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Abstract

The many-body localised (MBL) to thermal crossover observed in exact diagonalisation

studies remains poorly understood as the accessible system sizes are too small to be in

an asymptotic scaling regime. We develop a model of the crossover in short 1D chains

in which the MBL phase is destabilised by the formation of many-body resonances. The

model reproduces several properties of the numerically observed crossover, including

an apparent correlation length exponent ν = 1, exponential growth of the Thouless time

with disorder strength, linear drift of the critical disorder strength with system size,

scale-free resonances, apparent 1/ω dependence of disorder-averaged spectral func-

tions, and sub-thermal entanglement entropy of small subsystems. In the crossover,

resonances induced by a local perturbation are rare at numerically accessible system

sizes L which are smaller than a resonance length λ. For L�
p
λ (in lattice units), res-

onances typically overlap, and this model does not describe the asymptotic transition.

The model further reproduces controversial numerical observations which Refs. [1, 2]

claimed to be inconsistent with MBL. We thus argue that the numerics to date is consis-

tent with a MBL phase in the thermodynamic limit.
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Figure 1: a) The resonance model (RM) predicts a continuous transition (orange
point) between a localised (blue) and a thermal (red) phase, and an inverse correla-
tion length |ξ|−1 (orange lines) that vanishes with exponent ν = 1 at the transition.
At finite size, the transition is smeared into a crossover with ‘fuzzy’ boundaries (de-
marcated by the dashed orange lines). Within the crossover region the behaviour
depends on whether the resonance length λ (purple) is greater/lesser than the sys-
tems size L. In region I L < λ, and typical eigenstates have no resonances and spec-
trally averaged properties resemble those of the localised phase. b) The MBL-thermal

finite-size crossover: At large L in the vicinity of the RM transition (hatched region),
localisation is inconsistent due to overlapping resonances. The RM is however self-
consistent in the blue regions. The RM thus describes the MBL-thermal crossover in
small system numerics (horizontal line), even though it does not describe the asymp-
totic transition (black point).

1 Introduction

Interacting one-dimensional quantum systems generically many-body localise (MBL) in the
presence of strong disorder. Local subsystems of a MBL system do not thermalise; they instead
retain memory of their initial conditions indefinitely. MBL thus provides a remarkable coun-
terexample to the ergodic hypothesis, the cornerstone of quantum statistical mechanics [3–8],
and allows for exotic quantum orders at finite energy densities [9–14,14–17,17–28].

Statistical descriptions of both the thermal and MBL phases have been corroborated by
numerical studies. Specifically, the thermal phase is found to obey the eigenstate thermal-
isation hypothesis (ETH) [29–37], whereas the MBL phase violates the ETH and is instead
characterised by a complete set of quasi-local conserved quantities (or l-bits) [38–44].

However, theoretical descriptions and numerical observations of the MBL-thermal transi-
tion remain at odds with one another. Phenomenological models suggest that the transition has
Kosterlitz-Thouless-type scaling [45–47], and occurs when the localised phase is destabilised
by rare thermal regions which seed “thermalisation avalanches” [48–54]. Numerical studies,
which are limited to small systems, do not find any evidence of rare thermal regions [55,56],
but are known to be plagued by unexplained finite-size effects [57–60]. The absence of a
theory of the finite-size crossover leaves unclear which features of the numerical data may
survive in the thermodynamic limit, and has led Refs. [1,2] to argue that finite size numerics
is inconsistent with the existence of MBL in the thermodynamic limit.

We develop a microscopically motivated resonance model (RM) for the one-dimensional
MBL-thermal crossover at finite sizes. In this model the MBL phase is not destabilised by rare
thermal regions, but by many-body resonances involving macroscopically distinct l-bit states.
Although this mode of instability was previously identified [61] and observed in finite size
numerics [62], it has received little attention in the literature.

Specifically, we consider a presumptively many-body localised chain, analyse the statistics
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of resonances induced by local perturbations, and establish when these resonances destabilise
MBL. The detailed analysis is different in the Floquet (Sec. 2) and Hamiltonian (Sec. 3) set-
tings. However, in both cases, the same set of non-trivial length scales emerge which control
the physics. The first of these is the bare localisation length ζ, which governs the exponential
decay of off-diagonal matrix elements of local operators in the l-bit basis. A site-local pertur-
bation introduces many-body resonances between eigenstates. The probability that a given
eigenstate finds a first-order resonance involving l-bits within a range r (in the Floquet case)
is given by

q(r) =
e−r/ξ

λ
. (1)

Here, two additional lengths emerge: the correlation length ξ sets the typical range of reso-
nances, while the resonance length λ determines their density. The RM predicts that ξ diverges
as the localisation length approaches the critical value ζc. This marks the transition between
a localised phase in which the number of resonances is finite and a delocalised phase (dubbed
thermal in Fig. 1a) in which the number of resonances grows exponentially with range. The
finite-size behaviour near the transition depends crucially on the resonance length λ which is
much larger than the lattice scale. For system size L� λ (region I, Fig. 1a), typical eigenstates
have no resonances and non-thermal expectation values. For system sizes L � λ (region II),
typical states participate in L/λ� 1 resonances even at first-order 1.

The first-order analysis is clearly incomplete in regimes where the number of resonances
induced by a single local perturbation grows with L (region II and thermal). In fact, the
region of instability is somewhat larger if we consider locally perturbing the system at every
site. In this case, a typical eigenstate develops a density ∼ ξ/λ of resonances each of which
rearranges a region of size ξ (here and henceforth we measure lengths in units of the lattice
constant). For ξ¦

p
λ , the resonances typically spatially overlap and we expect them to lead

to l-bit rearrangements on the scale of the system. The hatched region in Fig. 1b indicates
the parameter regime and finite sizes where localisation in the RM is inconsistent due to this
instability.

Nevertheless, we present analytical arguments in Sec. 4 that the RM is self-consistent out-
side of the hatched region – i.e. at small enough L in region I and at any L for large enough
disorder (i.e. 1/ζ). Rough estimates of the resonance length in Floquet and Hamiltonian dis-
ordered chains suggest 15® λ ® 50 for models numerically studied to date (see Sec. 4) . Thus,
we believe that numerically accessible system sizes correspond to the horizontal dashed line
in Fig. 1b, so that the observed crossovers in spectral quantities, spectral functions, finite-size
drifts, etc. can all be predicted within the region of validity of the RM. Summarising the more
detailed results in Sec. 5, the RM reproduces many features of numerically exact data:

• Localised region I: As typical eigenstates do not find a resonance for L �
p
λ , the RM

predicts that region I displays the phenomenology of the localised phase: long-time lo-
cal memory, a logarithmically growing light cone, sub-thermal eigenstate entanglement
entropy of small sub-systems etc.. Spectrally averaged quantities are thus insensitive to
the boundary between the MBL phase and region I (ξ = L, Fig. 1b), in agreement with
Ref. [58].

• Correlation length exponent ν: The correlation length exponent in the RM is given by
ν = 1, consistent with the values extracted from finite-size scaling in ED [8,11,59,63].
Note that ν= 1 violates the Harris criterion [57,64,65].

1Naively, region II is the ‘critical fan’ in which ξ� L� all other length scales. However, we refrain from this
nomenclature as the region is masked by the collective instability of overlapping resonances discussed next.
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• Drift of the critical disorder strength Wc with L: The RM predicts the controversial obser-
vation of Refs. [1,2] that Wc∝ L at small L.

• Apparent 1/ω low-frequency dependence of spectral functions: In region I, disorder-aver-
aged spectral functions [S(ω)] exhibit a low-frequency power-law divergence with a
continuously varying exponent (throughout we use [·] to denote disorder averaging).
The divergence is strongest in the middle of region I, with [S(ω)] ∼ 1/ω1−θc (Floquet,
Fig 2a–b) or [S(ω)] ∼ 1/ω| logω|1/2 (Hamiltonian, Fig 2d–e). As the corrections are
small (θc� 1), the RM explains the apparent 1/ω behaviour reported in Refs. [2,66].

• Scale-free resonances: Within regions I and II, q(r) is scale-invariant and resonances form
at all ranges, in agreement with a numerically exact calculation of q(r) [62].

• Apparent sub-diffusion: On the thermal side of the transition (0 < −ξ < L), the dy-
namics at short times t < ω−1

ξ
is critical. The RM describes this dynamics, and predicts

a continuously varying exponent z in spectral functions ∼ 1/ω1−1/z (see Figs 2a–b for
Floquet, and Figs 2d–e for the Hamiltonian case). The RM thus explains the appar-
ent sub-diffusion (as measured by z) reported in several studies [2, 66–70], without
invoking rare region effects, which Ref. [55] finds are absent in numerically accessible
systems.

• Exponential increase of Thouless time at weak disorder W � Wc: This numerical obser-
vation of Refs. [1, 2] follows from the logarithmic growth of the light cone until time
t ≈ω−1

ξ
in the thermal phase of the RM.

As the resonance model of the finite-size crossover assumes the existence of MBL, and
reproduces the numerical observations of Refs [1, 2], we conclude to their contrary, that the
numerics to date appears consistent with a stable MBL in the thermodynamic limit.

We additionally predict three interesting features of the dynamical phase diagram that
could be tested numerically in the near future.

• The exponents controlling the strongest low-frequency divergence of [S(ω)]∼ 1/ω1−θc

in region I: We predict that the exponent θc is a non-zero non-universal value in the
Floquet setting, while θc → 0+ (corresponding to log corrections) in the Hamiltonian
setting with energy conservation. That is, the existence and number of conservation
laws affects the scaling theory of the finite-size MBL-thermal crossover.

• An empirical criterion for MBL: In localised systems, the distribution %(v) of matrix
elements of a local operator V that couple eigenstates in two small non-overlapping
mid-spectrum energy (or quasi-energy) windows takes the form,

%(v)∼ v−2+θ0 , (2)

with 0< θ0 ≤ 1 (see Fig. 2c). A simple numerical criterion follows:

ρv ∼ 2L/2 (thermal) , ρv ∼ cons. (MBL) , (3)

with ρ denoting the mid-spectrum many-body density of states. This criterion gener-
alises the avalanche stability criterion of Ref. [48] to a setting without l-bits or rare
thermalising regions.

• Detecting the crossover between MBL and region I: In region I, scale free resonances
form, but remain rare. Thus eigenstate averaged observables are largely insensitive to
the formation of resonances. However, by analysing the distribution of an observable
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over eigenstates, or conditioning on the formation of resonances, it is possible to numer-
ically detect the crossover between MBL and region I. Such an analysis is performed in
Ref. [62].

We proceed as follows. In Section 2, we describe the Floquet resonance model, couple
the RM to a probe spin, compute the statistics of many-body resonances that a reference l-bit
state is involved in, and thus derive the disorder-averaged spectral function of a local operator.
In Sec. 3 we repeat the analysis for a Hamiltonian system. In Sec. 4 we establish the regime
in which the RM is self-consistent, showing it to apply to small and strongly disordered sys-
tems (small L in region I in Fig. 1). In Sec. 5 we discuss the implications of this analysis for
interpreting finite-size numerical data, before concluding in Sec. 6.

2 Floquet resonance model

We now describe the computation of the spectral function [S(ω)] of a local operator within the
RM for a Floquet-MBL system. Specifically we calculate [S(ω)] for a Pauli operator acting on
an ancillary probe spin, coupled to an infinite MBL chain (Fig. 3). This simplifies the analysis
as the the probe spin may be isolated without cutting the chain. The low frequency behaviour
of [S(ω)] is though universal, and thus holds for any local operator defined on the chain. We
first introduce the Floquet RM and define the localisation length ζ in Sec. 2.1, we then detail
a careful counting of resonances induced by a probe spin in Sec. 2.2. Panels (a), (b) and (f)
in Fig. 2 summarise the results for the spectral function of the probe spin in the Floquet RM.

Resonances do not span the system for 1/ζ > 1/ζc := log 2; this is the MBL phase of the
Floquet RM. The RM MBL phase has infinite time memory of initial conditions, and a power-
law divergence of the spectral function at small frequency (53).

The point 1/ζ = 1/ζc marks the transition out of the RM MBL phase, at which reso-
nances occur on all length scales. The statistics of the strongest resonances determine the
low-frequency scaling of [S(ω)] in regions I and II within Fig. 1a. The exponent θ character-
ising the low-frequency divergence of [S(ω)] in region II jumps at the transition (56).

Although typical states find increasingly many resonances at long ranges for 1/ζ < 1/ζc,
they remain rare on the scale of the correlation length ξ. Consequently, the RM predicts the
behaviour of [S(ω)] at intermediate frequencies (58) in the thermal phase.

