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ABSTRACT

After a long period of steady improvement, scientific computing
equipment (SCE, or HPC) is being disrupted by the end of Dennard
scaling, the slowing of Moore’s Law, and new challenges to reduce
carbon, to fight climate change. What does this mean for the future?
We develop a system and portfolio model based on historical NSF
XSEDE site systems and apply it to examine potential technology
scenarios and what they mean for future compute capacity, power
consumption, carbon emissions, datacenter siting, and more.
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1 INTRODUCTION

The importance of computing for science, education, and knowl-
edge discovery has never been greater and continues to grow. This is
reflected by deep penetration of science and engineering disciplines,
and the expansion from modeling and simulation to data-driven
discovery. Reflecting this importance, investment by governments
and universities in computing infrastructure has continued to in-
crease [1], and marquee supercomputer systems with price tags
exceeding $500 million [2] to reach an Exaflop. Some estimate that
the high-end computing available for research in US universities
has grown by 30-fold in the past twenty years. But in the face of a
rapidly changing technology landscape, can this rapid growth in
computing capability be sustained and how should we shape this
investment?
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Recent years have seen major technology disruptions. End of
Dennard heralded a major shift for software to parallelism, first to
multicore and recently to GPUs. Slowing of Moore’s Law, with a
looming end (or shift to “More than Moore, heterogeneous integra-
tion”) threatens fast exponential improvement in computing cost
and density. Both trends threaten to slow improvement in compute
per watt (power density). And, computing has grown to such a vast
application that its power consumption, and associated carbon im-
pact is measurable and significant in the global fight to slow climate
change. In this disrupted landscape, how are we to navigate these
changes in Dennard, carbon, and Moore to deliver the continued
rapid growth in scientific computing that is essential to fuel educa-
tion and discovery? More specifically: can we sustain our continued
rapid growth in computing capacity? How should upgrade cycles
change? What are the critical costs? Power? Space? Equipment?,
and can we avoid dramatic increases in carbon emissions?

In this paper we construct a model based on ten large-scale
scientific computing systems (SCE) deployed at major NSF XSEDE
sites, using them to create a compute, space, power, and cost model
for scientific computing systems. From these systems and sites,
we derive both trends and a model for capital, TCO, power, and
more. Using this model, we consider a baseline scenario, projecting
its implications through two decades of technology and systems
evolution. To explore the sensitivity to parameters, we consider
a set of twelve scenarios around the baseline, exploring slower
and faster power density improvement, compute improvement and
more. The key results of our study include:

e Continued performance improvement drives replacement
cycles similar to historical patterns (4-7 years). This was
counter to our expectations and reflects the continuing at-
traction of future systems based on improving technology.
The future system economics and capabilities are too com-
pelling to slow down.

e Growing power consumption of SCE systems is a challenge
if we are to sustain growth in computing capability. This
power consumption presents challenges in growing opera-
tional cost, carbon impact, and facilities requirements. These
challenges may require changes in academic computing and
NSF program strategies.

o Fueled by continuing compute density improvements and ad-
vanced cooling systems (e.g. water, immersion), the datacen-
ter space requirements for SCE do not increase dramatically.
This was also counter to our initial expectations.

e The growing power consumption of SCE systems drives
an increasing Scope 2 (direct CO2 emissions) impact. This
motivates new approaches that increase the ability to use
low-carbon (and low-cost) power, as electricity cost becomes
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an increasing fraction of TCO. Fortunately, total carbon emis-
sions from power, and quantity of power consumed, can be
decoupled by the use of renewable power, and adopting green
siting for systems. Such a strategy is an attractive approach
for the future.

The full results of this study are presented in [3].

2 METHODOLOGY

We gathered data on ten SCE systems installed at major NSF XSEDE
sites (Indiana University, University of California - San Diego, Uni-
versity of Texas - Austin, Carnegie-Mellon University) between 2015
and 2020. Eight were funded by the NSF; these were the largest NSF
systems and account for nearly one-third of its SCE funding. Com-
putational capacity of these systems ranges from 92 teraflops to 41
petaflops with power ranging from 29 kilowatts to 3.4 megawatts,
and system cost from $2 to $50 million. System sizes vary by several
orders of magnitude, so our analysis and conclusions should be
scale independent. Data was also collected on the four institutions’
hosting facilities, including data center power utilization efficiency
(PUE), average power costs ($/kWh), nominal space costs ($/rack-
year) and carbon-emissions (metric tonnes/kWyear). See Appendix
[4] for detailed statistics for these systems, Tables A.1 and A.2.

