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Momentum space entanglement of interacting fermions
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Momentum space entanglement entropy probes quantum correlations in interacting fermionic phases. It is
very sensitive to interactions, obeying volume-law scaling in general, while vanishing in the Fermi gas. We show
that the Rényi entropy in momentum space has a systematic expansion in terms of the phase space volume of the
partition, which holds at all orders in perturbation theory. This permits, for example, the controlled computation of
the entropy of thin shells near the Fermi wave vector in isotropic Fermi liquids and BCS superconductors. In the
Fermi liquid, the thin-shell entropy is a universal function of the quasiparticle residue. In the superconductor, it
reflects the formation of Cooper pairs. Momentum space Rényi entropies are accessible in cold atomic and
molecular gas experiments through a time-of-flight generalization of previously implemented measurement

protocols.
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Consider a many-body quantum system described by a
wave function |¢i. For any partition of the system into regions
A and A4, the nth Rényi entropy is

£ n
Sn(4) = InTr pj , (1)

I-n
where ps = Tr;|¢ihg | is the reduced density matrix of sub-
system A. Real space partitions have been extensively studied,
as the scaling of S,(A4) with the size of 4 characterizes ground
state properties in equilibrium [1-4] as well as dynamical
properties out of equilibrium [5-9]. The spectrum of eigenval-
ues of p4 can also probe the physical excitation spectrum [10]
and the dynamical phase at nonzero temperature [11-13].

Real space Rényi entropy has been measured in systems
of ultracold bosonic atoms [14,15] and trapped ions using
several protocols [16,17]. Such measurements provide impor-
tant experimental tests of quantum thermalization in isolated
systems. Modified protocols have also been proposed for mea-
suring real space entanglement in fermionic systems [18,19].

For translation-invariant fermionic systems, it is natural to
consider partitions of |¢i in momentum rather than real space
(real space cuts are discussed in Refs. [4,20]). Momentum
space entanglement is extremely sensitive to interactions: In
the ground state of the noninteracting Fermi gas, S,(4) = 0
for any momentum partition 4. Generic interactions couple all
momentum modes to one another, which implies that S,(4)
V'|A|, where V is the volume of the system and |4] is the k-
space volume of 4 (volume-law scaling) [21]. The entropy per
mode, sy(4) = Sy(4)/V|A4], thus characterizes the effect of
interactions in the system.

In this Letter, we compute s,(4) in the ground state of
an isotropic Fermi system with short-range interactions [see
Eq. (4)]. This model realizes a Fermi liquid when the interac-
tions are repulsive and an s-wave superconductor when they
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are attractive. In both phases, the lowest energy modes lie in
thin shells near the nominal Fermi wave vector kr, which is a
natural regime to search for universal phenomena (see Fig. 1
inset). Below, Asr denotes the set of modes with momenta in
the range [k~ 6k, k_], and its spin-up (spin-down) polarized
counterparts are Al\k (A‘Jgk .

We show that correlations between the different modes in
Agk vanish as 6k = 0, such that the entropy S,(4sx) is simply
the sum of the single mode entropies. In the main text, for
simplicity, we argue that this holds within a certain Gaussian
approximation for the interacting system. The Supplemental
Material [22] generalizes this argument, relaxing the Gaussian
approximation by using diagrammatic techniques to relate the
entropy to the free energy of interacting fermions on pantslike
manifolds (see Fig. 2).

In the Fermi liquid, as the single mode entropy arbitrarily
close to the Fermi surface is characterized by the quasiparticle
residue zi,., the Rényi entropies of thin-shell cuts have univer-

sal forms. For example, the second Rényi entropy is given by
n #

(ds) = 21n + O(6k/kr). )

