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Abstract—The risk posed by Membership Inferen
(MIA) to deep learning models for Computer Vision (C
well known, but MIA has not been addressed or explox
the Natural Language Processing (NLP) domain. In thi
analyze the security risk posed by MIA to NLP models
that NLP models are at great risk to MIA, in some
more so than models trained on Computer Vision (CV
This includes an 8.04% increase in attack success rate
for NLP models (as compared to CV models and dat
determine that there are some unique issues in NLP cl:
tasks in terms of model overfitting, model complexity
diversity that make the privacy leakage severe and ver
from CYV classification tasks. Based on these findings, v
a novel defense algorithm - Gap score Regularization
Pruning (GRIP), which can protect NLP models agains
achieve competitive testing accuracy. Our experimen
show that GRIP can decrease the MIA success rate b, .. __.____
as 31.25% when compared to the undefended model. In addition,
when compared to differential privacy, GRIP offers 7.81% more
robustness to MIA and 13.24% higher testing accuracy. Overall
our experimental results span four NLP and two CV datasets,
and are tested with a total of five different model architectures.

I. INTRODUCTION

As the global machine learning market grows, Machine
Learning as a Service (MLaaS) [1] is gaining increasing pop-
ularity from cloud computing providers such as Amazon [2],
Microsoft [3], and Google [4]. Using black-box interfaces,
MLaaS allows users to upload data easily, leverage powerful
large-scale DNNs, and deploy analytic services [5]. Examples
of MLaaS in NLP include companies (as well as individuals)
putting their data in deep learning models for speech recogni-
tion, word sense disambiguation, sentiment analysis, and other
tasks. In parallel to the deep learning developments in NLP,
deep learning has also been applied to achieve state-of-the-art
results on Computer Vision (CV) tasks [6]-[8]. CV models
have been shown to suffer from a privacy leakage attack (see
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Fig. 1. (a) MIA in NLP. (b) Our proposed method against MIA: Gap score
Regularization Integrated Pruning (GRIP).

Figure 1) known as Membership Inference Attack (MIA). CV
models are vulnerable to black-box MIAs due to multiple
reasons, such as overfitting and large model complexity [9]-
[13]. However, to the best of our knowledge, the vulnerability
of NLP models to MIA has not been thoroughly studied. From
these observations, several important questions arise.

1) Are NLP models vulnerable to MIA attacks like CV
models?

2) What makes NLP models vulnerable to MIA?

3) What can be done to defend against MIA in the NLP
domain?

We have carried out a thorough literature search and found
the aforementioned issues lack an in-depth investigation. These
are pertinent questions to the future security of deep learning
for NLP and are precisely the questions we seek to answer.

To answer the first question, we experiment with the text
classification tasks in NLP domain and image classification
tasks in CV domain. The text classification tasks have a
smaller number of classes than the image classification tasks.
Thus, the outputs of the NLP models for text classification
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contain less information. Despite this fact, the results on vari-
ous NLP datasets suggest that the privacy risk of membership
inference is severe for NLP models. As shown in Table I,
similar to general CV models, NLP models are vulnerable to
two types of MIA, neural network (NN) MIAs and metric-
based MIAs. However, differences arise in MIA between the
CV and NLP domains due to a variety of issues such as
overfitting, model complexity, and data diversity, which we
analyze and discuss in depth later in the paper.

Due to the severity of MIA in NLP, the next natural question
in our investigation is how to defend against this threat. We
propose a novel defense algorithm, Gap score Regularization
Integrated Pruning (GRIP), that is optimized by finding a
sub-network from the original over-parameterized NLP model
(see Figure 1). GRIP can prevent privacy leakage from MIA
and achieve similar accuracy to the original NLP model. As
an additional side benefit, GRIP can also reduce the model
storage and the computation overhead. In summary, we make
the following contributions.

1) Comprehensive MIA Analysis in the NLP Domain:
We illustrate the classification tasks to compare MIAs
in the CV and NLP domains and find that NLP models
are also vulnerable to MIA attacks. We then analyze
the causes of MIAs from three perspectives: overfitting,
model complexity, and data diversity.

2) Novel MIA Defense for NLP Models: We develop a
new MIA defense that works across all NLP datasets
we studied in this paper. Our proposed defense algorithm
GRIP reduces the attack success rate of MIA by as much
as 31.25% compared to undefended models and models
with differential privacy.

Having listed our majority contributions, we outline the
structure for the rest of the paper. In Section 2, we discuss
relevant background information and related literature. In
Section 3, we compare MIAs on classification tasks in the CV
and NLP domain and analyze the causes of MIAs in NLP. We
propose a novel defense strategy to MIAs in Section 4 and
evaluate defense on various datasets and models in Section 5.

