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A B S T R A C T   

Sixty years ago, Rachel Carson published her book Silent Spring, which focused the world's attention on the 
dangers of pesticides. Since that time human impacts on the environment have accelerated and this has included 
reshaping the chemical landscape. Here we evaluate the severity of exposure of tropical terrestrial mammals to 
pesticides, pharmaceuticals, plastics, particulate matter associated with forest fires, and nanoparticles. We 
consider how these environmental contaminants interact with one another, with the endocrine and microbiome 
systems of mammals, and with other environmental changes to produce a larger negative impact than might 
initially be expected. Using this background and building on past conservation success, such as mending the 
ozone layer and decreasing acid rain, we tackle the difficult issue of how to construct meaningful policies and 
conservation plans that include a consideration of the chemical landscape. We document that policy solutions to 
improving the chemical landscape are already known and the path of how to construct a healthier planet is 
discernible.   

1. Introduction 

Human actions have altered global environments in dramatic ways. 
For mammals in the tropics, their habitat is being destroyed at an 
increasing rate, with ~60 million ha (an area larger than Madagascar) of 
tropical primary forest lost between 2002 and 2019 (Weisse and Glad-
man, 2020). Our actions have led to the Earth's temperature increasing 
over land by 1.59 ◦C from the 1850–1990 period to the last 10 years, and 
temperature increase by the end of the 21st century is projected to 
exceed 1.5 ◦C (Bernard and Marshall, 2020; IPCC, 2021). Estimates 
suggest that the tropics will experience 10% greater warming than this 
global average (Graham et al., 2016). Given the magnitude of anthro-
pogenic impacts, Crutzen and Stoermer (2000) suggested that we label 
the current geological epoch as the “Anthropocene” and this term is now 
widely used in academic and popular literature (Kalbitzer and Chapman, 
2018; Lewis and Maslin, 2015). 

The cutting of forests or production of greenhouse gases are very 
apparent as people see cleared fields, the smokestacks of industry, and 
melting glaciers, while also experiencing hotter summers; however, all 
human actions are not so easily seen. One of the best-known examples of 
human actions that have a cryptic influence was brought to the public's 
attention in 1962, when Rachel Carson wrote her book Silent Spring 
(Carson, 1962). This book focused on the detrimental effects of pesti-
cides, which she advocated should be termed “biocides” because their 
effects are rarely limited to the pests they were intended to target. Her 
work, and the public interest it created, contributed to a change in the 
pesticide policy of the United States and a nationwide ban on dichlor-
odiphenyltrichloroethane (DDT) use in the agricultural industry (Hayes 
and Hansen, 2017). 

While the release of anthropogenic chemicals into the environment 
has been further regulated since Carson's time, the threat remains, and 
environmental chemical contaminants continue to play a substantial 
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role in shaping the Anthropocene. Pollution is the largest environmental 
cause of premature human death in the world. Over 9 million people 
died prematurely in 2015 from pollution related causes (Landrigan 
et al., 2018). This is three times the number of deaths caused by malaria, 
tuberculosis, and AIDS combined. Unfortunately, we do not have similar 
statistics for wildlife. However, given the magnitude of these human 
mortality statistics and since pollutants do not stay where they are 
applied, wildlife populations are likely experiencing similar impacts. In 
fact, the world has seen continuous growth in the amount and number of 
chemicals used with global sales projected to double by 2030. In 2017, 
sales totaled 5.68 trillion US dollars, making the chemical industry the 
world's second largest manufacturing industry (UNEP, 2019). Today, 
more than 140,000 unique synthetic chemicals have been made 
(Landrigan et al., 2018), and these chemicals end up in air, water, soil, 
plants, and biological tissues. Less than half of the top 5000 chemicals 
produced in the greatest volume have been tested for toxicity and safety 
(Landrigan et al., 2018). Despite this, many of these chemicals are found 
in the food we eat, air we breathe, and products we use every day, such 
as toothpaste and cosmetics. Given their quantity and the physico- 
chemical properties of most of these chemicals that make them vola-
tile and persistent, it is not surprising that atmospheric transport de-
posits many synthetic chemicals in remote areas where they were never 
applied (Devi et al., 2015). Eventually, many end up distributed in all 
parts of every ecosystem. 

