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Coupled layer construction for synthetic Hall effects in driven systems
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Quasiperiodically driven fermionic systems can support topological phases not realized in equilibrium. The
fermions are localized in the bulk, but support quantized energy currents at the edge. These phases were
discovered through an abstract classification, and few microscopic models exist. We develop a coupled layer
construction for tight-binding models of these phases in d � {1, 2} spatial dimensions, with any number of
incommensurate drive frequencies D. The models exhibit quantized responses associated with synthetic two-and
four-dimensional quantum Hall effects in the steady state. A numerical study of the phase diagram for (d +
D) =  (1 +  2) shows (i) robust topological and trivial phases separated by a sharp phase transition, (ii) charge
diffusion and a half-integer energy current between the drives at the transition, and (iii) a long-lived topological
energy current which remains present when weak interactions are introduced.
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I. INTRODUCTION

Time-dependent driving is a useful tool in quantum simu-
lation and computation, and can create new nonequilibrium
phases of matter [1–5]. The most studied example is peri-
odic (Floquet) driving. Beyond the ubiquitous Rabi effect,
Floquet driving is an emerging tool in band [1–4,6] and
crystal lattice engineering [7]. In the steady state, Floquet
phases can also exhibit period doubling [8–11] and topo-
logical phases [12–26], some of which are impossible in
equilibrium.

For instance, two-dimensional fermionic systems sup-
port a topological phase with chiral current-carrying edge
modes [13,15,17–19,23,26]. Such behavior is only possible in a
two-dimensional static insulator when populated bands have a
nontrivial Chern number, but this requirement is evaded in the
driven setting. The drive is engineered to move fermions in
short loops—similar to cyclotron orbits—which results in
skipping orbits at the edge of the system, while the bulk may
be fully localized. These anomalous Floquet-Anderson insula-
tors (AFAIs) have prompted keen interest in the nonadiabatic
properties of driven phases of matter [5,20,21,23,27].

The study of quasiperiodically driven systems—those
driven by multiple drives of incommensurate frequencies—
goes back several decades [28–42]. The characterization of
novel effects in these systems as being properties of new
nonequilibrium phases of matter is more recent [22,43–55].
Quasiperiodic driving can stabilize topological edge modes
in interacting chains without any symmetry [49,55], and even
driven qubits can exhibit quantized responses [50–53,56,57].

There is an intimate connection between quasiperiod-
ically driven topological phases and Floquet phases in
higher dimensions [52,53]. Specifically, the steady states
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of a d-dimensional tight-binding model driven by D in-
commensurate tones follow from the eigenstates of a (d
+  D)-dimensional static model on a frequency lattice
[28,56,58–60]. This construction relates the AFAI with (d +
D) =  (2 +  1) to a (1 +  2) quasiperiodic Floquet-Thouless
energy pump (QP pump)—a one-dimensional phase of two-
tone-driven fermions. This connection reveals that the QP
pump supports localized edge modes which mediate an energy
current between the drives (Fig. 1). This energy current has a
quantized average value,

P =  topW , where Pop =  
Ä1

π 
2 , (1)

and W � Z is a winding number invariant. Further, the QP
pump has remarkable coherence properties which allow for
the preparation of highly excited nonclassical states in quan-
tum cavities [54].

Reference [52] classified localized phases with any (d +
D). When (d +  D) is odd there is an integer classification of
anomalous localized topological phases (ALTPs). However,
the abstract classification does not reveal observable proper-
ties of these phases. It is thus useful to have simple models
for each ALTP. Such models would also guide experimental
realizations of these phases.

In this paper, we devise a coupled layer construction for
any (1 +  D)-dimensional ALTP. We demonstrate the con-
struction in detail for the simplest example of the QP pump
(Sec. III). Exploiting the mapping to the frequency lattice,
we show the QP pump can be constructed from layers sup-
porting delocalized chiral modes, just as in familiar integer
quantum Hall phases [61–65]. The layers for the QP pump
are fermionic sites, finely tuned to support pumping modes
with equal and opposite average energy currents between the
drives. These pumping modes can be coupled in one of two
ways: within a site, resulting in a trivial phase, or between
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FIG. 1. (a) The quasiperiodic Floquet-Thouless energy pump
(QP pump) is a nonequilibrium phase of disordered fermionic chains
driven by incommensurate frequencies Ä 1  and Ä2 . When suffi-
ciently many sites (s) from one edge are filled, the chain mediates a
topologically quantized average energy current between the drives, P
=  topW (W � Z). (b) The parameter ²  deforms a coupled layer
model of (a) from the trivial phase (average energy current P =  0) to
the topological phase (P =  Pop). The transition between the phases
sharpens with increasing chain length L. At the critical point (² =
1/2), the pumping rate is half the topological value. Inset: The total
energy pumped into drive 2, 1E2 , is linear in time in both phases and at
the transition. Parameters in model (22): s =  L/4, P is averaged over
200 disorder configurations and initial phases, and as in Fig. 4.

sites, resulting in a topological phase with dangling edge
modes (Fig. 2).

The coupled layer construction can also be adapted to
produce a (2 +  3)-dimensional ALTP with edge states ex-
hibiting a synthetic four-dimensional quantum Hall effect
(Sec. VI) [66]. The physical response is an energy current
between two of the drives supported at one of the (one-
dimensional) edges,

P =  
(2π )

4 BLyW +  O(B2). (2)

Here, B is a synthetic magnetic field, Ly is the linear dimension
of the pumping edge, and W � Z is a winding number.

We numerically investigate the QP pump coupled layer
model, and obtain the phase diagram shown in Fig. 1(b) as
a function of the interlayer coupling strength ² . The model
has two localized phases—one topological and one trivial
(Sec. IV A)—separated by an isolated critical point (Sec.
IV B). The critical point exhibits a half-integer energy
current, P =  Pop/2, with critical exponents suggestive of the
two-dimensional integer quantum Hall universality class. In
the topological phase, the energy current is very robust to
weak interactions (Sec. V). It persists for an extremely long
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FIG. 2. The QP pump may be constructed from a chain of sites
in a coupled layer model. (a) The building blocks of the model are
counterdiabatically driven spinful fermionic sites. The quasienergy
states of a fermion on a site pump energy between the two drives at a
quantized rate. In the frequency lattice, this is a current along the Ä�

direction, with coordinate n� (Fig. 3). (b) Coupling the sites causes
the pumping modes to hybridize and localize. The tuning parameter
²  interpolates between a trivial pattern of hybridization, where all
states are localized (² =  0), and a topological one, where pumping
modes remain at the edge (² =  1). Finite-size scaling (Sec. IV B)
suggests the model has a single critical point at ²  =  1/2.

time, even when interactions cause the system to ultimately
thermalize.

II. BACKGROUND

ALTPs are characterized through their back-action on the
drives [22,52,53,56,57,67]. The frequency lattice formalism
(Sec. II A) facilitates a description of the steady states of the
system, together with the drive. This formalism reveals the
properties of the QP pump straightforwardly (Sec. II B).