II. RELATED WORK
A. Membership Inference Attack (MIA)

The MIA attempts to determine whether a given data is
from the training dataset or not for a target model [10], [14]-
[17]. This attack can lead to serious privacy problems that
leak the individual’s private information like the health data,
financial state, etc., in different scenarios [18]. There are two
basic types of adversarial attacks for MIA, i.e., the white-
box and the black-box MIA. In this paper, we consider the
black-box attack that the attacker assumes can only access
the model outputs. Recent studies have shown that multiple
realistic machine learning classifiers are vulnerable to such
black-box MIAs [17], [18]. There are two types of black-box
MIAs, i.e., Neural Network (NN) MIA and metric-based MIA.

NN MIAs. Multiple current MIA algorithms work by training
a machine learning MIA model that leverages the statistical
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TABLE I
MEMBERSHIP INFERENCE ATTACK ACCURACY FOR DIFFERENT MODELS
ON SOME REPRESENTATIVE DATASETS FOR CLASSIFICATION TASKS IN THE
NLP AND CV DOMAIN.

NLP Cv
Model NN Metric Model NN Metric
Dataset MIA MIA Dataset MIA MIA
BERT Alexnet
RTE 84.37%  69.00% CIFAR10 71.70%  66.80%
BERT MobilenetV2
MRPC 71.88%  59.10% CIFAR100 62.75%  55.01%
BERT Resnet18
CoLA 68.75%  63.70% CIFAR100 69.85%  73.02%
BERT Vggl6
SST2 73.44%  58.50% CIFAR100 61.99%  68.24%

differences between members of the training set and non-
training set to distinguish between the two [9], [10]. In this
paper, we present a general machine learning MIA model
for NLP classification models and formulate the optimization
problem to defend against an adversary in this setting.

Metric MIAs. Unlike NN attacks, metric-based attacks di-
rectly use the prediction vectors to compute customized met-
rics as a way to infer membership or non-membership in
comparison with preset thresholds. We follow the state-of-the-
art works [14], [19], [20] and experiment with four metric
MIAs based on correctness, confidence, entropy and modified
entropy. The detailed explanations of these four metric MIAs
can be found in Appendix A.

B. Current Defense Mechanism

There are several mechanisms that have been developed
to address MIA in general classification tasks. Differential
privacy (DP) [21], [22] is a major privacy-preserving mecha-
nism against general inference attack. It is based on adding
noises into gradients or objective functions when training
the model and has been applied in different machine learn-
ing models [23]-[25]. Another mechanism to address MIA
is adding regularization during the model training. Existing
regularization methods are mainly proposed to reduce the
overfitting problem, which is one of the main causes of
MIAs [10], [26]. However, it is common to load large pre-
trained NLP models with private training data and then fine-
tune the models on a smaller task-specific dataset. Due to this
training regime, it is necessary to reevaluate how severe the
overfitting problem is in the NLP classification domain. As a
result, these regularization methods are difficult to incorporate
into NLP models to create a feasible defense against MIA. We
use DP training to compare the effectiveness of defense against
MIA in NLP classification tasks as it is a general adversarial
defense mechanism in transfer learning with provable privacy
guarantees [13], [23].

C. Weight Pruning

Weight pruning techniques have traditionally been used to
increase model performance (i.e., speed up inference time)
and reduce the model size (save space) while still maintaining
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high fidelity (high prediction accuracy) [27]-[30]. State-of-
the-art DNNs contain multiple cascaded layers and millions
of parameters (i.e., weights) for the entire model [31], [32].

In natural language processing, irregular magnitude weight
pruning (IMWP) has been evaluated on BERT, where 30% —
40% weights with a magnitude close to zero are set to
be zero [33], [34]. Irregular reweighted proximal pruning
(IRPP) [35] adopts iteratively reweighted /; minimization
with the proximal algorithm and achieves 59.3% more overall
pruning ratio than irregular magnitude weight pruning without
accuracy loss. [36] investigates the model general redundancy
and task-specific redundancy on BERT and XLNet [37].

III. MEMBERSHIP INFERENCE ATTACK IN THE NLP
DOMAIN

Even though MIA has been comprehensively studied in
computer vision, the same cannot be said of NLP. This
raises a critical question, how vulnerable are NLP models to
Membership Inference Attacks?

We consider the MIA problems in the context of a black-
box adversary. We assume that the adversary has access to
part of the data records from the training and testing set and
the predictions from the black-box DNN target model.

A. MIAs in NLP vs. MIAs in CV

We summarize the best attack accuracy of NN MIAs and
metric MIAs for different classification tasks in NLP and CV
domains in Table I. The NLP models and all MIA experiments
are conducted according to the settings in Section V-A, and
the CV models are trained based on settings in [31], [38]-
[40]. Our first set of results shows a unique difference between
models trained on CV tasks and models trained on NLP tasks.
Specifically, in Table I, we show that privacy leakage in the
NLP classification tasks is significant. For example, the BERT-
RTE task has an 84.37% NN attack success rate.