The long-term effect of these chemical contaminants on ecosystems 
is only now being appreciated. For example, flying insect biomass has 
been documented to have declined by 80% over the last 30 years in 
Europe and this corresponds to a loss of more than 420 million birds 
(Hallmann et al., 2017; Inger et al., 2015; Karlsson et al., 2021). The vast 
majority of the studies examining the effects of chemical contaminants 

are concerned with human health and focus on temperate ecosystems. 
Yet, given the threatened status of many tropical species and the 
increasing encroachment of humans into what were previously remote 
tropical areas, there is an urgent need to understand the chemical 
landscapes experienced by tropical terrestrial mammals. This is even 
more urgent if one considers that the growth of chemical sales is pro-
jected to be the largest in emerging markets like Africa and the Middle 
East (UNEP, 2019). 

The objective of our paper is to first evaluate the severity of exposure 
of tropical terrestrial mammals to pesticides, pharmaceuticals, plastics, 
particulate matter associated with forest fires, and nanoparticles. Sec-
ond, we consider how environmental contaminants interact with one 
another, with the endocrine and microbiome systems of mammals, and 
with other environmental changes to produce an increased negative 
impact than might initially be expected. Finally, we tackle the difficult 
issue of how we can improve the situation and construct meaningful 
policies and conservation plans that include consideration of the 
chemical landscape. Here we build on past conservation success, such as 
mending the ozone layer and decreasing acid rain, and ask what ap-
proaches will be most successful for implementing positive change, 
including a focus on how academia can make a meaningful contribution. 

2. The chemical landscape 

2.1. Pesticides 

Similar to the trends for anthropogenic chemicals as a whole, pesti-
cide pollution is also getting worse, particularly in low- and mid-income 
countries that are often home to a high diversity of tropical mammals 
(Fig. 1). For example, approximately 2.3 billion kg of pesticides are used 

Fig. 1. Variation across tropical countries in: a) pesticide use (tons of pesticides used in agriculture in 2018), b) antibiotics used for livestock (tons), c) plastic (tons), 
d) population density (individuals/km2), e) number of mammal species, and f) number of threatened mammal species. Data from pesticides - http://www.fao. 
org/faostat/en/#data/RP; antibiotics - https://resistancemap.cddep.org/AnimalUse.php; plastics - https://ourworldindata.org/plastic-pollution; https://worldpop 
ulationreview.com/country-rankings/plastic-pollution-by-country; population density: https://data.worldbank.org/indicator/EN.POP.DNST. Data on the number 
of mammal and threatened mammal species from the IUCN. 
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each year (Hayes and Hansen, 2017). For tropical mammals there should 
be elevated concern because as high-income countries restrict the use of 
many environmentally-damaging chemicals, these same chemicals are 
either exported to or manufactured by mid-and low income countries 
and used with little restraint (Sanchez-Bayo and Hyne, 2011). Many of 
the older, more environmentally damaging pesticides that are banned in 
high-income countries (i.e., legacy pesticides) have expired patents 
allowing them to now be mass-produced in middle- and low-income 
countries, which can then be sold at cheaper prices than newer, pre-
sumably safer, chemicals (i.e., current-use pesticides) produced by 
foreign enterprises (Biscoe et al., 2004). Furthermore, environmental 
regulations are often scant or not enforced in many tropical countries 
(Landrigan et al., 2018). Additionally, chemicals like DDT and its me-
tabolites persist for decades and continue to have environmental im-
pacts long after its use, although degradation is faster in hot wet climates 
(Turgut et al., 2012). For example, the 21-year decline of Brazilian free- 
tailed bats (Tacarida brasiliensis) from an estimated 8.7 million to around 
a half a million in one cave system was attributed to DDT poisoning 
(Clark Jr, 2001). 

While such examples illustrate the magnitude of what can happen, 
they underestimate the actual impact because wildlife research often 
neglects sublethal effects, researchers do not have the means to record 
premature deaths, and reporting is biased to dramatic events that are 
easily observed. As a result, it is currently not possible to obtain a 
general picture of the association between pesticide use and their threat 
to biodiversity conservation (Groh et al., 2022) and in general, the 
consideration of consequences of exposures only exists for human health 
risk assessment (Liao et al., 2020). 

