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AbstractÐThe risk posed by Membership Inference Attack
(MIA) to deep learning models for Computer Vision (CV) tasks is
well known, but MIA has not been addressed or explored fully in
the Natural Language Processing (NLP) domain. In this work, we
analyze the security risk posed by MIA to NLP models. We show
that NLP models are at great risk to MIA, in some cases even
more so than models trained on Computer Vision (CV) datasets.
This includes an 8.04% increase in attack success rate on average
for NLP models (as compared to CV models and datasets). We
determine that there are some unique issues in NLP classification
tasks in terms of model overfitting, model complexity, and data
diversity that make the privacy leakage severe and very different
from CV classification tasks. Based on these findings, we propose
a novel defense algorithm - Gap score Regularization Integrated
Pruning (GRIP), which can protect NLP models against MIA and
achieve competitive testing accuracy. Our experimental results
show that GRIP can decrease the MIA success rate by as much
as 31.25% when compared to the undefended model. In addition,
when compared to differential privacy, GRIP offers 7.81% more
robustness to MIA and 13.24% higher testing accuracy. Overall
our experimental results span four NLP and two CV datasets,
and are tested with a total of five different model architectures.

I. INTRODUCTION

As the global machine learning market grows, Machine

Learning as a Service (MLaaS) [1] is gaining increasing pop-

ularity from cloud computing providers such as Amazon [2],

Microsoft [3], and Google [4]. Using black-box interfaces,

MLaaS allows users to upload data easily, leverage powerful

large-scale DNNs, and deploy analytic services [5]. Examples

of MLaaS in NLP include companies (as well as individuals)

putting their data in deep learning models for speech recogni-

tion, word sense disambiguation, sentiment analysis, and other

tasks. In parallel to the deep learning developments in NLP,

deep learning has also been applied to achieve state-of-the-art

results on Computer Vision (CV) tasks [6]±[8]. CV models

have been shown to suffer from a privacy leakage attack (see
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Figure 1) known as Membership Inference Attack (MIA). CV

models are vulnerable to black-box MIAs due to multiple

reasons, such as overfitting and large model complexity [9]±

[13]. However, to the best of our knowledge, the vulnerability

of NLP models to MIA has not been thoroughly studied. From

these observations, several important questions arise.

1) Are NLP models vulnerable to MIA attacks like CV

models?

2) What makes NLP models vulnerable to MIA?

3) What can be done to defend against MIA in the NLP

domain?

We have carried out a thorough literature search and found

the aforementioned issues lack an in-depth investigation. These

are pertinent questions to the future security of deep learning

for NLP and are precisely the questions we seek to answer.

To answer the first question, we experiment with the text

classification tasks in NLP domain and image classification

tasks in CV domain. The text classification tasks have a

smaller number of classes than the image classification tasks.

Thus, the outputs of the NLP models for text classification
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contain less information. Despite this fact, the results on vari-

ous NLP datasets suggest that the privacy risk of membership

inference is severe for NLP models. As shown in Table I,

similar to general CV models, NLP models are vulnerable to

two types of MIA, neural network (NN) MIAs and metric-

based MIAs. However, differences arise in MIA between the

CV and NLP domains due to a variety of issues such as

overfitting, model complexity, and data diversity, which we

analyze and discuss in depth later in the paper.

Due to the severity of MIA in NLP, the next natural question

in our investigation is how to defend against this threat. We

propose a novel defense algorithm, Gap score Regularization

Integrated Pruning (GRIP), that is optimized by finding a

sub-network from the original over-parameterized NLP model

(see Figure 1). GRIP can prevent privacy leakage from MIA

and achieve similar accuracy to the original NLP model. As

an additional side benefit, GRIP can also reduce the model

storage and the computation overhead. In summary, we make

the following contributions.

1) Comprehensive MIA Analysis in the NLP Domain:

We illustrate the classification tasks to compare MIAs

in the CV and NLP domains and find that NLP models

are also vulnerable to MIA attacks. We then analyze

the causes of MIAs from three perspectives: overfitting,

model complexity, and data diversity.

2) Novel MIA Defense for NLP Models: We develop a

new MIA defense that works across all NLP datasets

we studied in this paper. Our proposed defense algorithm

GRIP reduces the attack success rate of MIA by as much

as 31.25% compared to undefended models and models

with differential privacy.

Having listed our majority contributions, we outline the

structure for the rest of the paper. In Section 2, we discuss

relevant background information and related literature. In

Section 3, we compare MIAs on classification tasks in the CV

and NLP domain and analyze the causes of MIAs in NLP. We

propose a novel defense strategy to MIAs in Section 4 and

evaluate defense on various datasets and models in Section 5.

II. RELATED WORK

A. Membership Inference Attack (MIA)

The MIA attempts to determine whether a given data is

from the training dataset or not for a target model [10], [14]±

[17]. This attack can lead to serious privacy problems that

leak the individual’s private information like the health data,

financial state, etc., in different scenarios [18]. There are two

basic types of adversarial attacks for MIA, i.e., the white-

box and the black-box MIA. In this paper, we consider the

black-box attack that the attacker assumes can only access

the model outputs. Recent studies have shown that multiple

realistic machine learning classifiers are vulnerable to such

black-box MIAs [17], [18]. There are two types of black-box

MIAs, i.e., Neural Network (NN) MIA and metric-based MIA.