Besides, we can observe that, NN MIAs could be different
from CV domains MIA. NN MIAs consistently outperform
metric MIAs in NLP models. Even when the overfitting is not
severe and the metric MIAs are weak, they still show superior
attack ability with potential privacy leakage risk.

B. Causes of MIAs in the NLP

In the following, we discuss the causes of MIAs in NLP
from three perspectives: overfitting, model complexity, and
data diversity.

(1) Overfitting. Overfitted models perform much better on
training data than on non-training data (i.e., validation or test
data) and it is one of the main factors that cause privacy
leakage. We find that despite the fact that NLP models are
pre-trained, overfitting can also occur. Evidence of this claim
can be seen in Figure 2, where we show the accuracy gap
between training and testing data for a BERT model trained
on different NLP datasets. In Figure 2, we can see that the
NN MIA is stronger than the metric MIA for all datasets. For
example, on the RTE datasets, the accuracy gap is 25.73%,
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Fig. 2. The membership inference attack accuracy as well as the accuracy
gap between training and testing set on different datasets.

and the NN MIA accuracy is almost 85%. This performance
is consistent with previous studies in the CV field. Moreover,
NN MIAs show more robustness on the MRPC and SST-2
datasets when the overfitting is not significant. Unlike metric
MIAs that decrease when the accuracy gap is small, the NN
attack remains strong. This suggests more causes for privacy
breaches in the NLP models.

(2) Model Complexity. NLP classification models are often
over-parameterized with high complexity. For example, the
BERT model contains 12 encoder blocks and 110 million
parameters in total. This on the one hand gives them the
ability to learn efficiently from hard NLP tasks, but on the
other hand also leads to the possibility that they may have a
high parameters redundancy to remember noise or details of
the training dataset. On the other hand, for CV classification
models, VGG16 has 16 layers, 13 million parameters, and
ResNet-18 has 18 layers, 11 million parameters. The NLP
classification model structures could be very different from
the CV classification model, and their parameter sizes could
be much larger.

(3) Data Diversity. There are many dataset properties that may
boost the performance of MIA. First, the number of classes
in NLP classification tasks is limited, e.g., most of the GLUE
datasets are binary or ternary classification tasks, while there
are 10 to 1000 classification tasks in the CV domain. Second,
the size of both training and non-training data in NLP tasks can
be limited. For example, RTE has only 2490 training samples,
which is 20 times less than MNIST. Due to the limited amount
of training data and categories, the learned distribution of the
dataset may be less representative and induced. Therefore,
MIAs can achieve high accuracy even if the model is not
overfitted.

IV. How TO PREVENT MIA IN NLP?

A. Defense Problem Formulation

The first goal of designing an MIA defense is finding a
target model g to minimize the privacy leakage and the second
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goal is to ensure that the target model ¢’s prediction accuracy
remains high. Mathematically, the objective is:

ming G, (fa) + L(g) (1)

Where f is the classification model, f4 is the attack model,
L(g) is the classification loss of model g, and G,(fa) is
the adversary’s gain function that quantitatively present how
much privacy leakage information the adversary can obtain.
According to [9], [41], G4(fa) can be written as:

Gy(fa) :/ [Pp(z,y)pg(f(x))log(fa(z,y, 9(x)))+

Ppi (2, y)py(9(x))log(1 — falz,y, g(x))|dxdy
—log(4) 42 - JS(py(9(x))|p,(g(x)))

Where D is the training set and D’ is the non-training set.
py and p; are the probability distribution of the classification
model g¢’s output for training data and non-training data.
JS(pg(g(x))|lp,(g(x))) is the Jensen—Shannon divergence
between the two distributions and it is always non-negative.
The global minimum value that G4(f4) can possibly have is
-log(4) if and only if:

2

3)

This means that the prediction of classification model g has
the same probability distribution for both the training set and
non-training set. In this case, the attack fails in the sense the
attacker can do no better than a random guess.

Py(9(x)) = py(9(2"))

B. Proposed Defense Strategy

Since overfitting and model complexity are the two main
reasons for MIA, we design our defense strategy to reduce the
overfitting and the model complexity and while maintaining
competitive accuracies of the classification model g. In terms
of reducing the model complexity, the main issue that arises
is the question of finding a sub-network. Specifically, can
we find a sub-network from the original over-parameterized
NLP model that can prevent privacy leakage from MIA while
maintaining accuracy similar to that of the original NLP
model? Next, we will introduce the original network and
analysis the strategy to find such sub-network.

We define the original NLP network ¢g*(x):

9" (z) =Ej o Ej_, o...0 B{(M(z)))

n—1

“4)

where E? is the jth block in model g* For example,
in the BERT model, there are twelve building blocks, each
building block contains a self-attention layer and a fully
connected feed-forward network. Symbol o stands for the
connection between neighboring blocks. M is the embedding
block connected with the data input and the first block. In
defense design, we want to find a sub-network g*(z) that has
competitive prediction accuracy similar to the target network
9().

