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Human generation times across the past 250,000 years 
Richard J. Wang1,2*, Samer I. Al-Saffar2, Jeffrey Rogers3, Matthew W. Hahn1,2 

The generation times of our recent ancestors can tell us about both the biology and social organization of pre-
historic humans, placing human evolution on an absolute time scale. We present a method for predicting his-
torical male and female generation times based on changes in the mutation spectrum. Our analyses of whole- 
genome data reveal an average generation time of 26.9 years across the past 250,000 years, with fathers con-
sistently older (30.7 years) than mothers (23.2 years). Shifts in sex-averaged generation times have been driven 
primarily by changes to the age of paternity, although we report a substantial increase in female generation 
times in the recent past. We also find a large difference in generation times among populations, reaching 
back to a time when all humans occupied Africa. 
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INTRODUCTION 
Knowledge of the human generation time (or “generation interval”) 
in the recent past is important for many fields. While genetic data 
have provided deep insights into human history, population genetic 
methods typically scale history in terms of generations [e.g., (1, 2)]. 
This makes knowing the generation time especially important for 
determining the absolute timing of historic events, including migra-
tions to new continents (3) or gene flow with extinct hominids (4). 
To transform these population genetic estimates into absolute time, 
it is commonly assumed that current generation times have persist-
ed across hundreds of thousands of years or that studies of extant 
hunter-gatherer (forager) societies provide representative genera-
tion times across the span of human history (5, 6). However, 
neither assumption is likely to be correct: The average age at 
which males and females have children depends on many environ-
mental, demographic, and cultural factors that can change rapidly 
(7), while contemporary hunter-gatherer societies differ substan-
tially from each other and from past societies (8). It is also clear 
that generation times have evolved among the great apes (9) and 
may therefore have evolved along the branch leading to 
modern humans. 

Previous genetic approaches to estimating historical generation 
times (the average age at which individuals conceive children) have 
taken advantage of the compounding effects of either recombina-
tion (10) or mutation (11) on modern human DNA sequence diver-
gence from ancient samples. While these estimates have provided 
substantial insight, they are averaged both across the sexes and 
across the past 40,000 to 45,000 years. Greater resolution through 
time is possible by examining the mutations that originated at spe-
cific times in the past, together with a model that accurately predicts 
the generation times of individuals producing those mutations. 
Here, we develop a model that uses the spectrum of de novo muta-
tions as a predictor of parental age. By coupling this model with var-
iants whose ages have been estimated from genome-wide 
genealogical information, we are able to separately estimate the 
male and female generation times at many different points across 
the past 250,000 years. 

RESULTS 
As humans age, the number and type of de novo mutations that they 
transmit to their offspring change (12, 13). We use information on 
mutations from a large pedigree study with parents whose ages at 
conception are known (14) to model the relationship between pa-
rental age and the counts of the six different types of single-nucle-
otide mutations (fig. S1). These mutation counts are regressed on 
both paternal and maternal age in a Dirichlet-multinomial model 
(Fig. 1A and fig. S2). To obtain mutation spectra from many differ-
ent periods in the past, we used the estimated time of origin for 
current polymorphisms from the genealogical estimation of 
variant age (GEVA) approach (Fig. 1B) (15). This method estimates 
when, in the past, each of ~43 million variants from the 1000 
Genomes Project arose by mutation. After filtering variants with 
the same criteria applied to de novo mutations used to train our 
model, we retained 25.3 million variants for our analysis. 

Applying our mutation spectrum model to the polymorphism 
data allows us to estimate generation times for males and females 
across the past 250,000 years (Fig. 2A). Within this time frame, 
we find the average human generation interval to be 26.9 ± 3.4 
years (SE) with an average for males of 30.7 ± 4.8 years and an 
average for females of 23.2 ± 3.0 years. The results show that 
human generation times have undergone a rapid increase in the 
recent past after declining for over a thousand generations. The 
average human generation interval was at a recent minimum of 
24.9 ± 3.5 years at ~250 generations ago (6.4 ka ago), roughly con-
current with the historic rise of early civilizations. Before this, it had 
declined from a peak of 29.8 ± 4.1 years at ~1400 generations ago 
(38 ka ago), just before the beginning of the Last Glacial Maximum. 
Note that these estimates are a composite across multiple human 
populations (see below for separate estimates from different conti-
nental populations). 

Our model estimates a longer generation interval for males than 
females across all analyzed time periods (Fig. 2B). These results are 
consistent with studies of contemporary cultures, more than 99% of 
which show a longer male generation interval (5). Overall, there is a 
high correlation between the average generation interval and the 
male-female difference (Pearson’s r = 0.88; P < 1 × 10−10), likely 
because of a relatively constant generation interval in females 
(σ2 = 0.9 years) and a large amount of variation in males across 
time (σ2 = 6.8 years). Males and females reach puberty at approxi-
mately the same age (16), but the reproductive age in males can 
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extend more than 20 years beyond that in females. Sociocultural 
factors are likely to have acted in concert with the higher bound 
on male reproductive age to produce the greater variance observed 
in male generation interval. The male-female difference follows a 
similar pattern to that of the average generation time except for 
the most recent windows, which show a smaller increase in male- 
female difference than expected during the recent uptick in gener-
ation times (compare panels A and B of Fig. 2). This smaller differ-
ence appears to be driven by a relatively larger increase in recent 
female generation intervals: The most recent time period is signifi-
cantly higher than at any point in the past 250,000 years (P < 0.005, 
z test). 

To investigate differences in generation times among human 
populations, we repeated our analysis using four major continental 
populations within the 1000 Genomes Project. Variants are counted 

as part of a continental population as long as they are polymorphic 
among samples from that population. Private variants from each 
population suggest that the mutation process in the recent past is 
consistent between them (fig. S3). While the continental labels 
for each population are used across the span of the analysis, note 
that beyond roughly 2000 generations ago, all non-African popula-
tions were likely located in Africa and show little differentiation 
among themselves; coalescence among all ancestral populations 
living in Africa does not occur until more than 10,000 generations 
ago (15). 