A. The frequency lattice

Quasiperiodically driven systems may be mapped to lat-
tice problems with additional synthetic dimensions—one for
each incommensurate tone [28,32,56,58,59]. We review this
construction below.

The models we consider are fermionic tight-binding mod-
els driven by incommensurate periodic tones with frequencies
Ä j  ( j � {1, . . . , D}). It is useful to write the time-dependent
Hamiltonian as being a function of the drive phases θ j(t ) =
Ä j t +  θ0 j, which for brevity we assemble into a vector,

H (t ) =  H(θt ), θt =  
X
θ j (t ) ê j , (3)
j

where ê j form a basis of unit vectors. The Hamiltonian may
be either single particle or many body. In the coupled layer
models we will use a many-body notation for H (in terms
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of creation and annihilation operators), though the model is
quadratic.

To discuss topology in the context of quasiperiodically
driven systems, we must have an appropriate notion of
steady states. These are the quasienergy states, |ψα(t )i. When
they exist, they form a complete basis of solutions to the
Schrödinger equation, and have the special form (h̄ =  1)

|ψα(t )i =  e−i²αt |φα(θt ) i, (4)

where ²α  is called the quasienergy and |φα(θt )i is a smooth,
periodic function of each θ j, and thus is naturally defined on
a torus of drive phases. We will also refer to |φα(θt )i as a
quasienergy state. Unlike in periodically driven systems (D =
1), where Floquet’s theorem [68] guarantees the existence of a
complete set of quasienergy states, the quasienergy states (4)
need not always exist [31,32,57].

A formal rewriting of the eigenstate equation for the
quasienergy states in terms of a frequency lattice model assists
in understanding the states [28,56–59]. The quasienergy states
solve the Schrödinger equation,

(H(θt ) −  i∂t )|φα(θt )i =  ²α|φα(θt )i. (5)

By Fourier transforming this equation with respect to each
drive phase, and introducing auxiliary states |ni associated to
the Fourier indices, the problem of finding |φα(θt )i is refor-
mulated as a lattice problem. Equation (5) is then recast as the
eigenvalue equation

K|φαi =  ²α|φα i. (6)

Here, we have adopted a notation in which the lattice
quasienergy states are given by

|φαi =  
X  

|φα,ni|ni (7)
n�ZD

[where |φα,ni are the Fourier components of |φα(θ )i], and the
frequency lattice Hamiltonian, called the quasienergy opera-
tor, is given by

K =  
X  

(Hn−mei(n−m)·θ0 −  n · Äδnm)|nihm| (8)
n,m�ZD

[where Hn are the Fourier components of H (θ )]. Smooth
quasiperiodic solutions to Eq. (5) exist when K has localized
eigenstates. The quasienergy states are then obtained as

|φα(θt )i =  
X  

e−in·θt |φα,ni. (9)
n�ZD

When H is a single-particle Hamiltonian, the quasienergy
operator K describes a (d +  D)-dimensional tight-binding
model with a linear potential in the Ä  = j Ä j ê j direction.
We refer to Ä as an electric field in the frequency lattice. When
n · Ä  =  0 for all n =  0, this electric field is incommensurate to
the lattice. Further, the initial phase of the drive θ0 acts as a
vector potential in the frequency lattice. Said vector potential
is uniform in all the synthetic dimensions—modulation of θ0 in
real space is necessary to produce a nontrivial flux through
finite loops in frequency space [46].

The frequency lattice model (8) can be understood as the
semiclassical limit of a cavity system. Replacing the classical
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drives in Eq. (3) with quantum cavities, the frequency lattice
model (8) is recovered when writing the model in the Fock
state basis. The auxiliary frequency lattice states |ni can thus
be interpreted as photon occupations for the drives. The po-
tential n · Ä  = j n j Ä j accounts for the drive energies.

B. Quasiperiodic Floquet-Thouless energy pump

While ALTPs have been classified in all dimensions,
the best understood example with D >  1 is the QP
pump [22,52,53]. The QP pump is the ALTP with spatial
dimension d =  1 and two incommensurate drives, D =  2 [the
(1 +  2)-dimensional ALTP]. This section summarizes some
known facts regarding this phase. (See Ref. [69] for the related
(3 +  0)-dimensional phase.)

The bulk topological invariant associated to ALTPs is a
winding number, W . In the QP pump, the corresponding
signature at the edge of the system is a quantized average
pumping of energy between the drives. The direction in which
this pumping proceeds is fixed by the sign of W and which
edge is being considered.

Localization of the quasienergy states in the synthetic
dimensions is crucial here. Without this, one cannot de-
fine steady states as in Eq. (9). In the frequency lattice
tight-binding model (8), localization may occur due to the
inhomogeneous potential n · Ä .  The topological clas-
sification of ALTPs further assumes localization in the
spatial dimensions [52,53,69]. The specific mechanism of
localization—random or correlated spatial disorder, Stark
localization through a linear potential, or otherwise—is unim-
portant.

The observable which measures the rate of energy transfer
into the second drive is

P(t ) =  −Ä2∂θ2  H(θt ). (10)

Writing ρs for the Slater determinant state with the first s states
from the edge filled (and potentially other states in the bulk),
we have

P : =  lim 
T 

Z

0

T 

dt Tr[P(t )ρs(t )] =      
2π 

2 W , (11)

where ρs(t ) is the time-evolved state from the initial state ρs,
and W � Z is the winding number [22,52,53]. We denote the
topological pumping rate as

P =  PopW +  O(e−s/ζ ) (12)

with Pop =  Ä1 Ä2      as in Eq. (1), and where ζ  is the single-
particle localization length. [Equation (12) holds for any
initial phase and disorder realization which results in lo-
calization. However, the data we plot in Fig. 1 and later
figures include an average over initial phases θ and disorder.
This reduces the O(T −1 ) noise due to calculating the average P
over a finite time T .]

In terms of the frequency lattice, the pumping states cor-
respond to delocalized edge states. A state initialized with
photon numbers n1 and n2 can evolve into another with n1 +
Pt /Ä1 and n2 −  Pt /Ä2 . As such, if P =  0, the eigenstates at
the edge must be delocalized in the direction

ˆ � � Ä2 ê1 −  Ä1 ê2 , (13)
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Ω�

Explicitly, the Hamiltonian with L sites is

L−1

H0(θ ) = cxμ [−(B +  BCD) · σμν/2]cxν , (14)
x =0

n2
Chern number

C  =  W

Localized bulk states P

C  =  −W

where σ is a vector of Pauli matrices, summation over the spin
indices is implied, and

B(θ ) =  B0[sinθ1x +  sinθ2y +  (1 −  cosθ1 −  cosθ2)z], (15)

while

n1
BCD(θ ) =  

(Ä · �
E
B) ×  B

(16)

x

FIG. 3. In the topological phase of the QP pump, the (single-
particle) edge states have a Chern number in the frequency lattice.
The Chern number C is given by the bulk winding number W , up to a
sign depending on which edge is considered. The frequency lattice
electric field Ä  induces a transverse current (along Ä�) through the
quantum Hall effect when one Chern state is completely filled. This is
the energy pumping response of the edge, P. (See also Ref. [69].)

that is, perpendicular to Ä .  We will write n� =  n · Ä� for the
corresponding frequency lattice coordinate (Figs. 2 and 3).