Building on prior research that explores hosting SCE at new
“green” data centers with low-cost renewable energy [5], here we
consider the opportunity to reduce power cost and carbon emis-
sions. In the Appendix [4] Table A.3 summarizes three commercial
offers described.

2.1 Models and Scenarios

We model SCE systems as a combination of performance, capital
costs, and power and space requirements, allowing us to forecast
their joint evolution over time. When all three parameters are nor-
malized against compute performance, the resulting ratios exhibit
log linear relationships. We use minimum least squares to fit an
exponential curve! to the calculated values of each ratio (capital
cost/Rpeak, power/Rpeak, space/Rpeak). The calculated trends rep-
resent the baseline scenario for our analysis and are used to project
future capital and operating costs. This data can also be used to
determine the optimum economic replacement cycle for SCE, for a
given scenario.

We consider several alternative future scenarios by adjusting the
rate of change of the three ratios (for each of capital cost/Rpeak,
power/Rpeak, space/Rpeak) to reflect different technology and mar-
ket developments. These alternative scenarios are intended only
to explore the economic implications of those alternative scenar-
ios. Moore’s Law addressed the number of transistors that could
be produced per unit area of integrated circuit, and by extension
the relationship between both system cost and system size and
total compute capacity. We model both relationships together as
“compute density improvement” (“CD”) with two scenarios, CD0O
(baseline) and CD- (slower improvement), ranging from 28.5%/yr to
15.4%/yr. Similarly, Dennard scaling addressed the power required
by each transistor, and by extension the power required to provide

ICurve of the form y=B*mx, where x is the system in-service date, the calendar year
plus a fraction representing the month of the in-service date, at which ratio y is
measured.
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a given amount of compute capacity. We model this relationship
as “power density improvement” (“PD”) with four scenarios, PD0
(baseline), PD- (slower improvement) and PD+ and PD++ (faster
improvement), ranging between 8.8%/yr (PD-) and 30.7%/yr (PD+).

2.2 Determining the Economically Optimum
Replacement Cycle

We determine the optimal replacement cycle by modeling a series of
SCE systems purchased sequentially. The replacements must have
a fixed cadence (i.e. annually, with range from 3 to 9 years), and the
objective to be optimized is total cost per unit of compute capacity
(dollars per Gigaflops/s per year) for the series of computing sys-
tems. The average costs and capacity are “totalled” by calculating
the net present value (NPV)? of annual capital plus operating ex-
penditures in current dollars, and of annual capacity measured in
GFlops/s-Years. The lowest average cost per unit capacity identifies
the economically optimum SCE replacement cycle.

This calculation specifically depends on conditions incorporated
in the analysis, including expected changes in the parameters of
the SCE model, economic discount rate (10% is used in this pre-
sentation), and cost factors for the selected hosting facility, as well
as the period of analysis itself. The calculation is varied to reflect
different technical assumptions as well as constraints on budgets
for capital and other ownership costs. Since capital expenditures
are independent of the hosting facility, we separately calculate
the impact of hosting facility choice on replacement cycle. Other
component TCO costs are handled in a similar fashion.

3 RESULTS

Analysis of operating parameters and cost factors for the ten sam-
ple SCE systems yields baseline improvement trends that drive the
model. Capital cost ($/Rpeak) decreased by 28.5% per year (corre-
lation coefficient, R2=0.39). Measured price/performance improve-
ment is consistent with a doubling of transistor density every two
years. The CDO baseline is set at 28.5%, and CD- projects slower
improvement, doubling every four years (15.4%/yr).

Power density (kW/Rpeak) decreased by 16.8% per year (R2=0.47).
The PDO baseline is set at 16.8%/yr, while PD- doubles the period
of improvement (8.8%/yr). PD+ halves the improvement period
(30.7%/yr), and PD++ applies a one-time improvement of 47%, fol-
lowed by annual improvement similar to PD+ (28.3%).