We find subtle changes to the average human generation interval 
among populations in the last 1000 generations (Fig. 3 and fig. S4). 
Average generation times in European and South Asian populations 
have increased slightly, while generation times in African and East 
Asian populations have changed little. Similar results in the recent 
past were observed when using only private alleles (fig. S5). We es-
timate a shorter sex-averaged generation interval for Europeans 
(26.1 years) than East Asians (27.1 years) over the past 40,000 
years, supporting a recent estimate derived from divergence to 
archaic DNA (11). Beyond this most recent time frame, the 

Fig. 1. The mutation spectrum changes with human generation time. (A) Data 
on de novo mutations from 1247 Icelandic trios (14) were used to train a model that 
predicts the effect of both maternal and paternal age on the mutation spectrum. 
(B) Data from 25.3 million segregating variants whose date of origin was estimated 
using GEVA (15) were used to assess the mutation spectrum at different periods in 
the past. The mutation spectrum from each time period (bin) was used as input to 
the model from (A) to estimate the generation interval for males and females. (C) 
Differences in the frequency of each of the six different mutation types through 
time, as compared to the most recent time period (smoothed lines from local re-
gression). Figure S15 presents the absolute frequencies of the same mutation data 
over time. 

Fig. 2. Estimating the male and female generation interval across 250,000 
years. (A) Male (blue points), female (red points), and sex-averaged (gray line) gen-
eration intervals over the past 10,000 generations. The data were divided into 100 
time periods with equal numbers of variants; generation intervals in each were 
independently estimated using the Dirichlet-multinomial model. Sex-averaged 
generation intervals are shown here as a line smoothed by local regression. Confi-
dence intervals (±1 SE) displayed for estimates of the mean, and for males and 
females separately, were obtained by resampling both the de novo mutation 
data for bootstrapped models and the variants in each time period for boot-
strapped spectra. The absolute timeline (black arrow) was calculated by integrating 
sex-averaged generation-time estimates across generations elapsed since the 
present (section S3.3). (B) The smoothed difference (loess) between estimates of 
the male and female generation interval over time. 
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average generation interval in each of the ancestral non-African 
populations grows progressively shorter into the past. The dominat-
ing pattern across the past 10,000 generations is a significantly 
shorter sex-averaged generation interval for East Asian, European, 
and South Asian populations—20.1 ± 3.9, 20.6 ± 3.8, and 21.0 ± 3.7 
years—compared to the African population, 26.9 ± 3.5 years (P < 1 
× 10−10, t test). The estimated generation times do not converge 
between populations until we expand our analysis to include 
periods older than 10,000 generations ago (Fig. 3, inset). 

DISCUSSION 
The large difference in generation times between populations sug-
gests that different time scales are needed to estimate events outside 
of Africa (20 to 21 years per generation) versus those in Africa (27 
years per generation). These results are consistent with the predic-
tion of a shorter generation time in non-Africans, based on the ob-
servation of a slightly elevated per-year mutation rate in these 
populations (17). Estimates of the error in our model fit do not 
show increasing error with either genetic or geographic distance 
from Iceland (figs. S6 and S7), the origin of the pedigreed mutation 
data used to train our model. Such a trend may have been expected if 
differences in mutational spectra were driven by genetic or environ-
mental differences among populations. Note that the difference 
among populations beyond 2000 generations ago reflects popula-
tion structure in humans before their dispersal out of Africa, a 
structure that is not fully captured by the 1000 Genomes AFR 
sample (3, 15, 17, 18). This implies that the simple labels of 
“African” and “non-African” for these populations conceal differ-
ences in generation times that existed on our ancestral continent. 

Our study builds upon advances in understanding the character-
istics of de novo mutations (14) and in estimating genome-wide ge-
nealogies (15) to create a model for generation times that can be 
applied to ancient populations. While it is clear that the frequency 
of individual mutation types can evolve rapidly (19–21), even small 
changes to the generation interval can reshape the overall mutation 
spectrum (22, 23). Our results are consistent with previous esti-
mates of the average generation time over the past 40,000 to 
45,000 years (10, 11) but offer unprecedented resolution of sex-spe-
cific generation times across 250,000 years of human history. While 
information on the mutation spectrum far into the past (>10,000 
generations ago) is limited by the coalescent process (and subse-
quent lack of ancient polymorphisms), fine-scale estimates of gen-
eration times from the most recent 100 generations will be possible 
with larger population samples [cf. (24)]. Large-enough samples 
will bring estimates from population genetic data close enough in 
time to overlap with historical birth records [e.g., (25)]. As it 
stands, our results offer a unique look into the biology of our ances-
tors and provide a more detailed picture of human demograph-
ic history. 

MATERIALS AND METHODS 
We developed a parental age model for the mutation spectrum 
based on data from a large study of de novo mutations in an Icelan-
dic population (14). Mutation count data from each proband was 
modeled as coming from a Dirichlet-multinomial distribution 
with parental ages treated as covariates (section S1). We excluded 
variants from mutation classes prone to homoplasy (CpG → TpG 
mutations), as well as TCC → TTC and related triplet transitions, 
which have been inferred to be the result of a recent mutation pulse 
(19, 20). After filtering mutations, our model was trained on 27,902 
phased mutations from 1247 trios. 

We used results from GEVA (15) on the time at which new mu-
tations arose in human history (section S2). GEVA dates each 
variant independently by inferring when on the local underlying ge-
nealogy it occurred. Using the local genealogy (“gene tree”), GEVA 
avoids problems associated with hemiplasy (26), although it does 
assume that every mutation only occurred once at a site. This as-
sumption means that mutation classes with very high mutation 
rates (e.g., CpG → CpT) can be mismapped; to be consistent with 
the de novo mutation data used to train our model above, these mu-
tations were filtered from both datasets (section S2.2). Human var-
iants dated by the GEVA approach were subject to several additional 
filters to ensure their appropriateness for estimating generation 
time. We considered only biallelic single-nucleotide sites and dis-
carded singletons and variants with derived allele frequencies 
higher than 98%. More than 80% of the sampled variants arose in 
the last 10,000 generations, but very few are from the last 100 gen-
erations (fig. S8). Because the sampled variants are unevenly distrib-
uted through time, we divided the data from the past 10,000 
generations into bins with equal numbers of variants. Maternal 
and paternal ages were then estimated by fitting the variant spec-
trum in each of the 100 historical bins to our Dirichlet-multinomial 
model by minimizing compositional (Aitchison) distance between 
the observed spectrum and the model (section S3). We found that 
the mutation spectrum from the large pedigree study (14) consis-
tently differed from the variant spectrum inferred from the 1000 
Genomes Project data, possibly because we removed singletons 

