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Abstract: Most heating, ventilation, and air-conditioning (HVAC) systems operate with one or more faults that result

in increased energy consumption and that could lead to system failure over time. Today, most building owners are

performing reactive maintenance only and may be less concerned or less able to assess the health of the system

until catastrophic failure occurs. This is mainly because the building owners do not previously have good tools to

detect and diagnose these faults, determine their impact, and act on findings. Commercially available fault detection

and diagnostics (FDD) tools have been developed to address this issue and have the potential to reduce equipment

downtime, energy costs, maintenance costs, and improve occupant comfort and system reliability. However, many

of these tools require an in-depth knowledge of system behavior and thermodynamic principles to interpret the

results. In this paper, supervised and semi-supervised machine learning (ML) approaches are applied to datasets

collected from an operating system in the field to develop new FDD methods and to help building owners see the

value proposition of performing proactive maintenance. The study data was collected from one packaged rooftop unit

(RTU) HVAC system running under normal operating conditions at an industrial facility in Connecticut. This paper

compares three different approaches for fault classification for a real-time operating RTU using semi-supervised

learning, achieving accuracies as high as 95.7% using few-shot learning.
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1 Introduction

Heating, ventilation, and air-conditioning (HVAC)

systems account for 30% of the energy consumption

in U.S. commercial buildings annually. Rooftop units

(RTUs), which serve various-sized commercial buildings,

are one of the major contributors to energy waste.

According to the U.S. Department of Energy, RTUs serve

about 60% of U.S. commercial buildings. Inefficient unit

operation is common due to faults introduced during

the installation of the units or that can occur during

operation. These faults can result in $900 to $3700

worth of energy waste per unit annually[1]. Faults in

RTUs are categorized into two main types: (a) hard

faults, also called hard failures, which cause the RTU to

stop functioning and (b) soft faults, which can decrease
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the performance of the RTU until a hard failure occurs.

One advantage of a fault detection and diagnosis (FDD)

system is that it can detect and diagnose soft faults before

hard failures occur[2]. A common approach to detecting

faults in HVAC systems is to collect real-time operating

characteristic data using a sensor network and analyze

the collected data to determine if faults are present and

the type of fault. By using FDD approaches, building

owners can conduct early hardware repair or re-program

control software to prevent eventual hard faults or to

lower energy cost due to suboptimal operation.

FDD tools and methods have been developed

extensively using laboratory data[2–6]. As an example,

in their laboratory study, Braun and Yuill[3] developed

a methodology to assess the FDD protocols for air

conditioning devices. They fed the FDD protocol with

different sets of experimental data under differing fault

conditions and observed the responses. The methodology

was found to perform poorly, resulting in identifying

up to 51% of faults where no faults were present, 26%

misdiagnosing faults, and 32% not detecting faults where

the faults were present. However, only a few recent

FDD for HVAC studies have been performed using

datasets collected from the field, capturing typical HVAC

operating conditions during typical building use. The

laboratory set-up can get close to mimicking an actual

system, but it does not fully depict the unit behavior

under typical operating conditions due to multiple types

of uncertainties.

In their field study, Wall and Guo[6] studied six

different market-ready FDD tools (software-based from

a building energy management system (BEMS)) at six

different buildings located in Australia for different

commercial building types including offices, airports,

museums, hospitals, and laboratories to demonstrate

benefits, capabilities, and value of the FDD tools. The

results for each building were reported in terms of energy

reduction, improved occupant comfort, maintenance

issues, and site energy intensity. A combination

of rule-based fault detection and first principles of

thermodynamics was developed in Ref. [4]. It identifies

the selected faults and estimated energy savings for

an air handling unit (AHU) using the real operating

data collected under normal operating conditions from a

BEMS during a field study. The savings were estimated

for identified faults by comparing the energy usage

before and after the faults were repaired. Granderson

et al.[5, 7] developed an automated FDD characteristic

framework to better understand current automated

FDD technologies and tools by defining their main

characteristics.

Kim and Katipamula[8] surveyed FDD methods since

2004 and classified them into three categories: process

history based, qualitative model based, and quantitative

model based, and assessed the strengths and weaknesses

of common FDD methods. Machine learning (ML)

models were built by Robinson et al.[9] to predict energy

consumption in commercial buildings. Researchers

trained the models on national data from the Commercial

Buildings Energy Consumption Survey and validated

them with the New York City Local Law 84 energy

consumption dataset. Their methodology depends on

five commonly available building and climate features,

and their best performing ML model was found to be

gradient boosting regression.

Supervised ML methods for FDD for HVAC systems

are efficient if the collected dataset is labeled and is

balanced; however, data collected during field studies

is usually not labeled and imbalanced. Researchers

have developed unsupervised ML approaches to handle

imbalanced data. An unsupervised ML framework was

developed by Yan et al.[10], based on the generative

adversarial network (GAN), to generate new faulty data

using a few faulty data points from the original dataset

for an AHU. The promise was to re-balance the data

using a few faulty data points and then use the supervised

approaches to detect and diagnose AHU faults. Another

ML method was developed by Yan et al.[11] to better

deal with the imbalanced training data problem for

FDD for AHUs where a few faulty samples exist with

many normal samples. This method illustrates the use

of semi-supervised ML, specifically semi-supervised

support vector machines (SVMs), to handle imbalanced

training datasets as well as the required faulty samples

to accurately predict AHU faults. The accuracy of their

method was 80–89% with a training dataset of 8000

normal samples and 30 faulty samples for each fault.

