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ABSTRACT

After a long period of steady improvement, scientific computing

equipment (SCE, or HPC) is being disrupted by the end of Dennard

scaling, the slowing of Moore’s Law, and new challenges to reduce

carbon, to fight climate change. What does this mean for the future?

We develop a system and portfolio model based on historical NSF

XSEDE site systems and apply it to examine potential technology

scenarios and what they mean for future compute capacity, power

consumption, carbon emissions, datacenter siting, and more.
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1 INTRODUCTION

The importance of computing for science, education, and knowl-

edge discovery has never been greater and continues to grow. This is

reflected by deep penetration of science and engineering disciplines,

and the expansion from modeling and simulation to data-driven

discovery. Reflecting this importance, investment by governments

and universities in computing infrastructure has continued to in-

crease [1], and marquee supercomputer systems with price tags

exceeding $500 million [2] to reach an Exaflop. Some estimate that

the high-end computing available for research in US universities

has grown by 30-fold in the past twenty years. But in the face of a

rapidly changing technology landscape, can this rapid growth in

computing capability be sustained and how should we shape this

investment?
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Recent years have seen major technology disruptions. End of

Dennard heralded a major shift for software to parallelism, first to

multicore and recently to GPUs. Slowing of Moore’s Law, with a

looming end (or shift to łMore than Moore, heterogeneous integra-

tionž) threatens fast exponential improvement in computing cost

and density. Both trends threaten to slow improvement in compute

per watt (power density). And, computing has grown to such a vast

application that its power consumption, and associated carbon im-

pact is measurable and significant in the global fight to slow climate

change. In this disrupted landscape, how are we to navigate these

changes in Dennard, carbon, and Moore to deliver the continued

rapid growth in scientific computing that is essential to fuel educa-

tion and discovery? More specifically: can we sustain our continued

rapid growth in computing capacity? How should upgrade cycles

change? What are the critical costs? Power? Space? Equipment?,

and can we avoid dramatic increases in carbon emissions?

In this paper we construct a model based on ten large-scale

scientific computing systems (SCE) deployed at major NSF XSEDE

sites, using them to create a compute, space, power, and cost model

for scientific computing systems. From these systems and sites,

we derive both trends and a model for capital, TCO, power, and

more. Using this model, we consider a baseline scenario, projecting

its implications through two decades of technology and systems

evolution. To explore the sensitivity to parameters, we consider

a set of twelve scenarios around the baseline, exploring slower

and faster power density improvement, compute improvement and

more. The key results of our study include:

• Continued performance improvement drives replacement

cycles similar to historical patterns (4-7 years). This was

counter to our expectations and reflects the continuing at-

traction of future systems based on improving technology.

The future system economics and capabilities are too com-

pelling to slow down.

• Growing power consumption of SCE systems is a challenge

if we are to sustain growth in computing capability. This

power consumption presents challenges in growing opera-

tional cost, carbon impact, and facilities requirements. These

challenges may require changes in academic computing and

NSF program strategies.

• Fueled by continuing compute density improvements and ad-

vanced cooling systems (e.g. water, immersion), the datacen-

ter space requirements for SCE do not increase dramatically.

This was also counter to our initial expectations.

• The growing power consumption of SCE systems drives

an increasing Scope 2 (direct CO2 emissions) impact. This

motivates new approaches that increase the ability to use

low-carbon (and low-cost) power, as electricity cost becomes
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an increasing fraction of TCO. Fortunately, total carbon emis-

sions from power, and quantity of power consumed, can be

decoupled by the use of renewable power, and adopting green

siting for systems. Such a strategy is an attractive approach

for the future.

The full results of this study are presented in [3].

2 METHODOLOGY

We gathered data on ten SCE systems installed at major NSF XSEDE

sites (Indiana University, University of California - San Diego, Uni-

versity of Texas - Austin, Carnegie-Mellon University) between 2015

and 2020. Eight were funded by the NSF; these were the largest NSF

systems and account for nearly one-third of its SCE funding. Com-

putational capacity of these systems ranges from 92 teraflops to 41

petaflops with power ranging from 29 kilowatts to 3.4 megawatts,

and system cost from $2 to $50 million. System sizes vary by several

orders of magnitude, so our analysis and conclusions should be

scale independent. Data was also collected on the four institutions’

hosting facilities, including data center power utilization efficiency

(PUE), average power costs ($/kWh), nominal space costs ($/rack-

year) and carbon-emissions (metric tonnes/kWyear). See Appendix

[4] for detailed statistics for these systems, Tables A.1 and A.2.

