipitation 
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Fig. 11. The pattern of BSS from experiment scenarios E1, and E6-E10, in predicting extreme precipitation events over the CONUS at different lead times (weeks 1 

to 4). 

 
 

 

Fig. 12. Spatially-averaged AUROC values at 9 NCEI climate regions from experiment scenarios E1, and E6-E10, over CONUS and at different lead times (weeks 1 

to 4). 

 

events at the subseasonal timescales, they are sometimes considered as 

unpredictable given our currently limited understanding in the 

geographical distribution of their predictability (Moron and Robertson, 

2020). Therefore, we could only hope that through the inclusion of 

multiple additional variables, ML&DM models may be able to identify of 

some patterns of convective precipitation given different local infor- 

mation (e.g., land cover types) as well as the projected atmospheric 

conditions at subseasonal timescales. 

In this study, we also conducted a sensitivity test on the maximum 

tree depth of the RF model (section 4.2). The sensitivity test result shows 
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that the occurrence of extreme precipitation events can be better pre- 

dicted by slightly tunning one RF model hyperparameter. According to 

our results, a larger tree depth of the RF model can increase the overall 

predictive performance on the occurrence of weekly extreme events. 

However, such improvement becomes marginal after the tree depth 

reaches 9. Further increase of the tree depth does not bring significant 

improvement of the forecast statistical measures. For decision tree 

models, there are many other hyperparameters left un-tested in this 

study, such as the number of leaves, maximum data samples in one leaf, 

splitting criteria, etc. We also did not compare the predictive perfor- 

mance of RF with other popular ML models, such as Supportive Vector 

Machine, K-mean clusters, etc. There are some existing studies 

comparing popular ML models for interested readers in the field of hy- 

drometeorology and water resources management (Hess and Boers, 

2022; Moon et al., 2019; Nayak and Ghosh, 2013; Yang et al., 2016; 

Yang et al., 2021; Zhang et al., 2018). It will be a future effort to identify 

which ML is more capable of improving the S2S extreme precipitation 

forecasts together with a larger-scale model sensitivity study. 

In this study, different spatial patterns of the categorial predictions 

are observed over CONUS. According to our regional AUROC results, as 

well as the obtained BSS values from section 4.2, we can confidently 

conclude that, in general, the extreme precipitation events that 

happened in the NCEI climate regions of Southwest, West North Central, 

and South tend to be harder to predict even with a larger tree depth of 

the RF model. This spatial pattern is probably because extreme precip- 

itation events at different regions over CONUS are dominated by 

different meteorological mechanisms. Extreme precipitation events in 

the coastal regions of CONUS are largely due to or associated with 

synoptic-scale events, such as extratropical cyclones and atmospheric 

rivers (Chen et al., 2018; Kunkel et al., 2012; Mahoney et al., 2016). 

These types of extreme events have enormous spatial (horizontal length 

> 100 km) and temporal (multiple days) extent thus might be easier for 

GCMs to consider with their coarse spatial resolutions. In contrast, 

mesoscale convective systems, such as thunderstorms that occur more 

frequently in the NCEI regions of West North Central, Southwest, South, 

and Central regions (Kunkel et al., 2012), are generally smaller in spatial 

(smaller than 100 km horizontally) and temporal (often sub-daily) 

scales. Thus, these convective systems are very difficult for GCMs to 

simulate and thus challenging for the ML&DM models to capture their 

spatial and temporal variabilities. 

One limitation of this study is that only precipitation events above 

99% threshold were examined. However, heavy precipitation events at 

other quantiles (e.g., above 95%, 90%, 75%, etc.) are also capable of 

causing floods, which should be further studied separately. Due to the 

limited length of this study, it will be a future effort to examine the 

available S2S precipitation forecasts in predicting heavy precipitation 

events at other quantiles. 

Another follow-on study could be devoted to restoring the positive 

categorical predictions upon extreme events back to numerical values, i. 

e., rain rates. Afterall, categorical predictions cannot be directly used for 

hydrologic simulations to provide information on the magnitude of 

future streamflow. One simple way to resolve this issue is utilizing 

popular distribution-based approaches, such as quantile mapping 

(Cannon et al., 2015; Maraun, 2013), to conduct bias corrections upon 

S2S precipitation forecasts. Specifically, the RF-categorized extreme and 

non-extreme events will be corrected/restored to numerical values ac- 

cording to historical records and thus ready for next-step hydrologic 

forecasts. However, we expect that the treating of extreme values might 

be challenging, since a few recent studies identified that the extreme 

precipitation events over the globe exhibited significant changes in 

frequency and magnitudes under global climate change (Fan et al., 

2021; Kunkel et al., 2003; Madsen et al., 2014; Sun et al., 2017). Thus, 

when bias-correcting the extreme precipitation forecasts from S2S 

models, the considerations on the “non-stationary” of climate and its 

impacts are also needed. (AghaKouchak et al., 2011; Cheng et al., 2014; 

Tao et al., 2018). 