There is another observable which reveals the topology
of the QP pump, in addition to the edge modes. This is a
circulation of energy between the drives in the bulk [52,53].
As we will not focus on this observable, a cartoon picture for
it suffices. Fermions move right (say) then absorb a photon,
move left, and emit a photon. This results in a small loop in
the frequency lattice (Fig. 2), and an observable associated to
this motion turns out to have a quantized averaged expectation
value proportional to the winding number W .

is the counterdiabatic drive [71].
The counterdiabatic drive is carefully chosen so that the

quasienergy states of Eq. (4) are created by

c†+ =  p
2(1

 
+

 
ˆz )

[(1 +  Bz)cx↑ +  ( ˆx +  i ˆy)cx↓],

c†−  =  p
2(1

 
−  B

 
)

[−(1 −  Bz)cx↑ +  (Bx +  iBy)cx↓]. (17)

Indeed, the counterdiabatic part BCD is constructed to cancel
the inertial term when moving to a frame co-rotating with B.
The cx ± operators have the property that

nx ± =  cx ± cx ± =  cxμ
£

1 (1 ±  B · σ )
¤
μνcxν (18)

projects onto states with a fermion on site x with its spin
aligned along B =  B/|B|.

The single-particle quasienergy states cx±(θ )|0i (where |0i
is vacuum state) carry equal and opposite Chern numbers [57].
That is, the Berry curvature

III. COUPLED LAYER MODEL FOR THE QP PUMP
F =  �θ ×  A, with A =  ih0|cx±�θcx±|0i, (19)

The existence of delocalized edge states in the QP pump
(Sec. II B) suggests it may be possible to create a kind of
coupled layer construction for this phase (Fig. 2). By taking
sites tuned to criticality—in the sense of having delocalized
energy pumping modes (Sec. III A)—and coupling them so
as to either cancel all pumping or leave dangling edge modes
(Sec. III B), we can construct models of the trivial phase and of
the QP pump, respectively.

A. Sites

Generic two-tone driven few-level systems are localized in
the frequency lattice when |Ä| >  0 [57,70]. As such, they do
not pump energy in the steady state. However, fine tuning in
the form of an additional counterdiabatic drive can produce
delocalized modes which support quantized energy pump-
ing [57]. Such finely tuned two-level systems will form the
sites of the coupled layer construction.

The model is defined in terms of a one-dimensional chain
of spinful fermionic sites, with corresponding annihilation
operators cxμ , where x labels position and μ  is a spin index.

has a nonzero quantized integral over the torus. [The Chern
number is C =  ± 1  when B is given by Eq. (15).] The
quantized average energy pumping between the drives is, in
frequency lattice language, the quantized Hall current induced
by the electric field Ä  in the states c† (θ )|0i. The (± )  modes
each pump energy in a different direction—if (+ )  pumps
energy from drive 1 to 2, then (− )  pumps from drive 2 to 1
(Fig. 3; cf. Ref. [69]).

We refer to the modes cx ± as pumping modes.

B. Coupled layer model

To complete the coupled layer construction we must add
hopping terms between the sites.

However, there is a complication because the pumping
mode creation operators (17) cannot be defined with a smooth
gauge as a function of θ. In Eq. (17), we have chosen a
particular gauge with a phase singularity at the south pole of
the Bloch sphere for cx+ , and at the north pole for cx− .

The number operators are gauge invariant, and so do not
have this discontinuity, but a hopping term like cx+cx0− will.

144203-4
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Indeed,
q ·

c†+cx0− =  −
2  

1 −  Bz cx↑cx0↑ −  cx↓cx0↓

+
−

1  −  B
By cx↑cx0↓ +  

1 +  Bz

y cx↓cx0↑

¸
(20)

has a phase singularity in the spin-flipping terms near Bz =
±1. This term cannot be included in the Hamiltonian if it is
not a smooth quasiperiodic function. Fortunately, the norm of
the hopping term need not be constant, so one can just arrange
for the hopping term to vanish when it would otherwise have a
singularity. The term

q
hx+,x0− = 1 −  Bz cx+cx0− (21)

has no singularity, and is proportional to the desired hop.
The full coupled layer Hamiltonian consists of three terms:

H(θ ) =  H0 +  Hdis +  Hhop. (22)

The single-site part H0 is defined in Eq. (14).
The hopping term, written for open boundary conditions as

L−2

Hhop =  J (1 −  ² )hx + ,x−  +  ²h (x +1 )+ ,x−
x =0

+  J (1 −  ² )h (L−1 )+ , (L−1)−  +  H.c., (23)

couples a (+)  mode to a (−)  mode, either within a site or
between sites (Fig. 2). The tuning parameter ² , which controls
how large intersite hops are compared to intrasite hops, is
the main variable of concern. All other parameters of the
model will typically be fixed. Hhop should be regarded as a Su-
Schrieffer-Heeger (SSH) hopping term in a quasiperiodically
rotating frame [72].

Finally, the disorder term

L−1

Hdis = δx + nx + +  δx−nx− (24)
x =0

ensures the localization of fermions in the model [73,74].
Each δx ± is taken to be uniformly random in ± 1  +  [−δ, δ].
We have included an on-site splitting of 2 1  for greater control
over the localization properties of the model (see the Ap-
pendix).

Inspection of the limits ²  � {0, 1} reveals the properties of
this model. When ²  =  0, Hamiltonian (22) does not couple
different sites and so is topologically trivial for any J =  0 (W
=  0). On the other hand, when ²  =  1 and with open
boundary conditions, the edge modes n0+ and nL−  are uncou-
pled, and thus each pumps energy between the drives [W =  1
when B is given by Eq. (15)] (Figs. 2 and 3). Between these
two limits, the edge states are deformed away from being per-
fectly localized to a single site, but cannot be destroyed unless
the bulk delocalizes in either real space or in the synthetic
dimensions, or both.

With periodic boundary conditions, the ensemble of
Hamiltonians also has a duality

²  →  1 −  ² , cx + →  cx− , cx−  →  c (x+1)+ , (25)

PHYSICAL REVIEW B 106, 144203 (2022)

which maps topological phases to trivial phases, and vice
versa. Thus, if there is a unique critical point between these
phases, it must be at the self-dual point ²  =  ²c =  1/2.