Fig. 3. Change in generation interval across different human populations. 
Generation intervals were estimated in ancestors of four major continental 
human populations included in the 1000 Genomes Project; sex-averaged genera-
tion intervals are shown here as smoothed by loess (see fig. S6 for full results). 
Confidence intervals for each population were obtained by bootstrapping, as in 
Fig. 2. The inset shows results from including polymorphisms that date back to 
78,000 generations ago; note that age estimates of mutations in the very distant 
past have decreased accuracy (15). AFR, Africa; EAS, East Asia; EUR, Europe; SAS, 
South Asia. 
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from the polymorphism dataset to reduce errors. Therefore, to 
obtain absolute generation times for historical periods, we centered 
the observed spectra on the most recent bin, subtracting its differ-
ence with the average mutation spectrum estimated in (14) from 
each historical spectrum. This has the effect of assuming that paren-
tal ages in the pedigreed mutation dataset reflect generation times in 
the most recent historical bin. We find this assumption to be robust 
for both the relative difference in generation time between the sexes 
and the overall pattern of historical generation times (see 
section S4.3). 

We carried out multiple analyses to ensure the accuracy and ro-
bustness of our results. Error in our model fit did not increase with 
increasing time since the present (section S3.5 and fig. S6), as might 
be expected if multiple aspects of the mutation spectrum had 
evolved over time. We also find that our method estimates mean 
generation times with very low error on simulated data, although 
increasing variance in parental ages slightly increased error rates 
(fig. S9). In general, we expect that multiple sources of variation 
within populations are likely to contribute to error in our estimates, 
including the aforementioned variation in parental ages or genetic 
variation in the mutation spectrum among individuals. Intrage-
nomic differences in the mutation spectrum due to variation in re-
combination rate (section S4.1) and replication timing (section 
S4.2) (27) are likely to contribute to variance in estimates from 
our genome-wide model. The mutation spectrum differs signifi-
cantly across genomic regions where recombination rates differ 
(fig. S10A), and if we estimate generation times from only subsets 
of the genome, then these estimates would be consistently higher 
when inferred from genomic regions with higher recombination 
rates (fig. S10C). To ensure that the genomic regions used to 
build the model are the same as those used to estimate historical 
mutation spectra, we resampled multiple datasets matched for re-
combination rate and replication timing; there was no effect on 
our estimates after controlling for the slight differences in the dis-
tribution of mutations and polymorphisms with respect to these 
variables (fig. S10, G and H). Systemic effects of recombination 
on generation time estimates due to biased gene conversion or 
linked selection may be more difficult to rule out. However, we 
do not find any significant increase in the frequency of mutations 
toward G or C with increasing variant age, as might be expected 
from the effects of GC-biased gene conversion over time (fig. 
S11). Lastly, the trends found for human generation time were 
not substantially affected by the stringency of mutation filters on 
the training set (fig. S12A), the masking of regions introgressed 
from Neanderthals (fig. S13A), nor the precision of allele ages in 
the GEVA dataset (fig. S14). 
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S1. Modeling the mutation spectrum as a function of parental age 
 
S1.1. Data from Icelandic trios 

We developed a parental age model for the mutation spectrum based on data from a large 
study of de novo mutations in an Icelandic population (14). We briefly summarize the findings 
from this study here as background for the development of our model. The study detected 
101,377 single-nucleotide de novo mutations from 1,548 trios with known parental ages at 
conception. In general, they found an increasing number of mutations with both paternal and 
maternal age, with different rates of increase for different mutation classes. The parent-of-origin 
was determined for a subset of these mutations (n = 41,899), allowing inferences for the 
mutation spectrum to be made separately for mothers and fathers. Figure S1 summarizes these 
findings for each of the six different classes of single-nucleotide mutations (A→C, A→G, A→T, 
C→A, C→G, C→T; each class includes counts from their complements). 

 
 
S1.2. Description of the Dirichlet-multinomial regression 

The mutation spectrum is a form of compositional data: comparisons between spectra focus 
on differences in the relative abundance of each mutation class. Because of the small number of 
mutations produced by any one set of parents, observations from a single trio are insufficient to 
reliably determine the spectrum. A model for the mutation spectrum must therefore incorporate 
the probabilistic nature of mutation counts from a given trio while inferring the relationship 
between the underlying spectrum and given covariates. We apply a Dirichlet-multinomial 
regression to mutation count data to capture the relationship between the underlying mutation 
spectrum and parental ages, which are treated as covariates in the analysis. 
 

Let 𝐲𝑖 = (𝑦𝑖,A→C, 𝑦𝑖,A→G, 𝑦𝑖,A→T, 𝑦𝑖,C→A, 𝑦𝑖,C→G, 𝑦𝑖,C→T) be the vector of mutation counts for 
each of the six respective mutation classes from trio i. The distribution for m mutation counts 
from a trio, yi, is modeled as a multinomial, conditional on the probability vector pi, 
 

𝐲𝑖 | 𝐩𝑖 ~ Multinomial(𝑚, 𝐩𝑖) 
 
where pi is defined on the 6-dimensional simplex, 𝑆 = {(𝑝A→C, 𝑝A→G, 𝑝A→T, 𝑝C→A, 𝑝C→G, 𝑝C→T) ∶
𝑝𝑗 ≥ 0, ∑ 𝑝𝑗 = 1𝑗 }. 
 

We then impose a conjugate Dirichlet prior on p, such that 𝐩 ~ Dirichlet(𝛂), and  
𝛂 = (αA→C, αA→G, αA→T, αC→A, αC→G, αC→T), αj > 0. The probability mass function for the count 
vector y over 𝑚 = ∑ 𝐲𝑖𝑖  trials under this Dirichlet-multinomial model can be represented as 
 

𝑓(𝐲 | 𝛂) = (
𝑚
𝐲

)
∏ (α𝑗)𝑦𝑗𝑗

(∑ α𝑗𝑗 )𝑚
 

 
(see ref. (28)).  
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The parental ages for each trio are incorporated as covariates for the Dirichlet-multinomial 
regression, 𝐱 = (𝐱paternal, 𝐱maternal), an n × 2 matrix of parental ages. They are related to the 
Dirichlet parameter 𝛂 by the inverse link function, 
 

α𝑗 = 𝑒𝐱T𝛃𝑗  
 
where 𝛃𝑗 = (𝛽𝑗,paternal, 𝛽𝑗,maternal) is the vector of regression coefficients for each mutation 
class. 
 