However, there are a number of studies demonstrating exposure. For 
example, frugivorous bats in Africa and the Americas have been shown 
to bioaccumulate organochlorine pesticides (Brinati et al., 2016; Ste-
chert et al., 2014; Valdespino and Sosa, 2017) which causes tissue 
damage (de Oliveira et al., 2021). Organophosphates, pyrethroids and 
toxic metals were found in the tissues of lowland tapir (Tapirus terrestris) 
from Brazil (Medici et al., 2021) and eight different pesticides were 
found in samples from sloths (Bradypus variegatus and Choloepus hoff-
manni) in Costa Rica (Pinnock, 2010). Liao et al. (2020) sampled soils in 
areas that were being used by endangered leopard cats (Prionailurus 
bengalensis) and detected 67 different pesticides. 

Unfortunately, the health and fitness effects of such exposures are 
not known because wildlife populations are seldom monitored for sub-
stantial lengths of time relevant to the accumulation of sublethal affects 
that ultimately lead to premature death (Chapman et al., 2017; Hayes 
and Carsten, 2017). As a result, comprehensive information on the ef-
fects of exposure to pesticides for tropical wildlife are lacking. For 
example, only 5% of the world's bats have been evaluated with respect to 
their exposure to pesticides, with most of these studies conducted in the 
1970s and 1980s on insectivorous bats in North America and Europe 
(Torquetti et al., 2020). However, recent research by our group across a 
series of tropical forests in Uganda and Costa Rica found significant 
levels of four groups of chemicals in air, including legacy pesticides, 
current-use pesticides, halogenated flame retardants, and organophos-
phate flame retardants (Wang et al., 2019). We followed up on these 
findings and sampled dung of howler monkeys (Alouatta palliata) in 
Costa Rica, and baboons (Papio anubis), chimpanzees (Pan troglodytes), 
red-tailed monkeys (Cercopithecus ascanius), and red colobus (Piliocolo-
bus tephrosceles) in Uganda for the same groups of chemicals, many of 
which were found across all species (S. Wang et al., 2020). 

Many of these chemicals have sublethal impacts on mammals and are 
known to disrupt the endocrine system and cause adverse develop-
mental, immune, and reproductive effects (Matthiessen et al., 2018). 
Exposure at low levels will not result in mortality but could contribute to 
the extirpation of stressed populations through synergistic effects on 
immune function or reproduction, among other outcomes. For example, 
atrazine, the world's second most widely used pesticide, is known to 
cause decreased fertility in many species, including humans (Hayes and 

Hansen, 2017). The true contribution of chemical pollution, including 
pesticides, to health outcomes in both human and wildlife is likely 
underestimated because the adverse effects of many environmental 
contaminants are poorly understood and interactions among chemicals 
are rarely investigated. 

2.2. Pharmaceuticals 

Human use of pharmaceuticals leads to thousands of tons of bio-
logically active compounds being dumped into the environment annu-
ally. In 2018, the global pharmaceutical market was valued at $1.2 
trillion US with an annual growth rate of 3–6%. There are over 4000 
different pharmaceuticals used globally for human and veterinary health 
care (Arnold et al., 2014). These compounds find their way into the 
environment at sites of production, when discarded without use, or once 
they are excreted by humans and domesticated animals. There is very 
limited research conducted evaluating the presence of these compounds 
in tropical environments (Kookana et al., 2014), but extrapolating from 
what is known from Europe and North America provides insights. 
Pharmaceuticals that are excreted are not usually degraded in sewage 
treatment plants. In the USA, 5–7 million tons of dry sewage are pro-
duced each year and 60% of this is used as fertilizer on cropland (Arnold 
et al., 2013; Arnold et al., 2014). Thus, we are spreading many active 
pharmaceuticals on the crops we eat. Globally, 20 million ha of farm 
land are fertilized with non-treated wastewater (Jiménez et al., 2009), 
an area just less than the size of the United Kingdom. Agricultural 
application of sewage from people is dwarfed by the use of livestock 
manure as fertilizers and 73% of all antimicrobial drugs sold are used on 
food animals (Van Boeckel et al., 2019). It is estimated that in North 
American the amount of antibiotics entering the soil with natural fer-
tilizers attains the level of several kilograms per hectare (Gworek et al., 
2021). 