We note that the coupled layer construction also makes the
bulk circulation of energy in the QP pump intuitive (Sec. II B).
When pumping modes between different sites are coupled,
they (at a cartoon level) hybridize into small circulating loops
(Fig. 2). This is the bulk energy circulation.

IV. NUMERICAL CHARACTERIZATION

The edge states of model (22) can be found exactly when
²  =  1. They are created by c† and c† . At ²  =  0 all
couplings are intrasite, and the phase is trivial. At ²  =  1/2 the
model is self-dual, and cannot be localized. Away from these
limits, we resort to numerics to find properties of coupled
layer model (22).

The steady states of localized quasiperiodically driven
models may be extracted through exact diagonalization of
the frequency lattice quasienergy operator (8). This method is
resource intensive. It requires expanding the Hilbert space
with the auxiliary drive states |ni and truncating the frequency
lattice Hilbert space. We will instead focus on observables that
can be measured from real time dynamics using a numerical
solution of the Schrödinger equation (for which we use the
ordinary differential equation methods of QUSPIN [75,76]),
namely, the lattice site occupation numbers and the energy
transferred between the drives [more precisely, the work done
on the system by the drives (10)].

Our numerics recover expected properties of the topologi-
cal and trivial phases of the QP pump, including localization
and the pumping of energy at the edge (Sec. IV A). Finite-size
scaling analysis of the energy transferred between the drives
finds a scaling collapse consistent with a single critical point
(Sec. IV B). The phenomenology and critical exponents of
the transition suggest it lies in the universality class of the
two-dimensional quantum Hall transition.

A. Phases

Localization is a necessary ingredient of the QP pump. To
probe this numerically, we compute the lattice site occupation
numbers of an initially localized fermion:

nx(t ) =  hψ0(t)|(cx↑cx↑ +  cx↓cx↓)|ψ0(t )i. (26)

Here, |ψ0(0)i =  c† |0i is the initial state with one spin-up
fermion at x =  0, |ψ0(t )i is the corresponding time-evolved
state under Hamiltonian (22), and c(†) is a fermion annihila-
tion (creation) operator at site x and with spin μ. Calculations
of nx(t ) are performed with periodic boundary conditions to
avoid the effects of the pumping edge modes.

The typical late time value of nx(t ) is computed as

· Z T ¸
ln[nx]typ = dt ln nx(t ) , (27)

T /2                            mean

where [·]mean denotes an average over the disorder realization
{δx±} and initial phase θ0, and T is a time much larger than all
inverse energy scales in the problem. We use the typical value
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FIG. 4. (a) The typical occupation ln[nx]typ decays for different ².
There is clear exponential decay for small ² (1 −  ² ). When ²  ≈  1/2
is close to the critical value, the late time ln[nx]typ has not yet
converged, and appears parabolic in x, indicative of diffusive dynam-
ics. (b) Fitting the localization length from the decay of ln[nx]typ �
−2x /ζ  shows the expected 1/ ln[² (1 −  ² )] scaling. Inset: For small
² (1 −  ² ), ζ −1  converges to a nonzero value as T is increased. Param-
eters: L =  160 with periodic boundaries, B0 /Ä1 =  1, Ä1 /Ä2  =  (1 +

5)/2, Ä1T /(2π ) =  2584, δ/Ä1 =  0.09, 1 / Ä 1  =  0.7, and J/Ä1 =
0.305. 300 disorder configurations and initial phases are used for
averages in ln[nx]typ, with plotted error bars giving one standard error
of the mean (often too small to be visible). Values of ²  and T used
are marked in yellow in the color bars.

(geometric mean) for nx as a forward scattering approximation
predicts that nx is log-normally distributed across disorder
realizations for fixed x [74]. This makes the typical value a
more meaningful estimate for the center of the distribution.

The occupation ln[nx]typ is plotted for several different
values of ²  in Fig. 4(a).

Many features of [nx]typ follow from the coupled layer
construction, or standard results in the theory of Anderson
localization [73,74]. When ²  � {0, 1}, the model is perfectly
localized—the occupations nx(t ) can only be nonzero for x
=  0 in the trivial phase, or x � {0, ±1} in the topological
phase.

As ²  is moved away from these limits, [nx]typ remains
exponentially decaying in |x|, but the localization length ζ
increases. Standard estimates from Anderson localization give
that ζ −1  =  O(ln t/δ), where t is a hopping amplitude, δ is the
disorder strength, and t ¿  δ. The coupled layer model has
modulated strong and weak hops between pumping modes,
so it is more meaningful to use an amplitude associated to
double hops spanning both a weak and strong bond—from nx+
to n(x+1)+ . Second-order perturbation theory predicts that this
effective hopping is proportional to t =  J2² (1 −  ² )/1 .  Thus

µ      ·  2 ¸¶ 2

ζ =  O ln 
1δ

² (1 −  ² ) for
1  

² (1 −  ² ) ¿  δ.
(28)

We see this scaling in Fig. 4(b).
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FIG. 5. Rescaling x2 by time [T , the integration time (27)] pro-
duces data collapse in ln[nx]typ at ²  =  1/2, consistent with diffusive
dynamics (29). The collapse is improved by including the subleading
correction predicted by diffusion, 1 ln Ä1T . Parameters: ²  =  1/2,
and as in Fig. 4.

Close to the self-dual point ²  =  1/2, ln[nx(t )]typ appears
parabolic at numerical time scales:

2

ln[nx(t )]typ � −
Dt 

, (29)

with some D >  0. Indeed, rescaling x2 by t produces data
collapse in ln[nx(t )]typ for small x2/t (Fig. 5).

Equation (29) is characteristic of a diffusive regime in dy-
namics. The finite-size scaling analysis of Sec. IV B suggests
that for ²  =  1/2, this diffusive behavior is a finite-size effect
associated to an isolated critical point, rather than a diffusive
phase.

While localization is vital for the stability of the QP pump,
it does not reveal its topological properties. The energy trans-
ferred between the drives is the interesting observable in this
context, and it is this we use to numerically demonstrate the
presence of the topological phase. Specifically, the order pa-
rameter in Fig. 1 is the average rate of energy transfer between
the drives, P (11).

To numerically measure P, we integrate the expectation
value of P(t ) =  −Ä2∂θ  H [Eq. (10)], which gives the power
transferred into the drive of frequency Ä2. The total work done
on this drive is

Z t

1E2 (t ) =      dt0 Tr[P(t0)ρ(t0)], (30)
0

where ρ(t0) is a time-evolved state.
The initial state ρ(0) would, ideally, be the pumping mode

itself. This is difficult to prepare, and even numerically we
do not know its precise form. However, as the pumping
mode is localized near the edge, taking ρ(0) =  ρs, the Slater-
determinant state with the first s sites near the edge filled
[Fig. 1(a)], ensures the pumping mode is completely occu-
pied, up to an exponentially small weight outside the range s
(Fig. 6). No other modes pump, except the edge mode at the
opposite edge, so all pumping is due to the occupied edge
mode. Thus, one expects to find

1E2 (t ) =  PopW t +  O(e−s/ζ , t 0 ) (31)
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FIG. 6. The topological edge modes responsible for pumping
are exponentially localized. This is revealed by computing the de-
pendence of the average pumping rate P on the filling s (Fig. 1). P
converges exponentially to its topological value PopW outside a
critical region around ²  =  1/2. Parameters: As in Fig. 4, but with
open boundary conditions. P is averaged over 200 disorder and initial
phase samples. ²  � [0, 1] is taken in steps of 0.1. (Note that all curves
with ²  6  0.4 overlap.)

when ρ =  ρs. (In fact, one may also populate any additional
sites in the bulk much further than ζ  from the edges. This does
not affect the average pumping rate, but our numerics do not
use such states.)