NN MIAs. Multiple current MIA algorithms work by training

a machine learning MIA model that leverages the statistical

TABLE I
MEMBERSHIP INFERENCE ATTACK ACCURACY FOR DIFFERENT MODELS

ON SOME REPRESENTATIVE DATASETS FOR CLASSIFICATION TASKS IN THE

NLP AND CV DOMAIN.

NLP CV

Model

Dataset

NN

MIA

Metric

MIA

Model

Dataset

NN

MIA

Metric

MIA

BERT
RTE

84.37% 69.00%
Alexnet

CIFAR10
71.70% 66.80%

BERT
MRPC

71.88% 59.10%
MobilenetV2
CIFAR100

62.75% 55.01%

BERT
CoLA

68.75% 63.70%
Resnet18

CIFAR100
69.85% 73.02%

BERT

SST2
73.44% 58.50%

Vgg16

CIFAR100
61.99% 68.24%

differences between members of the training set and non-

training set to distinguish between the two [9], [10]. In this

paper, we present a general machine learning MIA model

for NLP classification models and formulate the optimization

problem to defend against an adversary in this setting.

Metric MIAs. Unlike NN attacks, metric-based attacks di-

rectly use the prediction vectors to compute customized met-

rics as a way to infer membership or non-membership in

comparison with preset thresholds. We follow the state-of-the-

art works [14], [19], [20] and experiment with four metric

MIAs based on correctness, confidence, entropy and modified

entropy. The detailed explanations of these four metric MIAs

can be found in Appendix A.

B. Current Defense Mechanism

There are several mechanisms that have been developed

to address MIA in general classification tasks. Differential

privacy (DP) [21], [22] is a major privacy-preserving mecha-

nism against general inference attack. It is based on adding

noises into gradients or objective functions when training

the model and has been applied in different machine learn-

ing models [23]±[25]. Another mechanism to address MIA

is adding regularization during the model training. Existing

regularization methods are mainly proposed to reduce the

overfitting problem, which is one of the main causes of

MIAs [10], [26]. However, it is common to load large pre-

trained NLP models with private training data and then fine-

tune the models on a smaller task-specific dataset. Due to this

training regime, it is necessary to reevaluate how severe the

overfitting problem is in the NLP classification domain. As a

result, these regularization methods are difficult to incorporate

into NLP models to create a feasible defense against MIA. We

use DP training to compare the effectiveness of defense against

MIA in NLP classification tasks as it is a general adversarial

defense mechanism in transfer learning with provable privacy

guarantees [13], [23].

C. Weight Pruning

Weight pruning techniques have traditionally been used to

increase model performance (i.e., speed up inference time)

and reduce the model size (save space) while still maintaining
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high fidelity (high prediction accuracy) [27]±[30]. State-of-

the-art DNNs contain multiple cascaded layers and millions

of parameters (i.e., weights) for the entire model [31], [32].

In natural language processing, irregular magnitude weight

pruning (IMWP) has been evaluated on BERT, where 30%−
40% weights with a magnitude close to zero are set to

be zero [33], [34]. Irregular reweighted proximal pruning

(IRPP) [35] adopts iteratively reweighted l1 minimization

with the proximal algorithm and achieves 59.3% more overall

pruning ratio than irregular magnitude weight pruning without

accuracy loss. [36] investigates the model general redundancy

and task-specific redundancy on BERT and XLNet [37].

III. MEMBERSHIP INFERENCE ATTACK IN THE NLP

DOMAIN

Even though MIA has been comprehensively studied in

computer vision, the same cannot be said of NLP. This

raises a critical question, how vulnerable are NLP models to

Membership Inference Attacks?

We consider the MIA problems in the context of a black-

box adversary. We assume that the adversary has access to

part of the data records from the training and testing set and

the predictions from the black-box DNN target model.

A. MIAs in NLP vs. MIAs in CV

We summarize the best attack accuracy of NN MIAs and

metric MIAs for different classification tasks in NLP and CV

domains in Table I. The NLP models and all MIA experiments

are conducted according to the settings in Section V-A, and

the CV models are trained based on settings in [31], [38]±

[40]. Our first set of results shows a unique difference between

models trained on CV tasks and models trained on NLP tasks.

Specifically, in Table I, we show that privacy leakage in the

NLP classification tasks is significant. For example, the BERT-

RTE task has an 84.37% NN attack success rate.

Besides, we can observe that, NN MIAs could be different

from CV domains MIA. NN MIAs consistently outperform

metric MIAs in NLP models. Even when the overfitting is not

severe and the metric MIAs are weak, they still show superior

attack ability with potential privacy leakage risk.

B. Causes of MIAs in the NLP

In the following, we discuss the causes of MIAs in NLP

from three perspectives: overfitting, model complexity, and

data diversity.