Estimates suggest that more than 105,000 tons of antimicrobial 
drugs will be administered to food animals by 2030, and it is expected 
that tropical countries like Brazil, India, China, and South Africa will 
nearly double their use by 2030 (Fig. 1) (Van Boeckel et al., 2015). In 
general, meat production plateaued in high-income countries in 2000 
but has grown by 68%, 64%, and 40% in Asia, Africa, and South 
America, respectively (Van Boeckel et al., 2019). Meat production in 
Africa is expected to rise dramatically in the coming decade as many 
African countries are selling large amounts of land to meat producing 
businesses from countries that are capital-rich but lacking in suitable 
land for agriculture (Friis and Reenberg, 2010). For example, approxi-
mately 50 million ha of farmland in Africa, roughly the area of France, 
was appropriated by oil- or capital-rich but food-poor Middle-Eastern 
and Asian countries in 2009, with the products primarily destined for 
export (Lambin and Meyfroidt, 2011). In many cases, the area of land 
used in this way comprises a large proportion of the available agricul-
tural land: in Uganda ~ 14%, Mozambique ~ 21%, and the DRC ~ 48% 
(Friis and Reenberg, 2010). This trend is partially driven by the 
increasing wealth of countries like China and India, and an associated 
increased preference for animal-based diets (Shimokawa, 2015). 

For over 15 years there has been solid evidence that non-human 
primates are affected by pharmaceuticals. For example, in 2007 and 
2008 it was shown that chimpanzees and gorillas are hosts to Escherichia 
coli resistant to human-use antibiotics (Goldberg et al., 2007; Rwego 
et al., 2008; Weiss et al., 2018). In Uganda, appreciable antibiotic 
resistance was primarily found for inexpensive antibiotics that were 
readily available over the counter without a prescription (Goldberg 
et al., 2007). However, while such single species case studies are 
available and many studies have highlighted the impacts of pharma-
ceuticals on aquatic organisms, especially fish (Lagesson et al., 2019), 
the general effects of pharmaceuticals on terrestrial mammals, espe-
cially in the tropics, have received almost no attention. 

One of the clearest cases of pharmaceuticals causing population-level 
effects occurred on the Indian subcontinent, where the consumption of 
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livestock carcasses that were medicated with diclofenac, a non-steroidal 
anti-inflammatory drug, resulted in the death of over 95% of Gyps 
vultures (Gyps bengalensis), one of the most common raptors across the 
Indian subcontinent (Cuthbert et al., 2014; Oaks et al., 2004). Prior to 
the veterinary use of this drug, Gyps vulture populations were so high 
(tens of millions of vultures from the three most common species, 
including G. bengalensis) they were considered a risk to aircraft pop-
ulations (Cuthbert et al., 2014; Oaks et al., 2004). Despite this, diclo-
fenac is presently the 12th best-selling generic drug globally with more 
than 1443 tons consumed by people annually (Acuña et al., 2015; 
Lonappan et al., 2016) 

As with pesticide production, the manufacturing of pharmaceuticals 
is shifting to tropical countries, particularly India and Brazil. The con-
sequences of the development of the pharmaceutical industry in tropical 
countries and the associated increased use of these chemicals are un-
known. Historically, conservation biologists have responded to change 
and attempted to take corrective action after negative situations have 
occurred (Caughley, 1994; Chapman and Peres, 2001; Chapman and 
Peres, 2021); however, it is much more effective and less expensive if 
researchers can predict negative changes before they occur and proac-
tively prevent population declines rather than restore populations. Thus, 
given the increased presence of pharmaceuticals in the environment in 
tropical countries, the close association of people and wildlife in the 
tropics, and the fact that these drugs are often designed to alter repro-
duction and behavior, research into pharmaceuticals in the tropics is 
warranted. Of particular concern is the fact that wildlife will be exposed 
to these drugs at all stages of life, including during development and as 
young infants, when animals are most susceptible to non-reversible 
organizational effects and do not have the metabolic capacity for 
detoxification. 