 
S1.3. Subset of mutations and trios for model fitting 

For our main analysis we used a subset of mutations from the Icelandic dataset to model the 
mutation spectrum with parental age: we used only the set of phased mutations for which the 
parent-of-origin was determined by either read-tracing or transmission to a third generation. 
Further restrictions on the mutations used for modeling were made to mirror the filters placed on 
dated variants from the 1000 Genomes Project dataset. These include removing mutations at 
CpG sites and C→T transitions with a trinucleotide context associated with a putative mutation 
pulse (see section S2.2). We also restricted trios to those that had a minimum of at least 10 
mutations. This was done to avoid matrix degeneracy when fitting the maximum likelihood 
mutation spectrum model (see below). After all filters, we fit the model on 27,902 mutations 
from 1,247 trios. 

 
 
S1.4. Fitting the model to mutation data 

We used the R package MGLM (28) to fit the Dirichlet-multinomial regression model to the 
filtered mutation dataset. MGLM implements several methods for multivariate generalized linear 
models, including the Dirichlet-multinomial. We used it to fit the regression coefficients for our 
covariates (parental age) that maximize the log-likelihood of our model. The result is a predictive 
model that gives the expected mutation spectrum for a set of parental ages. Figure S2 
demonstrates a set of simple predictions from the fit model, showing the expected changes to the 
mutation spectrum when paternal and maternal age are individually adjusted. 
 

To assess the accuracy of our model, we simulated mutations drawn from the previously fit 
Dirichlet-multinomial model with known parental ages. In general, our model assumes that the 
distribution of parental ages in the population is much less important to the mutation spectrum 
than the mean age. To further explore the fit of our model when we consider population variation 
in parental age, we drew a stochastic set of parental ages from a multivariate normal distribution. 
We parameterized this distribution with mean ages from the Icelandic dataset and a scalar 
product of the covariance matrix that we allowed to vary. Figure S9 shows increasing sum of 
squared error (SSE) from the underlying simulated spectrum with increasing population 
variance. Overall, there is very low error, but it increases steadily with variation in parental ages. 
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S2. Variants from the 1000 Genomes Project dated by GEVA 
 
S2.1. GEVA and the Atlas of Variant Age 

Human variants dated by the Genealogical Estimation of Variant Age (GEVA) approach are 
publicly available in the Atlas of Variant Age, an online database 
(https://human.genome.dating/). In order to jointly estimate the age of each derived allele, GEVA 
assumes a constant per-generation mutation rate through time (1.2 × 10-8 per base pair) and a 
constant per-generation recombination rate through time (varying by locus). Importantly, these 
age estimates are expressed as generations since the present, and consequently do not require the 
assumption of any particular generation time. We used dated variants in this database collected 
from the 1000 Genomes Project (Phase 3; GRCh37). This set includes autosomal variants 
sampled from 2,504 individuals in 26 worldwide subpopulations within 5 continental 
populations. Ancestral and derived states were determined in the Atlas of Variant Age through 
multispecies alignments from the Ensembl database (see ref. (15)). Throughout our main 
analysis, we use the median estimated allele age from the database as a point estimate of each 
variant’s age. See section S4.3 for an analysis that relaxes this assumption. 

 
 

S2.2. Filtering dated variants 

We took several additional filtering steps to ensure variants were appropriate for estimating 
generation time. We considered only biallelic single-nucleotide sites that were not singletons—
variants that exist on only a single chromosome across samples. We also discarded variants with 
a derived allele frequency higher than 98% to reduce the possibility of ancestral state 
misidentification. 
 

As mentioned above, CpG sites are more likely to have arisen more than once, and therefore 
to have been multiply mapped on genealogies; their frequency is much less consistent across 
time periods as a result (Fig. S15). As in the model for mutation spectrum with parental age, all 
variants at CpG sites were discarded from consideration. 
 

Several C→T transitions have been inferred to be part of a recent mutation pulse, 
particularly in European populations (19, 20). To reduce the potential effect of this mutation 
pulse on estimates of generation time, we discarded all triplet C→T transitions that have been 
found to be associated with this pulse. These include ACC→ATC, CCC→CTC, TCC→TTC, 
TCT→TTT, and their respective reverse complements. 

 
 

S2.3. Binning data into time periods 

After all filtering, there were 25.3 million variants from the Atlas of Variant Age for which 
there were estimates of allele age. Of these, 20.9 million were estimated to have arisen in the last 
10,000 generations. Because there are very few young variants and a long tail for the number of 
older variants (Fig. S8), we estimated spectra in bins that were supported by equal numbers of 
variants rather than in equally spaced time periods. We divided the 20.9 million variants equally 

https://human.genome.dating/
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among 100 bins based on their estimated age. Bins were filled starting with the youngest 
variants, leaving a small number of the remainder of oldest variants unplaced.  
 

The estimated spectrum for each bin was calculated as the count of variants in each of the 
six mutation classes divided by the total number of variants in the bin. The age of each bin was 
calculated as the mean of estimated ages from all variants in the bin. Figure S15 shows the 
spectra, as a frequency of each mutation class, across 100 bins from the past 10,000 generations. 
The same procedure was used to estimate historical spectra for each of the continental population 
groups, for which there were 11.0 (AFR), 4.3 (EAS), 4.4 (EUR), and 5.4 (SAS) million variants 
included after filtering (see section S3.4). 
 

S3. Estimating generation times 
 
S3.1. Fitting variant data to the Dirichlet-multinomial regression model 

We jointly estimate separate male and female generation times from the historical mutation 
spectra calculated from the counts of variants in each time period. To do this, the parental ages in 
the Dirichlet-multinomial model were treated as parameters in a search for a predicted mutation 
spectrum that best fit the observed historical spectrum. We minimized the distance between each 
predicted spectrum and each observed historical spectrum. 
 