Finally, the application of S2S precipitation forecast products in 

hydrologic forecasts at watershed scales is still an ongoing effort due to 

the raw forecasts' coarse spatial resolutions. We encourage practitioners 

to further evaluate and apply S2S precipitation forecasts for riverine 

flood predictions at a daily time step (Cao et al., 2021; Li et al., 2017; 

McInerney et al., 2020; Quedi and Fan, 2020; Kim et al., 2021). This will 

help overcome the pitfall of the current study that only evaluates the S2S 

forecasts limited number of statistical metrics on a weekly basis. We 

encourage future research to be devoted to answering the questions of 

how post-processed S2S ensemble precipitation forecasts perform in 

predicting floods induced by extreme precipitation events. 

In summary, future research could be devoted to (1) investigating 

how additional variables further help ML models to better post-process 

S2S forecasts and identify the intrinsic physical dynamics related to 

extreme precipitation over CONUS; (2) quantifying the influences of 

different ML hyperparameters on the predictive performance upon 

extreme precipitation events at the S2S timescale; (3) capturing the 

structural and random errors associated with different S2S forecast 

models at different spatial and temporal domains; and (4) linking the 

S2S forecasts to ensemble hydrologic forecasting and further investi- 

gating the usefulness of S2S forecasts in assisting ensemble streamflow 

forecasting of riverine floods. 

 
6. Conclusion 

 
In the current research, we conducted comprehensive evaluations 

regarding the performance of GEOS5 S2S forecasts with a specific focus 

on weekly extreme precipitation events over CONUS. We developed a 

proof-of-concept forecast adaptation framework using the Random 

Forest (RF) classifier to post-process the raw S2S forecasts at each 0.25- 

degree pixel over CONUS. Four S2S forecast variables are used, 

including precipitation, surface air temperature, and geopotential 

height at 500 hPa and 850 hPa. We examined the performance of RF 

with respect to different maximum tree depths over CONUS. A total of 

ten different experiment scenarios are created to identify the ideal input 

variable combination and maximum tree depth that leads to the best 

predictions upon extreme precipitation events. 

To evaluate the skill and demonstrate the potential hydrologic 

effectiveness of S2S ensemble forecast, we employed modified categor- 

ical metrics of ensemble probability of detections (EPOD), ensemble 

false alarm ratios (EFAR), and ensemble critical success index (ECSI). 

The probabilistic evaluation metric of Brier Skill Score (BSS), as well as 

the regional Area Under the Receiver Operating Characteristics Curves 

(AUROC) are computed to confirm the improvements of S2S precipita- 

tion forecast. The improved S2S forecasts will be useful for future hy- 

drologic studies in different spatial and temporal domains. Our research 

conclusions are listed as follows: 

 
1. The application of RF can significantly improve S2S forecasts in 

terms of predicting the occurrence of weekly extreme precipitation 

events. The improvement is most significant at lead time of week 1 

and deteriorates rapidly after week 2 lead time. We found out that by 

including additional S2S forecast variables as the RF inputs, the 

forecast performance is further improved at longer lead times (i.e., 

weeks 2–4). Compared to the raw forecasts, RF could improve ECSI 

up to 116% (0.31 to 0.67), 165% (0.20 to 0.53), 200% (0.15 to 0.45), 

and 257% (0.14 to 0.50), at weeks 1–4, respectively. 

2. We also found that the extreme precipitation events in West North 

Central, Southwest, and South regions, per NCEI definition, are 

harder to predict than that in other regions. We speculate such dif- 

ferences are due to different dominating precipitation mechanisms, 

which may result in different spatial and temporal scales of extreme 

precipitation events. 

3. Sensitivity analysis indicates that increasing the maximum tree 

depth of RF would result in overall better forecasts at all lead times 

over CONUS. However, the improvements become neglectable once 
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the tree depth exceeds nine in our study. We suspect this indicates an 

overfitting of the RF model. The obtained BSS and AUROC show 

consistent conclusions as indicated by EPOD, EFAR, and ECSI, which 

confirms the improvement of S2S forecast is not subject to the defi- 

nitions of modified evaluation metrics. 
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