2.3. Plastics 

The world is producing a staggering amount of plastic: 402 million 
metric tons per year (Brahney et al., 2020) with production growing at 
8.3% a year (Fig. 1) (Gavigan et al., 2020). Given this growth rate, 
production will double in only 9 years. Over 40% of this is single use 
plastics (Wright and Kelly, 2017) and globally only 9% of plastic pro-
duced were recycled in 2015 (Wu et al., 2021). Much of the world's 
discarded plastics ends up in landfills; however, 32% do not, and sur-
prising amounts are found in the air we breathe and in the water we 
drink after breaking down into microplastics. Microplastics became a 
concern in oceanographic studies about a decade ago, as large amounts 
of plastics were easily found floating in the water column (Jacobsen 
et al., 2010). However, researchers have recently discovered that small 
plastic particles are a common component of dust and rainwater and are 
beginning to appreciate the magnitude of this deposition. For example, 
it is estimated that 132 plastic particles per m2, which amounts to >1000 
metric tons of plastic, are deposited each year on protected lands in the 
western United States (Brahney et al., 2020). Atmospheric transport of 
these particles means that they are found in remote regions far from 
their sources, such as pristine mountain habitats of the Pyrenes (95 km 
from a source) (Allen et al., 2019), the Arctic (Peeken et al., 2018), and 
the Tibetan Plateau (Allen et al., 2019). Furthermore, estimates suggest 
that 110,000 and 730,000 tons of microplastics are added annually to 
farmlands in Europe and North America, respectively (Nizzetto et al., 
2016). As with pharmaceuticals, much of this plastic contamination on 
farmlands results from widespread application of sewage sludge from 
municipal wastewater treatment plants onto agricultural fields as fer-
tilizer. Microplastic particles can be taken up by plant roots and trans-
ported into the stems of agricultural plants (Li et al., 2020). Thus, the use 
of sludge as fertilizer results in people ingesting plastics through their 
food crops. One estimate suggests that people consume about 39,000 to 
98,000 plastic particles each year (Cox et al., 2019) and inhale between 
10,000 and 100,000 particles a year (Prata et al., 2020). Another study 
discovered that globally people ingest an average of 5 g of plastic every 

week – the equivalent of a credit card (World Wildlife Fund, 2019). How 
much is consumed or inhaled by terrestrial wildlife is largely unknown 
but this is a concern particularly for animals that raid agricultural fields 
(Chapman et al., 2016; Cox et al., 2019). For example, a recent study of 
Asian elephants found that 32% of the dung samples contained plastic 
(Katlam et al., 2020). 

The effects of such plastic consumption and inhalation are poorly 
understood, but particles can move across the gut lining and are found in 
all major organs. Microplastic fibers bioaccumulate in the lungs, which 
triggers inflammation (Gavigan et al., 2020). Chemicals leaching from 
plastic particles (e.g., BPA) can have endocrine-disrupting properties, 
potentially causing reproductive and developmental problems, while 
also being immunosuppressive, carcinogenic, neurotoxic, and disruptive 
to the gut microbiome (Bouwmeester et al., 2015; de Souza Machado 
et al., 2018; Prata et al., 2020; Yang et al., 2011). Because of their hy-
drophobic nature, microplastics act as an accumulator, making pollut-
ants, such as polychlorinated biphenyls (PCBs), polycyclic aromatic 
hydrocarbons (PAHs), and dichlorodiphenyltrichloroethane (DDT), all 
of which are highly toxic, carcinogenic environmental pollutants, more 
concentrated in organisms ingesting microplastics (Fackelmann and 
Sommer, 2019). Microplastics have also been shown to inhibit food 
assimilation (Straub et al., 2017), reduce body weight (Wright et al., 
2013), and negatively impact growth and reproduction (Besseling et al., 
2014). 

In many tropical countries there is the added problem that since 
waste collection and disposal systems are poor, plastics are burned. 
Globally, approximately 70.2 million tons of plastic waste were burned 
in 2016, releasing almost 1 million tons of toxic aerosols - some of which 
likely contain highly toxic dioxins and furans - and the majority of this 
burning occurred in developing, often tropical, countries (Wu et al., 
2021). These aerosols, which include small plastic particles, can cause 
an array of diseases when inhaled. To our knowledge, the extent to 
which wildlife inhale these aerosols and plastic particles has not been 
studied. Quantifying the magnitude of the exposure of tropical mammals 
to plastics and determining the sublethal consequences of this exposure 
may raise the alarm to an important issue that is negatively impacting 
wildlife populations. 