2.1 Set-up

2.1.1 Chain Hamiltonian

Consider a generic strongly disordered and interacting quantum spin chain with periodic
boundary conditions, and subject to a periodic (Floquet) drive. For example, the Heisenberg
model with random O(3) fields:

H(t) =









HW =W
∑

n

vn ·σn , 0≤ Ωt < π ,

HJ = J
∑

n

σn ·σn+1 , π≤ Ωt < 2π ,
(4)

where W , J and Ω set the disorder strength, interaction strength and fundamental frequency
of the drive respectively, σn = (σ

x
n ,σ y

n ,σz
n) is the usual vector of Pauli matrices acting on

the nth site, and σL+1 = σ1 enforces periodic boundary conditions. The vn are independent
and identically distributed (iid) random vectors with zero mean [vn] = 0 and unit variance

6



SciPost Phys. 12, 201 (2022)

[vn · vn] = 1, with, for example, iid Gaussian distributed entries. Here [·] denotes disorder
averaging.

We assume two key properties of H(t): (i) it has no global conservation laws, and (ii) for
some finite Ω, W � J , the model is Floquet many-body localised, as per Ref. [71]. The specific
form of H(t) is otherwise unimportant.

The dynamics of the chain is characterised by the Floquet operator

UF =T exp

�

−i

∫ T

0

H(t)dt

�

= exp (−iHJ T/2)exp (−iHW T/2) , (5)
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Figure 2: Properties of the Resonance Model transition: Panels (a) and (d): In the
MBL phase and at the RM transition (1/ζ ≥ 1/ζc), the spectral function diverges at
low frequencies [S(ω)] ∼ ω−1+θ . Panels (a) and (d) summarise the behaviour of
the exponent θ in the Floquet and Hamiltonian cases respectively. Both panels show
θ = θ0 → 1 deep in the MBL phase (1/ζ → ∞), and θ → 0 as the transition is
approached. At the Floquet RM transition, θ jumps to a finite value θ = θc (orange
point, panel (a)), while θc = 0+ (indicating the presence of log corrections) at the
Hamiltonian RM transition. Panels (b) and (e): In the vicinity of the RM transition,
the correlation length |ξ| sets the cross-over frequency scaleωξ ∼ exp(−1/|θ0|). The
low-frequency behaviour (ω� ωξ) is determined by the phase, while the interme-
diate frequency behaviour ω� ωξ � J−1 is determined by the transition. The two
other frequency scales are set by the system size: the Heisenberg scale ωH is the
inverse level spacing, while ωc is the scale of the smallest off-diagonal matrix ele-
ments. The thermal-region I crossover occurs when ωξ ∼ωH ∼ωc. In region I, only
the exponent controlling the ω>ωξ decay is visible. This exponent is continuously
varying and is significantly corrected from its value at the transition in region I (as
quantified by the O(θ0) term). The smallest value of the exponent is however set by
θc. Panel (c): The exponent θ0 may be directly extracted from %(v), the distribution
of off-diagonal matrix elements of a local operator. In the localised phase, there are
exponentially many off-diagonal matrix elements which are exponentially small in
range, so %(v) diverges as a power-law at small v. The exponent defines θ0. Panel

(f): The time averaged correlator [Czz] serves as an order parameter for the MBL
phase. [Czz] goes to zero smoothly as 1/ζ→ 1/ζc is approached from the MBL side,
faster than any power law in both the Hamiltonian and Floquet cases.
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Figure 3: Set-up in the physical and l-bit bases respectively: a) A “probe” spin-1
2 (or-

ange) couples to a strongly disordered chain (blue) at the site n = 0 (magenta). b)
Transforming to the l-bit basis renders the Floquet unitary of the chain diagonal and
the probe-chain coupling quasi-local. The coupling strength decays exponentially
with distance from n= 0.
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Figure 4: Organising resonances by range: a) The many-body spectrum of H0 in a
small quasi-energy window is divided into two sectors labelled by the state of the
probe spin σ =↑,↓. |εa ↑〉 labels a specific reference state. b) The l-bit configuration
corresponding to reference state (red spectral line) is shown. The states |εd ↓〉 in
the opposite sector (green lines) can be grouped according to their range r from the
reference state (ranges r = 0, 1,2 shown); states at range r differ only on the l-bits
with index |n| ≤ r (highlighted in orange). A state |εd ↓〉 at range r is resonant with
|εa ↑〉 if its quasi-energy separation is less than the matrix element size v(r) (i.e. if
it lies within the magenta region). In the plot, the first resonance occurs at range
r = 2.

where T = 2π/Ω and T is the usual time ordering operator. The associated Floquet states
|εa〉, and quasi-energies εa are defined by

UF|εa〉= e−iεa T |εa〉 . (6)

2.1.2 Localisation in the l-bit basis

At sufficiently strong disorder in the MBL phase, we assume that the Floquet states |εa〉may be
identified with configurations of quasi-local integrals of motion, or l-bits [7,38,39] (in Sec. 4.1,
we discuss how this assumption may be relaxed). Each l-bit τz

n is traceless tr
�

τz
n

�

= 0, squares
to the identity (τz

n)
2 = 1, is exponentially localised around the physical site n, and commutes

with the Floquet operator
[UF,τz

n] = 0 . (7)

Each Floquet state |εa〉 can be identified with an l-bit configuration τa ∈ {−1, 1}L . The scalar
element τan = ±1 of τa specifies the state of the nth l-bit:

τz
n|εa〉= τan|εa〉 . (8)
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A quasi-local operator U diagonalises the Floquet unitary, and maps the physical spin operators
to l-bits,

Uταn U† = σαn . (9)

Thus the σαn are similarly exponentially localised operators in the l-bit basis.
Consider two eigenstates |εa〉, |εb〉. We say two states differ at range rab if the furthest

flipped l-bit is at distance rab from the site n= 0.

rab :=max{|n| : τan 6= τbn} . (10)

The range is depicted in Fig. 4b. If the matrix element Vab := 〈εa|V |εb〉 of an operator V is
non-zero, then Vab is also said to have range rab.

The length scale on which a physical spin operator is localised in the l-bit basis defines the
localisation length ζ. Consider a local operator V acting on the physical site of index n = 0.
The operator V can be decomposed into a sum of terms of increasing range

V =

L/2
∑

r=0

Vr (11)

where all the non-zero matrix elements of Vr have range r. The asymptotic decay of the norm
of Vr defines ζ:

log |Vr | ∼ −
r

ζ
. (12)

We use the re-scaled Frobenius norm

|Vr | :=
√

√ 1

2L
tr
�

V 2
r

�

, (13)

as it is simple to calculate analytically, and captures the typical expectation value of an arbitrary
vector |〈ψ|Vr |ψ〉| ≈ |Vr |.

2.1.3 Coupling a probe spin to the disordered chain

To probe the dynamical phase of the disordered chain, we introduce a probe spin-1
2 σP subject

to a z-field of strength W . The combined Hamiltonian of the probe spin and disordered chain,

H (t) =H0(t) +H1(t) , (14)

is periodic with fundamental frequency Ω. Here H0 encodes the part of the Hamiltonian in
which the probe spin and disordered chain are decoupled

H0(t) = H(t)⊗ 1+ h

2
1⊗σz

P , (15)

and H1(t) encodes their coupling. Throughout we use cursive letters to denote properties
of the combined Hilbert space of the disordered chain and the probe spin, and italic letters to
denote properties of the reduced Hilbert spaces. The spin and chain are coupled an interaction
H1, we choose

H1(t) =
∑

n∈Z
δ(n− t/T )V ⊗σx

P . (16)

Here V is some local operator which acts only on the n = 0 site of the chain, and which is
assumed to have norm |V |= J , e.g. V = Jσx

0 .
The Floquet operator of the combined system is given by

UF =U1U0 (17)

9
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where U0 is the Floquet unitary for H1 = 0, and U1 encodes the interaction

U0 = UF ⊗ exp
�

− i
2W Tσz

P

�

(18)

U1 = exp
�

−iT V ⊗σx
P

�

. (19)

Each eigenstate of the unperturbed Floquet unitary U0|ε0
α〉= e−iε0

αT |ε0
α〉 is a tensor product of

a quasi-energy state of the disordered chain |εa〉 and a z-polarised state of the probe spin |σ〉,

|ε0
α〉 := |εaσ〉 := |εa〉 ⊗ |σ〉 ,
ε0
α = εa +

1
2σW,

(20)

where α= (a,σ) is a composite label.

2.2 Spectral function of σz
P in the RM MBL phase ζ < ζc

Our aim is to calculate the disorder averaged infinite temperature zz spin correlator,

[Czz(t)] =
1

D

�

tr
�

σz
P(t)σ

z
P(0)
��

, (21)

in the RM. Here the normalization by D , the Hilbert space dimension, ensures that [Czz(0)] = 1.
For simplicity, we restrict to stroboscopic observations at the drive period t ∈ TN. The Heisen-
berg operator σz

P(t) at integer periods is given by

σz
P(nT ) = (U

†
F)

nσz
PUn

F . (22)

The spectral function [S(ω)] is obtained by Fourier transformation of (21),

[Czz(t)] =

∫ ∞

−∞
dωe−iωt[S(ω)] . (23)

The basic steps in the calculation are as follows. We resolve the trace in the correlator (21)
over the eigenstates |εaσ〉 of H0, and argue in Sec. 2.2.1 that each term is well approximated
by either unity or a pure tone:

〈εaσ|σz
P(t)σ

z
P(0)|εaσ〉=
(

1 (no resonance)

cos
�

|Vab|t
�

(resonance)
(24)

Above, |Vab| is the largest matrix element that couples |εaσ〉 to a resonant state |εbσ̄〉 where
σ̄ is the opposite z-spin projection as compared to σ. Taking the matrix elements at range r

to have a characteristic scale v(r), we obtain

[Czz(t)] = [Czz] +

∫ L/2

0

dr p(r) cos(v(r)t) (25)

where p(r) is the probability (upon varying the initial state, and disorder realisation) that the
resonant process with the largest matrix element is at range r, and

[Czz] := lim
T→∞

1

T

∫ T

0

dt [Czz(t)] = 1−
∫ L/2

0

dr p(r) (26)

is the probability of no resonances. As p(r) and v(r) are exponentially decaying in r, we find
that the spectral function is a power law at low frequencies,

[S(ω)]∝ω−1+θ . (27)
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↓ ↑ ↑ ↓ ↑ ↓ ↑↑ ↓ ↓ ↑ ↑ ↓ ↑ ↑↑

Figure 5: Cartoon of approximate eigenstates: For the purposes of calculating the
spectral function, the resonant eigenstates may replaced with cat states. Here the
resonance is of range r = 2, so that only l-bits with indices n ∈ {−2,−1,0, 1,2} (red
box) are reconfigured.

The exponent θ approaches zero as ζ→ ζ−c from the localised side, but jumps to a non-zero
θc precisely at the critical point ζ = ζc. Ref. [61] gave a similar resonance counting argument
for the low frequency properties of the spectral function in the localised phase.

At each stage of this analysis we approximate eigenstates as being either product states of
the probe spin and l-bits, or cat states in which the probe spin is flipped. A more sophisticated
treatment would account for intermediate situations in which a “partial resonance” forms [72].
However, such refinements do not change the low frequency properties of the spectral function,
which are of interest here.

We now detail how these results are obtained. The final expressions for the spin-spin
correlator are given in Secs. 2.2.4, 2.2.5.

2.2.1 Contribution of a resonance to the spectral function

Let us define a resonance. Consider a Floquet state |εα〉 of combined system,

UF|εα〉= e−iεαT |εα〉 . (28)

Expanding these Floquet states to leading order in V , we obtain

|εα〉= |εa ↑〉+
∑

b

iVbaT

ei(εa−εb+h)T − 1
|εb ↓〉+ . . . . (29)

where α = (a,↑) 2. We define the two states |εa ↑〉 and |εb ↓〉 to be resonant if the first-order
correction is large, that is, if

gba :=max
n∈Z

�

�

�

�

Vba

εa − εb + h+ nΩ

�

�

�

�
> 1 . (30)

If gba < 1 for all b, then we approximate |εα〉 by the unperturbed eigenstate |εa ↑〉.
If gba > 1 for a single b, then degenerate perturbation theory yields ‘cat’ Floquet states

|εα,β 〉=
1p
2

�

|εa ↑〉 ± |εb ↓〉
�

+O(g−1
ba
) , (31)

to good approximation (see Fig. 5). The two cat states (31) are split in quasi-energy by the
matrix element |Vba|,

|εα − εβ |= |Vba|+O(|Vba|g−2
ba
) . (32)

Ignoring the sub-leading corrections, we thus obtain

〈εa ↑ |σz
P(t)σ

z
P(0)|εa ↑〉= cos

�

|Vba|t
�

, t ∈ TN . (33)

2Eq. (29) recovers the standard first-order term in Hamiltonian perturbation theory in the high-frequency limit
T → 0

11



SciPost Phys. 12, 201 (2022)

The corresponding contribution to the spectral function is two delta function peaks at
ω = ±|Vba|. The absence of weight at zero frequency is a consequence of the equal ampli-
tudes in the RHS of (31). We argue in Appendix A that extending this calculation to include
a small non-zero weight at ω = 0 does not alter the low frequency behaviour of the disorder-
averaged spectral function.