New samples were artificially generated to balance the

minority classes or faults using the Synthetic Minority

Over-sampling Technique (SMOTE)[2, 12]. Imbalanced

data can significantly influence the fault classification

accuracy. Yan et al.[13] implemented the conditional

Wasserstein GAN algorithm to re-balance the training

dataset for a chiller automated FDD system so that

supervised ML methods can then be applied. GAN can

be applied to randomly increase the diversity of training

data. It has been shown that using GAN to generate

faulty samples is an efficient approach to enrich training
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dataset; however, selecting high quality synthetic fault

samples is a significant factor on the accuracy of the

automated FDD methods. Yan[14] investigated the use

of the variational auto-encoder and the Anomaly with

GAN to control the data generation and selecting the

high-quality synthetic samples for chiller HVAC systems.

Their method was found to outperform traditional FDD

methods.

There are many attempts to promote ML for detecting

and diagnosing some common RTU faults; however,

these studies are limited by data availability and ML

methods. Multi-class classification ML methods were

developed by Ebrahimifakhar et al.[15] for detecting and

diagnosing seven common RTU faults, using simulation

data with fifteen input variables to train and test three

classification methods: k-nearest neighbor (k-NN),

logistic regression, and random forests. Out of the

three classification methods, the logistic regression

method performed the best with 93.6% accuracy. A

data-driven FDD for RTU method was developed by

Ebrahimifakhar et al.[2] using simulated data with fifteen

input variables to detect seven common RTU faults

utilizing seven statistical ML classification methods. The

overall accuracy showed SVM as the best classifier with

an accuracy of 96.2% and linear discriminant as the

worst classifier with an accuracy of 76.2%. SMOTE

was used to balance the minority classes, resulting

in a better performance of classifying the minority

class. The multiscale convolutional neural networks

FDD for AHU approach was proposed by Cheng et

al.[16], which improves the ability of feature extraction

using three different scale kernels, thus improving the

diagnostic performance of the proposed method. Their

proposed method outperformed other data driven FDD

approaches but did not address the issue of imbalanced

data. A deep learning fault diagnostic method was

proposed by Lee et al.[17] to improve the operational

efficiencies of AHU and although the model achieved

95.16% accuracy using the simulated data under ideal

conditions, it was not validated with real AHU data

gathered under normal operation conditions. Another

supervised ML FDD method was developed by Wang

et al.[18] using a two-layer random forest based FDD to

isolate the simultaneous faults in variable air volume

systems and the developed method was validated using

real operation data, with the lowest accuracy found to be

80.1%. Chintala et al.[19] developed an FDD algorithm

for residential air-conditioning systems using a Kalman

filter model using already existing data points for indoor

and outdoor air temperatures. The algorithm was tested

on EnergyPlus simulated data and was found to perform

at low fault classification accuracies: 40% for airflow

and undercharge faults, and 70% for duct leak faults.

The goal of fault detection for HVAC systems is

to detect faults in real time, i.e., within minutes of a

fault occurring, so that diagnosis and fault repair can be

conducted to reduce unnecessary energy consumption

and ensure comfortable indoor environments. ML

algorithms have been applied to detect faults in complex

operating systems because these algorithms can run fast

and repetitively on one-minute interval data, with a short

training period. Supervised ML approaches developed

for fault detection in laboratory conditions[2, 15] may not

work well for HVAC systems running under normal

operating conditions. This is because the supervised

ML approaches need every data point to be labeled,

which is typically not possible under normal operating

environments where fault conditions are not controlled.

Unsupervised ML approaches can be built without

labeled data points (only row data); however, there is no

way to verify and validate the accuracy of the ML model

and whether faults are identified accurately using this

approach. A semi-supervised data-driven ML approach

can be applied to FDD for detecting some common faults

in packaged RTU systems based upon datasets collected

in the field under normal operating conditions. Semi-

supervised ML works by combining an unsupervised ML

method with a supervised ML method[20]. It is highly

effective in building a more robust model that uses a

small number of labeled training data points collected

during short training period to predict outcomes based

upon many unlabeled test data points (post training

period during normal operation). However, it comes with

higher computational cost in comparison with supervised

learning[21]. Because labeled data is expensive and labor

intensive, many researchers have investigated the use of

semi-supervised FDD approaches; however, the accuracy

of these models can be hard to predict when the test

data is unlabeled. Semi supervised neural network

FDD was developed in Ref. [22] for AHU and tested

using operational data. The authors stated that their

approach can not only diagnose faults with limited

labeled data, but also detect unseen faults. Li et al.[23]

developed a semi-GAN fault diagnosis for a chiller that

extracts information from unlabeled data with limited

labeled training data. They trained and tested their model

with experimental data and their models illustrated a

potential for fault diagnosis of 84% accuracy with 84
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labeled data points. Their method is limited because it

cannot diagnosis simultaneously occurring faults. The

authors stated improvement in accuracy with increasing

unlabeled data size. The proposed semi-supervised data

driven ML approach can be used to develop a realistic

and robust FDD algorithm since it can be applied during

normal operating conditions. The previously developed

ML approaches can handle one fault at a time, but

this is not applicable for an RTU operating in the field

where faults can occur simultaneously, so this aspect

adds complexity to the fault detection and classification

problem.

This research proposes a novel approach to apply semi-

supervised ML to datasets collected from an operating

system in the field to develop better FDD methods.