The late time average 1E2 /t converges to P, but several
numerical techniques can make the estimation of P more
reliable. While Eq. (31) holds in each disorder realization and
for any initial phase θ0, averaging 1E2 (t ) over disorder and
initial phase reduces the subleading corrections for finite s and
t . Then, fitting the late time data (we use the last half of the
observed time series) to a straight line provides an estimate
for the average pumping rate P which biases the longest time
scales.

In Fig. 1(b), we find that P is quantized to the expected
topological values of 0 (small ² ) or 1 (large ² ) outside of a
critical region near the self-dual point (² =  1/2). Further, this
critical region sharpens with increasing L and s, suggesting the
smooth crossover could be a finite-size effect. The exponential
convergence of P to the quantized value with increasing s is
shown in Fig. 6.

B. Critical point

In previous numerical studies of the QP pump, it has not
been clear whether the topological and trivial phases are sep-
arated by an isolated critical point or an intervening critical
phase [52,53]. The coupled layer model enjoys a self-duality
which fixes a value that must be delocalized, ²  =  1/2, and
simplifies finite-size scaling analysis. Our findings are consis-
tent with ²  =  1/2 being an isolated critical point.

The dynamical exponent, z, describes the scaling relation-
ship between length and time at the critical point. Prompted
by the parabolic shape of late time, ln[nx(t )]typ, it is natural to
suspect that the critical point is diffusive, with z =  2 [77].

If, indeed, z =  2, rescaling time as t/x2 (with x some length
scale) should produce data collapse in observable quantities.
The length scale we rescale by is s, the finite extent of the

FIG. 7. Finite-size scaling collapse around the critical point. (a)
Rescaling t by s2 at the critical point ²  =  ²c =  1/2 collapses the
energy curves 1E2 (t ), showing that the critical point is diffusive (dy-
namical exponent z =  2). At short times, Ä1t /2π s2 ¿  1, the average
power is half the topological value. (b) Rescaling ²  −  1/2 by s1/2.6

produces a good data collapse for E2 at fixed Ä1t /2π s2 and large s,
consistent with the critical exponent ν for the two-dimensional
quantum Hall effect transition. Parameters: As in Fig. 4 with open
boundary conditions. 1E2 (t ) is averaged over 200 disorder and ini-
tial phase samples.

initial Slater-determinant state. The observable we inspect is
1E2 (t , s, ² ) (noting the dependence on s and ²  explicitly).
(Rescaling x2 by t in ln[nx(t )] also produces data collapse as in
Eq. (29); see Fig. 5.)

Figure 7(a) shows that the measured 1E2 (t , s, ² =  1/2) is
consistent with the scaling form

1E2 (t , s, ² =  1/2) � szE2(t/sz ) (32)

with z =  2. With this scaling relation, the lines 1E2  � t are
fixed. Additionally, well before the time scale for diffusion by
length s, Ä1t /s2 ¿  1 [78], the rate of pumping is precisely
half the quantized value:

1E2 (t , s, ² =  1/2) � P opt /2, Ä1t /s2 ¿  1. (33)

By making s larger, this half-integer pumping can be made to
persist for an arbitrarily long time.

If the ²  =  1/2 critical point is isolated, then a nonzero
value of ²  −  1/2 introduces a finite localization length ζ . The
divergence of ζ  defines another important critical exponent, ν:

µ ¶−ν

ζ  � A ²  −  1 . (34)

We assess a corresponding scaling form for 1E2 (t , s, ² ),

1E2 (t , s, ² ) � szE2(t/sz , (² −  2 )s
1/ν ). (35)

There is a relatively broad range of ν � [2.2, 2.8] which
produce acceptable collapse in our data. The particular value ν
=  2.6 is shown in Fig. 7(b). Beyond some small s transient
behavior, all rescaled data lie on the same curve.
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The scaling form (35) with any positive ν suggests that
keeping s/L fixed and taking s →  ∞ faster than t sharpens
the curve for P in Fig. 1 to a step function. (In Fig. 1, t =  T is
taken to be a large fixed value.) Further, there is a unique crit-
ical point with diffusive dynamics and a half-integer energy
current, P =  P op/2.

We note that half-integer quantization of the topologi-
cal response has long been recognized in the context of
the integer quantum Hall effect [79–83], and more re-
cently in the analogous setting of quasiperiodically driven
spins [50,51]. In the quantum Hall context, the analogous
quantity to the pumping rate is the Hall conductivity σxy,
the scaling theory for which predicts an unstable half-integer
fixed point at the transition [79–83]. For noninteracting
particles, the critical point is also diffusive (z =  2), with
a critical exponent for the divergence of the correlation
length ν =  2.593 ±  0.005 [84–86].

The quantum Hall phenomenology is consistent with our
observations in Fig. 7. It is tantalizing to make strong com-
parisons between the integer quantum Hall transition and the
QP-pump transition, especially given the cartoons for the QP
pump in Figs. 2 and 3.

Nonetheless, a precise argument indicating that the QP-
pump transition is in the universality class of the two-
dimensional integer quantum Hall transition remains elusive.
Quantum Hall systems and the QP pump share a simi-lar
coupled layer construction (Fig. 2), but the disorder along
Ä� in the QP pump is correlated [70]. This may al-ter
critical exponents compared to those with uncorrelated
disorder.

Further, comparing P and σxy in the picture of Fig. 2
is problematic—σxy is defined in terms of linear response,
while P arises from edge physics in the coupled layer pic-
ture. Especially at the transition, it becomes unclear why
a half-integer σxy should relate to a half-integer P. Recent
work has explored the presence and nature of edge states
at the transitions between topological phases, including in
quantum Hall systems [87–89]. However, a complete un-
derstanding of the edge state properties has not yet been
achieved.

V. EFFECT OF INTERACTIONS

The QP pump is proposed to be an infinitely long-lived
phase of matter even with weak interactions [52,70]. Localiza-
tion is essential here, as it protects the system from absorbing
energy from the drives and heating to a featureless infinite-
temperature state [90–92]. While the asymptotic stability of
localization in interacting strongly disordered systems has
recently been brought into debate [93–101], it remains uni-
versally accepted that such systems remain localized for a
sufficiently long time to give rise to prominent prethermal
regimes [102]. The existence of such a prethermal regime also
extends to quasiperiodically driven systems [48].