If gba > 1 for multiple indices b, the eigenstates do not have the simple form in (31).
Nevertheless, we argue in Appendix A that the strongest resonance, corresponding to the largest
matrix element, sets the frequency of oscillation if ζ < ζc. That is,

〈εa ↑ |σz
P(t)σ

z
P(0)|εa ↑〉= cos(ωa↑ t) , for t ∈ TN , (34)

with

ωa↑ =max
§

|Vba| : gba > 1
ª

. (35)

In other words, for an initial state |εa ↑〉, the probe spin oscillates at a frequency ωa↑ for a
window of time t � ω−1

a↑ , and thus the Fourier transform of (34) is sharply peaked at ±ωa↑.
Analogous expressions for an initial state in the down sector are easily similarly.

2.2.2 The probability q(r) of resonance at range r

We take all the matrix elements at range r to have a single characteristic value v(r) which is
a monotonically decreasing function of the range r. This recasts the problem of finding the
resonance with the largest matrix element as the problem of finding the resonance with the
smallest range r. We now calculate v(r), and subsequently the probability q(r) of finding a
resonance at range r.

As described in Sec. 2.1, V =
∑L/2

r=0 Vr may be decomposed into terms of increasing range
r in the MBL phase. Vr couples a given state |εa〉 to Nr other states |εb〉 at range r, where

N0 = 1 , Nr>0 =
3
2 · 4r . (36)

The characteristic scale v(r) of each matrix element is determined by,

|Vr |2 =
1

D

∑

a

〈εa|V 2
r |εa〉= Nr · v(r)2 . (37)

Using |Vr | ∼ Je−r/ζ we obtain

v(r) =
|Vr |
p

Nr

≈ Je−r/ξ−2r/ζc , (38)

where the correlation length ξ is defined by

1

ξ
=

1

ζ
− 1

ζc
,

1

ζc
= log 2 . (39)

The omission of the unimportant pre-factor of
p

3/2 makes (38) approximate.
Two properties of ξ are noteworthy. First, ξ has the interpretation of a length only in the

MBL phase of the RM, in which it is positive. Second, ξ diverges as ζ → ζ−c . When we use
results of the RM to discuss the short-time dynamics as ζ→ ζ+c , we will be careful to use the
absolute value of ξ.

Let ρ(r)dr denote the density of states per unit quasi-energy with range in the interval
[r, r + dr]; from here on we will coarse grain and treat the range r as a continuous variable.

12
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As the states are uniformly distributed in quasi-energy εb ∈ [0,Ω], and the total number of
states within range r is given by 22r+1 we have

∫ Ω

0

dε

∫ r

0

dr ′ρ(r ′) = 22r+1 =⇒ ρ(r) =
4e2r/ζc

ζcΩ
. (40)

Consider the dn = Ωρ(r)dr states with ranges in the interval [r, r + dr]. As they are
uniformly distributed over the quasi-energy interval [0,Ω], the probability that an arbitrarily
selected one of them has a quasi-energy in the interval ε0

β
∈ ε0

α + [−v(r), v(r)], and is thus
resonant, is given by 2v(r)/Ω. It follows that the probability that at least one of these states
is resonant with |εa ↑〉 is given by

q(r)dr = 1−
�

1− 2v(r)

Ω

�dn

= 2v(r)ρ(r)dr + . . . , (41)

where higher-order corrections in v(r)/Ω can be dropped for q(r)� 1. Combining (38), (40)
and (41)

q(r) =
e−r/ξ

λ
, (42)

with ξ as in (39) and the resonance length λ defined as

λ :=
ζcΩ

8J
≈ Ω

J
� 1 . (43)

We expect that λ � 1 as MBL in the RM requires Ω � J . Put another way, deep in the
MBL phase where ξ� 1, the probe spin will typically induce resonances of range r = 0 (i.e
involving only the l-bit n= 0 to which it is directly coupled). For stable MBL, the probability of
such resonances q(0) = 1/λ should be small so that nearest-neighbour resonances are atypical.

2.2.3 The probability p(r) that the strongest resonance is at range r

The fraction F(r) of states that have not resonated up to range r satisfies the differential
equation

∂ F

∂ r
= −q(r)F(r) , (44)

with solution

F(r) = exp
�

−ξ
λ

�

1− e−r/ξ
�

�

. (45)

The probability p(r)dr that the strongest resonance with the largest matrix element has range
in the interval [r, r + dr] is then determined by

p(r) = −∂ F

∂ r
=

1

λ
exp
�

− r

ξ
− ξ
λ

�

1− e−r/ξ
�

�

. (46)

2.2.4 The time domain correlator [Czz(t)] and the logarithmically growing light cone

front

We now have all the pieces in place to write down the spin-spin correlation function. The
strongest resonance for each state is mediated by a matrix element of size v(r)with probability
p(r). Plugging this into the pure tone ansatz (34), and treating the disorder average as simply
sampling the distribution p(r), we obtain the Floquet RM spectral function

[Czz(t)] = [Czz] +

∫ L/2

0

dr p(r) cos(v(r)t) , (47)

13
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where the integral runs over all possible ranges 0≤ r ≤ L/2, and the infinite time average

[Czz] := lim
T→∞

1

T

∫ T

0

dt [Czz(t)] = F
�

L/2
�

(48)

is simply the probability that a state of the uncoupled system is not resonant with any other
state.

We were unable to exactly perform the integral (47). However a crude approximation
allows us to extract the asymptotic behaviour in the time domain. At finite time, the dominant
contribution to the integral comes from values of r such that v(r)t is small as such terms
are always positive. We thus approximate by replacing cos(v(r)t) → Θ(1 − v(r)t) where,
Θ denotes the usual Heaviside step function Θ(x > 0) = 1, Θ(x < 0) = 0. Within this
approximation we obtain

[Czz(t)] = F (r(t)) , (49)

where r(t) is obtained by solving v(r)t = 1,

r(t) = 1
2 min
�

ζc(1− θ0) log(J t), L
�

. (50)

where we have defined

θ0 =
ζc

2ξ+ ζc
. (51)

The position r(t) has a simple interpretation as the front of a logarithmically growing light
cone. Only the cat states formed from l-bits states with r < r(t) contribute to the correlation
function at time t.

2.2.5 The spectral function [S(ω)]

From (47) it is straightforward to obtain the spectral function. For brevity we first recast the
matrix element (38) as v(r) = Je−r/(θ0ξ) using (51). Then by inverse Fourier transform of (47)

[S(ω)] =
1

2

∫ L/2

0

dr δ(|ω| − v(r)) p(r) =
ξθ0

2|ω| p
�

ξθ0 log

�

�

�

�

J

ω

�

�

�

�

�

. (52)

Inserting the calculated form of p(r) (46) into (52) yields

[S(ω)] =









ζc(1− θ0)

4Jλ
·
�

�

�

ω

J

�

�

�

−1+θ0

exp
�

−ξ
λ

�

1−
�

�

�

ω

J

�

�

�

θ0
��

, for ωc < |ω|< J ,

[Czz]δ(ω) , for ωc > |ω| ,
(53)

in the MBL phase of the Floquet RM. The cutoff scale ωc is set by the smallest matrix
elements at distance L/2,

ωc = vL/2 = J exp
�

− L

2ξ
− L

ζc

�

=
ωH

λ
exp(−L/2ξ) , (54)

where the Heisenberg frequency ωH := Ω2−L is set by the typical many-body level spacing.
The high-frequency (ω ≈ J) behaviour of [S(ω)] depends on the microscopic Hamiltonian

in the immediate vicinity of the spin, and is thus non-universal. In contrast, the exponent θ
characterising the power-law at low frequency:

[S(ω)]∼ω−1+θ (55)
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is a consequence of distant resonances which reconfigure large regions of the chain. Thus, as
ζ→ ζ−c , we expect θ to have a universal functional dependence on |ζ− ζc|.

For L� λ (region II in Fig. 1a), it follows from (53) that

θ =









θ0 =
ζc

ζc + 2ξ
, ζ < ζc ,

θc =
ζc

2λ
, ζ = ζc .

(56)

That is, θ vanishes linearly with |ζ − ζc| as ζ → ζ−c , but jumps to a non-universal non-zero
value at the transition.

For L ® λ (region I in Fig. 1a), θ = θc + O(θ0), so that the exponent is continuously
varying. The low-frequency divergence in [S(ω)] is strongest when θ = θc, we return to this
in Sec. 5.2 3.

Eq. (55) implies that that disorder-averaged correlators exhibit a power-law decay at long
times t � J−1 in the RM MBL phase:

[S(ω)]∼ω−1+θ ⇐⇒ [Czz(t)]∼ (J t)−θ . (57)

The decay persists until time ∼ ω−1
c , which is exponentially larger than the Heisenberg time

∼ ω−1
H . The dynamics at these long time scales are due to the exponentially small (in L)

fraction of cat states involving re-configurations of l-bits on the scale of the system size L.
A fraction of the eigenstates |εaσ〉 do not hybridise with any other states despite the cou-

pling with the probe spin to the chain, even as L→∞. As the probe spin has a well-defined
orientation in these states (even upon including perturbative corrections), these states con-
tribute to the infinite-time memory [Czz] of the MBL phase.

We defer more detailed discussion of the finite-size behaviour of [S(ω)] to Sec. 5.

2.3 Spectral function of σz
P

in the RM thermal phase ζ < ζc

In the thermal phase, we expect that the off-diagonal matrix elements obey the eigenstate
thermalization hypothesis. In particular, the off diagonal matrix elements they do not decay
exponentially with range r at large r, as assumed by the RM in (12). Consequently, the RM
does not apply in this regime.

Despite being generally inapplicable, the early time predictions of the RM are found to
hold even in the thermal regime. Specifically, as the probability of resonance q(r) is small for
r � |ξ|, [S(ω)] exhibits power-law decay (as in (55)) for J �ω>ωξ where,

ωξ := v(|ξ|) = Je−1/|θ0| . (58)

That is, the correlator’s dynamics are critical until a time-scale ∼ω−1
ξ

. This result is obtained
exactly as in the MBL case, with the refinement that, instead of working in a basis of l-bits
(which do not exist in the thermal regime), it is necessary to work in a basis of “almost-l-bits”
τ̃z

n [73]. These operators have the same properties as l-bits (mutually commuting exponen-
tially localised etc.), but only “almost commute” with the Hamiltonian

|[H, τ̃z
n]|®ωξ . (59)

3We note that the RM predicts that θ = θ0 < 0 for ζ > ζc leading to a stronger divergence than at θ = θc.
However, as this prediction hinges on the exponential growth of q(r) on the thermal side for ranges r < ξ, this
prediction is unphysical and and may be disregarded.
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3 Hamiltonian resonance model

We describe the computation of the spectral function of the RM with Hamiltonian dynamics.
Despite the Hamiltonian case appearing superficially simpler than the Floquet case (as it lacks
the additional “ingredient” of a drive frequency) the analysis is more complicated due to the
conservation of energy. The associated hydrodynamic mode constrains the late time dynamics,
and hence the low frequency behaviour of the spectral function.

For simplicity, we assume that the chain has a single hydrodynamic mode. The analysis is
easily generalised to accommodate further conservation laws, such as the spin conservation
present in the “standard model of MBL” the Heisenberg model with random z-fields.

3.1 Set-up

3.1.1 Chain Hamiltonian

Consider a strongly disordered static chain with disorder strength W and interaction strength
J . For specificity, consider theΩ→∞ limit of the Floquet model in (4), that is, the Heisenberg
model with O(3) random fields

H =
J

2

∑

n

σn ·σn+1 +
W

2

∑

n

vn ·σn . (60)

As before, the details of this model will be unimportant except for two key properties: (i)
energy is the only conserved extensive quantity at any W, J , and (ii) the model is many-body
localised for some finite W � J .

3.1.2 The local energy εa

In addition to its energy eigenvalue Ea, each eigenstate |Ea〉 of H can be assigned a local energy
εa(r) which can loosely be understood as the expectation value of the Hamiltonian restricted
to the sites n ∈ [−r, r]:

εa(r)≈ 〈Ea|H[−r,r]|Ea〉 , (61)

Here H[−r,r] is the Hamiltonian (60) with the summation restricted to terms acting on the sites
n ∈ [−r, r].