The study data was collected from an RTU running

under normal operating conditions[24]. Two different

approaches are investigated for fault classification using

semi-supervised learning with the goal of minimizing

labeled training data points. Accuracy can be measured

by calculating the percentage of correct predictions made

by the model on the test dataset. Since the test data points

are labeled, the prediction accuracy is determined by

comparing the labels of the predicted test data points

with the actual labels of the corresponding test data

points. A tradeoff is proposed to determine the best

method that achieves the higher fault prediction accuracy

for each fault type.

2 RTU Specifications and Considered Faults

The datasets are collected from a two-stage Trane RTU

serving 207 000 square feet (19 230.93 m2/ of enclosed

and conditioned industrial space, located in Connecticut.

Table 1 lists the RTU specification.

Even though there is a lengthy list of possible RTU

faults that could be evaluated, the focus of the paper is

on four faults while demonstrating the developed ML

approaches. The reason for selecting only these four

faults is based upon confidence in the fault intensity

calculation, detailed below, to accurately identify these

four faults. In the future, more faults could be added

as more labeled data points for the other faults become

available. These four faults are as follows.

� Refrigerant undercharge (UC): This is one of the

most common faults in an RTU and it indicates either

there is a leak in the refrigerant line, or that the unit

has not been charged according to the manufacturer’s

specifications. Fault intensity of refrigerant charge (FIch/

Table 1 Rooftop unit specification.

Specification Value

Size 35 kW

Refrigerant R22

Refrigerant charge
3.3 kg(Circuit 1);

2.4 kg(Circuit 2)

Number of compressors 2

Compressor type Scroll

Expansion device Fixed orifice

Nominal (max) airflow 113.3 m3/min

Gross cooling capacity 3.3695 kW

ARI net cooling capacity 3.3402 kW

Number of fans 2 (1 outdoor and 1 indoor)

Fan power 0.56 kW; 2.2 kW

Unit power 10.96 kW

Energy efficiency ratio 10.4

Seasonal energy efficiency ratio 11.75

Coefficient of performance 3.05

Voltage 208/230 V(3 phase, 60 Hz)

was calculated according to the method presented by

Albayati et al.[24], which was originally developed

using a virtual refrigerant charge sensor approach[25–27].

This approach is easier to implement for field study

and requires data acquired from surface-mounted

temperature sensors. The calculated FIch is then used

to label the refrigerant undercharge fault from the

dataset. In this case, FIch of �0:2, which indicates 20%

refrigerant undercharge, was considered the threshold

for the undercharge fault. This threshold value was

chosen according to the RTU specifications and previous

studies on the impact of the FIch on the coefficient

of performance (COP) of air conditioning units. For

example, for a fixed orifice (FXO) unit operating at

20% undercharge and an Air-Conditioning, Heating, and

Refrigeration Institute (AHRI) A rating condition, the

COP is 84.7% of the nominal COP value[24, 28, 29].

� Refrigerant overcharge (OC). This fault is less

common than the UC fault and has less effect on

the RTU performance. This type of fault is usually

caused by a technician’s inexperience or error when

charging the system. This is mostly because either the

RTU is an old unit and no manufacturer manual exists,

so the technician will usually estimate the refrigerant

amount. Another instance that can lead to this fault

is if there is a small leak which is hard to detect, this

leads the technician to overcharge the RTU for longer

operation time. Just like UC, OC is negatively affecting

the compressor performance and consequently causes an
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RTU to not perform at the nominal efficiency level. FIch

was calculated according to the previously developed

methods[24–27] and was used to label OC faulty data

points. The threshold of FIch was chosen to be C0:2

based on the RTU specification and previously published

works on the impact of the FIch on the COP of air

conditioning units. For an FXO unit operating at 20%

overcharge under an AHRI A rating condition, the COP

is 94.9% of the nominal COP value[24, 28, 29].

� Condenser fouling (CA). Any reduction in the

airflow due to the condenser fouling leads to a reduction

in the heat rejection from the condenser coils to the

surroundings. This is mainly because fouling works as

an insulator to prevent heat transfer and this indicates the

need for cleaning. Fault intensity of condenser fouling

(FICA/ was calculated based on the method presented

by Albayati et al.[24] and Yuill et al.[30]. The method

utilizes the actual airflow rate (AFR) and the nominal

AFR through the condenser to calculate the presence of

the fault and its intensity. The generalization relationship

developed by Mehrabi et al.[28] was found to be useful

to determine the threshold value of FICA, assuming the

AHRI A rating test condition for an FXO air condition

unit. The FICA threshold value was chosen to be –0.4

which impacts the COP[28], reducing the air conditioner

unit performance to 81.5% of the nominal COP value.

� Evaporator fouling (EA). This fault is caused by

a reduction in airflow across the evaporator which

reduces the efficiency of the RTU. The fault intensity

of evaporator fouling (FIEA/ was calculated[24, 30]. The

calculation method utilizes the actual and nominal

supply AFR through the evaporator to determine the

presence of the fault and to calculate its severity. The

FIEA is used to identify the EA fault by comparing it with

a preset threshold value. The system was considered

faulty if the FIEA value was less than the threshold. The

threshold value was selected to be �0:4 based on the

fault impact on the COP of the RTU, assuming the

AHRI A rating test condition for an FXO unit. The

air conditioning unit performs 96.9% of the nominal

COP with a �0:4 FIEA value[28].