1+ zip

In the s-wave superconductor, BCS theory predicts the
presence of a superconducting gap I and Cooper pairing of
fermions with opposite spin and momenta. Nontrivial momen-
tum space partitions must trace out “half” of a Cooper pair;
for partitions invariant under the transformation kK - -k, this

requires that the partition is spin polarized. For A;I;C, the second
Rényi entropy is given by
( S
2 (1 - 2"Y2)1/(vebk), vrbkA 1,
$2(A4 3
2B ke 1, O

where vr is the Fermi velocity. The saturation to the value In 2
reflects Cooper pairing throughout the thin shell. These results
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FIG. 1. The second Rényi entropy per mode s2(4 5/,[) for a spin-
polarized, thin-shell partition near the Fermi wave vector (inset).
Here, g(?r) is the density of states at the Fermi energy, and the
arrows in the inset indicate virtual processes that contribute to the
entropy of the interacting ground state. The entropy is controlled by
the quasiparticle residue z;, in the Fermi liquid, the gap 1 in the
superconductor, and vanishes in the Fermi gas.

for the Fermi liquid and superconductor are summarized in
Fig. 1.

Existing experimental protocols to measure real space en-
tropy [16,17] can be simply generalized to momentum space,
as the underlying procedures do not prefer a particular single-
particle basis prior to final measurements. We discuss the
generalized schemes further below. Several groups have mea-
sured single-atom-resolved correlations in momentum space
in various ultracold bosonic and fermionic systems in the last
few years [23-27], and have paved the way for the Rényi
entropy measurements that we propose.

Momentum space entanglement has been previously stud-
ied in chiral and nonchiral fermionic systems. In the chiral
quantum Hall setting, momentum space partitions are de-
signed to probe the physics of a real space edge [10,28], so
their physics is quite different. In a chiral nonlinear Lut-
tinger liquid, quantum many-body scars may be diagnosed
by their low momentum space entanglement entropies [29].
In the nonchiral setting, various features have been reported
in model studies in disordered systems [30-33], related spin
chains [34-36], Luttinger liquids [37,38], Hubbard mod-els
[39,40], and field theories [41-44].

Fermi liquids. Consider the following model of an isotropic
Fermi liquid,

H= Hy+ Hi,
X
Ho = Ekkz/zm _{;F) fk7 fib, ko
U _
Hi = 7 f,jnf;ﬁ,mm 4)
ki+p =ky+p,

where ],:L (fo) are fermion creation (annihilation) operators
with momentum k and spin o, U is the interaction strength,

and ?r is the Fermi energy. Throughout this Letter, we take
| @i to be the ground state.

Let us warm up by considering 4 = {ko} a single spin-
polarized mode. In this case, number conservation dictates
that p4 is diagonal in the Fock basis with entries hnsi and 1
- hngoi. The single mode Rényi follows immediately,

Su({ko}) =

T In[hngei” + (1 - hmggi)"]. (5)
If the mode lies near the Fermi surface, the occupation
hniei = (1 z,)/2 where we take + (=) for k inside (out-
side) the Fermi surface. Accordingly, the single mode entropy
near the Fermi surface is an elementary function of the quasi-
particle residue.

In general, going beyond a single mode is analytically chal-
lenging in an interacting state. As an approximate approach,
we start by neglecting all multimode connected correlations.
This “Gaussian approximation” to the Renyi entropy is com-
puted by taking the true one-body density matrix

Gioooso = Nipyofiol (6)

restricted to the modes in 4 and using the Peschel result for
noninteracting fermions [45],

S9(4) = tl£G:"+ 1-G ~ 7
i (A) rln G, + ( la)" 7

1-n
For the Fermi liquid, momentum and spin conservation dictate
that G|, is already diagonal for ko -space cuts with eigenval-
ues given by the occupations hnsi. With reference to Eq. (5),
we find that the Gaussian approximation predicts that the
Rényi entropy is simply the sum of the (exact) single mode
entropies,

oo X
Sy (4)

koA

Su({ka }). ®)

For general partitions A, this approximation is uncon-
trolled. For example, if 4 is the entire system, the true
entropies vanish while Eq. (8) predicts an extensive positive
value. On the other hand, S¢ is clearly exact for 4 consisting of
a single spin-polarized mode. More generally, short-range
interactions in real space lead to long-range interactions in ko
space with an interaction strength that scales inversely with
the volume V', as discussed in the Supplemental Material [22].
Perturbatively, the associated connected correlations vanish
for finite sets of modes; we thus expect that the Gaussian
approximation is accurate for sufficiently small cuts 4 in ko
space.