We propose a weight pruning method to find the sub-
network g*(x). Moreover, to reduce the overfitting, we use
a gap score-based regularization to minimize the prediction
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gap between training and non-training data. In total, our
defense strategy contains two components: 1) weight prun-
ing to reduce model complexity and overfitting, and 2) gap
score regularization to reduce overfitting. Next, we present a
theoretical analysis of the existence of a sub-network g*(z)
on the regularization term.

C. Accuracy analysis of weight pruned sub-network

We first analyze and ensure the pruned model can still
maintain the classification accuracy. A pruned network §(z)
can be presented as g*(z):

g*(x) =E% o EJ_, 0.0 E{(E(z))) (5)

where P; is the pruning matrix in ¢-th layer.

Theorem 1. For every network g defined in Eq. 4 with depth
land¥i € {1,2,...,n}. Consider g* as a randomly initialized
neural network, and width poly(d,n,m,1/¢e,logl /), where d
is input size, n is number of layers in g*, m is the maximum
number of neurons in a layer. For the weights in EY, the weight
initialization distribution belongs to uniform distribution in
range [-1,1]. Then with probability at least 1 — § there is a
weight-pruned sub-network g* of g such that:

llg(z) — g*(x)|| < e (6)

sup
zEX,||[W(<1

Based on Theorem 1, we know that for every bounded
distribution and every target network with bounded weights,
there is a sub-network with an accuracy that is close to the
original over-parameterized neural networks. Next, we analyze
two different types of modules in transformer, i.e., the feed-
forward linear layer and the self-attention layer.

1) Feed-forward Linear Network: 1In
g(x) =W -z, and g*(z) = Z?:l Wi) x.
Theorem 2. Let 1,y W7 belongs to iid. Uniform
distribution over [-1,1], where n > C - log%, where
§ < min{l,e}. Then, with probability at least 1-6, we have

this case,

38 € {1,2,...,n},YW € [~0.5,0.5],

WfZW;*

€S

)

s.t <e

Lueker et al. [42] proposed this theorem and had given a
proof.
2) Self-attention Layer: General case: Consider a model
g(x) with only one self-attention layer, when the token size is
T
,Zn). let (b )pxn = \(%ZT)’ then
softmax((hi)1xn)Vi
= (423' e
>3 ()
Zj ehii
=(e<=73)
> Ej (ehir)
= Wh’xl

n, x = (Il,x27

g(w;)

)Vi
3
in xX;
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Corollary 1 Let W{*,...,WZ* belongs to ii.d. uniform
distribution over [-1,1], where d > C’log%, where
0 < mun{l,e}. Then, with probability at least 1-0, we
have

Vie{1,2,...,n}, WY €[=1,1],3p € {0,1},

9

s.t. <€

d
Whi — (Zplwzq )
=1

D. Analysis of Gap Score Regularization

To prevent privacy leakage, our goal is to find the target
model ¢ that minimizes the adversary’s gain by adding a
regularization term into the loss function, we consider this
problem as:

min E(g) +a- T(Zmaac - Zmin) (10)

where L£(g) is the classification loss of g. r represents the regu-
larization objective function and « is the coefficient to tune the
impact between the training objective and privacy objective.
Let z be the one-hot encoding prediction of the model, z;, 4
is the highest probability value from all individuals in z and
Zmin 1S the lowest probability value from all individuals in
z. To represent the gap score in the multi-class classification
case, we show:

T(Zmam - zmin) = Zmaz — Zmin
(1)
8.t. Zmaz — Zmin € [07 1]
so we have
(O T(Zmaz - zm,in) S [07 O‘} (12)
the update gradient can be calculated as:
_ OL(W) or(z)
VW=w T ow
_ 6L(W) . a(zmam - zmin) (13)
oW oW
o 3L(W) o (azmaa: o azmzn)
- OW OW OW

In this case, when we update the model by minimizing the loss
function, the gap score is also minimized. So the distribution of
ps(f(x)) and ps(f(z')) are more similar than each other, i.e.,
JS(ps(f(@)|[p}(f(x))) decreases and is closer to 0. Thus,
the adversary has minimum gain for the trained model and
privacy leakage is prevented.

E. Proposed Method: GRIP

We show our proposed method Gap score Regularization
Integrated Pruning (GRIP) in Algorithm 1. For a fixed NLP
classification model g, we set target sparsity for different
layers. Let P} be the target sparsity for self-attention layer
and P,f “ for feed-forward network. In ith iteration and kth
block, we set the sparsity P;; for self-attention layer and Pz’;c
for feed-forward network. Then, inspired by [27], [43] and
instead of pruning the weights directly to the target sparsity,
we systematically prune the weights of each block in multiple
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Algorithm 1 The Process of GRIP
1: for epoch in Epochs do

2: Get a random mini-batch S.