Because a mutation spectrum is a composition underlain by count data, comparisons 
between spectra using simple Euclidean distance can be misleading. Like all compositional data, 
mutation spectra are mathematically constrained by the possible values for the frequency of each 
count class, distorting the simple Euclidean distance between compositions. To deal with this, we 
perform a centered log-ratio transformation (clr) on each spectrum before calculating the 
distance between them (29). The transformation can be obtained as 
 

clr(𝐱) = [log
𝑥1

g(𝐱) , … , log
𝑥D

g(𝐱)] 

 
for a composition vector x with D elements, where g(x) is the geometric mean of the 
composition. The Aitchison distance between two given spectra, x1 and x2, can then be 
calculated as 𝑑 = ‖clr(𝐱1) − clr(𝐱2)‖. 
 

The generation time was then estimated from each historical mutation spectra by distance 
minimization as 
 

argmin 
𝑡p,𝑡m

‖ clr(𝑭(𝑡p, 𝑡m)) − clr(𝐱𝑗 − Δ) ‖ 

 
where F gives the predicted spectrum from the Dirichlet-multinomial model for a set of paternal 
and maternal ages, tp and tm, xj is the historical mutation spectrum from a given time period, and 
Δ is the centering difference, the difference between the most recent bin and the average 
mutation spectrum, as described in the main text. The parental ages that minimized this distance 
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were found by applying the L-BFGS-B optimization algorithm as implemented in the R stats 
package (30). We used the default convergence tolerance, default limit on number of iterations, 
and set bounds for both parental ages to be: [0, 100]. None of the searches returned a minimum 
distance at these bounds. The maternal and paternal ages that minimized the distance from each 
time period were taken to be the respective estimates of the generation time. These ages, as well 
as the sex-averaged generation time, for all time periods are provided in Supplementary Data S1. 
 
 
S3.2. Calculating confidence intervals by double-bootstrap 

There are two major sources of uncertainty in our estimates of the generation time: (1) the 
mutation data that specifies the Dirichlet-multinomial regression model, and (2) the dated 
variants that are used to calculate the variant spectrum in each time period. This led us to 
construct confidence intervals around the generation time estimates with a double-bootstrap 
resampling strategy. 
 

The 1,247 trios from the Icelandic dataset were resampled with replacement and fit to the 
Dirichlet-multinomial regression model. We discarded cases where the likelihood search for the 
regression model failed to converge, but restricting the dataset to include only trios that had at 
least 10 mutations greatly reduced instances of failure to converge due to matrix singularity. The 
variants in each time period of the analysis were also resampled with replacement and the 
spectrum was recalculated for each bin. Finally, generation times were estimated by fitting the 
bootstrapped spectrum to the bootstrapped model by distance minimization as described above. 
The resampling steps were each repeated 100 times, resulting in a total 100 × 100 = 10,000 
bootstrap estimates of generation time for each time period included in the analysis. 
 
 
S3.3. Calculating averages and absolute generation times 

The sex-averaged generation time was calculated as the mean of the maternal and paternal 
ages estimated for each time period. In figures plotting this sex-averaged estimate, we performed 
local polynomial regression (loess) to produce a smoothed curve across the past. We used the 
default smoothing parameter, α = 0.75, in the R stats implementation of loess to smooth both 
sex-averaged estimates and their confidence intervals.  
 

We calculated the absolute time scale (Fig 2A in main text) on which generation times 
change by integrating the estimated sex-averaged generation time across the age of mutations. 
We employed a Riemann sum, calculating the cumulative sum of estimated generation times in 
single generation steps from the smoothed sex-averaged curve. We added a small constant to this 
integration to account for the time between the present and the first estimate by assuming there 
has been no change to generation times in this short period. 
 

A related strategy was used to calculate the average generation times across the period of 
our analysis. Because ranges for each time period were based on an equal number of variants, 
older bins span a greater amount of time. We weighted the estimate from each time period by the 
span of the bin when calculating the average generation times reported in the main text.  
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S3.4. Estimating population-specific generation times 

We separated variants as belonging to one of four continental populations (AFR: Africa, 
EAS: East Asia, EUR: Europe, and SAS: Southeast Asia) based on their geographic sampling in 
the 1000 Genomes Project. Variants were placed into continental populations using an inclusive 
criterion: as long as more than one copy exists among samples from a population, it is included 
in that population. We analyzed each set of variants separately to arrive at population-specific 
estimates of generation times (Fig. S4). That is, we repeated each step of the previously 
described analysis with only the subset of variants included in each population. 
 

In contrast to the broadly inclusive criteria, we also separated variants into each continental 
population by including only the private alleles exclusive to each population. The proportion of 
variants that are private to each continental population drops rapidly going back in time, and they 
make up a very small proportion of variants by 2,000 generations ago (Fig. S5B). Nevertheless, 
we estimated generation times after creating a subset of variants for each population using only 
the private alleles. Figure S5A shows the results of this analysis for the first 1,000 generations, 
before private variants for most populations disappear. These results are very similar to those 
found using the more inclusive criteria for variants (Fig. 3 in the main text). 
 
 
S3.5. Goodness-of-fit through time 

We took two approaches to quantify how well our generation time estimates fit with 
mutation spectra across human history. First, we calculated the sum of squared error (SSE) 
between the spectrum estimated in each bin and the spectrum predicted by the male and female 
generation times as estimated from our model. Lower SSE values indicate that our model better 
explains variation in the mutation spectrum. Figure S6A shows the SSE of the best-fit model for 
the full dataset and the range of SSE values across the double-bootstrap resampled datasets.  

Our second approach was to calculate a composite likelihood for the predicted spectrum 
under a model that treats each mutation class as an independent Poisson regression (Fig. S6B). 
We previously used this simpler model to describe the mutation spectrum as a function of 
parental age (23). Here we calculate the likelihood for the predicted spectra in each time period 
under this alternative model to evaluate goodness-of-fit in a way that may better control for 
sparse data. The likelihood for each time period is calculated as, 

log 𝐿 = ∑
𝜆𝑐

𝑥𝑐𝑒−𝜆𝑐

𝑥𝑐!
𝑐

 

where xc is the number of observed variants in mutation class c, and λc is number of predicted 
counts for mutation class c. Here, λc is normalized to the total number of variants binned to each 
time period, that is, 

𝜆𝑐 =
𝑁𝑐(𝑡p, 𝑡m)

∑ 𝑁𝑐(𝑡p, 𝑡m)𝑐
∑ 𝑥𝑐

𝑐
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where Nc(tp, tm) is the number of mutations in class c predicted by the independent Poisson 
regression for tp and tm, the paternal and maternal generation intervals estimated under the 
Dirichlet-multinomial model (section S3.1). 