2.4. Forest fire particulate matter 

While most tropical mammal populations are removed from the air 
pollution and smog associated with cities, they experience the particu-
late matter associated with forest fires first hand. Fires in the tropics can 
encompass huge tracts of land and blanket even more extensive areas in 
smoke. For example, in 2015 Indonesia lost more than 2.6 million ha to 
fire, an area larger than Vermont, and estimates of forest damage are as 
great as 5 million ha (Harrison et al., 2016). The economic costs of these 
fires is estimated to have exceeded US$16 billion and the fires caused 
more than 100,000 premature human deaths (Chapman and Peres, 
2021; Lee et al., 2017). These fires emitted huge amounts of particulate 
matter and carbon that wildlife inhaled. It is estimated that 11.3 Tg of 
carbon dioxide was emitted each day for 2 months during these fires. 
This amount exceeded the daily fossil fuel carbon dioxide emissions (8.9 
Tg CO2 per day) across the European Union (Huijnen et al., 2016). 
Smoke is composed of hundreds of chemicals, many of which are known 
to be harmful to health (Johnston et al., 2012). The particulate matter 
associated with fire has a range of health affects in mammals including 
cardiorespiratory mortality, exacerbation of respiratory and cardiovas-
cular condition, inflammation, and oxidative stress (Johnston et al., 
2012). Of course, the best estimate of mortality that can be attributed to 
landscape fire smoke deals with humans. Each year an estimated 
339,000 deaths can be attributed to landscape fire smoke, with sub- 
Saharan Africa (157,000) and Southeast Asia (110,000) being the 
most affected regions (Johnston et al., 2012). 

Fires in the tropics are projected to get worse. Fires associated with El 
Niño (ENSO) and Indian Ocean Dipole (IOD) climatic events are on the 
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rise because of climate change. The frequency of extreme positive IOD 
events that promote fires in Southeast Asia and Australia is predicted to 
increase from one event every 17.3 years during the 20th century to one 
every 6.3 years in the 21st century (Cai et al., 2014; Hartter et al., 2012). 
We know that fires have a devastating impact on tropical forests as many 
are not fire adapted (Barlow and Peres, 2006; Harrison et al., 2009), but 
the effect of the haze and poor air quality on the surviving wildlife is 
largely unknown. An extensive review of the effects of smoke on the 
health and behavior of wildlife only found 41 relevant studies and of 
these only 16 dealt with mammals and three with tropical mammals 
(Sanderfoot et al., 2021). However, the consequences can be severe. For 
example, Singer et al. (1989) documented that smoke inhalation likely 
caused the death of 246 elk (Cervus elaphus). Given such examples and 
the documented health effect of fire on the human population, one 
would assume the health effect on wildlife is large. During the 2015 fires 
in Indonesia, air borne pollutants near Sebangau National Park, Central 
Kalimantan, reached 12 times what is considered a hazardous level and 
no doubt impacted the endangered orangutans and gibbons living there 
(Harrison et al., 2016). The orangutans in this area decreased the time 
they were active, while increasing fat catabolism that was unrelated to 
changes in caloric intake and thus their increased energy expenditure 
possibly represented an increased immune response (Erb et al., 2018) 

2.5. Will nanoparticles be the next major health concern for tropical 
mammal wildlife? 

One would think that after recognizing the importance of the mes-
sage in Rachel Carson's Silent Spring, society would have learned the 
lesson that it is not a good idea to produce huge amounts of chemicals 
and release them into the environment prior to understanding their ef-
fects. However, it is clear that the lesson was not learned and the health 
effects of the recently emerging use of nanoparticles demonstrate this 
concern. Engineered nanoparticles are increasingly becoming an inte-
gral part of everyday life and are used in many sectors including agri-
culture, electronics, textiles, cosmetics (e.g., lipstick, sunscreen, and 
anti-aging creams), food products, medicine, and paints (Kwon et al., 
2014; Phogat et al., 2016). The global nanoparticle market was valued at 
$14.7 billion US in 2015, and is projected to reach $55 billion US by 
2022 and then grow at a compounded annual growth rate of 22% 
(Inshakova and Inshakov, 2017). In 2016 there were 1814 marketed 
consumer products containing nanoparticles and 8484 new patents filed 
(Ajdary et al., 2018; Inshakova and Inshakov, 2017). Estimates of the 
amount of all nanoparticles produced are unavailable. However, in-
dustrial production of carbon black, which is used to strengthen rubber, 
is estimated at 10 million metric tons, or equivalent to the weight of 6.3 
million mid-sized cars. As a result, it is not surprising that exposure to 
nanoparticles has risen dramatically in the last few decades (Brohi et al., 
2017). The wide use of nanoparticles has raised concerns about their 
negative impacts on human and wildlife health. How different nano-
particles produce toxic effects needs to be better understood (Ajdary 
et al., 2018; Jeevanandam et al., 2018). Nanoparticles can cross cellular 
barriers due to their extremely small size. Due to their large surface to 
volume ratio, they are very reactive in biological systems. These parti-
cles can damage tissues and cells, activate oxidative stress responses and 
expression of genes involved in inflammation, and accumulate in 
different tissues and organs, including the brain (Ajdary et al., 2018; 
Jeevanandam et al., 2018). 