More precisely, in the Supplemental Material [22] we show
that

Sn(Ask) - S,({ka'}) B O[(6k/kr)*] 9
koBRAs;

holds to all orders in perturbation theory in the coupling U.
Formally, we obtain this result by relating the various Rényi
entropies in Eq. (9) to the free energy F") (W) of systems
of interacting Grassmann fermions on pantslike manifolds in
ko space and imaginary time with varying waist regions W
(see Fig. 2). Comparison of the diagrammatic expansion for
F®™ on each of those manifolds allows us to show that the
terms which contribute to Eq. (9) are indeed controlled by 6k
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FIG. 2. The imaginary time manifold for pants in ko-t space with various waists ¥, arising in the computation of the Rényi entropy: (a)
the normalization free energy F*) (&) (“tubes™), (b) the single mode Rényi free energy F ) ({go}) (“low-rise jeans™) and (c) the 4 Rényi free
energy, F"(A4) (“pants”), all shown for n = 2. The vertical axis shows imaginary time extending from 0 to n8, with boundaries cut and glued
according to the markers. The horizontal axis is a schematic representation of ko space.

at all orders. The reader might find it instructive to compare
our approach with those of Refs. [46,47], which compute
fermionic entropies without manifold embeddings.

Putting Egs. (5), (8), and (9) together for a cut Asx near
the Fermi surface recovers the universal result quoted in the
introduction, Eq. (2).

Superconductors. As the Cooper pairs in an s-wave super-
conductor are composed of fermions with opposite spin and
momentum, it is natural to focus on spin-polarized partitions
A" of momentum space.

In this case, spin symmetry dictates that Eqs. (6)—(8) still
provide the Gaussian approximation to the Renyi entropy. In
particular, G| is diagonal and the anomalous correlator
hfiweo fkoi vanishes when restricted to 4 7. Note that the Gaus-
sian approximation with nonvanishing anomalous correlators
in A4 is different from that given in Eq. (7) (see, e.g., Ref. [45]).

Furthermore, as the discussion leading up to Eq. (9) sug-
gests, the relationship between the single mode entropies
and that of thin shells holds quite generally, although one
needs to take into account symmetry breaking correctly. In
the Supplemental Material [22], we show that Eq. (9) holds
for spin-polarized partitions AT in the presence of s-wave
superconducting order. In sum, the spin-polarized thin-shell
Rényi entropies can be computed using Eqs. (7)—(9) as is.

Of course, in order to actually compute SG(4T), one needs
to know the occupation numbers of the {k 1} modes in the
shell. BCS theory provides a self-consistent mean field ap-
proach to computing these occupations,

1 ?
hf firi= (B q % (10)
e 2 2 2
&+ 1]

where | 1| is the gap. Straightforward algebra produces
hg/2c W " M 11

In

-n 2r

&
&+ |11

Su(k ™M= In2+ ]
(11)
The scaling of sn(A/gk) with |1| depends on its relative

size with the energy scale of the thin shell. In the small gap
limit |1| ¢ vrbk, we can expand (11) in powers of | 1/&| or

| €x/1] to obtain

B e
n 1&° - 1 ,
S (kM= P22 n‘flf,:1 "2)5’f'>|<'fk|'< 111 (12)

Summing up all contributions leads to the result in Eq.
(3), which confirms the following simple intuition. When |1|
A vpébk, all modes within the thin shell are strongly hy-
bridized, resulting in the saturation of s,(4,) to the maximal

value In2. On the other hand, when 1| ¢ vrék, sn(A;fk)
scales linearly in |1]|/vrék, since only modes within a region
| 1] around the Fermi surface are strongly hybridized.