 
Figure S7 shows both goodness-of-fit analyses run on each continental population 

separately. The SSE among these populations (Fig. S7A) is associated with the number of 
polymorphisms in each dataset, with lower error in datasets with more polymorphisms. Though 
the error in our model varies across time, it is notably not monotonic with time into the past, and 
the worst fit across populations is roughly coincident with the period with the greatest estimated 
difference in male-female generation time (Fig. 2B). Figure S7B also shows a relatively stable 
composite likelihood for predictions across the past 10,000 generations. Note that these 
likelihoods cannot be meaningfully compared across populations because they describe the fit to 
different data. Regardless, the composite likelihood of all populations does not increase 
monotonically with time into the past. 

 
To help interpret SSE values over time, we also performed a cross-validation analysis using 

the original mutation dataset. We calculated the SSE between spectra estimated from a random 
subset of 20% of trios from the Icelandic dataset and the remaining 80%. The mean SSE from 
100 cross-validation draws was 1.7 × 10-4. The mean SSE in bins from the past 10,000 
generations, 2.0 × 10-4, is only slightly higher, demonstrating that there is little additional error in 
our fit model that is not attributable to sampling variance. 
 

S4. Effects from relaxing filters and assumptions 
 
S4.1. Effects of recombination rate on generation time estimates 

Recombination could distort our generation time estimates if linked selection or biased gene 
conversion affect the inferred date of origin of variants in a way that nonuniformly changes 
historical spectra. Linked selection will change the shape of genealogies (31), especially in 
regions of low recombination. GC-biased gene conversion will change the population frequency 
of specific variants, but has a greater effect in regions of high recombination (32, 33). We carried 
out additional analyses to ensure the robustness of our results to the effects these processes may 
have had on the dating of variants within genealogies. 

 
We first considered how differences in recombination rates may have affected 

parameterization of the model. Mutations identified in the Icelandic trios (GRCh38 positions) 
were divided into quintiles based on the recombination rate of their surrounding regions 
(GRCh38 map from https://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/, published 
2018-09-25). The mutation spectra was then calculated separately for each quintile (Fig. S10A). 
We calculated the sum squared difference between the spectra in the first and last quintiles, and 
found them to be significantly different (P < 0.005, empirical CDF determined from cross-
validation; see section S3.5). These data indicate a different mutation rate, and a slightly different 
mutation spectrum, associated with variation in recombination. When we estimated generation 
times based on the mutation spectra from each quintile, they produced a pattern of consistently 
increasing female generation time with increasing recombination rate (Q1: 24.5 y, Q5: 33.7 y). 

https://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/
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That is, when stratified by recombination rate, the mutation data that originally parameterize the 
model predict longer generation times in strata with higher recombination rates. 
 

Estimates of generation time based on polymorphisms from genomic regions stratified by 
recombination rate reveal the same patterns. We split variants (GRCh37 positions) into quintiles 
based on the interpolated human map of recombination (GRCh37 map from 
https://github.com/joepickrell/1000-genomes-genetic-maps, commit 73cbe92). While our 
estimates of generation time appear to show an increase with recombination rates (Fig. S10C), 
the pattern across history remains the same. The longer generation times seen in estimates from 
regions of higher recombination did not correspond with any bias toward, or accumulation of, G 
or C alleles in the inferred mutation spectra from high recombination quintiles (Fig. S11). Thus, 
while the mutation spectrum is affected by local recombination rates, this pattern is equally 
present in both the mutation data used to fit the model as well as the variants used to estimate 
historical spectra. 

 
Since our estimates of the generation time are based on a model of the mutation spectrum fit 

to the whole genome, intra-genomic variation in recombination rate undoubtedly contributes to a 
proportion of unaccounted variance and error to our model. We considered whether our estimates 
of generation time may be affected by differences between the proportion of mutations identified 
as arising in regions with a given recombination rate and the proportion of variants identified in 
those same regions. We divided mutations and variants across the genome into quintiles based on 
recombination rate and found a significant difference between the proportion belonging to each 
bin (2 test, P < 1 × 10-10; Fig S10E). Concerned about the effect this may have on our 
generation time estimates, we performed a jackknife resampling analysis that matched the 
proportion of variants in each recombination quintile to the proportion found among mutations. 
We sampled one-third of all variants in each of 100 replicates, exactly matching the proportion 
from each mutation quintile, and then re-estimated generation times across the past 10,000 
generations. Figure S10G shows that despite significant differences in the recombination rate 
surrounding mutations versus variants, our estimates of historical generation times were not 
affected. 
 
 
S4.2. Effects of replication time on generation time estimates 

Another genomic property that has been shown to affect mutation rate and spectra is the 
timing of replication. Both early and late-replicating regions of the genome are associated with a 
higher mutation rate; late-replicating regions are also enriched for transversion mutations (27; 
Fig. S10B, S10F). We considered the effects that differences in genomic replication time may 
have on our generation time estimates with an analysis similar to the one performed for 
recombination rate variation (section S4.1). Dated variants were split into quintiles based on the 
genomic region’s replication time (27). We found that estimates of the generation time were 
progressively longer with variants from increasingly early replication time (Fig. S10D). 
Generation times estimated separately from each quintile of replication time are more distinct 
than estimates from separate quintiles of recombination rate (Fig. S10C), showing the stronger 
effects of replication time on the mutation spectrum across the genome. 

 

https://github.com/joepickrell/1000-genomes-genetic-maps
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As with variation in recombination rate, we were concerned that the mutations used to fit 
our model may not have arisen in regions with the same replication time as the variants used to 
estimate historical mutation spectra. We found that the proportions of mutations in quintiles of 
replication time were significantly different from the proportions among variants (2 test, P < 1 × 
10-10; Fig S10F). To estimate the effect this may have had on our estimates, we once again 
performed a jackknife resampling. We matched the proportions from each quintile of replication 
time by sampling one-third of all variants in proportion to quintiles among mutations and re-
estimating generation times from each of 100 replicates. Figure S10H shows that our estimates 
of generation times across the past 10,000 generations were not affected by differences in the 
proportion of replication time between mutations and variants in the genome. 
 