(1) Overfitting. Overfitted models perform much better on

training data than on non-training data (i.e., validation or test

data) and it is one of the main factors that cause privacy

leakage. We find that despite the fact that NLP models are

pre-trained, overfitting can also occur. Evidence of this claim

can be seen in Figure 2, where we show the accuracy gap

between training and testing data for a BERT model trained

on different NLP datasets. In Figure 2, we can see that the

NN MIA is stronger than the metric MIA for all datasets. For

example, on the RTE datasets, the accuracy gap is 25.73%,

0%
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90%
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Fig. 2. The membership inference attack accuracy as well as the accuracy
gap between training and testing set on different datasets.

and the NN MIA accuracy is almost 85%. This performance

is consistent with previous studies in the CV field. Moreover,

NN MIAs show more robustness on the MRPC and SST-2

datasets when the overfitting is not significant. Unlike metric

MIAs that decrease when the accuracy gap is small, the NN

attack remains strong. This suggests more causes for privacy

breaches in the NLP models.

(2) Model Complexity. NLP classification models are often

over-parameterized with high complexity. For example, the

BERT model contains 12 encoder blocks and 110 million

parameters in total. This on the one hand gives them the

ability to learn efficiently from hard NLP tasks, but on the

other hand also leads to the possibility that they may have a

high parameters redundancy to remember noise or details of

the training dataset. On the other hand, for CV classification

models, VGG16 has 16 layers, 13 million parameters, and

ResNet-18 has 18 layers, 11 million parameters. The NLP

classification model structures could be very different from

the CV classification model, and their parameter sizes could

be much larger.

(3) Data Diversity. There are many dataset properties that may

boost the performance of MIA. First, the number of classes

in NLP classification tasks is limited, e.g., most of the GLUE

datasets are binary or ternary classification tasks, while there

are 10 to 1000 classification tasks in the CV domain. Second,

the size of both training and non-training data in NLP tasks can

be limited. For example, RTE has only 2490 training samples,

which is 20 times less than MNIST. Due to the limited amount

of training data and categories, the learned distribution of the

dataset may be less representative and induced. Therefore,

MIAs can achieve high accuracy even if the model is not

overfitted.

IV. HOW TO PREVENT MIA IN NLP?

A. Defense Problem Formulation

The first goal of designing an MIA defense is finding a

target model g to minimize the privacy leakage and the second
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goal is to ensure that the target model g’s prediction accuracy

remains high. Mathematically, the objective is:

ming Gg(fA) + L(g) (1)

Where f is the classification model, fA is the attack model,

L(g) is the classification loss of model g, and Gg(fA) is

the adversary’s gain function that quantitatively present how

much privacy leakage information the adversary can obtain.

According to [9], [41], Gg(fA) can be written as:

Gg(fA) =

∫

x,y

[PD(x, y)pg(f(x)) log(fA(x, y, g(x)))+

PD′(x, y)p′g(g(x)) log(1− fA(x, y, g(x))]dxdy

= −log(4) + 2 · JS(pg(g(x))||p′g(g(x)))

(2)

Where D is the training set and D′ is the non-training set.

pg and p′g are the probability distribution of the classification

model g’s output for training data and non-training data.

JS(pg(g(x))||p′g(g(x))) is the Jensen±Shannon divergence

between the two distributions and it is always non-negative.

The global minimum value that Gg(fA) can possibly have is

-log(4) if and only if:

pg(g(x)) = p′g(g(x
′)) (3)

This means that the prediction of classification model g has

the same probability distribution for both the training set and

non-training set. In this case, the attack fails in the sense the

attacker can do no better than a random guess.

B. Proposed Defense Strategy

Since overfitting and model complexity are the two main

reasons for MIA, we design our defense strategy to reduce the

overfitting and the model complexity and while maintaining

competitive accuracies of the classification model g. In terms

of reducing the model complexity, the main issue that arises

is the question of finding a sub-network. Specifically, can

we find a sub-network from the original over-parameterized

NLP model that can prevent privacy leakage from MIA while

maintaining accuracy similar to that of the original NLP

model? Next, we will introduce the original network and

analysis the strategy to find such sub-network.

We define the original NLP network g∗(x):

g∗(x) = Eg
n ◦Eg

n−1 ◦ ... ◦Eg
1(M(x))) (4)

where E
g
j is the jth block in model g∗ For example,

in the BERT model, there are twelve building blocks, each

building block contains a self-attention layer and a fully

connected feed-forward network. Symbol ◦ stands for the

connection between neighboring blocks. M is the embedding

block connected with the data input and the first block. In

defense design, we want to find a sub-network ĝ∗(x) that has

competitive prediction accuracy similar to the target network

g(x).
We propose a weight pruning method to find the sub-

network ĝ∗(x). Moreover, to reduce the overfitting, we use

a gap score-based regularization to minimize the prediction

gap between training and non-training data. In total, our

defense strategy contains two components: 1) weight prun-

ing to reduce model complexity and overfitting, and 2) gap

score regularization to reduce overfitting. Next, we present a

theoretical analysis of the existence of a sub-network ĝ∗(x)
on the regularization term.

C. Accuracy analysis of weight pruned sub-network

We first analyze and ensure the pruned model can still

maintain the classification accuracy. A pruned network ĝ(x)
can be presented as ĝ∗(x):

ĝ∗(x) = Êg
n ◦ Êg

n−1 ◦ ... ◦ Êg
1(E(x))) (5)

where Pi is the pruning matrix in i-th layer.