We make this notion sharp with the following definition

εa(r) = Ea − E0(a, r) (62)

where the energy shift E0(a, r) is obtained by averaging the energies of the 22r+1 states within
range r of |Ea〉

E0(a, r) =
1

22r+1

∑

b : rab≤r

Eb . (63)

The local energy has two useful properties. First, for two states |Ea〉, |Eb〉 within range r,
energy differences are preserved exactly

Ea − Eb = εa(r)− εb(r) ⇐⇒ rab ≤ r . (64)

Second, given a state |Ea〉, the distribution of the local energies εb(r) of the states within range
r is Gaussian and centred at ε= 0. Specifically,

∑

b : rab≤r

δ(ε− εb(r))∼
22r+1

s
ε
(r)
p

2π
exp

�

− ε
2

2s2
ε
(r)

�

(65)
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where ∼ denotes convergence in distribution at large r. Neglecting sub-leading corrections in
J/W , the width of the Gaussian is given by

s
ε
(r) =W

p
2r + 1 . (66)

3.1.3 Coupling a probe spin to the disordered chain

The Hamiltonian of the chain coupled to a probe spin is given by H =H0 +H1 with

H0 = H ⊗ 1+ h

2
1⊗σz

P ,

H1 = V ⊗σx
P .

(67)

The eigenvectors of H , H0 and H are denoted |Eα〉, |E0
α〉 and |Ea〉 respectively. These vectors

play roles in direct analogy with |εα〉, |ε0
α〉 and |εa〉 from the Floquet case in Sec. 2. The

eigenvectors and corresponding eigenvalues of H and H0 are related by

|E0
α〉 := |Eaσ〉 := |Ea〉 ⊗ |σ〉 , (68)

E0
α := Ea +

1
2σh . (69)

Each eigenstate |Ea,σ〉 of H0 is assigned a local energy

e(a,σ)(r) = εa(r) +σh/2 . (70)

3.2 Spectral function of σz
P

in the RM MBL phase ζ < ζc

Our aim is to calculate the disorder averaged infinite temperature spin-spin correlator

[Czz(t)] =
1

D
tr
�

σz
P(t)σ

z
P(0)
�

=

∫

dt e−iωt[S(ω)] , (71)

for time evolution generated by the Hamiltonian

σz
P(t) = eiH tσz

Pe−iH t . (72)

As in Sec. 2.2, states with resonant partners contribute a pure tone, while states with no
resonant partners contribute unity (see (24)), and hence [S(ω)] follows.

The key difference between the Floquet and Hamiltonian cases stems from the energy
dependence of the density of states at range r. In the Floquet case, at sufficiently large range
r, the density of states at range r is independent of quasi-energy, thus all states states have
an equal probability of finding a resonance at range r. In contrast, in the energy conserving
case, states with unusually high/low local energy eα(r) couple to an atypically small density
of states at range r. As such these atypical states find resonances at a significantly lower rate
(see Fig. 6). We thus adapt the calculation to keep track of the local energy eα(r) of the states.
This leads to a slower decay of F(r), and hence a slower than power law decay of correlations.

3.2.1 Identifying resonances

Recall the resonance condition: two states |Ea ↑〉 and |Eb ↓〉 that differ at range r are said to
be resonant if

|Ea − Eb + h|< |Vba| . (73)

Using (64), this condition is recast as

|e(a,↑)(r)− e(b,↓)(r)|< |Vba| . (74)
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Figure 6: Local density of states: the local density of states at range r and energy e,
ρσ(e, r), is plotted versus the local energy e for the σ =↑ (red) and σ =↓ sectors
of the probe spin. These distributions have the same width se(r) but are offset from
each other due to the probe spin energy ±h/2. The probability of a state in the
↑ sector finding a resonant partner is proportional to the density of states in the ↓
sector (see (75)). We illustrate this with an arbitrary cut-off: the ↑ states at energies
e 6∈ e↓ + [−2se(r), 2se(r)] (red shaded area) have a much reduced probability of
resonating versus those in the bulk of the distribution.

3.2.2 The probability q(e, r) of finding a resonance at range r, and local energy e

Define q↑(e, r)
�

�

e=e(a,↑)(r)
, the probability that a state |Ea ↑〉 with finds a resonant partner state

|Eb ↓〉 at range r. Analogous to the Floquet case, q↑(e, r) is given by

q↑(e, r) = 2ρ↓(e, r)v(e, r) . (75)

where ρ↓(e, r) is the density of states in the down sector (i.e. the opposite spin sector) at
local energy e = e(b,↓)(r) and range r, and v(e, r), the characteristic size of matrix elements,
coupling states from the two spin sectors at local energies e, and range r.

Consider the characteristic matrix element v(e, r). To begin with, we neglect the energy
dependence of v and assume that the matrix element have the same form as in (38),

v(e, r) = Je−r/ξ−2r/ζc . (76)

We later discuss refinements to this approximation.
Next, the density of states ρσ(e, r) follows from (65),

∫ r

0

dr ′ρσ(e, r ′) =
22r+1

se(r)
p

2π
exp

�

−1

2

�

e − eσ

se(r)

�2�

. (77)

The mean is biased away from zero due to the orientation of the probe spin

eσ := 1
2σh (78)

and the variance se(r) is set by (66). Differentiating (77) and taking the asymptotically dom-
inant behaviour we obtain

ρσ(e, r)∼ 4

ζcse(r)
p

2π
exp

�

2r

ζc
− 1

2

�

e − eσ

se(r)

�2�

. (79)
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Equivalently stated, the asymptotic behaviour of ρσ(e, r) is dictated by the growth-diffusion
equation

∂ ρσ
∂ r

=W 2 ∂
2ρσ
∂ e2

+
2

ζc
ρσ ,

ρσ
�

e,−1
2

�

=
2
p

2

ζc
δ
�

e − eσ

�

,

(80)

where the boundary condition is obtained by matching the solutions with (79).
Substituting Eqs. (79) and (76) in (75)

q↑(e, r)∼ 1p
4λr

exp

�

− r

ξ
−
(e − e↓)

2

4W 2r

�

. (81)

and similarly for q↓(e, r). As before 1/ξ= 1/ζ−1/ζc, and the resonance length is defined as,

λ = π

�

ζcW

4J

�2

≈ W 2

J2
. (82)

The approximation indicates the dropping of an unimportant numerical factor
π/(4 log 2)2 ≈ 0.4. As expected, qσ(e, r) is decaying in r on the localised side (ξ > 0), and
growing on the thermal side (ξ < 0).

3.2.3 The probability p(r) that the strongest resonance is at range r

The growth diffusion equation (80), which describes the total density of states at local energy e

and range r, is easily modified to describe the density of states which have not found a resonant

partner by range r. At each range r, the hybridisation probability is set by qσ(e, r). We thus
obtain:

∂ ρu
σ

∂ r
=W 2

∂ 2ρu
σ

∂ e2
+

2

ζc
ρu
σ −ρu

σqσ . (83)

Here the superscript ‘u’ (for unhybridised) distinguishes ρu
σ from the total density of states ρσ.

We now extract the probability p(r) that a state |Eaσ〉 finds its strongest resonance at a
range r. Observe that the second term in (83) leads to exponential growth with r. Define a
distribution that scales out this exponential growth:

fσ(e, r) =
ζc

4
p

2
e−2r/ζc ρu

σ(e, r) . (84)

Substituting in (83), we obtain

∂ fσ

∂ r
=W 2 ∂

2 fσ

∂ e2
− fσqσ ,

fσ
�

e,−1
2

�

= δ
�

e − 1
2σh
�

.

(85)

The substitution (84) has a simple interpretation:

F(r) =

∫

de fσ(e, r) =

∫

deρu
σ(e, r)
∫

deρσ(e, r)
(86)

is the fraction of states which have not hybridised by range r. Eq. (85) is invariant under the
replacements (e,σ) → (−e,−σ), by this symmetry F(r) is independent of σ. It follows that
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the probability p(r)dr that the strongest resonance of a given state is in the interval [r, r+dr]

is given by

p(r) = −∂ F

∂ r
=

∫

de f↑(e, r)q↑(e, r) . (87)

Eq. (87) is the generalisation of the Floquet result (46) to the energy conserving case. Here
it is necessary to solve the two-dimensional partial differential equation (85) rather than the
simpler one-dimensional ordinary differential equation (44).

What do the solutions of (85) and (87) look like? We discuss two regimes. The first regime
in Sec. 3.2.4 is most relevant for the numerically accessible MBL-thermal crossover in Fig. 1b.
The second regime of L, |ξ| � λ determines properties of the Hamiltonian RM in the vicinity
of ζ = ζc as L→∞ and is discussed in Appendix B.

3.2.4 Far from criticality |ξ|< λ, or small critical systems L < λ < |ξ|
Neglecting the energy dependence of qσ(e, r),

qσ(e, r)≈ e−r/ξ

p
4λr

. (88)

Substituting (88) into (87), we obtain an approximate equation for F(r),

∂ F1

∂ r
= − e−r/ξ

p
4λr

F1 , (89)

which we denote as F1(r) to distinguish it from a true solution to the growth diffusion equa-
tions (85) and (86).

Let us justify the approximation above a posteriori. For ξ� L, the solution F1(r) of (89)
decays exponentially on the length scale set by λ. Thus for r < λ, the bulk of the weight
of the distribution of unhybridised states fσ(e, r) is at typical energies |e| < se(r), where the
energy dependence of qσ(e, r) can be neglected by making the replacement qσ(e, r)→ qσ(0, r)

in (87) to obtain (89). The approximation is thus valid for small critical systems L < λ < |ξ|
(region I of Fig 1). Far from the crossover on the MBL side |ξ|< λ, few resonances form after
the length scale ξ and fσ(e, r) does not becomes small at typical energies |e|< se(r). The bulk
of the weight of the distribution of unhybridised states fσ(e, r) is thus at typical energies and
the approximation is justified.

On longer length scales r � λ at 1/ξ = 0, the weight of fσ(e, r) at typical energies is
depleted by the exponential decay. The weight of the distribution is instead concentrated at
atypical energies |e| > se(r) where the resonance probability qσ(e, r) is much smaller. Ap-
pendix B discusses the behaviour at r � λ in detail.

The solution to the approximated equation (89) is

F1(r) =















exp

�

−
√

√πξ

4λ
Erf

�√

√ r

ξ

��

, ξ > 0 ,

exp

�

−
√

√

−πξ
4λ

Erfi

�√

√

− r

ξ

��

, ξ < 0 ,

(90)

where Erf(·) and Erfi(·) are the usual error function and imaginary error function respectively.
The correlator then immediately follows

[Czz(t)] = F1(L/2) +

∫ L/2

0

drp(r) cos(v(r)t) . (91)
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Using (87) and (52), we obtain the desired result:

[S(ω)] =





























1
4J

r

ζc(1−θ0)

2λ log |J/ω|
�

�ω
J

�

�
−1+θ0exp
�

−
Ç

πξ
4λ Erf
�q

θ0 log
�

�4J
ω

�

�

��

,
for ξ > 0 ,

ωc < |ω|< J ,

1
4J

r

ζc(1−θ0)

2λ log |J/ω|
�

�ω
J

�

�
−1+|θ0|exp
�

−
Ç

−πξ4λ Erfi
�q

−θ0 log
�

� J
ω

�

�

��

,
for ξ < 0 ,

ωξ,ωc < |ω| ,

[Czz]δ(ω) ,
for ξ > 0 ,

ωc > |ω| .

(92)

The spectral function exhibits the same ω−1+θ0 low frequency behaviour as (53) in the
Hamiltonian RM MBL phase and at intermediate frequencies in the thermal phase. However,
as the localisation length approaches the critical value ζ→ ζc, the correlation length diverges
1/ξ → 0, the correlation decay exponent θ0 → 0+, and the correction to the low-frequency
ω−1 behaviour of the spectral function is logarithmic rather than power law. We further discuss
the logarithmic corrections in Sec. 5.2.2.

4 Regime of self consistency of the resonance model

The RM assumes a characteristic range-dependence for the matrix elements v(r) of a local
operator V acting at site n= 0 (see (38)). The coupling to the probe spin induces hybridisation
between the eigenstates of H0. The reader might thus worry that the off-diagonal matrix
elements of a local operator between the hybridised eigenstates is not consistent with the RM
assumption in (38). In other words, the distribution of matrix elements after having introduced
the probe spin is inconsistent with the distribution we assumed at the beginning.

We address this question in two parts. First, we show that [S(ω)] ∼ ω−1+θ0 at low fre-
quencies even if the matrix elements at range r have a generic distribution p(v|r), as opposed
to a single value v(r), so long as the aggregate distribution of off-diagonal matrix elements

%(v) =

L/2
∑

r=0

p(v|r)ρ(r) (93)

is distributed as a power-law in v at small v. Thus, we can relax the assumption in (38) to
allow for a pre-existing population of resonant cat pairs states, as the matrix elements between
such cat pairs and the reference state can differ from v(r).

Next, we imagine perturbing a MBL RM chain, with a given p(v|r), weakly at every site.
The local perturbations induce local resonances. When these resonances do not overlap, we
argue that the distribution p(v|r) is unaffected at large r, and thus that the perturbed chain
presents the same statistics of off-diagonal matrix elements v as the unperturbed chain at small
v. Consequently, the exponent θ0 that sets the low-frequency divergence of [S(ω)] is stable to
local perturbations.