Space required (racks/Rpeak, aka 1/performance-density) de-
creased by 26.8% per year (R2=0.56), consistent with the rate of
improvement in capital cost/Rpeak and a trend like Moore’s Law.
This is captured by CDO0 and CD-.

Cost is a critical constraint in SCE, and we model two investment
scenarios. “10” is the baseline, fixing annual investment at $1,000,000,
regardless of delivered capacity. “I1” increases capital investment
as needed to yield annual compute capacity increases of 40%/yr
(consistent with historical experience).

2Net present value is a financial calculation that allows a series of future costs or
payments to be aggregated in a way that reflects the “time value of money”, where
a payment today costs more than a payment in the future. Net present value (NPV)
is the sum of multiple payments, each of which has been discounted to the present
using a specified discount rate. The NPV of one series of payments can be compared
to the NPV of a different series of payments.
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Table 1: Projection of Baseline Scenario (PD0, CDO, 10)

Year 2022 2027 2032 2037 2042 20-year
growth
Capital Investment $1,000,000 $1,000,000 $1,000,000 $1,000,000 $1,000,000 1.00x
Petaﬂops/s (PF) 0.9 4.5 24.2 129.1 688.3 809x
System Power (kW) 65 139 297 634 1,352 20.7x
Cost of power ($/kWyear, 1st year of $764 $921 $1,110 $1,337 $1,612 2.11x
operation, average campus site)
Power costs (annual, average campus $49,907 $128,272 $329,689 $847,378 $2,177,955 43.6x
site)
Scope 2 CO2 Emissions (MT, annual, 250 533 1,137 2,426 5,175 20.7x
average campus site)
System Size (Racks) 1.8 2.0 2.3 2.5 2.8 1.56x
Space costs (annual, average campus site) $10,026 $11,208 $12,529 $14,005 $15,656 1.56x
TCO (annual) $1,059,933 $1,139,480 $1,342,218 $1,861,383 $3,193,611 3.01x
TCO/PF $1,245,840 $251,129 $55,465 $14,422 $4,640 0.00372x
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Figure 1: Optimum Replacement Cycles as a function of “Compute Density” and “Power Density” Scenarios. We have explored
many additional scenarios, but the key element is the continued drive by Moore’s law — independent of power density
improvement rates (PD scenarios). As long as the number of transistors per dollar continues to increase rapidly (Moore’s law),
then it will make most economic sense to continue to upgrade our systems at a rapid cadence.

Table 1 illustrates the operation of the model by projecting tech-
nical and annual financial parameters for SCE systems purchased
over a 20 year period, using fixed annual capital investment. For
the baseline, capacity growth at historic rates does not require
increased capital budgets.

3.1 Continued Cost/Performance Improvement
Drives Ongoing Replacement

We, like many others, thought that, with the end of Dennard scal-
ing and the concomitant slowing of single-core performance, the
capability and TCO-driven cycle of system replacement would slow
down. Our analysis, which optimizes TCO $ per unit compute de-
livered (see Figure 1), shows that the continued reduction of cost
per unit compute drives continued upgrade cycles of 4-7 years.

3.2 Growing Power Requirements and Costs are
Growing Concerns

A critical consequence of the end of Dennard scaling is that many
believe the increasing energy efficiency of computing hardware

is slowing (and likely to do so to a greater degree in the future).
Our PDO baseline, and even more pessimistic PD- scenario, reflect
this possibility. These scenarios will see large system power in-
creases, and power cost as an increasing fraction of TCO in the
near term (see gray and red bars in Figure 2), and eventually become
prohibitive.

Optimistic scenarios such as PD+ and PD++, which posit that
recent large energy-efficiency gains due to increased use of GPUs
can be sustained as a long-term technology trend, would produce
more benign power costs and enable continuation of the status quo.

3.3 Space Requirements are Not a Growing
Concern

With the rapid growth of cloud datacenters (size, number) and the
apparent increase in size of many campus datacenters, another
concern is that SCE computing systems will require larger physical
spaces in the future. And that larger space will become a significant
TCO cost. Our model results show this is not the case (see Figure 3);
for most scenarios space requirements do not increase rapidly. The
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Figure 2: System Power and Power Cost as % of TCO, varied “Power Density” improvement Scenarios
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Figure 4: Power Cost and Scope 2 Carbon in 2042, Campus vs. Green Hosting, Different Scenarios
few scenarios where it does (all CD-) are tied to slowing Moore’s 3.4 Carbon is Closely Related to Power, but Can
law and cost/performance improvement, space costs growth and be Decoupled

compute cost grow rapidly together. In short, these scenarios are

cost-prohibitive (and therefore unlikely). Our baseline scenario highlighted growing power consumption.