3: for i in Iterations: do

4: for Encoder k : do

5: for self-attention layer: do

6: Prune {W@} to {P;, ® W%} by Eq.14
7: Prune {WX} to {P; © WX} by Eq.15
8: end for

9: for feed-forward network: do

10: Prune {W} to {P1¢® W}

11: end for

12: end for

13: end for

14: Get {Zmaz} and {Zin}

15: Calculate 7(Zmaz, Zmin)

16: Update {W}, (W@} {WEK1{WV}

17: by minimizing L(f) + & - 7(Zmaz — Zmin)

18: end for
19: OUTPUT {W}, {WQ} {WK} {W"}

iterations gradually by satisfying the following Equations to
minimize the utility loss from weight pruning.

{
=Pl (=P (1- =) (14)

c c (&) Z K
P =Pl + (1= P[)= (1~ ) (15)
When updating these weights, we minimize the loss function
in Eq. 10 with gap score regularization.

V. EVALUATION
A. Experimental Setup

Datasets. For the proposed sparse progressive distillation,
we conduct experiments on General Language Understanding
Evaluation (GLUE) benchmarks [44] including RTE, CoLA,
MRPC and SST-2, which are grouped into three categories of
natural language understanding tasks (single-sentence tasks,
similarity matching tasks, and natural language inference
tasks) according to the purpose of tasks and difficulty level
of datasets.

Models. We use the fine-tuned BERTgagr as a teacher
and also initialize the student with the fine-tuned BERTAsE.
Specifically, we fine-tune the pre-train BERTgagg on four
GLUE tasks for 4 epochs, including SST-2, CoLA, MRPC,
and RTE. We select the learning rate with best performance
from {2e75,3e~5,4e"5,5e"5}. Batch size and maximum
sequence length are set as 32 and 128, respectively.

Membership Inference Attacks Setup. To evaluate the neural
network (NN) MIAs, we follow the model structure and setup
in [9] to construct and train the attack classifier. The attack
classifier takes two pieces of information as input. One is the
unsorted confidence score vector, and the other one is the
label of the input data that is one hot encoded (all elements
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TABLE II
COMPARISON OF CLASSIFICATION ACCURACY AND MEMBERSHIP ATTACK ACCURACY BETWEEN REGULAR TRAINING, DIFFERENTIAL PRIVATE TRAINING
AND GRIP TRAINING ON BERT MODEL.

RTE MRPC CoLA SST2
Defense None DP GRIP None DP GRIP None DP GRIP None DP GRIP
ATCeCsfrgfy 7028%  53.79%  61.01% | 8439% 68.38%  81.62% | 81.09% 71.80%  81.20% | 92.89% 81.77%  91.17%
Acé‘;;f‘cy 2811%  275%  1228% | 13.62%  093%  527% | 1553%  1.00%  9.00% | 6.48%  131%  2.83%
1\1;11111 8438% 59.38%  53.13% | 71.88% 53.13% = 53.13% | 60.94% 57.81%  50.00% | 73.44% 60.94% = 57.81%
l\ﬁfzc 69.00% 54.20%  57.80% | 59.10% 52.00% = 53.70% | 63.70% 51.50%  56.90% | 58.50% 5530%  52.50%

except the one that corresponds to the label index are 0). The
classifier consists of three fully connected sub-networks. The
one operates on the confidence score vectors has three layers
with size 1024,512 and 64. One network with two layers with
512 and 64 neurons works on the label. The third network
is the combined network that takes the outputs of the two
networks as a concatenate input and has five layers with sizes
512, 256, 128, 64, and 1. The final output will predict whether
the input belongs to the trainset or not with a probability
(larger than 0.5 will count as a member). We use the ReLu
activation function for the network except for the final output
layer with the sigmoid activation function. We train the attack
classifier with Adam optimizer and mean squared error (MSE)
criterion for a total of 300 epochs. To better generate the
model, we set the initial learning rate to 0.001 and decays
by 0.1 in the 30th epoch. For the metric MIAs evaluation, we
adopt four metric attacks following the [14] and show the best
attack accuracy in the tables.

Defense Training Setup. In our evaluation, we conduct the
canonical implementation of training a model with differential
privacy (DP) [23] and the associated analysis in Pytorch imple-
mentation from Opacus [45] library. We adopt the DP training
into the original fine-tuning process and set the clipping bound
to be 1.0 based on standard practices and report the best testing
accuracy results in Table II.

In our GRIP defense, we give different sparsity in different
iterations and different blocks. We gradually prune weight for
both self-attention layers and feed-forward networks by Eq. 14
and 15, then we will reach the sparsity after all iterations.
In detail, we use sparsity 40% for CoLA and sparsity 60%
pruning rate for the other datasets on the last 6 encoders and
«a =1 for all datasets on the pre-trained BERT model with 4
to 12 fine-tuning epochs and record the best accuracy results.