Specifically, we argue that the resonance model is perturbatively stable, and consequently
our conclusions hold, in the regime

min
�

L

2
, |ξ|
�

�
p

λ , (94)

in which resonances do not typically overlap. Eq. (94) holds deep in the RM MBL phase as
L→∞ and in region I (see Fig. 1) for sufficiently small systems. Three important conclusions
follow:
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1. As the RM is self-consistent deep in the MBL phase, the RM predicts and describes a
stable MBL phase in the thermodynamic limit.

2. The RM describes the MBL-thermal crossover in short chains, despite being inapplicable
at large L.

3. The RM describes dynamics in the MBL-thermal crossover at short times as L→∞, or
equivalently on frequency scales:

ω>ωth. :=max(v(
p

λ ), v(|ξ|)) . (95)

4.1 Generalised RM with p(v|r)
Define the aggregated distribution of off diagonal matrix elements %(v) as the distribution of ma-
trix elements |Vba| that couple two narrow energy windows Ea ∈ [E, E+∆] and Eb ∈ [E′, E′+∆]
at maximum entropy:

%(v) :=
∑

ab

δ(v − |Vba|) , (96)

where %(v) and the distribution of matrix elements p(v|r) are related by (93). In Secs. 2
and 3, we took the matrix elements at range r to be single valued p(v′|r) = δ(v′ − v(r)). In
the Floquet case the corresponding aggregated distribution of off diagonal matrix elements at
small v is

%(v) =
1

Ω

∑

r

Nrδ(v − v(r))∝







(v/J)−2+θ0 , v < J ,

0 , v > J ,
(97)

where Nr =
3
2 · 4r as in (36), 0 < θ0 ≤ 1 is defined in (51), and the power law is obtained by

coarse-graining over the scale separating the delta functions.
Eq. (53) follows from (97), independent of the precise model p(v|r) for the matrix ele-

ments at range r. Consider the Floquet RM. A change of variables in (44) yields

dF(v)

dv
= 2F(v) v%(v) . (98)

The solution

F(v) = exp

�

2

∫ ∞

v

dv′ v′%(v′)

�

(99)

is the fraction of states which do not have a resonance induced by a matrix element of size v

or larger. Note that F(v =∞) = 1. Similarly we may define

p(v) :=
∂ F

∂ v
= 2v%(v)exp

�

2

∫ ∞

v

dv′ v′%(v′)

�

, (100)

so that p(v)dv is the fraction of eigenstates of H0 whose strongest resonance is due to a matrix
element in the range [v, v + dv]. The spectral function is then given by,

[S(ω)] = 1
2 p(|ω|) +δ(ω)F(v = 0) . (101)

Substituting (97), we recover the previously calculated spectral function (53). The calculation
presented in Sec. 3 for the Hamiltonian RM can be similarly generalised.

Note that a general model for the matrix elements alters the simple relationship between
the localisation length ζ and the exponent θ0, and thus leads to an altered critical value of the
localisation length ζc := ζ|θ0=0.

22



SciPost Phys. 12, 201 (2022)

↑ ↓ ↑ ↑ ↓ ↑ ↓ ↑ ↑

a)

⋯τ-2α τ-1α τ0α τ1α τ2α⋯

ξλ/ξξ2 ≪ λ

↑ ↓ ↑ ↑ ↓ ↑ ↓ ↑ ↑
b)

⋯τ-2α τ-1α τ0α τ1α τ2α⋯

ξ2 ≫ λ

Figure 7: Resonances: The spectral function calculation in the RM is self-consistent if
the eigenstates in the RM-MBL are well characterised as l-bit configurations dressed
with local resonances. a) A l-bit state dressed with two resonances of range r = 1
centred at sites n = −3 and n = 2. Each resonance is represented by an arc encom-
passing the patch of rearranged spins. Resonances typically rearrange a patch of size
ξ and have density ξ/λ (in units of lattice spacing), and thus are well separated for
ξ2 � λ. b) For ξ2 ¦ λ, these resonances typically overlap forming large resonant
patches that destabilise MBL.

4.2 Self-consistent and stable localisation

To be self-consistent, the RM must have the same statistical distribution of resonances before
and after a local perturbation.

Consider a perturbation V of strength |V | ≈ J applied at a single site n= 0 (as in Sec. (2.2)).
The effect of this perturbation is straightforward: first the eigenstate energies are corrected by
the diagonal elements of V (i.e. Ea→ Ea + Vaa) and second, each state |Ea〉 finds a resonance
at range r (i.e. |Vab| > |Ea − Eb|, where rab = r) with probability q(r) = e−r/ξ/λ. This leads
to a pair of resonant ‘cat’ states

�|E′a〉
|E′

b
〉

�

≈ 1p
2

�

1 1
1 −1

�
�|Ea〉
|Eb〉

�

, (102)

with corresponding energies E′a, E′
b

and splitting |E′a − E′
b
| ≈ |Vab|.

We now apply a second perturbation U , also of strength |U | ≈ J , at a site m a finite distance
from n = 0. Naively, the arguments of Sec. (2.2) imply each such subsequent perturbation
causes more long range resonances to develop. However, this is not the case. The matrix
element 〈E′a|U |E′b〉 ≈ Je−s/ξ where s =max(0, m− rab) acts to disentangle cat state pairs (102)
whose splitting is small |Vab| � Je−s/ξ. This removes all resonances due to V which are of
long range rab� m/2. This disentangling of resonances is counterbalanced by the formation
of new long range resonances due to the combined action of U and V . Their distribution is
statistically identical to that induced by a single local perturbation. Specifically, the range of
typical resonances remains O(ξ).

Short range (rab ® m/2) resonances induced by V survive the second perturbation. When
the surviving resonances overlap with those induced separately by U , the eigenstate entangle-
ment further increases. Specifically, two cat pairs |E′a〉, |E′b〉 (102) and |E′c〉, |E′d〉 with respec-
tive level splittings |Vab| and |Vcd | survive if 〈E′a|U |E′b〉® |Vab| and 〈E′c |U |E′d〉® |Vcd | hold. The
states |E′a〉, |E′c〉may hybridise if 〈E′a|U |E′c〉¦ |E′a− E′c | yielding |E′′a 〉 ≈ (|E′a〉+ |E′c〉)/

p
2 . In the

state |E′′a 〉, a small subsystem in the vicinity of n = 0 has entanglement entropy S ≈ 2 log 2.
Similarly two “cats of cats” |E′′a 〉, and |E′′e 〉may be hybridised by a third perturbation W to form
|E′′′a 〉 ≈ (|E′′a 〉+ |E′′e 〉)/

p
2 , with entropy S ≈ 4 log 2. Here we have illustrated the increase of

entanglement entropy due to overlapping resonances for the case

〈E′′a |W |E′′e 〉< 〈E′a|U |E′c〉< 〈Ea|V |Eb〉 . (103)

The general case is more complex. However we suspect similar increases of the entanglement
entropy when resonances overlap.
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The merging of local resonances into larger resonant clusters with larger entanglement
entropies represents an instability of the “l-bits + local resonances” picture assumed by the
RM unless the localisation length is sufficiently short ξ�

p
λ (with lengths measured in units

of the lattice length). Consider perturbing the RM at every site. At each site, the probability
of inducing at least one resonance between the reference state |Ea〉 and a second state |Eb〉 is
1−F(r =∞)≈ ξ/λ. If the typical spacing between these resonances λ/ξ exceeds their typical
size ξ, then they remain spatially separated. We conclude that for ξ2/λ � 1 resonances do
not merge, and do not alter the asymptotic distribution of matrix elements at low frequencies.
The RM is thus self consistent and stable to local perturbations in this regime. This case is
depicted in Fig. 7a where the extent of each resonance is indicated by the red arcs. We note
that rare states participate in long range resonances r � ξ; however these do not destabilise
the localisation.

Repeating the above arguments for systems of finite-size L, we find that resonances occur
with density 1− F(r = L/2) ≈ min(ξ, L/2)/λ and involve min(ξ, L/2) sites. This yields the
condition (94).

Finally, we note that the RM describes dynamics in the thermodynamically large thermal-
ising phase at short times, or equivalently at frequencies satisfying (95). At these short times,
resonances are rare and thus the RM is controlled. As noted in Sec. 2.3, the derivation of
[S(ω)] proceeds through “almost-l-bits” that almost commute with the Hamiltonian.

5 RM predictions for finite-size numerics

The RM is self-consistent in short chains

L ® 2
p

λ (104)

in region I and provides a simple model for the MBL-thermal crossover. Could the RM de-
scribe the numerically accessible MBL-thermal finite size crossover? A naive estimate of the
resonance length λ comes from Eqs. (82) and (43) using numerical and experimentally re-
ported values for the critical frequency or critical disorder strength [6, 63, 74]. This gives
15 ® λ ® 50. Physically, λ has to far exceed the lattice scale, as q(0) = 1/λ is the probability
of a nearest neighbour resonance in the MBL phase. We thus reason that numerically accessi-
ble chain lengths L are smaller than or comparable to 2

p
λ , and that the RM is an analytically

tractable model for the numerics.
In what follows, we describe several properties of the RM in short chains that explain nu-

merical observations about the finite-size MBL-thermal crossover. The crossover occurs around
the line |ξ| = L/2 separating the thermal phase from region I in Fig. 1a). We also explain the
numerical observations of Refs. [1] and [2] within the RM. As the RM has a stable MBL phase,
we weigh in on the controversy of the existence of MBL in favour of MBL.

5.1 Correlation length exponent ν= 1

The thermal-MBL crossover in the resonance model is characterised by a correlation length
|ξ|:

|ξ| ∝ |ζ− ζc|−ν , (105)

which diverges with exponent ν= 1. This value is close to the numerically reported values of
0.77 ≤ ν ≤ 1.02 reported for data collapses of different quantities in Ref [63]. Note that the
RM exponent, as well as the numerically reported ones, violate the Harris bound for randomly
disordered systems ν≥ 2 [57,64,65], as they only capture the pre-asymptotic in L scaling.
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5.2 Apparent 1/ω divergence of the spectral function

The RM predicts a power-law divergence in [S(ω)] at low frequencies in the MBL phase and
in region I:

[S(ω)]∼ω−1+θ . (106)

Above ∼ indicates asymptotic equality up to constant factors and log corrections, and θ > 0.
Deep in MBL phase, the following hierarchy of frequency scales hold:

ωc�ωH�ωξ , 0< ξ® L/2 (107)

and [S(ω)] takes the form in (106) for ω>ωc with the exponent θ given by θ0 > 1 in (56).
In region I in Fig. (1), |ξ|¦ L/2, and the frequency scales are arranged as:

ωξ ®ωc ∼ωH , |ξ|¦ L/2 . (108)

Below, we show that the low-frequency divergence of [S(ω)] is strongest in the middle of
region I and is given by [S(ω)]∝ω−1 up to logarithmic corrections.

Ref. [2] interpreted the apparent ω−1 behaviour as inconsistent with MBL. The RM how-
ever predicts this behaviour near the finite-size MBL-thermal crossover in region I and allows
for a stable MBL phase.

5.2.1 Floquet systems

The exponent θ0 in (56) vanishes as |ξ| →∞ in the RM. The strongest low-frequency diver-
gence [S(ω)] is however not ∼ 1/ω (indeed, as noted in [2] such a strong divergence would
violate an elementary sum rule) because the exponential term in (53) modifies the exponent.
The RM instead predicts the following spectral function in the middle of region I:

[S(ω)]∼ω−1+θc , ω�ωc,ωH and |ξ| � λ , (109)

with θc = ζc/2λ, as given by (56).
As λ � 1 and ζc is on the lattice scale, we conclude θc = ζc/2λ � 1. The strongest

low-frequency divergence in (109) is thus close to 1/ω.
Note that (109) implies a power law decay of correlations at late times. Such decay can

only be consistent with a logarithmically spreading light cone (50) in the absence of any con-
served quantities, such as in a Floquet system.

5.2.2 Hamiltonian systems

Hamiltonian systems conserve energy, which results in a logarithmic, rather than power law,
correction to 1/ω scaling of [S(ω)]. Specifically, for |ξ| � λ� L, we simplify (92) to obtain:

[S(ω)]∼ 1

ω
p

λlog |J/ω|
, ω�ωc,ωH . (110)

Here ∼ indicates equivalence up to an ω independent pre-factor.
Observe that this decay is not asymptotically consistent with hydrodynamics. The light-

cone only grows logarithmically in time in the RM (see Fig. 8), but (110) implies critical
correlations that decay faster than 1/ log(J t) as t →∞,

lim
ξ→∞

[Czz(t)]∼ exp

�

−
√

√ ζc

2λ
log J t

�

. (111)
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↑ ↓ ↑ ↑ ↓ ↑ ↓ ↑ ↑
↑

Disordered chain σ0α σ1α σ2α ⋯⋯
Probe spin σPα

Probe-chain coupling

t

Support of σPz (t)
r ∝ log(Jt)

Figure 8: Logarithmically growing light cone: the Heisenberg operator σz
P(t) (in

(22)) is localised to the probe spin site time t = 0. Under time evolution, the
support spreads and defines a light cone. After a time t, this light-cone has width
r(t)∝ log J t (green).