Topological pumping persists when adding weak interac-
tions to the coupled layer model (Fig. 8). In the parameter
regimes accessible by our numerics, this behavior is prether-
mal. It persists for a long, but finite, time in any finite-size
system.

PHYSICAL REVIEW B 106, 144203 (2022)

FIG. 8. (a) The energy pumped into drive 2 is very close to the
topological value 1E2 (t ) =  Popt , even with nonzero interaction
strength U . This indicates the existence of a long-lived prethermal
regime where topological pumping persists. (b) Nonetheless, these
parameter values are delocalized. The half-cut entanglement entropy,
Sent, increases faster than logarithmically to its saturation value in a
random initial product state, indicative of thermalization. The
pumping state with s sites filled from the x =  0 edge, which is far
from random, thermalizes much slower. Parameters: L =  10, s =  5,
Ä1T /2π =  1000, ²  =  0.9. 1E2 (t ) and Sent are averaged over 200
samples of initial product states, disorder realizations, and initial
phases. All other parameters as in Fig. 4.

We consider the time-dependent interaction [recall that the
pumping mode number operators nx±(θ ) depend quasiperiod-
ically on time, Eq. (18)]

L−1

Hint(θ ) =  U [nx+ nx−  +  nx−n (x+1)+ ], (36)
x =0

which preserves the self-duality of model (22). This ensures
that any localized trivial phase with ²  <  1/2 must be mirrored
by a localized topological phase with ²  >  1/2.

Figure 8(a) shows that the transferred energy 1E2 (t ) in the
interacting model H +  Hint is extremely close to the nonin-
teracting prediction. Even after 1000 cycles of the first drive,
only around 5 of the expected 1000 energy quanta have not
been pumped into drive 2.

However, the model is delocalized for the parameters in
Fig. 8. Localization in the interacting model can be assessed
by measuring the half-cut entanglement entropy, Sent, for an
initial product state. In a localized phase, Sent should increase
logarithmically until it eventually saturates due to finite-size
effects [103–105]. Figure 8(b) shows that Sent appears to
increase faster than logarithmically prior to finite-size satu-
ration, indicating that the system is not localized in accessible
parameter regimes.

This lack of localization can be understood through the
analysis of Ref. [70]. Reference [70] finds that the QP pump is
stable, even with interactions, provided that the many-body
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localization length ξ is below a critical value [106]:

PHYSICAL REVIEW B 106, 144203 (2022)

of the lower bands is [71]

ξ 6  ξc =  (2 ln 4)−1. (37) [ − i∂t B j 0 j +  [ Bk 0 k , BCD,l 0 l ] ,  p− ]  =  0
( 3 9 )

The noninteracting coupled layer model is arbitrarily well
localized for ² (1 −  ² ) ¿  1, but Eq. (28) and Fig. 4 show that
the single-particle localization length only approaches zero
logarithmically. Comparison of Fig. 4 to Eq. (37) shows that ²
.  0.05 (or 1 −  ²  .  0.05) is necessary to have ζ  <  ξc. Fur-ther,
even ²  .  0.05 is likely an overestimate for the stability of
localization. Interactions should be expected to renormalize ζ
significantly when calculating the many-body localization
length ξ . Thus, very small values of ²  would be required to
observe asymptotic many-body localization (MBL) in the
coupled layer model. This is problematic in finite-time nu-
merics, as an integration time of many times 2π /² is required
to observe the effects of the hopping term, and thus even have
the possibility of observing thermalization.

Part of the reason for the extremely long lifetime of pump-
ing is the highly nonthermal initial state, ρs, in which the
system is prepared. It takes much longer for the fermions to
diffuse from the left-hand side (say) of the system to
uniformity than it does for a random initial distribution to
thermalize. This can be seen by comparing the half-cut en-
tanglement entropy of the pumping initial state to a random
product state [Fig. 8(b)]. The entropy in the random state
increases faster than logarithmically to its saturation value,
while the pumping state entropy increases very little on the
observed timescale.

VI. GENERAL CONSTRUCTION

Any (1 +  D)-dimensional ALTP can be constructed
through coupled layers, as in Sec. III. With a careful coupling
of critically tuned sites driven by D incommensurate frequen-
cies, these models retain the self-duality properties from the D
=  2 case.

The uncoupled starting point of the construction is for-
mally similar to Sec. III:

L−1

H0(θ ) = cxμ [−(B +  BCD) · 0]μνcxν . (38)
x =0

In the new context, θ is a vector of D drive phases, with the
corresponding vector of frequencies Ä ;  the 0 j  give some con-
venient operator basis for the single-site Hamiltonian; and Bj

and BCD, j are their coefficients. The eigenvalues of −B(θ ) · 0
form continuous bands as a function of θ. This structure is
analogous to the band theory of solids, where k (the crystal
momentum) plays the same role as θ.

The uncoupled model (38) can be fine tuned to possess
chiral topological states. When the number of tones, D =  2n, is
even, B(θ ) can be chosen so that the projector p−  onto the
eigenstates of −B(θ ) · 0  with negative energy—the lower
bands—has a nonzero nth Chern number, Cn [107]. (We will
give a particular example for the second Chern number be-
low.) Then, BCD(θ ) should be chosen to eliminate excitations
between the lower and upper bands induced by the drive. Writ-
ing p−  for the projector onto the lower bands, the necessary
and sufficient condition for the suppression of excitations out

(where summation is implied). This gives a linear equation for
BCD,l in terms of Bj(θ ) and the coefficients f jkl in an expan-
sion of the commutator [0k , 0l ] =  f jkl 0 j :

(iÄ · �θBj +  BkBCD,l f jkl )[0 j , p− ] =  0. (40)

Solutions to this equation are not unique.
Now the sites must be coupled. A generic hopping be-

tween sites will typically allow for a localized phase, but to
unambiguously identify the edge state in some limit the cou-
pling must be carefully chosen. We denote the θ-dependent
fermion annihilation operators in each band as c ±  (θ) with a
superscript ±  depending on whether the band has positive or
negative energy in −B  · 0 . The definition of these operators
requires a choice of gauge, which cannot be smooth if any
Chern number is nonzero. The hopping term between sites is,
with open boundary conditions,

L−2

Hhop =  Jμν (θ ) (1 −  ² )cxμ cxν +  ²c(x+1)μcxν
x =0

+  Jμν (θ )(1 −  ² )c(L−1)μc(L−1)ν +  H.c. (41)

As the cxμ cx0ν hopping terms are not smooth, the hopping
coefficients Jμν (θ ) must be chosen so as to vanish sufficiently
quickly around any singularities, leaving Hhop smooth and
well defined. Otherwise, there is significant freedom in the
choice of Jμν (θ ). Any choice leaves the upper bands (those
with positive energy) uncoupled at x =  0 when ²  =  1 (Fig. 2).