Free Dirac transitions. Within BCS theory, the supercon-
ducting gap 1 exhibits an essential singularity at Ug(%) = 0.
The thin-shell momentum space entropy shown in Fig. 1
inherits this singularity. It is natural to conjecture that this is
connected to the presence of a spectral gap for U < 0, and
that in analogy with real space entanglement, momentum space
entropy can exhibit nonanalyticities in response to gap-
inducing perturbations. We test this hypothesis by computing
the second Rényi entropy of spin-polarized momentum balls
around a Dirac point in D spatial dimensions. On tuning the
mass m, we find a generic nonanalyticity

24T B |m|PIn |m| (13)

in the free theory (see Supplemental Material [22]). We leave
the extension to the interacting critical theory to future work.

Measurement protocol. A series of experiments with ultra-
cold bosons have demonstrated that real space Rényi entropy
can be measured by preparing copies of a quantum state
and interfering them appropriately [14,15]. Here, we briefly
review this protocol, which has been extended theoretically
to fermionic systems as well [18,19], and generalize it to
momentum space.

Begin with two identical copies of a quantum state in a pair
of optical lattices; typically these are prepared by independent
but identical time evolution in each copy. A beam splitter then
interferes the two copies by freezing each of their dynamics
and allowing for tunneling between them using an optical
superlattice. This operation maps fermions in the first (a") and
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second (b") copies as

Ty pf J—

al, > a—”v% B, > b—"v% (14)
Microscopy techniques are then used to measure site and
spin-resolved particle densities, from which the second Rényi
entropy of an arbitrary real space partition is calculated [48].

Prior to measuring particle densities in real space, this pro-
tocol does not privilege any particular single-particle basis; it
is the measurement basis which determines the partitions that
can be accessed. Replacing real space microscopy with a time-
of-flight (TOF) single-atom-resolved measurement [23-27]
enables the computation of momentum space Rényi entropies
in near-term experiments. In TOF, the atoms are released
from the optical lattice and absorption imaging is used to
reconstruct the initial momenta [49].

Discussion. We have shown that momentum space entan-
glement S,(4) in the ground state of interacting fermionic
systems permits a systematic expansion in the phase space
volume of A4 (shell width 6k - 0). This is analogous to the
systematic expansion of the real space entanglement entropy
in subsystem size * > oo,

In real space, the coefficient of the leading term is universal
in gapless phases, where it captures the central charge in
one-dimensional critical systems [1-3] and the geometry of
the Fermi surface in higher D [4,20]. In momentum space,
we find that the leading contribution to the entanglement
entropy of thin shells near the Fermi surface depends only
on the quasiparticle residue zk,. An interesting avenue for
future work is to compute the O(6k?) contribution, where we
expect the Landau parameters to play a role as they reflect the
correlations between k modes.

The one-dimensional interacting Fermi system realizes a
Luttinger liquid where z;, = 0. Despite the more dramatic
reorganization of the ground state from the noninteracting
Fermi sea, we nonetheless expect s2(4sx) = 21In2 + O(6k).
This follows by applying our results to the parquet-diagram
based perturbative treatment of the Luttinger liquid [50]; it
would be interesting to check this in a direct multimode cal-
culation, building on Ref. [36].

The detailed understanding of real space entanglement
has fed into great improvements in matrix-product based nu-
merical techniques [51-53]. As the phase space expansion
gives systematic control of entanglement in momentum space,
we expect similar positive feedback on the development of
momentum space based algorithms [40,54-56]. Separately,
momentum space based quantum Monte Carlo techniques on
manifolds of the type in Fig. 2 should give direct access to
thin-shell entropies [57-59].

Our diagrammatic proof shows that the leading term in 6k
is given by the sum of the exact single mode entropies for
short-range interactions and choices of spin polarization in
the thin shell 4. We expect these arguments can be extended to
Coulomb interactions and more complicated symmetry break-
ing patterns. This paves the way to systematically explore
momentum space entanglement in more complicated phases
such as unconventional superconductors, antiferromagnets,
and electron nematics.
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