� No fault (NF). No fault represents the data points

where none of the faults listed above are present. This

was an important category to include since the data is

collected from an RTU running under normal operating

conditions, with no control over what fault to include

or exclude. There are some instances in our dataset

where no fault, only one fault, or more than one fault

was present at the same time.

3 Preliminary Study

This section describes the dataset used to build the ML

models and feature selection process.

3.1 Lab-in-the-field vs. traditional lab setting

The data for this study was collected from a “lab-in-

the-field” where the researchers installed 20C sensors

on a packaged HVAC unit serving an actual operating

warehouse in Connecticut. Because the HVAC unit

was in use by the warehouse, the research team could

not inject known faults into the HVAC unit. The data

collected represents states and behavior of the HVAC

unit that may or may not contain faults, which occurred

over a specific time span of hours during the summer

peak operating period in Connecticut. The research team

identified whether certain faults occurred by calculating

fault intensity (FI) values based upon data collected by

the sensors and based upon usage of FI threshold values

proven reasonable by previous studies. The collection

of data under this scenario is referred to in the paper as

“normal operating conditions”.

3.2 Data description and pre-processing

The detailed methodology used to collect and store the

study data is described by Albayati et al.[24] The sensors

and data logger recorded the data continuously with one-

minute intervals for each input variable (feature). There

are two datasets used for this study. The first dataset

includes a total of 4284 observations (three days’ worth

of data); however, only 3336 observations, representing

faulty and unfaulty data with a total of 30 input variables

(features), were used after excluding the observations

where the RTU was off. The second dataset has the same

input variables (features) with 2873 observations (two

days’ worth of data), but only 2099 observations are

considered after omitting the system-off observations.

The second dataset differs from the first dataset as it

is assumed that only one fault occurs per observation

in the second dataset. Both datasets shown in Table 2

are for the same RTU, collected using the same sensors,

and have the same input variables, or features, listed in

Table 3 and detailed in the dataset[31].

Figure 1a shows where the air-side temperature and

relative humidity sensors are located in the return duct,

supply duct, mixed air section, outdoor section, and the

Table 2 Characteristics of Datasets 1 and 2.

Dataset name # observations Days of data Multiple faults?

Dataset 1 3336 3 Yes

Dataset 2 2099 2 No



Mohammed G. Albayati et al.: Semi-Supervised Machine Learning for Fault Detection and Diagnosis of a Rooftop Unit 175

Table 3 List of measured input variables (features) for the RTU that used to develop the proposed FDD methods.

Feature Unit Meaning Feature Unit Meaning

Powermain W Main power Tair, cond
ıC Condenser exiting air temperature

Powerfan W Fan power Tair, evap
ıC Evaporator exiting air temperature

Powercomp1 W Circuit 1 compressor power Tair, econ
ıC Economizer air temperature

Powercomp2 W Circuit 2 compressor power RHair, econ % Economizer air relative humidity

Psuc1 kPa Circuit 1 suction pressure Tair, ret
ıC Return air temperature

Psuc2 kPa Circuit 2 suction pressure Tair, ret, avg
ıC Return air average temperature

Tsuc1
ıC Circuit 1 suction temperature RHair, ret % Return air relative humidity

Tsuc2
ıC Circuit 2 suction temperature Tair, sup

ıC Supply air temperature

Pdis1 kPa Circuit 1 discharge pressure RHair, sup % Supply air relative humidity

Pdis2 kPa Circuit 2 discharge pressure Tair, sup, avg
ıC Supply air average temperature

Tdis1
ıC Circuit 1 discharge temperature RHair, sup, avg % Supply air average humidity

Tdis2
ıC Circuit 2 discharge pressure temperature Tair, ret, avg

ıC Supply air average temperature

TEL1
ıC Circuit 1 temperature after expansion device RHair;i % Indoor air relative humidity

TEL2
ıC Circuit 2 temperature after expansion device Tair;o

ıC Outdoor air temperature

AFR m3/min Airflow rate RHair;o % Outdoor air relative humidity

indoor thermal zone. The high accuracy RTD sensors

denoted 2 and 4 are respectively located within the return

and supply air sections. The temperature and relative

humidity (T/RH) duct probes denoted 1, 3, and 5 are in

the return, supply, and mixed air sections. The indoor

and outdoor sensors denoted 7 and 6 are respectively

located within the thermal zone that the RTU serves, and

near the economizer located outdoors. Figure 1b depicts

the location of pressure and temperature instruments.

Pressure transducers identified by 9 and 10 locate the

discharge and suction pressure sensors, while sensors 11,

12, and 13 denote the surface-mounted thermocouple

locations on the discharge, suction, and liquid line

respectively. Sensors located at 14 and 15 indicate

thermocouples located on the air stream of the evaporator

and condenser. In addition to refrigerant side and air side

instruments, power measuring instruments are utilized to

measure main, compressor, and the evaporator fan power.

The configuration below depicts a single cooling stage,

so for the two cooling stages the same instrumentation

method is repeated on the second cooling stages.

Unlike laboratory experiments where the researcher

controls what data to include, this was not possible

since the project team was collecting the data from an

RTU located in the field running under normal operating

conditions. Therefore, Pfan, Pcomp1, Pcomp2 were used

Fig. 1 (a) A schematic of an RTU with labels indicating air-side sensor locations; (b) A schematic of the vapor compression

cycle with labels indicating refrigerant side pressure and temperature instrument locations.
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to exclude the observations where the RTU was off.