An on-site disorder term is responsible for localization:

L−1

Hdis = δx + px+ +  δx−  px− , (42)
x =0

where px ± is the projector onto the upper (lower) bands on site
x, and δx± are independent and identically distributed random
numbers.

The total Hamiltonian is

H =  H0 +  Hhop +  Hdis. (43)

This model has the same ²  ↔ 1 −  ²  self-duality as the two-
tone model. It has uncoupled, perfectly localized edge modes
with nth Chern number ±Cn  when ²  =  1.

The winding number invariant, W , of the bulk model is
given by Cn in the nontrivial phase.

Four-dimensional quantum Hall edge states

The simplest ALTP beyond the QP pump has d +  D =  5.
The general coupled layer construction shows that this phase
has edges states with a nontrivial second Chern number C2, as
appearing in the four-dimensional integer quantum Hall
effect [66,107]. In this section, we explore this case in more
detail. In a related (2 +  3)-dimensional model constructed
from the coupled layer approach (Fig. 9), we describe the
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y

synthetic space, which, at a formal level, may be declared to
be an actual spatial dimension. At the most direct level, the
synthetic electric field Ä1 ê1 should be replaced by a linear
potential in real space. Alternatively, a different form of spa-
tial inhomogeneity may be introduced, provided that it causes
localization and does not change the topological phase of the
model.

In more detail, the Hamiltonian for a (1 +  D)-dimensional
ALTP may be written as a sum of quadratic terms:

H(θ ) =  
X

h x x 0  (θ )cxμcx0ν. (46)
x,x0

The θ1 Fourier components of hxx0 (θ ),

x hμν (θ1) =  
2π

dθ1 h
μν (θ )ei(y−y0 )θ1 , (47)

FIG. 9. The coupled layer construction may be used to model a
(2 +  3)-dimensional ALTP. The edge states (yellow, blue) possess a
nontrivial second Chern number ±C2  which is equal (up to a sign
depending on which edge is being considered) to the bulk winding
number W . Their response is analogous to the nonlinear response
in the four-dimensional quantum Hall effect. A magnetic flux B per
plaquette is introduced in the (ŷ, ê2 ) plane by a linear winding of
the initial phase θ02 =  By in space (grey stripes). The average energy
pumping rate between drives 3 and 4 depends on both the magnetic
field B and the electric field Ä :  P/Ly =  Ä3Ä4BC2/(2π )2 . Ly is the
length of the pumping edge.

physical observable associated to the edge states—a nonlinear
(in synthetic field strength) energy pumping response.

Just as a nonzero first Chern number implies a quantized
linear response to a weak electric field, a nonzero second
Chern number implies a quantized quadratic response to an
electric and magnetic field. In the frequency lattice, the
electric field is the vector Ä .  It is not possible to imple-
ment a magnetic field in the (0 +  D)-dimensional geometry of
the edge in the coupled layer construction. Instead, one
should seek a (2 +  3)-dimensional model [with a (1 +  3)-
dimensional edge], where a magnetic field in the synthetic
dimensions may be emulated through a spatially dependent
initial phase θ0(y) in the drive [46].

Our starting point remains the coupled layer model. To give
an example of a particular B which gives C2 =  1 for the x =  0
edge state, we may take

4

B0 =  3 − cosθ j (t ), B16 j 64 =  sin θ j (t ), (44)
j =1

where the 4 ×  4 0  matrices may be expressed as tensor
products of Pauli matrices σα and τβ :

00 =  τ x , 01 =  σ zτ z , 02 =  σ xτ z ,

03 =  σ yτ z , and 04 =  τ y. (45)

The coupled layer model is then defined through the general
construction above.

To find a (2 +  3)-dimensional model, we exchange one
synthetic dimension for a spatial dimension [52]. The map-
ping to accomplish this is provided by the frequency lattice
description: Fourier modes of drive 1 are hopping terms in

may be interpreted as hopping matrices. Here, x =  xx̂ +  yŷ, y
−  y0 indexes the Fourier component, and θ  ̂ = j =2 θ jê j is
θ with the θ1 component removed. A Hamiltonian for a (2 +
(D −  1))-dimensional ALTP is then

H0(θ1) =  Hdis +  
X

h x x 0  (θ1)cxμcx0ν , (48)
x,x0

where H0      includes a disorder potential in the y dimension
(a linear potential, or otherwise). In this construction, the
quasiperiodic hopping coefficients hμν decay exponentially in
|y −  y0|, but are only strictly local in the x dimension.

In a strip geometry for H0, with 0 6  1 −  ²  ¿  1/2, C2

edge states exist at the one-dimensional boundaries parallel
to y (Fig. 9). In the frequency lattice, there is a linear po-
tential (electric field) along Ä ˆ  = D      Ä j ê j . To observe the
quadratic response of a four-dimensional quantum Hall state,
we must have a way of introducing a magnetic field through a
plane which includes two of (ŷ, ê2, ê3, ê4 ).

In fact, Ref. [46] has already demonstrated how this may
be done in a (1 +  3)-dimensional wire model (where C2 =  0
requires adiabaticity or fine tuning). The initial phase θ0 ap-
pears in the frequency lattice as a vector potential. Including
a spatially varying initial phase introduces a nonzero flux in
short loops in the frequency lattice. Taking

E0 =  Byê2 (49)

introduces a flux B through each square plaquette in the (ŷ, ê2)
plane. (Physical response only depends on B mod 2π .)

By analogy to the (continuum) response of a four-
dimensional Hall insulator, the average energy current be-
tween the θ3 and θ4 drives is found to be [46]

P =  
(2π )

4 BLyC2 +  O(B2), (50)

where Ly is the length of the pumping boundary. This
agrees with Eq. (2), as C2 =  W . Observing pumping requires,
as usual, filling a distance s À  ζ  from the boundary with
fermions [108].

VII. DISCUSSION

Toy models capturing the physics of a system are essential
in the study of complicated effects [15,72,109]. The coupled
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layer construction for the QP pump allows for the straightfor-
ward identification of localized pumping modes at the edge,
and an improved understanding of the topological-trivial tran-
sition. Similar models of ALTPs with more drives enable a
comparably straightforward analysis of the edge modes, in-
cluding the synthetic four-dimensional quantum Hall response
of the (2 +  3)-dimensional ALTP.

With these models in hand, a systematic study of the
observable responses of higher-D ALTPs can be made.
This is crucial when seeking technological applications of
ALTPs, and a necessary ingredient for a more complete
theoretical understanding of these phases. Some applica-
tions of ALTP phenomenology are known—energy pumping
can be used to prepare highly excited nonclassical cav-ity
states [54]—but finding ways to exploit other behav-iors
of ALTPs remains an interesting opening for future
research.