Even at fixed power cost/MWHh, the PD0 and PD- scenarios produce
annualized power costs exceeding $1 million/year for NSF-scale
systems (see left, Figure 4).
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In the optimistic scenarios (PD+, PD++ where the improvements
from GPUs are sustained for decades), power costs remain manage-
able. In all cases, recent novel approaches show how green hosting
can decouple power consumption from carbon-emissions [6]. The
green hosting options demonstrate that flexibility in siting can
both reduce the cost of power, and effectively eliminate its carbon
emissions.

4 SUMMARY AND FUTURE WORK

This study explores a range of trajectories for the future scien-
tific computing systems (SCE), based on the changing technology
landscape, highlighting directions of concern and change. Future
work might extend these results with a larger portfolio of model in-
puts, and explore different specific system design points (leadership,
capacity, diverse capability), highlighting the trends and challenges.

A DATA COLLECTION AND DATA USED TO
CREATE MODEL

We gathered data on ten SCE systems installed between 2015 and
2020, purchased by four US universities:

o Indiana University (Site 1 in the table below),

o University of California - San Diego (SDSC - Site 2),
e University of Texas - Austin (TACC - Site 3) and

o Carnegie-Mellon University (PSC - Site 4).

Of these 10 systems, eight were funded by the NSF. Our sample
is small, but during this period these systems included the largest
systems funded by the NSF and account for almost 1/3rd of its SCE
funding.

Data from public sources was assembled into summaries for
each of the ten systems and presented to representatives of the
four institutions for confirmation. Technical specifications were
reviewed against publicly reported Rpeak values, to validate the
configurations used in the analysis. Two institutions provided de-
tailed confirmations of both technical details and capital costs and
confirmed the accuracy of, or corrected, the pre-assembled data.
Where capital costs were not confirmed by the institutions, we used
50% of the combined purchase and operations and maintenance
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(“O&M”) awards made by NSF for the system as a proxy, recogniz-
ing that other types of costs are eligible for reimbursement for both
types of award. All the institutions regard their cost information as
confidential, so we do not include this information here.

Computational capacity ranged across 3 orders of magnitude,
from the small, data-analysis-oriented Wrangler (92 Tflops/s Rpeak),
to the NSF’s current leadership computing system Frontera (41
Pflops/s Rpeak). Power required by this compute capability ranges
across 2 orders of magnitude, from 29 kW (for Wrangler) to 3.4 MW
(for Frontera). Physical size spans 2 orders of magnitude, from 2
compute racks for Wrangler to 107 racks for Frontera. Compute
costs span almost 2 orders of magnitude, from roughly $2 million
to roughly $50 million.

Data was also collected on the four institutions’ hosting facilities,
including data center power utilization efficiency (PUE), average
power costs ($/kWh), and nominal space costs ($/rack-year).

Electricity costs per kWh range from 4 cents (TACC) to 13 cents
(SDSC). Power utilization efficiency (PUE) at the facilities ranged
from a low of 1.2 (TACC) up to 1.58 (Indiana). For each site, the
average electricity cost and average PUE were converted to an
annual electricity cost per compute kW, ranging from $336.38 to
$1,229.90 ($/kWyear)® - a factor of 4 difference. An average an-
nual PUE-adjusted energy cost of $764.32/kWyear was used in the
analyses.

Hosting space costs were reported by two facilities: $3,132/rack-
year in Bloomington, Indiana and $7,000 in San Diego, California —
a factor of 2 difference. These figures in turn were used to estimate
costs at the two other facilities based on their location. An average
space cost of $5,533 per 19” rack was used in the analyses.