This was a crucial step to eliminate the probability

of misdiagnosing the unit-off data points. Then, both

datasets were labeled based on pre-identified threshold

values of FI for each fault as illustrated in Section 2 and

summarized in Table 4. The threshold FI values were

chosen based on their effects on the unit performance as

illustrated in Refs. [24, 28, 29].

Interestingly, the majority of the data points in

the labeled datasets are faulty with at least one fault

presented per observation. This was helpful for training

the model since the abundance of faults made it easier to

train the model to classify them. Additionally, the dataset

has many instances where there are multiple faults per

observation. This is an advantage for our model since

it performs multi-fault detection, which is desired when

study datasets are collected from field study.

Imbalanced datasets can pose a major challenge to

the performance of a ML model[2, 10, 11, 15], however,

using our robust semi-supervised ML methods, the

imbalance was addressed while minimizing the model

error. Table 5 depicts the value counts of the fault labels

in both datasets, while Table 6 shows percentages of

observations of Dataset 1 for individual faults as well

Table 4 List of faults with FI threshold.

Fault type FI threshold

UC for circuit 1 and 2 (UCC1 and UCC2/ �0:2

OC for circuit 1 and 2 (OCC1 and OCC2/ 0.2

CA �0:4

EA �0:4

Table 5 List of faults with fault counts for datasets.

Dataset

name
# observations # UCC2 # OCC1 # CA # EA # NF

Dataset 1 3336 1577 1032 2013 607 171

Dataset 2 2099 837 475 451 237 99

Table 6 Fault labels and observation percentages of

Dataset 1.
(%)

Fault class Percentage of observation

UCC2 4.9

OCC1 12.3

CA 0.1

EA 15.9

NF 5.2

EA + CA 0.1

EA + CA + OCC1 0.5

CA + OCC1 17.2

CA + UCC2 42.1

EA + CA + UCC2 0.6

EA + UCC1 1.1

as the combination of faults. The sum of the faulty and

non-faulty observations exceeds 3336 observations for

Dataset 1 because more than one fault was present per

observation.

Similar ML methods for FDD approaches have linked

imbalanced datasets (due to the lack of faulty data) to

poor model performance[2, 10, 11, 15]. Our approach has

been rigorous to this challenge and the results for the

proposed semi-supervised ML approach are promising.

3.3 Feature selection

Feature selection was employed to improve model

performance. A confusion matrix and a classification

accuracy table were generated to determine the model

accuracy with and without feature selection. The

accuracy of the model was assessed by 10-fold cross

validation, and feature selection was performed using

the correlation matrix of the Pearson correlation filtering

method. This filtering method works by calculating the

linear relationship between the independent variables

(input features) and dependent variable (output or label)

and has a correlation coefficient between �1 and 1. For

each dependent variable, which represents fault class in

this study and has a numerical value of FI, the correlation

matrix was investigated to select a highly correlated set

of independent variables (features). 24 corelated features

were selected considering all fault classes (“labels”).

This resulted in the highest increase in accuracy, and

this new subset of features was used for both datasets.

The 24 features selected by the feature selection method

along with the four selected faults and NF were used

to build the semi-supervised ML methods. Reducing

the number of features results in a reduced cost for data

collection, since the proposed model can achieve high

accuracy using a subset of the original 30 features.

4 Methodology

This section outlines the developed ML FDD approaches

for HVAC rooftop system. First, SVM, which is a

supervised learning algorithm, was trained on the dataset.

This supervised ML method served as a baseline, so that

the performance of the other methods developed in this

paper could be compared against it. Then, two novel

semi-supervised ML approaches were developed. Since

this paper includes multiple methods, there was a need

to compare the performance of these methods; therefore,

a tradeoff was used to select the best performing method

for each fault type. Table 7 shows the training and

test datasets for Methods 1, 2, and 3. Methods 1 and
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Table 7 Description of training and test datasets for the developed ML methods.

Method Data type Description

Method 1 Training data 25–30 observations (labeled data) selected randomly for each fault class

(Dataset 1) Test data The remaining observations for each fault class

Method 2 Training data 25–30 observations (labeled data) selected randomly for each fault class + k-NN data points.

(Dataset 1) Test data The remaining observations for each fault class

Method 3 Training data (labeled data) 25–30 observations (labeled data) selected randomly for each fault class + k-NN data points.

(Dataset 2) Test data The remaining observations for each fault class

2 are applied on Dataset 1, while Method 3 uses

Dataset 2. For each method, 25–30 observations were

selected randomly for each fault class to form the

training datasets, ensuring that both classes (faulty and

non-faulty) were sampled (not necessarily uniformly).

The data points in the selected observations for the

training datasets are labeled based upon the methodology

explained in Section 2. The remaining observations for

each fault were used as the test datasets. The following

subsections illustrate all the methods in detail.

4.1 Supervised learning

In this study, SVM was used to train on the training

dataset and predict the test dataset. SVM was selected

out of the other supervised methods because it performed

the best with an overall accuracy of 96.2% in a related

study[2]. SVM is a supervised ML algorithm that can

solve both linear and nonlinear problems. This method

works by taking the dataset as an input and outputting

a line, or a set of lines for multi-classification that

separates the classes within the data. It starts by first

drawing a line that acts as a generalized separator, then

SVM finds the closest points from each class to the

separating line and calls these data points support vectors.