 
S4.3. No significant effect on estimates from Neanderthal introgression 

We considered the possible effects of Neanderthal introgression by repeating our analysis 
while masking all regions with evidence for introgression in any individual (34). This 
conservative approach, which removed sites regardless of allelic status, masked approximately 
38% of the data. Figure S13 shows the results of our analysis with these regions removed. We 
find little effect on overall generation time estimates (Fig. S13A) or on estimates for non-African 
populations, the candidates for any effect from Neanderthal introgression (Fig. S13B). 
 
 
S4.4. Additional effects of relaxing filters and assumptions 

We examined several ways in which data or modeling choices might have affected our 
results. Rather than using only the set of high-quality phased mutations, we fit the Dirichlet-
multinomial regression model to a much larger dataset that included unphased mutations from 
the Icelandic trios (n = 72,573 de novo mutations from 1,548 trios). The average age of parents in 
this dataset (males: 32.0, females: 28.2) is lower than in the smaller phased dataset (males: 33.4, 
females: 29.1). The results from using this model for analysis are shown in Figure S12A. The 
male-female difference is slightly accentuated, but the overall pattern for generation times 
remains the same. We also considered whether our estimates may have been affected by batch 
effects in the 1000 Genomes Project data, as identified by (35). To be conservative, we removed 
from this analysis all seven nucleotide-triplet mutation patterns identified as being associated 
with low quality scores. This includes *AC→*CC, TAT→TTT, TCT→TTT, TGT→TTT, and 
their reverse complements; C→T triplets that we had previously removed continued to be absent 
in this analysis. Figure S12B shows that the omission of these mutation patterns leads to slightly 
lower estimates for male generation times, but an overall pattern that remains very similar to our 
main findings. 
 

As mentioned in the main text, our results were anchored by absolute generation time 
estimates from the most recent time period. We relaxed this assumption by anchoring to the 
mean spectrum across all dated variants. This effectively asserts that the Icelandic dataset has a 
generation time equivalent to the mean generation time across thousands of generations. While 
estimates of absolute parental age were slightly lower under this assumption, the patterns across 
human history were unaffected (Fig. S12C). Without any anchoring, estimates of the absolute 
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generation time were much lower; across 10,000 generations, the mean (std. dev.) estimates 
were: males, 12.4 (2.8); females, 21.4 (1.1); sex-averaged, 16.9 (1.9). 

 
We further investigated whether the difference between the mean spectrum of mutations 

from the Icelandic trios and the polymorphism data was specific to variants from the 1000 
Genomes Project. We compared the spectrum to polymorphism data from a large set of 
extremely rare variants (ERVs; 22). This stringently filtered high-quality set of over 35 million 
variants from 3560 whole-genome sequences is expected to closely resemble de novo mutations. 
Despite this, we find a subtle but significant difference in the mutation spectra (P < 2 × 10-16): 
the magnitude of this difference is comparable to what we found between the youngest bin and 
the average spectrum (sum of squared differences: 1.47 × 10-3 vs. 1.50 × 10-3). Table S1 shows 
the count, spectrum, and difference between de novo mutations from the Icelandic trios and the 
extremely rare variants from ref. (22). 
 
Table S1. Mutation spectrum from extremely rare variants (ERVs) versus de novo mutations 

 A→C A→G A→T C→A C→G C→T 

ERVs 2596232 9686710 2483389 3625994 3135036 14047056 

% 7.30 27.23 6.98 10.19 8.81 39.49 

DNMs 7141 27178 6898 7697 9734 42729 

% 7.04 26.81 6.80 7.59 9.60 42.15 

Diff. (%) -0.254 +0.421 +0.177 +2.600 -0.789 -2.662 

 
 
Mutations from the Atlas of Variant Age included in our analysis were dated based on the 

median estimated allele age. To explore the effects of uncertainty in these estimates, we 
resampled allele ages based on the reported posterior distributions of age estimates. We drew 
new ages for each variant assuming a normal distribution around the reported 95% highest 
density interval (negative ages were set to zero). We then repeated the entire analysis, estimating 
generation times in the last 10,000 generations from 10 such resampled datasets (Fig. S14). 
Overall, the historical trajectory for human generation times estimated from resampled datasets 
is within our bootstrap confidence intervals. The exception to this pattern occurs in the earliest 
bins, where we estimate lower generation times in our resampled ages. This lower estimate is 
likely due to boundary effects: since we assume a normal distribution for allele ages, alleles close 
to the present have negative ages set to zero. 

 
We also considered whether the mutation process could be significantly different among 

populations. Since we know generation times among continental populations in the present are 
very similar, we reasoned that any evolved differences in the mutation process between 
populations should be reflected in recent variant spectra. Figure S3 shows there is little 
difference in the recent spectra between populations, suggesting there are no significant 
differences in mutation processes between them. These inferences are supported by studies of de 
novo mutations in diverse populations (36), which show no differences in the mutation spectrum 
among parents of similar ages. Similarly, Figure S7 shows no effect of either genetic or 
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geographic distance from Icelandic populations, as would be expected if differences in the 
mutation process among continental populations had a significant effect on model fit.  
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Supplementary Figures 

 