Theorem 1. For every network g defined in Eq. 4 with depth

l and ∀i ∈ {1, 2, . . . , n}. Consider g∗ as a randomly initialized

neural network, and width poly(d, n,m, 1/ϵ, log1/δ), where d
is input size, n is number of layers in g∗, m is the maximum

number of neurons in a layer. For the weights in E
g
i , the weight

initialization distribution belongs to uniform distribution in

range [-1,1]. Then with probability at least 1 − δ there is a

weight-pruned sub-network ĝ∗ of g such that:

sup
x∈χ,∥W∥≤1

∥

∥g(x)− ĝ∗(x)
∥

∥ ≤ ϵ (6)

Based on Theorem 1, we know that for every bounded

distribution and every target network with bounded weights,

there is a sub-network with an accuracy that is close to the

original over-parameterized neural networks. Next, we analyze

two different types of modules in transformer, i.e., the feed-

forward linear layer and the self-attention layer.

1) Feed-forward Linear Network: In this case,

g(x) = W · x , and g∗(x) =
(

∑d
i=1 Wi

)

x.

Theorem 2. Let W∗
1, ...,W

∗
n belongs to i.i.d. Uniform

distribution over [-1,1], where n ≥ C · log 2
δ

, where

δ ≤ min{1, ϵ}. Then, with probability at least 1-δ, we have

∃S ⊂ {1, 2, ..., n}, ∀W ∈ [−0.5, 0.5],

s.t

∣

∣

∣

∣

∣

W −
∑

i∈S

W∗
i

∣

∣

∣

∣

∣

≤ ϵ
(7)

Lueker et al. [42] proposed this theorem and had given a

proof.

2) Self-attention Layer: General case: Consider a model

g(x) with only one self-attention layer, when the token size is

n, x = (x1, x2, ..., xn). let (h..)n×n = QKT√
(dk)

, then

g(xi) = softmax((hi.)1×n)Vi

= (

∑

j e
hij

∑

i

∑

j(e
hij )

)Vi

= (

∑

j e
hij

∑

i

∑

j(e
hij )

)WVixi

= Whi.xi

(8)
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Corollary 1 Let W
g∗

1 , ...,Wg∗

d belongs to i.i.d. uniform

distribution over [-1,1], where d ≥ Clog 2
δ

, where

δ ≤ min{1, ϵ}. Then, with probability at least 1-δ, we

have

∀ i ∈ {1, 2, ..., n},Wg∗

l ∈ [−1, 1], ∃ pl ∈ {0, 1},

s.t.

∣

∣

∣

∣

∣

Whi − (
d

∑

l=1

plW
g∗

l )

∣

∣

∣

∣

∣

< ϵ
(9)

D. Analysis of Gap Score Regularization

To prevent privacy leakage, our goal is to find the target

model g that minimizes the adversary’s gain by adding a

regularization term into the loss function, we consider this

problem as:

min L(g) + α · r(zmax − zmin) (10)

where L(g) is the classification loss of g. r represents the regu-

larization objective function and α is the coefficient to tune the

impact between the training objective and privacy objective.

Let z be the one-hot encoding prediction of the model, zmax

is the highest probability value from all individuals in z and

zmin is the lowest probability value from all individuals in

z. To represent the gap score in the multi-class classification

case, we show:

r(zmax − zmin) = zmax − zmin

s.t. zmax − zmin ∈ [0, 1]
(11)

so we have

α · r(zmax − zmin) ∈ [0, α] (12)

the update gradient can be calculated as:

▽W =
∂L(W)

∂W
+ α · ∂r(z)

∂W

=
∂L(W)

∂W
+ α · ∂(zmax − zmin)

∂W

=
∂L(W)

∂W
+ α · (∂zmax

∂W
− ∂zmin

∂W
)

(13)

In this case, when we update the model by minimizing the loss

function, the gap score is also minimized. So the distribution of

pf (f(x)) and p′f (f(x
′)) are more similar than each other, i.e.,

JS(pf (f(x))||p′f (f(x))) decreases and is closer to 0. Thus,

the adversary has minimum gain for the trained model and

privacy leakage is prevented.

E. Proposed Method: GRIP

We show our proposed method Gap score Regularization

Integrated Pruning (GRIP) in Algorithm 1. For a fixed NLP

classification model g, we set target sparsity for different

layers. Let P s
k be the target sparsity for self-attention layer

and P fc
k for feed-forward network. In ith iteration and kth

block, we set the sparsity P s
ik for self-attention layer and P fc

ik

for feed-forward network. Then, inspired by [27], [43] and

instead of pruning the weights directly to the target sparsity,

we systematically prune the weights of each block in multiple

Algorithm 1 The Process of GRIP

1: for epoch in Epochs do

2: Get a random mini-batch S.

3: for i in Iterations: do

4: for Encoder k : do

5: for self-attention layer: do

6: Prune {WQ} to {P s
ik ⊙WQ} by Eq.14

7: Prune {WK} to {P s
ik ⊙WK} by Eq.15

8: end for

9: for feed-forward network: do

10: Prune {W} to {P fc
ik ⊙W}

11: end for

12: end for

13: end for

14: Get {zmax} and {zmin}
15: Calculate r(zmax, zmin)
16: Update {W}, {WQ},{WK},{WV }
17: by minimizing L(f) + α · r(zmax − zmin)
18: end for

19: OUTPUT {W}, {WQ},{WK},{WV }

iterations gradually by satisfying the following Equations to

minimize the utility loss from weight pruning.