In a similar direction, finding experimentally feasible mod-
els for ALTPs would be very useful. The coupled layer models
serve as a theoretical toy—they are not obviously suitable for
realization in the laboratory. However, they could serve as a
guide towards what features are necessary in an experimental
Hamiltonian. The effect of dissipation and decoherence (as
occurs in any experimental realization) on the energy pumping
response should also be considered.

Our analysis has been focused on edge modes, but ALTPs
also possess a quantized bulk response [52,53]. In the QP
pump, the bulk energy circulation can be understood qualita-
tively through the coupled layer model (Fig. 2). Extending this
qualitative understanding to a quantitative one could provide
access to bulk observables in higher-D ALTPs, and potentially
illuminate the nature of the bulk-edge correspondence in these
phases.

Our analysis of the QP-pump transition was consistent
with the two-dimensional quantum Hall transition universality
class [79–86]. However, our finite-size scaling does not fix the
critical exponents with high precision, nor is the theoretical
connection concrete. A more extensive study of this transi-
tion may provide confirmation of this conjectured universality
class. Due to the similarity of the coupled layer model to an
SSH model in a rotating frame, it may be amenable to a real-
space renormalization group analysis [110–112]. Alter-
natively, a network model for the transition, similar to the
Chalker-Coddington model, would make the connection to
quantum Hall systems transparent [84].

The topological pumping response of the QP pump per-
sists for an extremely long time when weak interactions
are introduced. However, we have not observed a regime
where the coupled layer model is asymptotically localized.
Given that current numerical studies of MBL can no longer
confirm such a phase in static systems [93–101], it seems
unlikely that a larger numerical study will be able to ob-
serve such a regime in quasiperiodically driven systems.
Instead, it would be interesting to better understand the mech-
anism of thermalization in the accessible parameter regime.
In static systems, this is likely due to many-body resonances
between macroscopically distinct states [99,113–119]. Ex-
tending the improved understanding of such resonances in
static systems to the quasiperiodically driven setting would
be interesting.
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APPENDIX: FREQUENCY LATTICE LOCALIZATION

Anomalous localized topological phases (ALTPs) are lo-
calized in real space, but also in the synthetic dimensions.
This is a crucial feature that prevents them from forming a fea-
tureless state at long times. The numerics reported in Secs. IV
and V use carefully chosen values of the model parameters for
which states are well localized in both the spatial and synthetic
dimensions.

To numerically quantify the extent of eigenstates in both
the spatial and synthetic dimensions we used an average spec-
tral entropy, H [S](t ) [57]. This does not require us to solve
for the quasienergy states—the definition only depends on the
values of correlation functions.

First, define the single-particle states

|z0i =  c0↑|0i, |x0i =  1
2 
(c0↑ +  c0↓)|0i,

and |y0i =  √
2  

(c0↑ +  ic0↓)|0i (A1)

(with time-evolved states |α0(t )i), and the quadratic local
observables

6 x  =  σμνcxμcxν . (A2)

Then the correlation functions

Cαβ (x, t ) =  hα0(t )|6x |α0(t )i (A3)

probe both the spatial extent of a particle initialized at position x
=  0 and its time-dependent evolution within a single site. A
large-frequency lattice localization length is indicated in Cαβ

(x, t ) by quasiperiodic oscillations with significant weight in
many harmonics.

More precisely, the power spectrum

Sαβ (x, ω) =  |F{Cαβ}(x,ω)|2 (A4)

will have support on many x and ω if the frequency lattice
extent is large (where F {·} is the Fourier transform with
respect to time). On the other hand, if the quasienergy states
are localized then all power spectra Sαβ should only have
significant weight on a few x and ω.

To be sensitive to delocalization in any observable, we use
the averaged power spectrum

S(x, ω) =  
1 X

Sαβ (x, ω). (A5)
α ,β�{x,y,z}

The extent of the support of S is quantified by its (Shannon)
entropy,

H[S] =  −
X  

p(x, ω) ln p(x, ω), (A6)
x,ω
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FIG. 10. The average spectral entropy H[S](t ) grows logarith-
mically with the observation time t in a delocalized phase. Deep in
the localized phase, away from ²  =  1/2, H [S](t ) saturates at a finite
value. The finite-size scaling analysis of Sec. IV B suggests that all
H[S](t ) curves except that for ²  =  1/2 will saturate. Parameters: As
in Fig. 4, except δ/Ä1 =  0.15. The spacing dt between time points
used in Cab(x, t ) when computing the Fourier transform is Ä1 dt =
0.1. Error bars are typically smaller than the line width.

where

p(x, ω) =  S (x , ω )/
X

S (x0 , ω0 ). (A7)
x0,ω0

Numerically, we can only compute S at finitely many
points in x and ω. Delocalization is revealed by an unbounded
growth of H[S] when the system size and integration time are
increased. We will denote the average spectral entropy with an
explicit time dependence, H[S](t ), to emphasize this (Fig. 10).

Even a single site can have finite extent in the frequency
lattice when driven quasiperiodically. To determine working
values for the hopping strength J [Eq. (23)] [Hhop has an on-
site component which flips (±)  pumping states to (�) states]

and the on-site detuning 1  [Eq. (24)], we computed H [S](t )
for a fine grid of values and a fixed large t (Fig. 11).

Note that H[S] is not monotonic with either 1  or J. Indeed,
taking J →  0 produces quasienergy states which have a Chern
number, which must be delocalized. On the other hand, taking
any energy scale much larger than |Ä| produces a model in
the frequency lattice where the hopping terms are much
larger than the inhomogeneity, which tends to delocalize. The
optimal values of 1  and J are both O(1):

J/Ä1 ≈  0.305, 1 / Ä 1  ≈  0.7. (A8)

Of course, the spatial disorder strength δ [Eq. (24)] also
controls the localization properties of the extended model with

FIG. 11. (a) Working parameters for J and 1  are found by mini-
mizing the average spectral entropy H [S] in the single-site problem.
The optima are found to be J/Ä1 ≈  0.305 and 1 / Ä 1  ≈  0.7 (red
circle). (b) The disorder strength δ is subsequently optimized by
minimizing the localization length (as measured in Fig. 4) in an
extended chain. The optimum is found to be δ/Ä1 ≈  0.09 (red line).
Note that in no case is the localization behavior monotonic in these
parameters. Parameters: ²  =  0.1. (a) The maximum observation time
for Cαβ is Ä1t /2π ≈  2800, L =  1, B0 /Ä1 =  1. (b) L =  40, periodic
boundary conditions.

L >  1. With J and 1 fixed as in Eq. (A8), we can subsequently
find a working value for δ by minimizing the localization
length ζ , as computed in Fig. 4. Again, the localization length
is not a monotonic function of the disorder. The optimal value is
found to be

δ/Ä1 ≈  0.09. (A9)

For these parameters, the spatial localization length is
roughly one lattice site. This can be made smaller still by
tuning ² (1 −  ² ) closer to zero.
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