Figure S1. Frequency of mutation classes with parental age 
A summary of the number of de novo mutations as a function of age. Phased mutations can be 
assigned to either the paternal or maternal lineage, so are shown separately for the six different 
types of single nucleotide changes (and their complement). Data from ref. (14).  
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Figure S2. Predicted change in mutation frequency with paternal and maternal age 
Data from Icelandic trios (Fig. S1) were used to parameterize the Dirichlet-multinomial model. 
Figures are centered on the average paternal and maternal ages among the trios (males: 32.0, 
females: 28.2), and show predicted changes with differences to only paternal (left) and only 
maternal (right) age. Predicted changes in frequency for each type of mutation are visualized as 
the difference relative to their frequency at the mean age.  
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Figure S3. Variant spectrum of the most recent private alleles 
The variant spectrum of private alleles for the most recent time period (average variant age of 
~80 generations) are the same between continental populations. Error bars show 95% CI.  
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Figure S4. Population-specific estimates of male and female generation interval 
Generation intervals were estimated for four major continental populations. These results are the 
same as those shown in Figure 3 in the main text, but with separate maternal and paternal 
generation times plotted.  
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Figure S5. Population-specific estimates from private variants 
(A) Estimates of the generation interval for each of the four major continental populations using 
only variants private to each population. These results can be compared to Figure 3 in the main 
text, but note that here we only plot estimates up to 1000 generations ago. (B) The proportion of 
all variation that is private to one continental population, as a function of time in the past. Almost 
all variation private to one of the non-African samples has arisen in the most recent 1000 
generations.  
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Figure S6. Goodness-of-fit through time 
(A) Difference between spectra predicted by parental age estimates and spectra from 1000 
Genomes data is shown as the sum of squared error (SSE) for each bin going back 10,000 
generations (blue). Lower SSE values indicate that the model better explains variation in the 
mutation spectrum. (B) Composite likelihood of parental age estimates for spectra from each bin 
under an independent Poisson model for each mutation class (see Supplementary section S3.5). 
Boxplots show goodness-of-fit from analyses of the double-bootstrap datasets (bootstrap outliers 
not plotted).  
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Figure S7. Goodness-of-fit for different continental populations 
(A) Difference between spectra predicted by parental age estimates and spectra from analyzed 
1000 Genomes continental populations is shown as the sum of squared error (SSE). Lower SSE 
values indicate better model fit to the observed mutation spectrum. Error among populations 
appears lower among datasets with more polymorphisms. (B) The Poisson composite likelihood 
is stable for generation time estimates from different continental populations across the past 
10,000 generations. Note that, while shown on the same plot, likelihoods across populations 
cannot be meaningfully compared because they describe the fit to different underlying data.  
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Figure S8. Density of variants by age of origin 
Variants dated by GEVA (15) are plotted according to the time at which they are estimated to 
have arisen via mutation. The plot includes all data from the 1000 Genomes Project, regardless 
of which population(s) they are found in.  
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Figure S9. Effect of population variance in parental ages 
Model error increases with variation in parental ages. Mutations were simulated as being from 
parents with a stochastic set of ages. The difference between the predicted spectra based on 
estimated ages and the simulated mutations is shown as the sum of squared error (SSE). Parental 
ages were drawn from a multivariate normal with mean and variance from the Icelandic dataset. 
Increasing variation in the distribution of parental ages was introduced by linear scaling of the 
covariance matrix. Each point represents the mean difference in SSE from 10,000 simulations.
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Figure S10. Stratification of genomic regions by recombination rate and replication time 
(A, B) Different mutation spectra in the Icelandic trio dataset are apparent when mutations are 
binned by the local genomic region’s (A) recombination rate and (B) replication time. Quintiles 
(1-5) are ordered by increasing recombination rate and earliness of replication time. 
(C, D) Different sex-averaged generation time trajectories are inferred when using only the dated 
variants from specific quintiles of (C) recombination rate or (D) replication time. Dashed line 
and shaded area show the estimate and confidence interval from the full dataset. 
(E, F) The proportion of mutations (solid) and variants (hatched) found in different genomic 
quintiles of recombination rate and replication time. (E) An increasing proportion of both 
mutations and variants are found in regions of higher recombination rate; quintiles ordered by 
increasing recombination rate. (F) The proportion of both mutations and variants are bimodally 
distributed by replication time across the genome (27); quintiles ordered by increasing earliness 
of replication. 
(G, H) Sex-averaged generation time estimates from 100 jackknife resamples where the 
proportion of variants from each quintile was matched to the proportion found among mutations 
(see Supplementary section S4.1, S4.2). These results indicate that there is little effect on 
estimates due to differences between the proportion of mutations and variants from each (G) 
recombination rate and (H) replication time quintile.  
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Figure S11. No accumulation of effects from biased gene conversion through time 
The frequency of mutations subject to biased gene conversion (to G and C) do not accumulate 
over time, even across regions with different recombination rates. Frequencies have been center 
log-ratio transformed (clr; see Supplementary section S3.1) to makes differences more visible.  
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Figure S12. Generation intervals estimated with relaxed assumptions 
(A) All de novo mutations from the Icelandic trio dataset (not just phased mutations, as in Fig. 2 
in main text) were used to re-parameterize the Dirichlet-multinomial model, and then to re-
estimate generation times. (B) All seven nucleotide-triplet mutation patterns associated with 
possible batch effects identified in (35) were removed from the analysis. (C) Generation times 
estimated by anchoring the Icelandic mutation frequency spectrum to the average frequency 
spectrum across all historical time periods.  
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Figure S13. Estimates after masking tracts with evidence for Neanderthal introgression 
(A) Estimates of the generation interval over the past 10,000 generations after omitting 
polymorphisms in tracts with any evidence for Neanderthal introgression. The sex-averaged 
generation interval with Neanderthal tracts masked (solid line) is little different from the estimate 
from the full dataset (dashed line, confidence interval shaded). (B) Estimates of the generation 
intervals between African (AFR) and non-African (non-AFR) continental populations were not 
significantly affected by masking Neanderthal tracts. Confidence intervals displayed are from 
bootstrap analyses using the full dataset (dashed lines). Inset shows results from including 
polymorphisms that date back to 78,000 generations ago.  
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Figure S14. Estimated generation interval from resampled allele ages 
Sex-averaged generation interval estimated from datasets using resampled allele ages (blue 
lines). New ages for each variant were drawn from a normal distribution parameterized by the 
reported posterior from the Atlas of Variant Age to create 10 resampled datasets. The trajectory 
of human generation intervals closely matches our estimates using median allele age (dashed 
line, bootstrap CI shaded), with the exception of the earliest bins where boundary effects 
dominate (see section S4.3).  
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Figure S15. Mutation frequency by age of origin 
For each of 100 time periods, the frequency of each type of mutation having been inferred to 
arise in that bin is plotted. Frequencies have been center log-ratio transformed (clr; see 
Supplementary section S3.1) to makes differences more visible. In addition to the six types of 
mutations used in the Dirichlet-multinomial model, we also show the behavior of CpG→CpT 
mutations for comparison (these were not used in the model). 
 
 
 
 
 
 

Data S1. 
Estimated male and female generation times for each time period and population. 
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