Building on prior research that explores hosting SCE at new

łgreenž data centers with low-cost renewable energy [5], here we

consider the opportunity to reduce power cost and carbon emis-

sions. In the Appendix [4] Table A.3 summarizes three commercial

offers described.

2.1 Models and Scenarios

We model SCE systems as a combination of performance, capital

costs, and power and space requirements, allowing us to forecast

their joint evolution over time. When all three parameters are nor-

malized against compute performance, the resulting ratios exhibit

log linear relationships. We use minimum least squares to fit an

exponential curve1 to the calculated values of each ratio (capital

cost/Rpeak, power/Rpeak, space/Rpeak). The calculated trends rep-

resent the baseline scenario for our analysis and are used to project

future capital and operating costs. This data can also be used to

determine the optimum economic replacement cycle for SCE, for a

given scenario.

We consider several alternative future scenarios by adjusting the

rate of change of the three ratios (for each of capital cost/Rpeak,

power/Rpeak, space/Rpeak) to reflect different technology and mar-

ket developments. These alternative scenarios are intended only

to explore the economic implications of those alternative scenar-

ios. Moore’s Law addressed the number of transistors that could

be produced per unit area of integrated circuit, and by extension

the relationship between both system cost and system size and

total compute capacity. We model both relationships together as

łcompute density improvementž (łCDž) with two scenarios, CD0

(baseline) and CD- (slower improvement), ranging from 28.5%/yr to

15.4%/yr. Similarly, Dennard scaling addressed the power required

by each transistor, and by extension the power required to provide

1Curve of the form y=B*mx, where x is the system in-service date, the calendar year
plus a fraction representing the month of the in-service date, at which ratio y is
measured.

a given amount of compute capacity. We model this relationship

as łpower density improvementž (łPDž) with four scenarios, PD0

(baseline), PD- (slower improvement) and PD+ and PD++ (faster

improvement), ranging between 8.8%/yr (PD-) and 30.7%/yr (PD+).

2.2 Determining the Economically Optimum
Replacement Cycle

We determine the optimal replacement cycle by modeling a series of

SCE systems purchased sequentially. The replacements must have

a fixed cadence (i.e. annually, with range from 3 to 9 years), and the

objective to be optimized is total cost per unit of compute capacity

(dollars per Gigaflops/s per year) for the series of computing sys-

tems. The average costs and capacity are łtotalledž by calculating

the net present value (NPV)2 of annual capital plus operating ex-

penditures in current dollars, and of annual capacity measured in

GFlops/s-Years. The lowest average cost per unit capacity identifies

the economically optimum SCE replacement cycle.

This calculation specifically depends on conditions incorporated

in the analysis, including expected changes in the parameters of

the SCE model, economic discount rate (10% is used in this pre-

sentation), and cost factors for the selected hosting facility, as well

as the period of analysis itself. The calculation is varied to reflect

different technical assumptions as well as constraints on budgets

for capital and other ownership costs. Since capital expenditures

are independent of the hosting facility, we separately calculate

the impact of hosting facility choice on replacement cycle. Other

component TCO costs are handled in a similar fashion.

3 RESULTS

Analysis of operating parameters and cost factors for the ten sam-

ple SCE systems yields baseline improvement trends that drive the

model. Capital cost ($/Rpeak) decreased by 28.5% per year (corre-

lation coefficient, R2=0.39). Measured price/performance improve-

ment is consistent with a doubling of transistor density every two

years. The CD0 baseline is set at 28.5%, and CD- projects slower

improvement, doubling every four years (15.4%/yr).

Power density (kW/Rpeak) decreased by 16.8% per year (R2=0.47).

The PD0 baseline is set at 16.8%/yr, while PD- doubles the period

of improvement (8.8%/yr). PD+ halves the improvement period

(30.7%/yr), and PD++ applies a one-time improvement of 47%, fol-

lowed by annual improvement similar to PD+ (28.3%).