P s
ik = P s

k + (1− P s
k ) ∗ (1−

i

n
)3 (14)

P fc
ik = P fc

k + (1− P fc
k ) ∗ (1− i

n
)3 (15)

When updating these weights, we minimize the loss function

in Eq. 10 with gap score regularization.

V. EVALUATION

A. Experimental Setup

Datasets. For the proposed sparse progressive distillation,

we conduct experiments on General Language Understanding

Evaluation (GLUE) benchmarks [44] including RTE, CoLA,

MRPC and SST-2, which are grouped into three categories of

natural language understanding tasks (single-sentence tasks,

similarity matching tasks, and natural language inference

tasks) according to the purpose of tasks and difficulty level

of datasets.

Models. We use the fine-tuned BERTBASE as a teacher

and also initialize the student with the fine-tuned BERTBASE.

Specifically, we fine-tune the pre-train BERTBASE on four

GLUE tasks for 4 epochs, including SST-2, CoLA, MRPC,

and RTE. We select the learning rate with best performance

from {2e−5, 3e−5, 4e−5, 5e−5}. Batch size and maximum

sequence length are set as 32 and 128, respectively.

Membership Inference Attacks Setup. To evaluate the neural

network (NN) MIAs, we follow the model structure and setup

in [9] to construct and train the attack classifier. The attack

classifier takes two pieces of information as input. One is the

unsorted confidence score vector, and the other one is the

label of the input data that is one hot encoded (all elements
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TABLE II
COMPARISON OF CLASSIFICATION ACCURACY AND MEMBERSHIP ATTACK ACCURACY BETWEEN REGULAR TRAINING, DIFFERENTIAL PRIVATE TRAINING

AND GRIP TRAINING ON BERT MODEL.

RTE MRPC CoLA SST-2

Defense None DP GRIP None DP GRIP None DP GRIP None DP GRIP

Testing
Accuracy

70.28% 53.79% 61.01% 84.39% 68.38% 81.62% 81.09% 71.80% 81.20% 92.89% 81.77% 91.17%

Accuracy
Gap

28.11% 2.75% 12.28% 13.62% 0.93% 5.27% 15.53% 1.00% 9.00% 6.48% 1.31% 2.83%

NN
MIA

84.38% 59.38% 53.13% 71.88% 53.13% 53.13% 60.94% 57.81% 50.00% 73.44% 60.94% 57.81%

Metric
MIA

69.00% 54.20% 57.80% 59.10% 52.00% 53.70% 63.70% 51.50% 56.90% 58.50% 55.30% 52.50%

except the one that corresponds to the label index are 0). The

classifier consists of three fully connected sub-networks. The

one operates on the confidence score vectors has three layers

with size 1024,512 and 64. One network with two layers with

512 and 64 neurons works on the label. The third network

is the combined network that takes the outputs of the two

networks as a concatenate input and has five layers with sizes

512, 256, 128, 64, and 1. The final output will predict whether

the input belongs to the trainset or not with a probability

(larger than 0.5 will count as a member). We use the ReLu

activation function for the network except for the final output

layer with the sigmoid activation function. We train the attack

classifier with Adam optimizer and mean squared error (MSE)

criterion for a total of 300 epochs. To better generate the

model, we set the initial learning rate to 0.001 and decays

by 0.1 in the 30th epoch. For the metric MIAs evaluation, we

adopt four metric attacks following the [14] and show the best

attack accuracy in the tables.

Defense Training Setup. In our evaluation, we conduct the

canonical implementation of training a model with differential

privacy (DP) [23] and the associated analysis in Pytorch imple-

mentation from Opacus [45] library. We adopt the DP training

into the original fine-tuning process and set the clipping bound

to be 1.0 based on standard practices and report the best testing

accuracy results in Table II.

In our GRIP defense, we give different sparsity in different

iterations and different blocks. We gradually prune weight for

both self-attention layers and feed-forward networks by Eq. 14

and 15, then we will reach the sparsity after all iterations.

In detail, we use sparsity 40% for CoLA and sparsity 60%
pruning rate for the other datasets on the last 6 encoders and

α = 1 for all datasets on the pre-trained BERT model with 4

to 12 fine-tuning epochs and record the best accuracy results.

B. Results and Analysis

GRIP can significantly reduce the membership inference

attack success rate. As shown in Table II, our defense leads

to a significant reduction in privacy risks in both NN and

metric MIAs. For all evaluated datasets, we can reduce the

MIA accuracy with neural network to ∼ 50%, which is close

to a random guess and performs much better compared to the

high attack accuracy of the undefended model, from 60.94%
(CoLA) to 84.38% (RTE). Our defense can also outperform

the DP training on the NN MIAs. For metric MIAs, although

the attack accuracy with GRIP is not always close to random

guesses, we can still observe a 5 ∼ 10% decrease in attack

accuracy even when the original MIA risk is not high.