Carbon dioxide (CO2) emissions associated with the power re-
quired by each system are estimated based on state-wide statistics*
as of 2019 for the data center locations in question. Carbon emis-
sions (in metric tonnes (MT) CO2 equivalent per kWyear, adjusted
for PUE and utilization levels) range from 1.774 MT in climate-
conscious California to 6.646 MT in Indiana, where coal-fired power
plants provide a significant proportion of the state’s power. As with
electricity costs, there is almost a factor of 4 difference between

3$/kWyear = $/kWh X PUE X 8760 hrs X 80% average utilization.
4https://www.eia.gov/electricity/state/

Table A.1: Summary of Key System Data Collected for the 10 Sample Systems

System Site NSF In Service Rpeak Compute Power Rpeak/kW Compute  Rpeak/ rack
Funded (Mo/Yr) (Gflops/s) (kW) Racks
Jetstream 1 Y 1/2016 516,096 140.0 3,686.4 10 51,610
Big Red II+ 1 N 8/2016 286,157 90.0 3,179.5 3 95,386
Big Red 3 1 N 8/2019 928,512 179.0 5,187.2 5 185,702
Comet 2 Y 7/2015 2,831,699 550.9 5,140.3 29 97,645
Expanse 2 Y 7/2020 5,078,656 407.4 12,466.0 13 390,666
Stampede 2 3 Y 9/2017 18,394,522 2,200.0 8,361.1 106 173,533
Frontera 3 Y 7/2019 40,977,504 3,407.1 12,027.1 107 382,967
Wrangler 3 Y 7/2015 92,160 28.8 3,200.0 2 46,080
Chameleon 3 Y 6/2018 370,944 100.8 3,680.0 10 37,094
Bridges 4 Y 1/2016 2,131,341 283.4 7,519.8 20 106,567
Bridges 2 4 Y 10/2020 2,957,069 257.0 11,505.2 9 328,563
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Table A.2: Key Data Collected for the 4 Hosting Facilities, along with averages for campus facilities

Site Institution/ Center name $/kWh PUE $/kWyear $/rackyear Availability MTCO2/kWyear
1 Indiana University 0.078 1.58 860.34 3,132 100% 6.646
2 UCSD/SDSC 0.130 1.35 1,229.90 7,000 100% 1.774
3 UT Austin/TACC 0.040 1.2 336.38 5,000 (est.) 100% 3.941
4 CMU/PSC 0.060 1.5 (est.) 630.72 7,000 (est.) 100% 2.955

Average of Campus 0.077 1.41 764.34 5,533 100% 3.829

Table A.3: Key Data for the 3 Green Hosting Facilities, along with averages used in the analysis

Site  Green Hosting Option $/kWh PUE $/kWyear $/rackyear Availability MTCO2/ kWyear
5 Reliable Green Co-location 0.06767 1.0 474.24 0 100% 0
6 Intermittent Green 0.06849 1.0 480.00 0 95% 0
Co-location
7 Intermittent Green -0- 1.0 0 0 30% 0
Computing Services (not
included in average)
Average green data center 0.06808 1.0 477.12 0 97.5% 0

Note that green data center power costs are slightly higher than the lowest cost institutional data center (TACC), but they also provide the

benefit of zero space costs and zero (Scope 2) carbon emissions.

the highest and lowest figures, but California’s CO2 emissions
(per kWyear) are the lowest of the four locations, while UCSD’s
power costs are the highest of the four. Average carbon emissions of
3.829 MT CO2/kWyear were used in the analysis and were applied
throughout the forecast period. Carbon emissions associated with
power generation are expected to change over time, and hopefully
to fall, as the power system moves away from fossil fuels and to-
ward renewable sources of energy, but it is unclear what scenarios
might realistically be considered.

The authors have explored the possibility of hosting SCE at new
“green” data centers that take advantage of low-cost excess power
generated by renewable power sources [5]. Table 3 summarizes
the three commercial offers described, introducing the concept of
reduced power availability (for Site 6, a contractually guaranteed
95% vs. the 100% typical of a research data center) as well as the
concept of “bartering” compute capacity in exchange for free host-
ing (yielding an effective compute availability of 30% for Site 7).
None of these offers charges separately for space. For this analysis
we use the average of $477.12/kWyear for the two more traditional
offers from Sites 5 and 6. The reduced power availability at Site 6
is reflected in the TCO calculations presented below by reducing
power costs and delivered compute capacity by 2.5%.
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