Space required (racks/Rpeak, aka 1/performance-density) de-

creased by 26.8% per year (R2=0.56), consistent with the rate of

improvement in capital cost/Rpeak and a trend like Moore’s Law.

This is captured by CD0 and CD-.

Cost is a critical constraint in SCE, and we model two investment

scenarios. łI0ž is the baseline, fixing annual investment at $1,000,000,

regardless of delivered capacity. łI1ž increases capital investment

as needed to yield annual compute capacity increases of 40%/yr

(consistent with historical experience).

2Net present value is a financial calculation that allows a series of future costs or
payments to be aggregated in a way that reflects the łtime value of moneyž, where
a payment today costs more than a payment in the future. Net present value (NPV)
is the sum of multiple payments, each of which has been discounted to the present
using a specified discount rate. The NPV of one series of payments can be compared
to the NPV of a different series of payments.
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Table 1: Projection of Baseline Scenario (PD0, CD0, I0)

Year 2022 2027 2032 2037 2042 20-year

growth

Capital Investment $1,000,000 $1,000,000 $1,000,000 $1,000,000 $1,000,000 1.00x

Petaflops/s (PF) 0.9 4.5 24.2 129.1 688.3 809x

System Power (kW) 65 139 297 634 1,352 20.7x

Cost of power ($/kWyear, 1st year of

operation, average campus site)

$764 $921 $1,110 $1,337 $1,612 2.11x

Power costs (annual, average campus

site)

$49,907 $128,272 $329,689 $847,378 $2,177,955 43.6x

Scope 2 CO2 Emissions (MT, annual,

average campus site)

250 533 1,137 2,426 5,175 20.7x

System Size (Racks) 1.8 2.0 2.3 2.5 2.8 1.56x

Space costs (annual, average campus site) $10,026 $11,208 $12,529 $14,005 $15,656 1.56x

TCO (annual) $1,059,933 $1,139,480 $1,342,218 $1,861,383 $3,193,611 3.01x

TCO/PF $1,245,840 $251,129 $55,465 $14,422 $4,640 0.00372x

Figure 1: Optimum Replacement Cycles as a function of łCompute Densityž and łPower Densityž Scenarios. We have explored

many additional scenarios, but the key element is the continued drive by Moore’s law ś independent of power density

improvement rates (PD scenarios). As long as the number of transistors per dollar continues to increase rapidly (Moore’s law),

then it will make most economic sense to continue to upgrade our systems at a rapid cadence.

Table 1 illustrates the operation of the model by projecting tech-

nical and annual financial parameters for SCE systems purchased

over a 20 year period, using fixed annual capital investment. For

the baseline, capacity growth at historic rates does not require

increased capital budgets.

3.1 Continued Cost/Performance Improvement
Drives Ongoing Replacement

We, like many others, thought that, with the end of Dennard scal-

ing and the concomitant slowing of single-core performance, the

capability and TCO-driven cycle of system replacement would slow

down. Our analysis, which optimizes TCO $ per unit compute de-

livered (see Figure 1), shows that the continued reduction of cost

per unit compute drives continued upgrade cycles of 4-7 years.

3.2 Growing Power Requirements and Costs are
Growing Concerns

A critical consequence of the end of Dennard scaling is that many

believe the increasing energy efficiency of computing hardware

is slowing (and likely to do so to a greater degree in the future).

Our PD0 baseline, and even more pessimistic PD- scenario, reflect

this possibility. These scenarios will see large system power in-

creases, and power cost as an increasing fraction of TCO in the

near term (see gray and red bars in Figure 2), and eventually become

prohibitive.

Optimistic scenarios such as PD+ and PD++, which posit that

recent large energy-efficiency gains due to increased use of GPUs

can be sustained as a long-term technology trend, would produce

more benign power costs and enable continuation of the status quo.

3.3 Space Requirements are Not a Growing
Concern

With the rapid growth of cloud datacenters (size, number) and the

apparent increase in size of many campus datacenters, another

concern is that SCE computing systems will require larger physical

spaces in the future. And that larger space will become a significant

TCO cost. Our model results show this is not the case (see Figure 3);

for most scenarios space requirements do not increase rapidly. The
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Figure 2: System Power and Power Cost as % of TCO, varied łPower Densityž improvement Scenarios

Figure 3: Evolution in Capital Costs & Space [l], Capital Costs & Compute Capacity [r], Different Scenarios

Figure 4: Power Cost and Scope 2 Carbon in 2042, Campus vs. Green Hosting, Different Scenarios

few scenarios where it does (all CD-) are tied to slowing Moore’s

law and cost/performance improvement, space costs growth and

compute cost grow rapidly together. In short, these scenarios are

cost-prohibitive (and therefore unlikely).