More careful analysis of the Hamiltonian resonance model finds that below a frequency
timescale ωλ := v(λ), the decay of [Czz(t)] is dictated by a form

[Czz(t)]∼
1
p

log J t
, t > 1/ωλ (112)

consistent with hydrodynamics. We note this corresponds to a time averaged value which goes
to zero as [Czz] ∼ ξ−1/2. However, as (112) applies outside of the regime of self-consistency
of the resonance model, we relegate further discussion to Appendix B.

5.3 Localised finite-size crossover

As the resonance probability is small for L � 2
p
λ , the RM predicts a localised finite-size

crossover (i.e. a localised region I).
First, the time-averaged correlator [Czz] is close to unity in both the Floquet and energy

conserving cases, and thus retains long-time memory:

lim
ξ→∞

[Czz] =

¨

e−L/2λ , (Floquet) ,

e−
p

L/2λ , (Energy conserving) .
(113)

Next, the late-time memory implies that small subsystems of the chain have sub-thermal en-
tanglement entropy. This prediction is in agreement with numerical observations in Ref. [58].

Finally, dynamics in the finite size crossover is characterised by a dynamical exponent
z =∞ as per the logarithmically growing light cone (see (50) and Fig. 8). The length-energy
relationship set by the matrix elements t ∼ v(r)−1 determines the light cone; any l-bits outside
the light cone are not entangled with the probe spin. In the thermal phase, we expect that
the logarithmic expansion of the light cone crosses over to ballistic or diffusive expansion for
t >ω−1

ξ
in Floquet and Hamiltonian systems respectively.

Ref. [75] numerically observed stretched exponential decay of typical spatial correlations
in eigenstates in the MBL-thermal crossover region and noted the similarity of their numerical
results to that near an infinite-randomness fixed point. Although we do not flesh out the
connection between the RM transition and the infinite-randomness transition here, we note
that both theories predict z =∞ and logarithmically growing light cones.
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Figure 9: Drift of the critical disorder strength Wc(L) with L at small sizes: The main
plot shows the probe spin eigenstate averaged entanglement entropy [SP] predicted
by our analysis of the resonance model (calculated using Eqs. (119,92)) as a func-
tion of disorder strength for L = 5, 10,15, . . . 60 (coloured solid lines). The dashed
black dashed line indicates the L→∞ limit. Inset: corresponding values of Wδ with
δ = 0.01 (green solid line) vs L, and the corresponding analytic curve from (116)
(black dotted line). The red dotted line is a linear fit at small L. We see that
Wc(L)∝ L at small L. Parameters: 1/ξ = log(W/Wc), Wc = 10, λ as given by (82),
and J = 1.

5.4 Scale-free resonances near the finite-size crossover

In region I (and II), the probability of resonance at range r is scale free

lim
ξ→∞

q(r) =









1

λ
, (Floquet) ,

1p
rλ

, (Energy conserving) ,
(114)

resulting in the formation of resonances on all length scales. This feature of the thermal-MBL
crossover in small systems has been observed numerically in Ref. [62].

5.5 Linear drift of critical disorder strength with L

The RM predicts a ubiquitous feature of small system numerics on disordered chains: that
the critical disorder strength increases approximately linearly with L. Refs. [1] and [2] argued
this drift to be inconsistent with the existence of MBL; the RM however provides an alternative
explanation.

The origin of the drift lies in the localised nature of region I. On increasing 1/ζ at small
sizes, the chain crosses over from thermal to localised behaviour when the correlation length
first exceeds the system size |ξ| ≈ L (see Fig. 1). The critical 1/ζ (and equivalently the critical
disorder strength) thus increase with L.

This drift can be quantified: let Wδ(L) denote the disorder strength at which the time-
averaged correlator [Czz] deviates from its value in the infinite temperature Gibbs ensemble
by some small amount δ,

[Czz(Wδ)] = δ� 1 . (115)

For the Hamiltonian RM, algebraic manipulation of (90) with 1/ξ= log(W/Wc) yields:

Wδ(L)≈Wce
−`δ/(L+1) . (116)
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for some δ-dependent constant `δ. Over a regime of sufficiently small L, this function is
approximately linearly increasing with L (see Appendix D for derivation).

More generally the linear growth of Wδ follows from Taylor expanding ξ near W = Wδ.
Precisely, if we identify ξ(Wδ(L))∝ L, (for some δ-dependent constant of proportionality),
and consider the taylor expansion

ξ(W ) = ξ(Wδ(L)) + (W −Wδ(L))ξ
′(Wδ(L)) + . . . (117)

about the point W =Wδ(L +∆L) we obtain

∆Wδ :=Wδ(L +∆L)−Wδ(L)∝
∆L

ξ′(Wδ(L))
. (118)

Eq. (118) and the linear-in-L drift of the critical point follow provided W is sufficiently far
from the transition that i) the Taylor expansion is valid (i.e. |W −Wδ(L)|< |Wδ(L)−Wc|) and
ii) that ξ′(Wδ(L)) is slowly varying in L.

The drift in the critical point has been observed in various statistics across many studies [].
As an example we consider the spectrally averaged spin (or p-bit) eigenstate entanglement
entropy [SP]. This quantity is finite in the MBL phase [SP] = O(1) (tending to zero at strong
disorder), whereas in the thermal phase [SP] = log 2 up to corrections which are exponentially
small in L. Within the resonance model, [SP] is given by

[SP] = log 2
�

1− [Czz]
�

. (119)

In Fig. 9 we plot [SP] for the Hamiltonian RM as a function of the re-scaled disorder strength
(using 1/ξ = log(W/Wc)). The probe spin entropy is maximal in the cat states, and is zero
is the fraction [Czz] = F(L/2) of states that do not resonate. The inset confirms that the
deviation (Wδ−Wc) increases linearly with L at small L, before converging to zero from below
at large L.

A similar analysis in the Floquet RM predicts a linear drift of the critical frequency at which
localisation sets in with L for fixed disorder strength.

5.6 Exponential increase of the Thouless time with disorder strength

Refs. [1] and [2] numerically studied the scaling of the Thouless time with disorder strength
in the thermalising phase. The Thouless time is defined as the time-scale above which random
matrices govern quantum dynamics in chaotic systems, or equivalently as the inverse of the
energy scale below which the random matrices govern eigenstate properties. Through a de-
tailed study of the spectral form factor and [S(ω)], Refs. [1] and [2] argued that the inverse
of the Thouless time ωTh. exponentially decreases with disorder strength:

ωTh.∝ e−cW/J . (120)

Should this behaviour continue asymptotically as L → ∞, then the numerically observed
MBL-thermal crossover is simply a finite-size effect caused by ωTh. becoming smaller than the
Heisenberg time ω−1

H . That is, the observed localisation is simply a consequence of the small
sizes accessible to exact numerics.

The RM provides an alternate explanation for (120) while allowing for a MBL phase. In a
diffusive system, the Thouless time is set by the time taken by a localised packet of energy to
spread over the system. For diffusion constant D, thus ωth. = D/L2. As the packet takes time
ω−1
ξ

to spread a distance ξ, D =ωξξ
2. Combining these estimates

ωTh. =
D

L2
=
ωξ ξ

2

L2
≈ Jξ2

L2
e−2|ξ|/ζc , (121)
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where ≈ indicates the dropping of an O(1) factor.
Next, consider the correlation length ξ(W ). It is a smooth function of the disorder strength

W and diverges at the critical disorder Wc defined by ζ = ζc. As discussed in Sec. 5.5, the
crossover from spectrally averaged statistics being close to their thermal values, to close to
their localised values occurs at disorder strength Wδ, a much weaker disorder strength than
Wc in small systems sizes. We may thus Taylor expand ξ near W = Wδ (as in (117)) from
which the exponential dependence of the Thouless time on the disorder strength W of (120)
follows.

5.7 Apparent sub-diffusion in the RM thermal phase

Eqs. (53) and (90) predict a continuously varying exponent for the spectral function
[S(ω)] ∼ ω−1+θ above a threshold frequency scale ωξ in the thermal phase. The RM thus
explains the apparent sub-diffusion (as measured by the dynamic exponent 1/θ) reported in
several studies [66–70] without any reference to rare regions, and indeed predicts such ap-
parent sub-diffusive behaviour even in Floquet systems without any conservation laws. This
prediction of the RM may resolve a mystery about the absence of broad distributions of the
conductivity (across disorder realisations) that are expected in a sub-diffusive regime charac-
terised by weak links [55,56].

We note that Ref. [76] (in the supplementary material) previously speculated that rare
resonances may lead to apparent sub-diffusive behaviour in the thermal phase.

5.8 Exponentially enhanced sensitivity to eigenstates or ‘maximal chaos’

The fidelity susceptibility χa measures the sensitivity of an eigenstate |Ea〉 to perturbation by
a local operator U . It is defined as

χa =
∑

b 6=a

�

�

�

�

〈Eb|U |Ea〉
Eb − Ea

�

�

�

�

2

. (122)

The mean of the logarithm of χ (defined as the average of logχa across infinite temperature
eigenstates and disorder realisations) shows the following scaling with L:

[logχ]∼
(

L · log 2 , thermal ,

L0 , MBL .
(123)

Ref. [2] made two observations about the distribution of logχa at numerically accessible
sizes. First, there is a regime of maximal chaos separating the thermalising and MBL regimes
in which

[logχ]∼ L · 2 log 2 , (“maximal chaos”) . (124)

Second, the tails of the distribution in the putative MBL regime (in which [logχ] saturates)
are fatter than expected from a Poisson distribution. The authors explained both observations
through the exponential enhancement of matrix elements between eigenstates with energy
differences comparable to the many-body level spacing, and concluded that such enhancement
is inconsistent with MBL.

The RM explains both observations in Ref. [2] assuming a thermodynamic MBL phase.
Consider a pair of resonant cat states |E′

a,b〉= (|Ea〉 ± |Eb〉)/
p

2 involving the re-arrangement
of l-bits at range r = L/2 and splitting comparable to or less than the many-body level spacing.
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A generic local perturbation U will couple these states as 〈E′a|U |E′b〉= O(|U |) 4. Consequently,
their fidelity susceptibility is very large, increasing as ∼ 22L .

In the numerically accessible MBL-thermal crossover, a finite fraction q(L/2)∆L of the
eigenstates are involved in resonances with range between L and L +∆L and splitting com-
parable to the many-body level spacing. The RM thus predicts maximum chaos (124) at the
finite-size crossover. More precisely, in regions I and II of the Floquet RM

[logχ] =

∫ L

0

s(r) log
�

|U |2ρ2(r)
�

= L (2 log 2+O(λ/L)) , (125)

where ρ(r) sets the typical inverse level spacing for a resonance at range r, and

s(r) = q(r)exp(−
∫ L/2

r
q(r ′)dr ′), is the probability that the longest range resonance for a given

state is at range r. Thus, maximum chaos is approached as L becomes closer to λ.
In the RM MBL phase, the fraction of states involved in system-wide resonances q(L/2) is

exponentially small in L. These states thus do not contribute to [logχ], which is independent
of L. Nevertheless, these rare states lead to increased weight in the tail of the distribution of
logχ . This explains the second observation of Ref. [2].

5.9 Absence of a cut-off at the Heisenberg time in the MBL phase

We find that the dynamics in the MBL phase are not cut-off by the Heisenberg time
tH ∼ ω−1

H ∼ J−12L . Instead, the RM is cut-off by an exponentially larger in L time-scale
set by ω−1

c :
ωc = v(L/2) =ωHe−L/2ξ . (126)

The dynamics on the time-scales t �ω−1
H are due to the rare cat states with energy splittings

that are smaller than the typical level spacing.
The existence of a timescale longer than the Heisenberg time tH contradicts commonly

held lore that at tH the system “realises” that it is finite, the discreteness of the spectrum is
resolved, the dynamics becomes quasi-periodic, and thus there cannot be physically meaning-
ful dynamics beyond tH. This lore neglects that in the localised phase all local operators have
discrete (i.e. pure-point) spectra even before tH, so there is nothing to “realise” at tH.