B. Results and Analysis

GRIP can significantly reduce the membership inference
attack success rate. As shown in Table II, our defense leads
to a significant reduction in privacy risks in both NN and
metric MIAs. For all evaluated datasets, we can reduce the
MIA accuracy with neural network to ~ 50%, which is close
to a random guess and performs much better compared to the
high attack accuracy of the undefended model, from 60.94%
(CoLA) to 84.38% (RTE). Our defense can also outperform
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the DP training on the NN MIAs. For metric MIAs, although
the attack accuracy with GRIP is not always close to random
guesses, we can still observe a 5 ~ 10% decrease in attack
accuracy even when the original MIA risk is not high.

GRIP achieves privacy protection with a small utility
cost. With all the benefits of the privacy defense from our
proposed methods, the utility loss is limited in a small range
at most times. Our GRIP training maintains the classification
accuracy at the same level on CoLA and SST-2 dataset and
causes 2.77% accuracy decrease on MRPC. Defense on the
RTE dataset leads to 10% utility loss, but it is a very small
dataset with limited training and testing data. The model is
unstable with random separation on the training and testing
data in each time of training and attack. Even in the worst
cases, our approach can still largely outperform DP training
as it leads to 10 ~ 20% utility loss on all the datasets with
very limited privacy protection on the NN MIAs. This is a
case where the privacy budget is large and the model utility
will be further reduced when the theoretical guarantees of DP
training are obtained.

GRIP has significantly reduced model complexity.
Tabel III summaries the weights reduction ratio of GRIP fine-
tuned model on different datasets. Except for the benefit of
privacy defense, our GRIP has an additional advantage on
model storage and computations. Table III show that our GRIP
has over 1.18 x ratio over different datasets.

In summary, we have the following analysis:

1. Reducing the overfitting of the NLP classification prob-
lem does not completely eliminate the membership privacy
risk, which is consistent with the observation in Section III-A.
Taking the DP-trained model as an example, it successfully
reduces overfitting as the accuracy gap is only 0.93 ~ 2.75%
on all datasets, which helps the models limit the metric MIAs
to 55%. However, the NN MIAs remain at 60%, indicating
that there is still privacy leakage on the poor utility models.

2. Our GRIP works during training for both constraint
of output prediction and reduction of model complexity of
intermediate structures. As a result, we not only reduce model
overfitting but also yield similar performance in terms of
confidence and robustness for both training and test samples.
For ‘free lunch’, we also reduce the model storage and the
computations. Thus, our defenses can effectively resist MIAs
and maintain good model utility.
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TABLE III
MODEL COMPLEXITY REDUCTION BY GRIP FOR DIFFERENT TASKS.

Weights after Weights

Data Model  Weights (#) prunning (#)  reduction ratio
RTE BERT 110 M 77 M 1.30 x
MRPC | BERT 110 M 77 M 1.30 x
CoLA | BERT 110 M 88 M 1.18 x
SST-2 | BRET 110 M 77T M 1.30 x
TABLE IV

BEST CLASSIFICATION ACCURACY AND NN MIA ACCURACY ON BERT
MODELS FINE-TUNING WITH MIA-PRUNING OR GAP SCORE
REGULARIZATION.

Defense Proposed Pruning Gap Score Regularization
Accuracy Testing NN Testing NN
Accuracy MIA Accuracy MIA
RTE 63.05% 62.50% 58.12% 59.37%
MRPC 81.86% 65.63% 77.21% 57.81%
CoLA 80.50% 59.37% 80.70% 51.56%
SST-2 92.66% 67.18% 93.46% 57.81%

C. Hyperparameter Analysis

In this subsection, we investigate the contribution of the
proposed pruning and the proposed gap score regularization,
respectively.

We first show the classification accuracy and NN MIA re-
sults on the four datasets using proposed pruning and proposed
gap score regularization in Table IV. Compared to the baseline
model results in Table II, we can observe that each component
of the proposed method can help reduce the attack accuracy
with some utility loss. The proposed pruning methods achieve
at most 31.25% (RTE) and on average 19.14% attack accuracy
decrease for NN MIA with 0.23 ~ 7.23% utility loss. The
gap score regularization achieves better defense against MIAs
(16.02% decrease on average) while leading to a little bit
more classification accuracy loss (0 ~ 12.16%). In following
subsections, we will demonstrate the effects of the individual
proposed methods with more detailed ablation studies.

1) Proposed Pruning Algorithm: We investigate how our
proposed pruning affects defense performance by pruning
ratios. As shown in Figure 3, the attack accuracy of metric
MIA decreases along with the higher pruning ratio when the
pruning ratio is over 70%. However, the attack accuracy of NN
MIA presents a fluctuation pattern when varying the pruning
ratio. It reaches the minimum value when the pruning ratio is
70%.