3.4 Carbon is Closely Related to Power, but Can
be Decoupled

Our baseline scenario highlighted growing power consumption.

Even at fixed power cost/MWh, the PD0 and PD- scenarios produce

annualized power costs exceeding $1 million/year for NSF-scale

systems (see left, Figure 4).
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In the optimistic scenarios (PD+, PD++ where the improvements

from GPUs are sustained for decades), power costs remain manage-

able. In all cases, recent novel approaches show how green hosting

can decouple power consumption from carbon-emissions [6]. The

green hosting options demonstrate that flexibility in siting can

both reduce the cost of power, and effectively eliminate its carbon

emissions.

4 SUMMARY AND FUTUREWORK

This study explores a range of trajectories for the future scien-

tific computing systems (SCE), based on the changing technology

landscape, highlighting directions of concern and change. Future

work might extend these results with a larger portfolio of model in-

puts, and explore different specific system design points (leadership,

capacity, diverse capability), highlighting the trends and challenges.

A DATA COLLECTION AND DATA USED TO
CREATE MODEL

We gathered data on ten SCE systems installed between 2015 and

2020, purchased by four US universities:

• Indiana University (Site 1 in the table below),

• University of California - San Diego (SDSC ś Site 2),

• University of Texas - Austin (TACC ś Site 3) and

• Carnegie-Mellon University (PSC ś Site 4).

Of these 10 systems, eight were funded by the NSF. Our sample

is small, but during this period these systems included the largest

systems funded by the NSF and account for almost 1/3rd of its SCE

funding.

Data from public sources was assembled into summaries for

each of the ten systems and presented to representatives of the

four institutions for confirmation. Technical specifications were

reviewed against publicly reported Rpeak values, to validate the

configurations used in the analysis. Two institutions provided de-

tailed confirmations of both technical details and capital costs and

confirmed the accuracy of, or corrected, the pre-assembled data.

Where capital costs were not confirmed by the institutions, we used

50% of the combined purchase and operations and maintenance

(łO&Mž) awards made by NSF for the system as a proxy, recogniz-

ing that other types of costs are eligible for reimbursement for both

types of award. All the institutions regard their cost information as

confidential, so we do not include this information here.

Computational capacity ranged across 3 orders of magnitude,

from the small, data-analysis-orientedWrangler (92 Tflops/s Rpeak),

to the NSF’s current leadership computing system Frontera (41

Pflops/s Rpeak). Power required by this compute capability ranges

across 2 orders of magnitude, from 29 kW (for Wrangler) to 3.4 MW

(for Frontera). Physical size spans 2 orders of magnitude, from 2

compute racks for Wrangler to 107 racks for Frontera. Compute

costs span almost 2 orders of magnitude, from roughly $2 million

to roughly $50 million.

Data was also collected on the four institutions’ hosting facilities,

including data center power utilization efficiency (PUE), average

power costs ($/kWh), and nominal space costs ($/rack-year).

Electricity costs per kWh range from 4 cents (TACC) to 13 cents

(SDSC). Power utilization efficiency (PUE) at the facilities ranged

from a low of 1.2 (TACC) up to 1.58 (Indiana). For each site, the

average electricity cost and average PUE were converted to an

annual electricity cost per compute kW, ranging from $336.38 to

$1,229.90 ($/kWyear)3 ś a factor of 4 difference. An average an-

nual PUE-adjusted energy cost of $764.32/kWyear was used in the

analyses.

Hosting space costs were reported by two facilities: $3,132/rack-

year in Bloomington, Indiana and $7,000 in San Diego, California ś

a factor of 2 difference. These figures in turn were used to estimate

costs at the two other facilities based on their location. An average

space cost of $5,533 per 19ž rack was used in the analyses.