3. Effects on animal physiology: chemical stressors, endocrine 
disruption, and the microbiome 

Unfortunately, with a few exceptions, the impact of chemical con-
taminants on wildlife are assessed one contaminant at a time and do not 
consider the general ecological circumstances in which the population 
occurs (e.g., is the population stressed). Yet, animals live in complex 
environments where they are being simultaneously exposed to multiple 

chemicals and are experiencing several ecological stressors (Groh et al., 
2022; Torquetti et al., 2020). Given the pace at which anthropogenic 
habitat disturbance and climate change are occurring, these stressors are 
increasingly challenging wildlife (Groh et al., 2022). It is also unfortu-
nate that often only dramatic effects, such as population die-offs like that 
described for the Gyps vultures in India, are considered sufficiently clear 
and significant to warrant publication (Cuthbert et al., 2014; Oaks et al., 
2004). Yet medical research on people, and a few on wildlife, clearly 
demonstrates that most impacts will not cause immediate mortality, but 
rather will have sublethal negative effects, such as reduced reproduc-
tion, suppressed immune functioning, altered endocrine functioning, 
decreased foraging efficiency, or increased allostatic load that can lead 
to premature death from diseases like cancer (Brinati et al., 2016; de 
Oliveira et al., 2021; Erb et al., 2018). 

Many pollutants (e.g., phthalates, alkylphenolic compounds, poly-
chlorinated biphenyls, dioxins/furans, organochlorine pesticides, heavy 
metals) adversely affect development and physiology often by inter-
fering with normal endocrine functioning (Zala and Penn, 2004). Such 
endocrine disrupting chemicals are ubiquitous in the tropics and are 
commonly found in the tissues of wildlife, even those living in isolated 
regions (Verreault et al., 2005). Exposure in mammals can cause a va-
riety of effects, such as masculinized females and feminized males, 
reduced fertility, altered mating behaviors, increased aggression, and 
impaired spatial learning and memory (Zala and Penn, 2004). For 
example, long-tailed macaque monkeys (Macaca fascicularis) experi-
mentally exposed to PCBs have a shorter attention span and cognitive 
impairment (Rice and Hayward, 1997; Rice and Hayward, 1999). While 
such experimental studies are useful in identifying an effect of exposure, 
what is needed is information on how such cognitive effects translate 
into decreased abilities to find food, mates, and sleeping sites in natural 
environments and how these effects influence population viability. We 
do know that Douc langurs (Pygathrix nigripes, P. nemaeus, P. cinerea) 
were exposed to dioxin (TCDD - agent orange) in Vietnam (Brockman 
et al., 2009) and that howler monkeys (Alouatta pigra) have been 
exposed to high levels of lead (Serio-Silva et al., 2015), but the popu-
lation level effects of these exposures are unknown. The wildlife in 
Bwindi Impenetrable National Park, Uganda, a biodiversity hotspot and 
the location protecting about half the world's endangered mountain 
gorillas (Gorilla beringei), are exposed to DDT from leaves at levels above 
European and US maximum levels for medicinal plants (Amusa et al., 
2021). The ring-tail lemurs (Lemur catta) of Beza Mahafaly Special 
Reserve in Madagascar are exposed to multiple organochlorine pesti-
cides and heavy metals but the exposure is currently at a low level 
(Rainwater et al., 2009). 

Pollutants are also likely to interact with the microbiome - the 
community of microscopic organisms that live in and on animals and 
influence many aspects of their physiology. Environmental exposures to 
chemical pollutants can alter host microbial communities through ab-
sorption, inhalation, and consumption, eliciting specific physiological 
responses from the nervous, endocrine, and immune systems (Peisl et al., 
2018). For example, exposure to the pesticide chlorpyrifos resulted in a 
decrease in beneficial bacteria and increases in gut permeability and 
inflammation in mice (Yuan et al., 2019), as well as inducing obesity and 
insulin resistance (Liang et al., 2019). Giving these mice a broad- 
spectrum antibiotic affecting their gut microbiota reversed the effects. 
Examples of pesticides impacting the gut microbiome of wild animals 
are accumulating (Kakumanu et al., 2016; Lozano et al., 2018). Simi-
larly, exposure to pharmaceuticals is associated with changes in the gut 
microbiome, especially for antibiotics (Suez et al., 2018). A range of 
additional pharmaceuticals are likely to influence the gut microbiome 
given the overall propensity for bacteria to metabolize a diverse suite of 
xenobiotics (Javurek et al., 2017). Few empirical data have linked pol-
lutants, such as microplastics and nanoparticles, to changes in the gut 
microbiome, but potential mechanistic links have been identified 
(Fackelmann and Sommer, 2019). 