5.10 A simple numerical stability criterion for MBL

Following the discussion in Sec. 4.2, MBL requires that the expected number of resonances
induced by a local perturbation V in a typical eigenstate of the chain is much smaller than
unity:

∫ ∞

0

dr q(r)� 1 . (127)

Using the tools developed in Sec. 4.1, we can re-write the above criterion in-terms of the
aggregated distribution %(v) of off-diagonal matrix elements of V :

∫ ∞

0

dv v%(v) = ρ v̄� 1 . (128)

Here ρ is the many body density of states in some small mid spectrum window of width ∆,
and

v̄ =
1

∆ρ

∑

b

|Vba| (129)

4To see this note that if U = τz
n

on a site n in which τan 6= τbn, then U has an order one matrix element between
the two cat states (and similarly for any string of τz

n
with an odd number of such terms). 〈E′

a
|U |E′

b
〉= O(|U |) then

follows as a generic local operator U has O(|U |) overlap onto such terms

30



SciPost Phys. 12, 201 (2022)

0.5

0.6

0.72

0.86

1.02

1.22

1.46

1.75

2.09

2.5

3.

3.58

[S(ω)] ~ C/(W ω), Ref.[2]
[S(ω)] ~ C'/(ω |log(ω) -1/2 ), Eq. (109)

1 5 10 50 100 500 1000
0

1

2

3

4

5

6

7

(W ω)-1

(
[S
(ω)]ω

W
)-
2
×
1
0
-
3

Figure 10: Spectral function data from Ref. [2]: Disorder averaged spectral function
data for the random XXZ model from Fig. 2a of Ref. [2] (same colour scheme).
Different series correspond to different disorder strengths W (legend above). Here
we plot ([S(ω)]ωW )−2 as a function of (Wω)−1 so that the pure 1/ω divergence
predicted by Ref. [2] appears as a horizontal line (black solid, C = 0.0179) whereas
the form predicted in this work, (110), appears as line of constant gradient (black
dashed). Agreement with (110) is seen for 1.4 decades for (Wω)−1 ∈ [1.7, 40].

is the mean matrix element in the same window for a mid-spectrum state a.
Eq. (129) provides a simple numerically tractable criterion for MBL. As L→∞, the quan-

tity ρ v̄ grows exponentially with L in a thermalising phase that satisfies the eigenstate ther-
malization hypothesis, but saturates in a MBL phase:

ρv∝ 2L/2 (thermal) , ρv = cons.� 1 (MBL) . (130)

Note that (129) makes no reference to a l-bit basis. When %(v) ∝ v−2+θ0 at small v, the
stability criterion implies that 0≤ θ0 < 1 for MBL.

Eq. (129) generalises the stability criterion to thermalising avalanches introduced in
Ref. [48]. Ref. [48] studied the stability of a MBL system composed of l-bits to a thermal-
ising inclusion, and argued that ζ (the length scale controlling the localisation of a physical
spin operator in the l-bit basis) must be smaller than ζc = 1/ log 2. Re-writing the avalanche
criterion in terms of properties of off-diagonal matrix elements, we obtain (129) with no ref-
erence to either rare regions or to l-bits.

6 Discussion

We have presented the RM, a model of the finite-size MBL-thermal crossover in which the
localised phase is destabilised by many-body resonances, rather than rare low-disorder regions.
The RM is consistent with a stable MBL phase, and reproduces several numerically observed
features of the MBL-thermal finite-size crossover, including the controversial observations of
Refs. [1,2].

Fig. 10 re-plots the [S(ω)] data in Fig. 2 of Ref. [2]. The plot shows the frequency de-
pendence of [S(ω)] at several disorder strengths 0.5 ≤ W ≤ 2.5 in the putative thermalising
phase of the disordered spin-1

2 XXZ chain. Ref. [2] argued that the data is consistent with the
scaling law [S(ω)]∼ C/(Wω) (black horizontal line) over an increasing range of frequencies.
We instead argue that the data is consistent with the scaling law predicted by the Hamiltonian
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RM with a logarithmic correction (dashed black line). Indeed, the curves for W ¦ 1 align with
the RM prediction over ≈ 1.4 decades in frequency, while evidence of the plateau predicted
by Ref. [2] is visible only in two of the curves with W ≈ 1.5,1.75, and over less than a decade
in frequency. The behaviour of the curves with W ≈ 1.5, 1.75 is however noteworthy, and not
immediately explained by the RM. To settle the debate between the two scaling predictions
requires more systematic numerical investigation of the effects of system size on the curves in
Fig. 10. Specifically, numerics at larger L should reveal which of the two regimes (the linear
growth or the plateau) expands with increasing L.

The RM makes several numerically testable predictions about Floquet and quasi-periodically
modulated spin chains. First, Sec. 5 applies without alteration to the quasi-periodic case. Sec-
ond, the exponent θc controlling the strongest low-frequency divergence of the spectral func-
tion in region I in the Floquet case is non-universal and non-zero, in contrast to the Hamiltonian
RM with θc→ 0+. Third, Floquet systems on the thermalising side of the finite-size crossover
would also exhibit apparent sub-diffusive scaling in their spectral functions. The origin of this
apparent sub-diffusion is the formation of many-body resonances on length scales shorter than
ξ. Fourth, irrespective of the type of disorder or the number of conservation laws, we predict
logarithmically growing light cones in the thermalising phase for t ®ω−1

ξ
. Finally, observables

conditioned on the formation of resonances could detect the MBL-region I crossover in Fig. 1a.
Eq. (130) offers a new numerical criterion to differentiate localised and thermalising sys-

tems. Analogous to the G parameter in Ref. [77] and the typical fidelity susceptibility [2], ρv

is exponentially larger in L in the thermalising phase as compared to the MBL phase. Prelim-
inary work on a disordered Ising model suggests that (130) bounds the transition out of the
localised phase to larger disorder strengths than other standard criteria based on energy level
statistics or eigenstate entanglement entropies.

Future work could explore the RM along several axes. The first is to establish whether
the distribution of sample conductivities (across disorder realisations) predicted by the RM is
consistent with the observations of Ref. [55]. This would add further evidence to the claim that
many-body resonances, and not rare regions, give rise to the apparent sub-diffusion observed
in numerical studies.

The second is to compare the eigenstate correlations predicted by the Hamiltonian RM
to those from the Anderson model on the random regular graph (RRG) [78, 79]. The RRG
Anderson transition is believed to model the MBL-thermal transition if one identifies each site
of the RRG with a computational basis state of a disordered spin chain [80]. Using Mott-type
resonance arguments similar to those of Sec. 3, Ref. [78] recently argued that in the RRG
localized phase, the correlator [tr (Πn(t)Πn(0))] (where Πn(t) is the time evolved single site
projector onto the site n) has a Fourier spectrum β(ω)which diverges as a power law asω→ 0.
Identifying each Πn with |Eaσ〉〈Eaσ|, a product state of the probe spin and the disordered
chain, the RM predicts that β(ω) diverges exactly as [S(ω)] (27). The reconcilation of the
RM with the RRG is however less apparent in the thermal phase, where the latter predicts a
correlation length that diverges with a different exponent than in the RM.

The third is to attempt an extension of the RM to the asymptotic limit in systems with
correlated disorder. The RM neglects the effects of rare low-disorder regions; these regions
dictate the asymptotic transition in randomly disordered systems [45, 46, 57, 61, 64, 81–86].
Contrarily, in MBL chains with quasiperiodic [87–89] or sufficiently hyperuniform [90] dis-
order, as there are no such rare regions [57, 91, 92], MBL may be destabilised by many-body
resonances even in the thermodynamic limit.
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A Multiple and imperfect resonances in the Resonance Model

A.1 Imperfect cat states

In Sec. 2.2.1, we assume that pairs of resonant eigenstates of H0 form perfect cat states with
equal weights,

|εα,β 〉=
1p
2

�

|εa ↑〉 ± |εb ↓〉
�

. (131)

Their contribution to [S(ω)] is thus pure tone with no weight at zero frequency,

〈εaσ|σz
P(t)σ

z
P(0)|εaσ〉= cos(|Vba|t) . (132)

A more refined ansatz for the hybridised states would incorporate the resonance parameter
gba and lead to imperfect cat states:

|εα,β 〉=
p

p |εa ↑〉+
p

1− p eiφ |εb ↓〉 . (133)

Above, p ≈ 1/2+O(g−1
ba
). Imperfect cat states contribute delta function peaks at ω = 0 and

ω =ωa↑ ≈ |Vba|+O(|Vba|g−2
ba
)

〈εaσ|σz
P(t)σ

z
P(0)|εaσ〉= (1− 2p)2 + 4p(1− p) cos(ωa↑ t) . (134)

Accounting for the distribution of gba in (25) corrects λ, the weight at zero frequency and the
exact form of [S(ω)]. However, it does change universal features, such as the vanishing of the
exponent θ with |ζ−ζc| and the exponential decay in r of F(r), the weight at zero frequency
after all range r ′ ≤ r processes have been accounted for, as per (45).

A.2 Multiple resonances

Suppose an eigenstate |εa,↑〉 is resonant with multiple other eigenstates of H0. Here we
argue that the strongest resonance (defined by (35)) sets the frequency of oscillation of
〈εa ↑ |σz

P(t)σ
z
P(0)|εa ↑〉.

Consider the case of two resonances at different ranges. Let |εα〉 = 1p
2
(|εa ↑〉 + |εb ↓〉)

denote the cat state resulting from the strongest resonance (at the shorter range). Suppose
that |εα〉 is now resonant with another state |εc ↓〉 at larger range with some matrix element

〈εα|V |εc ↓〉= Vαc := 1p
2
(Vac + Vbc) . (135)

This matrix element is much smaller than |Vba| as |Vac |, |Vbc | � |Vba|. Treating this reso-
nance within degenerate perturbation theory splits the peak at ω = |Vba| into two peaks at
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ω = |Vba| ± |Vαc |. As this further splitting is small, we neglect it and assume that the spectral
weight remains sharply peaked around ω = |Vba|.

In the time domain this statement is as follows: an initial state |εa ↑〉 oscillates between
|εa ↑〉 and |εb ↓〉 on a time scale |Vba|−1 and tunnels into the state |εc ↓〉 on the much longer
timescale |Vαc |−1.

We generalise the above argument to many-resonance case. Suppose |εα〉 has a resonance
meditated by a matrix element |Vαc |, which leads to hybridised states

|ε′α±〉=
1p
2
(|εα〉 ± |εc ↓〉) . (136)

Take one of these states |ε′α+〉. Suppose this state has a longer-range resonance mediated by
a matrix element |V ′

αd
|. We obtain two new cat states. Suppose one of these two cat states

|ε′′α+〉 has an even longer-range resonance mediated by |V ′′αe| and so on. The initial peak at
ωa↑ = |Vba| splits into several peaks at

ω = |Vba| − |Vαc | , |Vba|+ |Vαc | − |V ′αd
| , |Vba|+ |Vαc |+ |V ′αd

| ± |V ′′αe| . . . . (137)

An analogous procedure splits each of the peaks with a minus sign in the RHS above into many
sub-peaks.

To show that such shift ∆ω remain unimportant we calculate the root-mean-square size
shift ∆ω2 as show that ∆ω2 � ωa↑. To do this we first note that the matrix elements v(r)′

connecting an already hybridised state to other unhybridised states at range r are a factor
p

2
smaller

v′(r) =
1p
2

v(r) , (138)

where as the density of states is twice as large

ρ′(r) = 2ρ(r) , (139)

yielding a probability of hybridising at range r of

q′(r) =
p

2 q(r) . (140)

Thus, supposing that the initial resonance is at a range r (i.e. that ωa↑ = v(r)) we find

∆ω =

∞
∑

r ′=r+1

v′(r ′)X (r ′) (141)

where X (r) is a random variable which takes values X (r) = 1,−1,0 with probabilities q′(r)/2,
q′(r)/2, 1−q′(r) respectively. Thus∆ω has mean∆ω = 0 and, measured in units of the initial
resonant frequency ωa↑, has variance

∆ω2

ω2
a↑
=

∫ ∞

r+1

dsq′(s)
�

v′(s)
v(r)

�2

=
e−(3+r)/ξ

16
p

2λ(4/ζc + 3/ξ)
. (142)

On the localised half of the phase diagram (ξ > 0) this quantity is exponentially decaying in r,
indicating this approximation scheme is asymptotically improving at low frequencies. In the
crossover region it is bounded by its critical value, which is much smaller than unity

∆ω2

ω2
a↑
≈ ζc

64
p

2λ
� 1 , (143)

and so does not alter the asymptotic form of the spectral function [S(ω)], whereas on the
thermal this approximation breaks down only for r > ξ, outside the regime of validity of our
calculation.
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B The spectral function [S(ω)] in the Hamiltonian RM for large

systems in the vicinity of the MBL transition: L, |ξ|> λ
In this regime hydrodynamic constraints become important. These constraints highlight the
limitations of the approximation made in (89), as F1 predicts unphysical behaviour. Specifi-
cally

lim
ξ→∞

F1(r) = e−
p

r/λ , (144)

which using [Czz(t)] = F(r(t)) (49), and the logarithmically growing light cone r(t)∝ log t

implies that the correlations decay as a stretched exponential in log t. This decay is slower than
any power law, but much faster than the maximum possible decay rate permitted by energy
conservation of

[Czz(t)]∝
1

r(t)
∝ 1

log t
. (145)

This maximum rate follows as the z-field on the probe spin σz
P has overlap with the Hamilto-

nian tr
�

σz
PH
�

=W , and any initial energy on the probe spin cannot have spread further than
the light cone front r(t).