2) Gap Score Regularization: In order to show the effects
of the gap score regularization on the classification accuracy
and MIAs defense, we tune the hyperparameter « that controls
the impact of the regularization in training on RTE dataset as
shown in Figure 4. « trades off the utility and privacy. With
the increase of «, the constraint on the gap score becomes
tighter and the gap score of the final result becomes smaller.
Hence, the accuracy gap and classification accuracy decrease
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Fig. 3. The effects of different pruning ratio on BERT for MRPC task.
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Fig. 4. Different « for gap score regularization on BERT model for RTE task

while the model can better defend against NN and metric
MIA. Specifically, o = 0.3 in Figure 4 shows the case when
the constraint is not large enough. The regularization starts to
control the output and shows defensiveness, and this effect is
first shown in a decrease in test accuracy, while the training
data accuracy remains close to 100% and consequently the
accuracy gap might increase.

Key takeaways: Our GRIP defense achieves a much better
privacy-utility trade-off than using the proposed pruning or
gap score regularization alone. This is because GRIP is a
combinatorial approach that benefits from pruning to derive a
finer and sparser model structure. And GRIP can better learn
the proposed regularization and loss minimization during the
fine-tuning process to control the final prediction distributions.

VI. CONCLUSION

In this work, we explore NN MIAs and metric MIAs on
NLP models. Our experiments show that MIA represents a
significant threat to NLP models and in some cases this vul-
nerability is even greater than that of CV models and datasets.
To better understand this issue we further analyzed the MIA
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in NLP models in terms of overfitting, model complexity and
data diversity. We then developed a defense method GRIP,
specifically for NLP that is based on weight pruning and gap
score regularization. Our evaluations of the BERT model on
RTE, MRPC, CoLA, SST-2 datasets show that GRIP achieves
privacy protection against MIAs with a substantially smaller
cost on the utility loss compared with DP. Specifically, GRIP
can reduce the MIA success rate by 31.25% as compared to
the undefended model. When compared to DP, GRIP offers
7.81% more robustness to MIA and 13.24% higher testing
accuracy.

In addition, GRIP significantly reduces the model storage
and computation cost, e.g., it has approximately 1.30 x weight
reduction ratio on RTE, MRPC, and SST-2 datasets. Overall,
our MIA analyses and proposed MIA NLP defense serve
as important steps toward developing efficient and privacy-
preserving deep learning models in NLP.
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APPENDIX A
METRIC MIAS

Correctness based MIA. This attack infers the membership
according to whether a given input data x is classified correctly
by the target model g [16]. The intuition is that training data
are more likely to be correctly classified than test data. The
attack Mo, is defined as follows, where I(-) indicates the
indicator function.

Meor (g5 2,y) = I(argmax g(z) = y) (16)

Confidence based MIA. This attack determines the mem-
bership of the input x by comparing the most significant
confidence score with the preset threshold. It is intuitive that
the prediction confidence score g(x) for the training data
should be close to 1, while the prediction confidence for the
test data is usually lower. The attack is first designed by [17]
with a single threshold for all classes. [14] further improves
it by applying class-wise thresholds to minimize the effect of
inter-class confidence differences.The attack Mo is defined
as follows, where 7, represents the threshold for the class y.

Mconf(g;xvy) = I(maxg(a:)y 2 Ty) (17)

Entropy based MIA. The entropy based MIA attack is first
presented by [17], then followed by an enhanced version that
uses the class-wise threshold 7, [14]. It is based on the fact
that the prediction entropy of the test set should be much
larger than that of the training set. It identifies the input x as
a member if the prediction entropy is lower than the preset
threshold. The attack M. (f;z,y) can be expressed as:
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Mentr(g;x y *I Zg

1=0

ilog (g

()i) <7y)  (18)

Here 7, denotes the threshold for class y, and & is the number
of output classes.

Modified prediction entropy based MIA. [14] mentioned
that prediction entropy attack has a major limitation that it
does not contain any labeling information. As a result, only
the confidence score is important in the calculation of the
prediction entropy attack, without considering the correctness
of the prediction. Both a highly correct label with a score
close to 1 and a totally wrong predict with an incorrect label
score close to 1 can lead to zero prediction entropy values.
Modified prediction entropy [14] fixes this issue by: 1) only
correct predictions with high probability 1 can be calculated
to 0, and 2) incorrect predictions with high confidence scores
are calculated to infinity. [14]. Then such modified entropy
ME(f(z),y) is presented as:

ME(g(z),y) = — (1 — g(x),) log (9(x)y)
=Y " g(x)ilog (1 — g(x):)

i#y

19)

The adversary determines an input data as a member if Eqn.
is smaller than the preset class-related threshold—7, for class
y. The attack Myjene(f; z,y) is defined as:

MMenlr (gwx y) - I(ME( ( )

APPENDIX B
ANALYSIS ON FEED-FORWARD NETWORKS

y) <7y) (20)

A. Analysis on Feed-Forward Networks: A simple layer with
activation

In this case, g(z) = w -z, g*(z) = uo(w9zx) . Base on
[32], we consider o as ReLU activation function, we have
w = o(w) — o(—w). So that the a single ReLU neuron can
be written as:

¥ o (wz) = o (o(wz) — o(—wz))