The distance between the separating line and the support

vectors is called the margin, and the goal of SVM is

to maximize this margin until an optimal hyperplane

is found. Furthermore, SVM tries to define a decision

boundary between the classes that is as wide as possible

(largest margin), which is performed to minimize

misclassification. Additionally, SVM can handle linearly

inseparable models by increasing the dimensionality

of the model until it becomes linearly separable. Once

this is achieved the decision boundary is then projected

back to the original dimension. The process of finding

the optimal transformation in the model is achieved by

selecting the kernel in the SVM algorithm. A kernel

calculates the dot product of two vectors within the

data to measure the correlation between them. One

of the challenges of using SVM is selecting the right

kernel function[32]. The SVM model used in this paper

utilized the default tuning parameters; however, the C

parameter was the only parameter that was tuned. This

parameter represents the tradeoff between a smooth

decision boundary and classifying training points

correctly. As C increases, the model classifies more

training points correctly. However, when specifying the

C parameter, one must consider that a high value can

lead to overfitting, since the model will not be general

enough. Additionally, large values of C increase the

penalty on SVM for misclassification.

Method 1: Support vector machine. As mentioned

before SVM is a supervised learning algorithm. This

differs from unsupervised learning algorithms in that the

algorithm can see the labels of the training data points.

Therefore, supervised learning is ideal for classification,

especially when the true labels are necessary[33]. The

SVM method used in this study was composed of five

binary classifiers. The output 0 corresponds to “no fault

present”, and the output 1 corresponds to “fault present”.

For each classifier we only explored one specific fault

at a time. The training and test datasets were created

based upon the methodology explained previously in

Section 4 and shown in Table 7. As illustrated in Fig. 2,

the training dataset was used to train the SVM classifier.

After training the classifier, the SVM model was used

to predict the fault class for each observation in the

test dataset. This process was then repeated for all

the fault classes, and the accuracy of this method was

calculated by taking the average of the accuracies of the

five classifiers.

4.2 Semi-supervised learning

After training the supervised ML model using SVM,

the next step was to develop a semi-supervised ML

approach. The semi-supervised ML approach is desired

in ML applications such as FDD because labeled data

is difficult and expensive to obtain. A small number of

labeled training data points is desirable for two reasons.

Based on normal operating conditions in the building,

some RTUs operate only for a few minutes because the

other RTUs in the building are taking care of the cooling
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Fig. 2 Method 1: support vector machine.

load; therefore, it is hard to gather many data points

out of these RTUs. For a laboratory test set up, it will

be expensive to run the experiment multiple times until

enough data is collected.

This paper presents two semi-supervised ML models.

In both models the supervised learning method used

is SVM. The two models differ in the unsupervised

learning method. The first model uses a novel

unsupervised k-NN labeling approach. This method can

be applied to any dataset that contains single or multiple

faults at once. The second model uses clustering and

can be applied to datasets that contain one fault at a time

(i.e., no more than one fault per observations).

Semi-supervised learning using unsupervised k-NN

labeling. This unsupervised classification method is a

novel ML classification approach. This approach utilizes

the k-NN algorithm to label the k-closest data points

to the few training data points that are given (using

Euclidean distances). This method expands the training

dataset, which results in a higher model accuracy. This

approach is ideal for situations where only a few data

points are labeled. These few labeled data points are

used as training data points, and for each one of these

training data points we find the closest k-points to it, and

label them with the same label as the training data point

(since it is known to us). This approach enhances the

model performance, especially when it is paired with

clustering (refer to Method 3).

Semi-supervised learning using clustering. The

second semi-supervised learning method used in this

paper utilizes clustering to group the data points into

clusters. There are various clustering techniques that

can do this (k-means, k-medoids, etc.). Clustering of

the data is beneficial to us since the data points are

partitioned into subgroups, each subgroup containing

data points that are similar to each other. Similarity

is usually measured by distance. Therefore, data

points that are closest to each other will most likely

belong to the same cluster. There are five clusters

representing the four faults, and the non-faulty class in

the dataset. Furthermore, different clustering techniques

have different objectives. In this work we utilized k-

medoids clustering techniques. The objective of this

clustering method is to produce clusters that minimize

the sum of dissimilarities between a given data point,

and the cluster center it is assigned to Ref. [34] (In k-

medoids clustering centers are actual data points).

Method 2: Combination of SVM and

unsupervised learning of the k-NN labeling. In

this method (illustrated in Fig. 3), the training dataset

was expanded by applying a novel unsupervised ML

method. Nonetheless, the combination of the supervised

SVM and the unsupervised k-NN methods makes

this method a semi-supervised ML method. This

method works by measuring the distances of the closest

unlabeled data points in the dataset to the training data

points (labeled data), then the k-closest data points to

each training data point were labeled with the same label

as the training data point. Each classifier in this method

explores one specific fault at a time. This method can

classify more than one fault in the same observation, by

combining the classifications of all the binary classifiers

together. Method 2 involves four main steps: (1) the

training and test datasets were created based upon the

methodology explained previously in Section 4 and

shown in Table 7; (2) the sampled data points in the

training dataset were then used to label their k-closest

neighbors; this resulted in an increase in the size of the

training dataset; (3) the new training dataset, which is

composed of the sampled data from the original training

dataset and the output from step (2), was used to train

the SVM classifier; (4) after training the classifier, the

SVM model was used to predict the fault class for

each observation in the test dataset. This process was

repeated for all the fault classes, and the accuracy of

this method was calculated by taking the average of the

accuracies of the five classifiers.
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Fig. 3 Method 2: Combination of SVM and unsupervised

learning of the k-NN labeling.