GRIP achieves privacy protection with a small utility

cost. With all the benefits of the privacy defense from our

proposed methods, the utility loss is limited in a small range

at most times. Our GRIP training maintains the classification

accuracy at the same level on CoLA and SST-2 dataset and

causes 2.77% accuracy decrease on MRPC. Defense on the

RTE dataset leads to 10% utility loss, but it is a very small

dataset with limited training and testing data. The model is

unstable with random separation on the training and testing

data in each time of training and attack. Even in the worst

cases, our approach can still largely outperform DP training

as it leads to 10 ∼ 20% utility loss on all the datasets with

very limited privacy protection on the NN MIAs. This is a

case where the privacy budget is large and the model utility

will be further reduced when the theoretical guarantees of DP

training are obtained.

GRIP has significantly reduced model complexity.

Tabel III summaries the weights reduction ratio of GRIP fine-

tuned model on different datasets. Except for the benefit of

privacy defense, our GRIP has an additional advantage on

model storage and computations. Table III show that our GRIP

has over 1.18 × ratio over different datasets.

In summary, we have the following analysis:

1. Reducing the overfitting of the NLP classification prob-

lem does not completely eliminate the membership privacy

risk, which is consistent with the observation in Section III-A.

Taking the DP-trained model as an example, it successfully

reduces overfitting as the accuracy gap is only 0.93 ∼ 2.75%
on all datasets, which helps the models limit the metric MIAs

to 55%. However, the NN MIAs remain at 60%, indicating

that there is still privacy leakage on the poor utility models.

2. Our GRIP works during training for both constraint

of output prediction and reduction of model complexity of

intermediate structures. As a result, we not only reduce model

overfitting but also yield similar performance in terms of

confidence and robustness for both training and test samples.

For ‘free lunch’, we also reduce the model storage and the

computations. Thus, our defenses can effectively resist MIAs

and maintain good model utility.
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TABLE III
MODEL COMPLEXITY REDUCTION BY GRIP FOR DIFFERENT TASKS.

Data Model Weights (#)
Weights after
prunning (#)

Weights
reduction ratio

RTE BERT 110 M 77 M 1.30 ×
MRPC BERT 110 M 77 M 1.30 ×
CoLA BERT 110 M 88 M 1.18 ×
SST-2 BRET 110 M 77 M 1.30 ×

TABLE IV
BEST CLASSIFICATION ACCURACY AND NN MIA ACCURACY ON BERT

MODELS FINE-TUNING WITH MIA-PRUNING OR GAP SCORE

REGULARIZATION.

Defense Proposed Pruning Gap Score Regularization

Accuracy
Testing

Accuracy
NN
MIA

Testing
Accuracy

NN
MIA

RTE 63.05% 62.50% 58.12% 59.37%

MRPC 81.86% 65.63% 77.21% 57.81%

CoLA 80.50% 59.37% 80.70% 51.56%

SST-2 92.66% 67.18% 93.46% 57.81%

C. Hyperparameter Analysis

In this subsection, we investigate the contribution of the

proposed pruning and the proposed gap score regularization,

respectively.

We first show the classification accuracy and NN MIA re-

sults on the four datasets using proposed pruning and proposed

gap score regularization in Table IV. Compared to the baseline

model results in Table II, we can observe that each component

of the proposed method can help reduce the attack accuracy

with some utility loss. The proposed pruning methods achieve

at most 31.25% (RTE) and on average 19.14% attack accuracy

decrease for NN MIA with 0.23 ∼ 7.23% utility loss. The

gap score regularization achieves better defense against MIAs

(16.02% decrease on average) while leading to a little bit

more classification accuracy loss (0 ∼ 12.16%). In following

subsections, we will demonstrate the effects of the individual

proposed methods with more detailed ablation studies.

1) Proposed Pruning Algorithm: We investigate how our

proposed pruning affects defense performance by pruning

ratios. As shown in Figure 3, the attack accuracy of metric

MIA decreases along with the higher pruning ratio when the

pruning ratio is over 70%. However, the attack accuracy of NN

MIA presents a fluctuation pattern when varying the pruning

ratio. It reaches the minimum value when the pruning ratio is

70%.

2) Gap Score Regularization: In order to show the effects

of the gap score regularization on the classification accuracy

and MIAs defense, we tune the hyperparameter α that controls

the impact of the regularization in training on RTE dataset as

shown in Figure 4. α trades off the utility and privacy. With

the increase of α, the constraint on the gap score becomes

tighter and the gap score of the final result becomes smaller.

Hence, the accuracy gap and classification accuracy decrease
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Fig. 3. The effects of different pruning ratio on BERT for MRPC task.
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Fig. 4. Different α for gap score regularization on BERT model for RTE task

while the model can better defend against NN and metric

MIA. Specifically, α = 0.3 in Figure 4 shows the case when

the constraint is not large enough. The regularization starts to

control the output and shows defensiveness, and this effect is

first shown in a decrease in test accuracy, while the training

data accuracy remains close to 100% and consequently the

accuracy gap might increase.

Key takeaways: Our GRIP defense achieves a much better

privacy-utility trade-off than using the proposed pruning or

gap score regularization alone. This is because GRIP is a

combinatorial approach that benefits from pruning to derive a

finer and sparser model structure. And GRIP can better learn

the proposed regularization and loss minimization during the

fine-tuning process to control the final prediction distributions.