Carbon dioxide (CO2) emissions associated with the power re-

quired by each system are estimated based on state-wide statistics4

as of 2019 for the data center locations in question. Carbon emis-

sions (in metric tonnes (MT) CO2 equivalent per kWyear, adjusted

for PUE and utilization levels) range from 1.774 MT in climate-

conscious California to 6.646 MT in Indiana, where coal-fired power

plants provide a significant proportion of the state’s power. As with

electricity costs, there is almost a factor of 4 difference between

3$/kWyear = $/kWh X PUE X 8760 hrs X 80% average utilization.
4https://www.eia.gov/electricity/state/

Table A.1: Summary of Key System Data Collected for the 10 Sample Systems

System Site NSF

Funded

In Service

(Mo/Yr)

Rpeak

(Gflops/s)

Compute Power

(kW)

Rpeak/kW Compute

Racks

Rpeak/ rack

Jetstream 1 Y 1/2016 516,096 140.0 3,686.4 10 51,610

Big Red II+ 1 N 8/2016 286,157 90.0 3,179.5 3 95,386

Big Red 3 1 N 8/2019 928,512 179.0 5,187.2 5 185,702

Comet 2 Y 7/2015 2,831,699 550.9 5,140.3 29 97,645

Expanse 2 Y 7/2020 5,078,656 407.4 12,466.0 13 390,666

Stampede 2 3 Y 9/2017 18,394,522 2,200.0 8,361.1 106 173,533

Frontera 3 Y 7/2019 40,977,504 3,407.1 12,027.1 107 382,967

Wrangler 3 Y 7/2015 92,160 28.8 3,200.0 2 46,080

Chameleon 3 Y 6/2018 370,944 100.8 3,680.0 10 37,094

Bridges 4 Y 1/2016 2,131,341 283.4 7,519.8 20 106,567

Bridges 2 4 Y 10/2020 2,957,069 257.0 11,505.2 9 328,563
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Table A.2: Key Data Collected for the 4 Hosting Facilities, along with averages for campus facilities

Site Institution/ Center name $/kWh PUE $/kWyear $/rackyear Availability MTCO2/kWyear

1 Indiana University 0.078 1.58 860.34 3,132 100% 6.646

2 UCSD/SDSC 0.130 1.35 1,229.90 7,000 100% 1.774

3 UT Austin/TACC 0.040 1.2 336.38 5,000 (est.) 100% 3.941

4 CMU/PSC 0.060 1.5 (est.) 630.72 7,000 (est.) 100% 2.955

Average of Campus 0.077 1.41 764.34 5,533 100% 3.829

Table A.3: Key Data for the 3 Green Hosting Facilities, along with averages used in the analysis

Site Green Hosting Option $/kWh PUE $/kWyear $/rackyear Availability MTCO2/ kWyear

5 Reliable Green Co-location 0.06767 1.0 474.24 0 100% 0

6 Intermittent Green

Co-location

0.06849 1.0 480.00 0 95% 0

7 Intermittent Green

Computing Services (not

included in average)

-0- 1.0 0 0 30% 0

Average green data center 0.06808 1.0 477.12 0 97.5% 0

Note that green data center power costs are slightly higher than the lowest cost institutional data center (TACC), but they also provide the

benefit of zero space costs and zero (Scope 2) carbon emissions.

the highest and lowest figures, but California’s CO2 emissions

(per kWyear) are the lowest of the four locations, while UCSD’s

power costs are the highest of the four. Average carbon emissions of

3.829 MT CO2/kWyear were used in the analysis and were applied

throughout the forecast period. Carbon emissions associated with

power generation are expected to change over time, and hopefully

to fall, as the power system moves away from fossil fuels and to-

ward renewable sources of energy, but it is unclear what scenarios

might realistically be considered.

The authors have explored the possibility of hosting SCE at new

łgreenž data centers that take advantage of low-cost excess power

generated by renewable power sources [5]. Table 3 summarizes

the three commercial offers described, introducing the concept of

reduced power availability (for Site 6, a contractually guaranteed

95% vs. the 100% typical of a research data center) as well as the

concept of łbarteringž compute capacity in exchange for free host-

ing (yielding an effective compute availability of 30% for Site 7).

None of these offers charges separately for space. For this analysis

we use the average of $477.12/kWyear for the two more traditional

offers from Sites 5 and 6. The reduced power availability at Site 6

is reflected in the TCO calculations presented below by reducing

power costs and delivered compute capacity by 2.5%.
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