Method 3: Combination of SVM, clustering,

and unsupervised learning of the k-NN labeling.

In this method (illustrated in Fig. 4), the sampled

training dataset was expanded by applying a novel

unsupervised ML method. Before applying this

method, the search space for the labeling of the

new data points was constrained by applying

unsupervised clustering, using k-medoid. This

constrained the unsupervised labeling of the k-NN to

only label the closest k-points to each training point

that falls within the same cluster. This method was

only applied to the multiclass problem, where it is

assumed that each observation only contained one fault.

This was the case for the Dataset 2 as illustrated in

Table 2. Method 3 involves five main steps: (1) the

training and test datasets were created based upon the

methodology explained previously in Section 4 and

shown in Table 7; (2) the data was clustered using an

unsupervised clustering method; (3) for each cluster

(corresponding to a fault), the sampled data points

in the training dataset were then used to label their

k-closest neighbors within the same cluster, this resulted

in an increase in the size of the training dataset; (4)

this new training dataset, which is composed of the

sampled data points from the original training dataset

and the output from step (3), was used to train the SVM

multi-class classifier; (5) after training the classifier, the

SVM model was used to predict the fault class for each

observation in the test dataset.

4.3 Tradeoff between Methods 1 and 2 for higher

fault classification accuracy

Since multiple data-driven ML FDD methods were

developed, the need for a tradeoff between these

methods was necessary. Therefore, this tradeoff method

(illustrated in Fig. 5) was developed to select the best

performing method for each fault type for Methods 1

and 2. Method 3 was not considered since it cannot

classify faults simultaneously. First, for each of the five

fault categories, the data was split into a training dataset

and test dataset based upon the methodology explained

previously in Section 4 and shown in Table 7, which were

used for both Methods 1 and 2. Next Methods 1 and 2

Fig. 4 Method 3 process: Combination of SVM, clustering,

and unsupervised learning of the k-NN labeling.
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Fig. 5 Tradeoff method, N is number of faults an M is either

Method 1 or 2.

were applied using the training and test datasets, and the

accuracies of the two methods were compared by fault

class. The method with the highest accuracy was chosen

for each fault class. Using this method, the accuracy

of this method is equivalent to the highest accuracy of

either Method 1 or Method 2 by fault class.

5 Result and Discussion

This section highlights the recorded accuracies for each

of the three methods that were implemented in this study

for both datasets. Method 1 was used as a baseline to

compare the accuracies of the other methods, while the

tradeoff method was used to select a method (Method 1

or Method 2) with the highest accuracy for each fault.

5.1 Method 1: Support vector machines

The binary classification method is a supervised ML

method that uses SVM to train on 25–30 sampled

observations for each fault (for a total of five classifiers).

The average accuracy of this classification method was

calculated to be 93.5% by taking the average of the five

accuracies. Table 8 shows the accuracies for each fault

Table 8 Fault accuracy of Method 1.

Fault Accuracy (%)

UCC2 99.9

OVC1 95.4

CA 93.9

EA 97.5

NF 80.6

Average 93.5

class as well as the NF class, and the overall averaged

accuracy. This method performed very well for the

refrigerant fault for circuit 2; however, the accuracy of

NF is low. The accuracy of NF is highly impacted by

the imbalanced data as illustrated in Table 5. This is

expected since the Dataset 1 has only 171 observations

labeled as NF. No attempts were made using GAN or

any other techniques developed in Refs. [2, 10, 11, 15] to

deal with imbalanced data since the focus of this work is

semi-supervised ML methods, where not all data points

are labeled.

5.2 Method 2: Combination of SVM and

unsupervised learning of the k-NN labeling

The following binary classification method is a semi-

supervised ML method that uses unsupervised labeling

of the k-NN to expand the training dataset. Then SVM

was used to train on the new training dataset for each

fault (for a total of five classifiers). Like Method 1,

this method uses 25–30 training observations, then

using unsupervised labeling of the k-NN, a new set

of data points are added to the training dataset. The

average accuracy of this method was calculated by

taking the average accuracies of the five accuracies,

which was 94.9%. Table 9 shows the accuracies by

fault class. Method 2 shows a higher average accuracy

than Method 1; however, the individual fault accuracies

are slightly lower for UCC2, OCC1, and EA. The big

improvement in comparison to Method 1 is the NF

accuracy. Method 2 has an NF accuracy of 91.8%,

while the NF accuracy of Method 1 is 80.6%. This

is very promising and means this method can handle the

Table 9 Fault accuracy of Method 2.

Fault Accuracy (%)

UCC2 99.8

OVC1 92.3

CA 93.9

EA 96.7

NF 91.8

Average 94.9
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imbalanced dataset problem with no further techniques

to generate new NF data points.

5.3 Method 3: Combination of SVM, clustering,

and unsupervised learning of k-NN labeling

This semi-supervised ML method works well when there

is only one fault per data point, and so was applied to

Dataset 2. This is rarely possible for an RTU running

under normal operating conditions due to having no

control over fault behavior; however, it is an efficient

method when only a small number of labeled data points

are available. As illustrated in Fig. 6, the accuracy of

this method is highly dependent on the k value in k-

NN. The highest average accuracy was achieved using

k D 50. A confusion matrix, shown in Figs. 7 and 8, is

used to investigate where this method is misclassifying

the five fault categories. The confusion matrix shows

the correct predictions in the diagonal elements and

incorrect predictions in the off-diagonal elements. The

OCC1 and UCC2 are predicted with 100% accuracy, while

there were some misclassifications for CA, EA, and

NF. For CA, six of the test data points are classified

Fig. 6 Accuracy of Method 3 as a function of k (k-medoids).