In order to address this inconsistency we turn to a more careful treatment of Eqs. (85)
and (87). By direct numerical integration (see Appendix C.1) we find that the stretched ex-
ponential decay is cut-off at r ¦ λ by an asymptotic decay F(r) ∼ r−2, implying a decay
[Czz(t)] ∼ log−2 t. This decay is still too fast to be consistent with hydrodynamics, however,
the weakness of this violation means there are many small corrections which yield a late time
dynamical regime consistent with hydrodynamics. For example, a sub leading power law in
r on the matrix elements v(e, r) will suffice. However, here we explore the effect of energy
dependency of the matrix elements.

Instead of the energy independent form for the matrix elements (76), we now consider

v(e, r) = J exp

�

− r

ζ̃(e/r)
− r

ζc

�

. (146)

where we now allow the localisation length to vary as a function of the energy density e/r of
the patch of the system which must be rearranged to relate the two states |Ea ↑〉 and |Eb ↓〉
(As we are interested only in behaviour at asymptotically large r, we consider these states to
be at the same energy density, despite their energy difference of ±W due to the probe spin).
We consider only the leading order dependence on energy density of the localisation length

1

ζ̃(e/r)
=

1

ζ

�

1+
e

rη
+

e2

r2µ2
+ . . .

�

, (147)

where ζ is the localisation length at maximum entropy, the constant energy densities µ,η
determine scales over which ζ varies, and we have suppressed higher powers of e/r. We will
assume η =∞ as the statistical symmetry of the model implies ζ̃ should be an even function,
and µ positive and finite. This corresponds to a localisation length which is shorter away from
maximum entropy.

The energy dependence of the matrix elements then alters the form of qσ(e, r):

qσ(e, r)∼ 1p
4λr

exp

�

− r

ξ
− e2

ζrµ2
− (e + eσ)

2

4W 2r

�

. (148)

For µ positive and finite qσ(e, r) is asymptotically narrower than ρσ(e, r) at large r, we can
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extract the asymptotic behaviour of fσ by replacing qσ(e, r) with a delta function

∂ fσ

∂ r
=W 2 ∂

2 fσ

∂ e2
− γδ(ε+ 1

2σW ) fσ ,

fσ
�

e,−1
2

�

= δ
�

e − 1
2σW
�

,

(149)

where γ =
∫

deqσ(e, r) is an r independent constant at the critical point. Solving (149) (see
Appendix (C.2)) we find asymptotic decay

F(r) =

∫

de fσ(e, r)∼ 1p
r

, (150)

where here ∼ indicates asymptotic equality up to an overall constant. This yields

[Czz(t)]∼ log−1/2 J t , (151)

[S(ω)]∼ |ω|−1 log−3/2 |J/ω| , (152)

consistent with hydrodynamic restrictions.

C Solutions to the loss-diffusion (85)

In this appendix we consider the loss-diffusion equation (85)

∂ fσ

∂ r
=W 2 ∂

2 fσ

∂ e2
− fσqσ ,

fσ
�

e,−1
2

�

= δ
�

e − 1
2σW
�

.

(153)

We study two regimes:

• We first study the critical dynamics (ζ = ζc) with energy independent matrix elements
(v a function of r only). We show that the asymptotic decay of F(r) =

∫

de fσ(e, r)

is given by F(r) ∝ r−2 as quoted in the main text. This behaviour is not permitted
asymptotically due to hydrodynamic restrictions.

• We then study the asymptotic critical dynamics for energy dependent matrix
elements (146) with η =∞, and 0 < µ <∞. We show that in this case F(r) ∼ r−1/2,
behaviour consistent with hydrodynamics.

C.1 Critical point with energy independent matrix elements

Here we study the equation defined in the main text, specifically

∂ f↑
∂ r
=W 2 ∂

2 f↑
∂ e2
− f↑q↑(e, r) ,

f↑
�

e,−1
2

�

= δ
�

e − 1
2W
�

,

(154)

for the loss function

q↑(e, r)∼ 1p
4λr

exp

�

−
(e + 1

2W )2

2s2
e (r)

�

, (155)

where se(r) =W
p

2r + 1 .
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consistent with F(r) = exp(−

p

r/λ ) (dotted line). For r/λ > 1, the decay is slower
F(r)∝ (λ/r)2 (dashed). Different series correspond to different values of λ (legend
inset).
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Figure 12: Decay in F(r) for energy independent matrix elements: the distributions
fσ(e, r) are plotted for log-spaced intervals of r, using the same numerical solutions
to (154) and (156) as Fig 11. In each case it is clear that at large ranges the distri-
bution is depleted at energies e ® se(r).

We numerically solve these equations by stochastic sampling of trajectories. In Fig 11 we
plot dF/dr for different values of the parameter λ where as before

F(r) =

∫

de f↑(e, r) . (156)

We see that for all trajectories the initial decay at small r ® λ is consistent with the approximate
solution F(r) = exp(−

p

r/λ ) (grey vertical line marks r = λ) at which there is a crossover to
F(r)∝ r−2 behaviour. For these equations this latter behaviour continues asymptotically.

In Fig. 12 we show the variation of f↑(e, r) with e, specifically we plot f↑(e, r) for a series
of fixed log-spaced values of r. For clarity we also re-scale e by the width of the distribution
se(r) =W

p
2r + 1 (i.e. so that for λ =∞ the plots would collapse for all r). From these plot

it is clear that the centre of the distribution is depleted faster than the mean, that is f↑(0, r)

decays asymptotically faster than F(r). This behaviour is exhibited for r � λ and violates the
approximation scheme of Sec. 3.2.4.

37



SciPost Phys. 12, 201 (2022)

C.2 Critical point with energy dependent matrix elements

We now study the same loss-diffusion equation (153) for dynamics in the crossover region
with energy dependent matrix elements. Specifically we now set

q↑(e, r)∼ 1p
4λr

exp

�

− e2

ζcrµ2
−
(e + 1

2W )2

2s2
e (r)

�

. (157)

for some finite µ in the range 0< µ <∞.
To simplify the problem we make several approximations which do not alter the asymptotic

behaviour of these equations. First, as the width of qσ is asymptotically smaller (in r) than
se(r), for r � λ we can approximate q↑(e, r) with a delta function placed at the origin with
weight

γ=

∫

deq↑(e, r) =
Wµ

Ç

λ
ζcπ
(4W 2 + ζcµ

2)
+O(r−1) . (158)

Second, we neglect the sub-leading r-dependent correction to γ, and thirdly we neglect the
initial energy offset of f↑. This yields the equation

∂ f↑
∂ r
=W 2 ∂

2 f↑
∂ e2
− γ f↑δ(e) , (159)

with boundary condition f↑(e, r = 0) = δ(e).
To solve this equation we decompose f↑ as

f↑(e, r) =

∞
∑

n=0

fn(e, r) , (160)

which satisfy the equations
∂ f0

∂ r
=W 2 ∂

2 f0

∂ e2
, (161)

with boundary condition f0(e, r = 0) = δ(e) for n= 0 and

∂ fn

∂ r
=W 2 ∂

2 fn

∂ e2
− γ fn−1δ(e) , (162)

with boundary condition fn(e, r = 0) = 0 for n> 0. With this f0 is straightforwardly identified

f0(e, r) =
e−e2/(4rW 2)

p
4πrW 2

, (163)

and it further follows that for n> 0

fn(e, r) = −γ
∫ r

0

ds f0(e, r − s) fn−1(0, s) (164)

this equation is obtained by simply treating fn−1(0, s) as a source term for fn, in accordance
with (162), and integrating with the heat equation Kernel f0. To make progress we note that
it is sufficient to obtain the fn(0, s), which are related by a recursion relation

fn(0, r) = −γ
∫ r

0

ds
1
p

4W 2π(r − s)
fn−1(0, s) , (165)
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and related to our desired result, F(r), by

F(r) =

∞
∑

n=0

∫

de fn(e, r) = 1− γ
∞
∑

n=1

∫ r

0

ds fn−1(0, r) , (166)

where we have substituted (164).
Solving this recursion relation (165) yields

fn(0, r) =
(−1)n

γ` Γ
�

n+1
2

�

�

r

`

�
n−1

2
. (167)

where ` = 4W 2/πγ2. The function F(r) is then obtained by substituting (167) into (166),
performing the integral

γ

∫ r

0

ds fn−1(0, r) =
(−1)n

Γ

�
n+3

2

�

�

r

`

�
n+1

2
(168)

and recognising the resulting summation as a Taylor series, this yields

F(r) = er/` Erfc
�Æ

r/`
�

, (169)

where

Erfc(x) = 1− 1p
π

∫ x

−x

e−t2
dt (170)

is the usual complementary error function. From (169) it follows that F(r) decays asymptoti-
cally as

F(r)∼
√

√ `

πr
=

2W

πγ
p

r
, (171)

as quoted in the main text. The constant pre-factor here is liable to be altered by the simpli-
fications we made earlier in the calculation, however the asymptotic behaviour F(r)∝ r−1/2

is robust.

D Linear drift of the deviation from thermal behaviour

In this appendix we derive (116) from the main text

Wδ(L)≈Wce
−`δ/(L+1) , (172)

where `δ is some δ dependent constant, and Wδ(L) is defined as the disorder strength at which
the time averaged correlator [Czz] deviates from thermal behaviour by some small amount δ

[Czz](Wδ) = δ� 1 . (173)

Recalling that [Czz] = F(L/2) and using the form (90) for F(r) on the thermal side

δ = exp

�

−
√

√π|ξ(Wδ)|
4λ(Wδ)

Erfi

�√

√ L

2|ξ(Wδ)|

��

, (174)

where we have explicitly labelled disorder dependence of the correlation length ξ and the
resonance length λ. We use

ξ(W )≈ 1

log(W/Wc)
, (175)
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whereas λ is given by (82).
Let us extract from (174) how Wδ varies with L. Away from the crossover region the

imaginary error function can be written in terms of more familiar functions

Erfi(
p

x ) =
ex

p
πx

�

1+O(x−1)
�

. (176)

Substituting both (176) and λ(Wδ) = (Wδ/Wc)
2λ(Wc) into (174) and rearranging we obtain

L

|ξ(Wδ)|
+ log

Wδ

Wc
= 2 log

�p

2Lλ(Wc)

|ξ(Wδ)|
| logδ|
�

+O

�

2|ξ(Wδ)|
L

�

. (177)

Consider the RHS of (177): for sufficiently small δ we are far from the crossover L� |ξ| and
the corrections may be neglected. Now consider the leading term on the RHS of (177): this
term exhibits weak logarithmic dependence of L, and, recalling that ξ(Wδ)≈ 1/ log(Wδ/Wc),
doubly logarithmic dependence on Wδ, thus to first approximation the RHS may be replaced
by a (negative) constant −`δ:

L

|ξ(Wδ)|
+ log

Wδ

Wc
= −`δ . (178)

Then, again using ξ(Wδ)≈ 1/ log(Wδ/Wc), by rearranging we obtain the desired result (172).
This function is approximately linear for sufficiently small L. To see this, note that the

RHS of (116) has an inflection point at L = `δ/2−1, and thus has zero curvature at this point.
Taylor expanding about the inflection point and demanding that the cubic term is not larger
than the linear term reveals the approximate linearity to persist for L + 1® `δ(1/2+

p

3/4 ).
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study the many-body localisation transition?, Europhys. Lett. 128, 67003 (2020),
doi:10.1209/0295-5075/128/67003.

[61] S. Gopalakrishnan, M. Müller, V. Khemani, M. Knap, E. Demler and D. A. Huse, Low-

frequency conductivity in many-body localized systems, Phys. Rev. B 92, 104202 (2015),
doi:10.1103/PhysRevB.92.104202.

[62] B. Villalonga and B. K. Clark, Eigenstates hybridize on all length scales at the many-body

localization transition, arXiv:2005.13558.

[63] D. J. Luitz, N. Laflorencie and F. Alet, Many-body localization edge in the random-field

Heisenberg chain, Phys. Rev. B 91, 081103 (2015), doi:10.1103/PhysRevB.91.081103.

[64] A. B. Harris, Effect of random defects on the critical behaviour of Ising models, J. Phys. C:
Solid State Phys. 7, 1671 (1974), doi:10.1088/0022-3719/7/9/009.

[65] J. T. Chayes, L. Chayes, D. S. Fisher and T. Spencer, Finite-size scaling and

correlation lengths for disordered systems, Phys. Rev. Lett. 57, 2999 (1986),
doi:10.1103/PhysRevLett.57.2999.
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