On the other hand, this neuron can be present by a width m
two layer network with a pruning matrix p* for the first layer
as:

2L

" = uo (p ©wiz) (22)

we define wt = maz{0,w}, w~ = min{0,w}, w +
w~ = wY. Combine Eq. 21 and 22 we have:

¥ — uo (0 (p ® w+a:) -0 (p ® —w_x)) (23)

Base on Theorem 2, when n > Clog%, there exist a pattern

of w, such that, with probability 1 — €/2,
Yw? €10,1],3dp € 0,17,

n 24)

st |wd —uos(powh)| <e/2

Similarly, we have w, such that, with probability 1 — €/2,

Vwd € [0,1],3p€0,1",

st w9 — ua(p@w‘)‘ <e€/2 (25)
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so combine Eq.30 and 25, we have:

sup |[wx — uo(p © wx)|
< lo(w?)z — o(—wf)z —uo(pOw'z) —uc(p©w z)|
< sup |o(w?)z —uo(p © wha)| +

sup |o(w?)z — uo(p © w™z)|

(26)
B. The analysis in Entire Feed-Forward Networks
For general case , g(x) is target model, g*(z) is defined as
Eq.4. so with the probability over 1 — ¢, we have:
sup [|g(x) — g (2)||
= [|[Wax, — Pa, © W, x90(P2n—1 ©x5, )|
< [[Waxn, — Woxj || +
[Wox8 — Py, © W x%0(Pan_1 ©x5, )|
< lxn = x5+
HWnX‘Z - Py, ® Wan%U(P2n71 © Xgn_l)H
<e€/2+¢€/2

€

27)

A

APPENDIX C
THE ANALYSIS IN SELF-ATTENTION LAYER: A SIMPLE CASE

the self-attention layer can be present as:
QKT
()

Where Q = W@z , K = WXz , V = WV Here, we
start from a simple example. Consider a model g(z) with only
one self-attention layer, when the token size of input x is 1,

Z = softmax( )14 (28)

softmaaz(f}%) = 1, we have
g(z)=W"x (29)
consider g(z) = (Zle wf) z. and a pruning vector p =

(p1,p2, ..., ). Base on Theorem 2, when d > Clog4/e, there
exist a pattern of piwf , such that, with probability 1 — €,

wa € [*1,1],3]71' € {071}7
d

st WV — (szwf)
i=1

APPENDIX D
MIA FORMULATION

(30)
<€

For the target machine learning model, we consider the
classification model in this work. Let f denotes the target clas-
sification model, = denotes a data point, and g(z) denotes the
output of g on data z. g(x) is a one-hot vector of probabilities
of = belonging to k classes. We consider the MIA problems
in a black-box condition, which means the adversary can
not access the classification model’s parameters but can only
observe the input and output of the classification model. We
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assume that the adversary has access to some data records from
the training set and the predictions from the black-box DNN
target model. Based on the difference between the model’s
prediction on the training dataset and the non-training dataset,
the adversary can determine whether a data record belongs to
the model’s training dataset or not. We use f4 to denote the
adversarial inference model f4 : x X y X g(x) — [0,1]. fa
takes the feature of the data x, the label of the data y, and
the prediction of the classification model g(x) as inputs. f4
outputs the probability of data (z,y) belonging to the training
set D or the non-training set D’. The probability distributions
of samples in D and D’ are Pp and Pp, respectively. The
gain function of the inference model f 4 given the classification
model g can be written as:

Gg(fa)= E [log(fa(z,y,9(x)))]
(z,y)~Pp 31)
* oo [log(1 — fa(z,y,9(x)))]

According to [9], we rewrite the gain function of the
inference model in the form of probability distribution:

Gg(fA) =
[Pp(x,y)pg(9(2))log(fa(z,y, g(x)))+

z,y

Ppi(z,y)py(g9(x)) log(l — fa(z,y,g(x))]dzdy

where D is the training set and D’ is the non-training set.
Dy and p; are the probability distribution of the classification
model ¢’s output for training data and non-training data.

For a given classification model g and data sampled from
a known probability distribution, the optimal determination
solution for the inference model f4 is [9], [41]:

* - pg(g(:r:))
Tale,9@) = ety + o @)

Therefore, by substituting f7 in the Equation 31, the gain
function of f} can be written as:

(32)

(33)

Gy(f3)
_ ou( Palg(a)
“ et G e
B Pylg(2))
(e pi [1og (1 Py(9(2)) + py(9(2)) )

—log(4) +2- JS(py(g(x))|lp (g(x)))

Where JS(py(9(z))||p,(g(x))) is the Jensen—Shannon
divergence between the two  distributions.  Since
JS(pg(g9(z))|lpy(g(z))) is always non-negative and equals
0 if and only if py(g(x)) = p;,(g(z')), the global minimum
value that G,4(f7%) can possibly have is -log(4) if and only if
po(9(@)) = ph{g(a) (411
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