Fig. 7 Confusion matrix for Method 3 without

normalization.

Fig. 8 Normalized confusion matrix for Method 3.

as EA and two as NF, while for EA, four of the test

data points are classified as CA and four as NF. This

method also misclassified seven of the NF testing data

points as CA. Although the NF accuracy with 25–30

labeled observations is low (87% shown in Fig. 8) in

comparison to the other faults, the overall accuracy of

this method is promising when compared to results of

other studies with even larger numbers of labeled data

points. For instance, Ref. [23] reported only an 84%

accuracy with 84 labeled data points. This method can

be further improved if the data imbalance is addressed

by using methods such as GAN or oversampling of the

minor class.

5.4 Tradeoff method

In this method, the accuracy is calculated by using

Methods 1 and 2 and including the method that achieves

a higher accuracy for each specific fault. Accuracies of

this method for each fault class are listed in Table 10.

The tradeoff is a good technique to use when there are

two or more methods that can achieve higher accuracy

when alternatively combined with each other. The

method with the highest accuracy for each fault is

chosen to be the model of choice for FDD for that fault.

The average accuracy achieved by tradeoff method was

95.7%.

Table 10 Tradeoff method accuracy.

Fault Selected method Accuracy (%)

UCC2 Method 1 99.9

OCC1 Method 1 95.4

CA Method 2 93.9

EA Method 1 97.5

NF Method 2 91.8

Average 95.7
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6 Conclusion, Limitations, and Future Work

In this paper we have presented different ML methods

for FDD for HVAC systems, for decision making

when only a small number of labeled data points exist.

Datasets can be expensive and difficult to obtain, and

if they are available, labeling them is even harder and

requires an in-depth knowledge of RTU behavior and

thermodynamic principles. In this work, one supervised

learning method and two semi-supervised learning

methods were developed. The focus of this paper is semi-

supervised ML methods to address the lack of labeled

data points; however, a supervised ML method was also

developed as a baseline for comparison purposes. All

the developed methods were able to classify all seven

considered faults categories (UCC1, OCC1, UCC2, OCC2,

CA, EA, NF); however, only five classes are identified

and analyzed because there was no instance in the

datasets for the UCC1 and OCC2 faults. The average fault

classification accuracy of the supervised ML method

for the baseline method was high (93.5%); however,

the minority class (NF) classification accuracy was low

(80.6%) because of the data imbalance. This low fault

classification accuracy can be addressed in future studies

by utilizing oversampling techniques on the minority

class. A combination of SVM and a novel unsupervised

ML technique that utilizes k-NN labeling (Method 2)

was developed. This method is very promising, as it

shows a high average accuracy (94.9%) even with a

few labeled data points and it can predict multiple

faults in the same data point. This method also shows

encouraging results for dealing with imbalanced datasets

without the need for additional techniques to generate

new data points to balance all classes. A combination

of SVM, clustering, and unsupervised learning of k-NN

labeling (Method 3) was developed. This method is

limited to a scenario where only one fault at a time is

present in the dataset; however, it is a powerful approach

to deal with limited labeled data points. The highest

average accuracy was achieved using k-NN with k D 50.

Interestingly, all OCC1 and UCC2 testing data points are

correctly predicted, while there were a few data points

that were misclassified for CA, EA, and NF. Even though

the imbalanced dataset challenge can be handled by

using different techniques, the main drawback of this

method is the presence of multiple faults in the same

observation. Finally, a tradeoff method was developed

to select between Methods 1 and 2 for each fault type.

Rather than looking at the overall accuracy of each

method, this method looks at the accuracy of each

individual classifier (one classifier for each fault class).

This is useful when it is necessary to select between

different methods (SVM or a combination of SVM and

unsupervised ML of k-NN labeling) for each classifier,

to achieve better predictions, and an overall higher

average accuracy.

The developed methods in this paper perform best

when used for RTUs with similar system specifications

(e.g., refrigerant, number of compressors, compressor

type, expansion device, number of fans, etc.). These

methods have not been tested on datasets collected

from differing RTU types. Future work could focus on

whether these methods can be generalized to other RTU

types or datasets with multiple different types of RTUs.

Another limitation of this work is the list of considered

faults. A total of six faults for both circuits were only

considered since the aim of this project was to develop a

high accuracy and robust ML FDD methods given only

a few labeled observations. However, more faults can

be added with the availability of more fault labels. The

proposed methods in this work require only a few labeled

datapoints. Reliable data labels are important to build a

robust model to correctly predict faults. The thresholds

of fault severity are estimated based on the previous

literature and used to label the datasets for this study;

however, the datasets used in this paper are composed of

real data collected from the RTU operating under typical

operating conditions and are different from the data used

in the literature (simulated data). Intensive research has

been performed to produce generalization effects of FI

values using simulation or experimental setup; however,

more work is needed to verify the fault severity on COP

or other performance metrics for a real air conditioning

unit in the field. The application of the work presented

in this paper has a high potential to reduce lifecycle costs

for HVAC systems. Building owners and managers can

hire a technician to validate the soft faults classified by

the models developed in this paper rather than wait for

a hard, more expensive fault to occur and incur higher

energy costs due to suboptimal operation.
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