VI. CONCLUSION

In this work, we explore NN MIAs and metric MIAs on

NLP models. Our experiments show that MIA represents a

significant threat to NLP models and in some cases this vul-

nerability is even greater than that of CV models and datasets.

To better understand this issue we further analyzed the MIA
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in NLP models in terms of overfitting, model complexity and

data diversity. We then developed a defense method GRIP,

specifically for NLP that is based on weight pruning and gap

score regularization. Our evaluations of the BERT model on

RTE, MRPC, CoLA, SST-2 datasets show that GRIP achieves

privacy protection against MIAs with a substantially smaller

cost on the utility loss compared with DP. Specifically, GRIP

can reduce the MIA success rate by 31.25% as compared to

the undefended model. When compared to DP, GRIP offers

7.81% more robustness to MIA and 13.24% higher testing

accuracy.

In addition, GRIP significantly reduces the model storage

and computation cost, e.g., it has approximately 1.30 × weight

reduction ratio on RTE, MRPC, and SST-2 datasets. Overall,

our MIA analyses and proposed MIA NLP defense serve

as important steps toward developing efficient and privacy-

preserving deep learning models in NLP.
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APPENDIX A

METRIC MIAS

Correctness based MIA. This attack infers the membership

according to whether a given input data x is classified correctly

by the target model g [16]. The intuition is that training data

are more likely to be correctly classified than test data. The

attack Mcorr is defined as follows, where I(·) indicates the

indicator function.

Mcorr (g;x, y) = I(argmax g(x) = y) (16)

Confidence based MIA. This attack determines the mem-

bership of the input x by comparing the most significant

confidence score with the preset threshold. It is intuitive that

the prediction confidence score g(x) for the training data

should be close to 1, while the prediction confidence for the

test data is usually lower. The attack is first designed by [17]

with a single threshold for all classes. [14] further improves

it by applying class-wise thresholds to minimize the effect of

inter-class confidence differences.The attack Mconf is defined

as follows, where τy represents the threshold for the class y.

Mconf(g;x, y) = I(max g(x)y ≥ τy) (17)

Entropy based MIA. The entropy based MIA attack is first

presented by [17], then followed by an enhanced version that

uses the class-wise threshold τy [14]. It is based on the fact

that the prediction entropy of the test set should be much

larger than that of the training set. It identifies the input x as

a member if the prediction entropy is lower than the preset

threshold. The attack Mentr(f ;x, y) can be expressed as:

Mentr(g;x, y) = I(−
k

∑

i=0

g(x)i log (g(x)i) ≤ τ̂y) (18)

Here τ̂y denotes the threshold for class y, and k is the number

of output classes.

Modified prediction entropy based MIA. [14] mentioned

that prediction entropy attack has a major limitation that it

does not contain any labeling information. As a result, only

the confidence score is important in the calculation of the

prediction entropy attack, without considering the correctness

of the prediction. Both a highly correct label with a score

close to 1 and a totally wrong predict with an incorrect label

score close to 1 can lead to zero prediction entropy values.

Modified prediction entropy [14] fixes this issue by: 1) only

correct predictions with high probability 1 can be calculated

to 0, and 2) incorrect predictions with high confidence scores

are calculated to infinity. [14]. Then such modified entropy

ME(f(x), y) is presented as:

ME(g(x), y) =− (1− g(x)y) log (g(x)y)

−
∑

i ̸=y

g(x)i log (1− g(x)i) (19)

The adversary determines an input data as a member if Eqn.

is smaller than the preset class-related threshold±τ̌y for class

y. The attack MMentr(f ;x, y) is defined as:

MMentr (g;x, y) = I(ME(g(x), y) ≤ τ̌y) (20)

APPENDIX B

ANALYSIS ON FEED-FORWARD NETWORKS

A. Analysis on Feed-Forward Networks: A simple layer with

activation

In this case, g(x) = w · x, g∗(x) = uσ(wgx) . Base on

[32], we consider σ as ReLU activation function, we have

w = σ(w) − σ(−w). So that the a single ReLU neuron can

be written as:

x∗ 7→ σ (wx) = σ (σ(wx)− σ(−wx)) (21)

On the other hand, this neuron can be present by a width m

two layer network with a pruning matrix p∗ for the first layer

as:

x∗ 7→ uσ (p⊙wgx) (22)

we define w+ = max{0,w}, w− = min{0,w}, w+ +
w− = wg . Combine Eq. 21 and 22 we have:

x∗ 7→ uσ
(

σ
(

p⊙w+x
)

− σ
(

p⊙−w−x
))

(23)

Base on Theorem 2, when n ≥ Clog 4
ϵ
, there exist a pattern

of w, such that, with probability 1− ϵ/2,

∀wg ∈ [0, 1], ∃ p ∈ 0, 1n,

s.t.
∣

∣wg − uσ(p⊙w+)
∣

∣ < ϵ/2
(24)

Similarly, we have w, such that, with probability 1− ϵ/2,

∀wg ∈ [0, 1], ∃ p ∈ 0, 1n,

s.t.
∣

∣wg − uσ(p⊙w−)
∣

∣ < ϵ/2
(25)

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on March 06,2023 at 21:49:52 UTC from IEEE Xplore.  Restrictions apply. 



5832

so combine Eq.30 and 25, we have:

sup |wgx− uσ(p⊙wx)|
≤

∣

∣σ(wg)x− σ(−wg)x− uσ(p⊙w+x)− uσ(p⊙w−x)
∣

∣

≤ sup
∣

∣σ(wg)x− uσ(p⊙w+x)
∣

∣+

sup
∣

∣σ(wg)x− uσ(p⊙w−x)
∣

∣

≤ ϵ/2 + ϵ/2

≤ ϵ
(26)

B. The analysis in Entire Feed-Forward Networks

For general case , g(x) is target model, g∗(x) is defined as

Eq.4. so with the probability over 1− ϵ, we have:

sup ∥g(x)− ĝ∗(x)∥
=

∥

∥Wnxn −P2n ⊙W
g
2nx

g
nσ(P2n−1 ⊙ x

g
2n−1)

∥

∥

≤ ∥Wnxn −Wnx
g
n∥+

∥

∥Wnx
g
n −P2n ⊙W

g
2nx

g
nσ(P2n−1 ⊙ x

g
2n−1)

∥

∥

≤ ∥xn − xg
n∥+

∥

∥Wnx
g
n −P2n ⊙W

g
2nx

g
nσ(P2n−1 ⊙ x

g
2n−1)

∥

∥

≤ ϵ/2 + ϵ/2

≤ ϵ

(27)

APPENDIX C

THE ANALYSIS IN SELF-ATTENTION LAYER: A SIMPLE CASE

the self-attention layer can be present as:

Z = softmax(
QKT

√

(dk)
)V (28)

Where Q = WQx , K = WKx , V = WV x Here, we

start from a simple example. Consider a model g(x) with only

one self-attention layer, when the token size of input x is 1,

softmax( QKT√
(dk)

) = 1, we have

g(x) = WV x (29)

consider g(x) =
(

∑d
i=1 w

g
i

)

x. and a pruning vector p =

(p1, p2, ..., pd). Base on Theorem 2, when d ≥ Clog4/ϵ, there

exist a pattern of piw
g
i , such that, with probability 1− ϵ,

∀wg
i ∈ [−1, 1], ∃ pi ∈ {0, 1},

s.t.

∣

∣

∣

∣

∣

WV − (

d
∑

i=1

piw
g
i )

∣

∣

∣

∣

∣

< ϵ
(30)

APPENDIX D

MIA FORMULATION

For the target machine learning model, we consider the

classification model in this work. Let f denotes the target clas-

sification model, x denotes a data point, and g(x) denotes the

output of g on data x. g(x) is a one-hot vector of probabilities

of x belonging to k classes. We consider the MIA problems

in a black-box condition, which means the adversary can

not access the classification model’s parameters but can only

observe the input and output of the classification model. We

assume that the adversary has access to some data records from

the training set and the predictions from the black-box DNN

target model. Based on the difference between the model’s

prediction on the training dataset and the non-training dataset,

the adversary can determine whether a data record belongs to

the model’s training dataset or not. We use fA to denote the

adversarial inference model fA : x × y × g(x) −→ [0, 1]. fA
takes the feature of the data x, the label of the data y, and

the prediction of the classification model g(x) as inputs. fA
outputs the probability of data (x, y) belonging to the training

set D or the non-training set D′. The probability distributions

of samples in D and D′ are PD and PD′ , respectively. The

gain function of the inference model fA given the classification

model g can be written as:

Gg(fA) = E
(x,y)∼PD

[

log(fA(x, y, g(x)))
]

+ E
(x,y)∼pD′

[

log(1− fA(x, y, g(x)))
] (31)

According to [9], we rewrite the gain function of the

inference model in the form of probability distribution:

Gg(fA) =
∫

x,y

[PD(x, y)pg(g(x)) log(fA(x, y, g(x)))+

PD′(x, y)p′g(g(x)) log(1− fA(x, y, g(x))]dxdy

(32)

where D is the training set and D′ is the non-training set.

pg and p′g are the probability distribution of the classification

model g’s output for training data and non-training data.

For a given classification model g and data sampled from

a known probability distribution, the optimal determination

solution for the inference model fA is [9], [41]:

f∗
A(x, y, g(x)) =

pg(g(x))

pg(g(x)) + p′g(g(x
′))

(33)

Therefore, by substituting f∗
A in the Equation 31, the gain

function of f∗
A can be written as:

Gg(f
∗
A)

= E
(x,y)∼PD

[

log(
pg(g(x))

pg(g(x)) + p′g(g(x))
)
]

+

E
(x,y)∼pD′

[

log(1− pg(g(x))

pg(g(x)) + p′g(g(x))
)
]

= −log(4) + 2 · JS(pf (g(x))||p′f (g(x)))

(34)

Where JS(pg(g(x))||p′g(g(x))) is the Jensen±Shannon

divergence between the two distributions. Since

JS(pg(g(x))||p′g(g(x))) is always non-negative and equals

0 if and only if pg(g(x)) = p′g(g(x
′)), the global minimum

value that Gg(f
∗
A) can possibly have is -log(4) if and only if

pg(g(x)) = p′g(g(x
′)) [41].
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