The extent to which shifts in wild animal microbiomes associated 
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with pollutants are a symptom of other health impacts of pollutants or 
augment health via novel pathways remains to be understood. Human 
studies have demonstrated that the gut microbiome degrades pharma-
ceuticals (Abdelsalam et al., 2020), studies of insects demonstrate 
microbially-conferred resistance to insecticides (Kikuchi et al., 2012), 
and a subset of naturally occurring microbes can degrade plastics (G.-H. 
Wang et al., 2020). However, there will be limits to these microbial 
services. The extent to which the microbial genes that provide these 
services are distributed across habitats and animal species is unknown, 
as is the capacity of the gut microbiome to change fast enough to keep up 
with environmental change. Additionally, in some cases, the byproducts 
of microbial degradation of chemical compounds can be as detrimental 
to hosts as the original compounds, if not more (Claus et al., 2017). 

4. Interaction of pollution with other changing environmental 
factors 

While pollution is a direct threat to animal health, it also interacts 
with a range of other anthropogenic impacts on habitats. To illustrate 
how chemical contaminants could interact with the changing environ-
ment, we consider a tropical system where primate populations inhabit 
forest fragments that are adjacent to agricultural land; a tropical system 
some of us have worked on for many years (Chapman et al., 1999; 
Chapman et al., 2013; Chapman et al., 2007a; Chapman et al., 2006c). 
Forest loss and fragmentation is a global problem affecting most tropical 
terrestrial mammals. Globally, ~60 million ha of tropical primary forest 
were lost between 2002 and 2019, with the most forest loss occurring in 
Brazil (24.5 Mha), Indonesia (9.5 Mha), and the Democratic Republic of 
the Congo (4.8 Mha) (Weisse and Gladman, 2020). This loss not only 
resulted in a reduction of forest area, but large tracts of forest were 
divided into progressively smaller fragments. Today, large areas of 
intact forest are rare and many species only inhabit small forest frag-
ments in human-dominated landscapes (Benchimol and Peres, 2013; 
Estrada et al., 2017; Strier, 1994). In fact, areas of continuous tracts of 
forest larger than 500 km2 suitable for large populations comprise only 
20% of remaining tropical forests and these forests are disappearing at a 
rate of 7.2% each year (Potapov et al., 2017). Only 12% of these areas 
are protected (Potapov et al., 2017). In the next 50 years the number of 
fragments is projected to increase 33-fold and the mean size of these 
fragments will decline to between 0.25 and 17 ha (Taubert et al., 2018). 

Forest fragmentation leads to reduction of forest area and dramatic 
increase in forest edge. These edges trap pollutants that are coming from 
adjoining agricultural and urban areas. In fact, pollutant concentrations 
can be up to 56% higher on the forest edge than in the interior (Weathers 
et al., 2001). As the land adjacent to the fragments will typically be used 
for agriculture and human settlement, the animals will likely experience 
a greater exposure to a range of chemicals, including plastics being 
disposed of by burning. Animals will also breathe air whose quality is 
affected by large regional fires and the many small fires set to prepare 
fields for planting or promote growth of new grasses for cattle. If the 
animals enter the agricultural land to crop raid, they will be directly 
exposed to pesticides and since crops are typically fertilized by applying 
animal dung (Jiménez et al., 2009), they are likely ingesting pharma-
ceuticals used to treat domesticated animals. Depending on the region, 
they may be stressed by hunters (Sales et al., 2020) and must deal with 
the stress of encountering dogs (Serio-Silva et al., 2019). In addition to 
the stress of this increased pollutant exposure, animals in these frag-
ments can both have elevated parasite levels and a poorer diet compared 
to animals in continuous forest (Chapman et al., 2015; Chapman et al., 
2007b; Chapman et al., 2006a). A study of endangered red colobus 
found that cortisol levels of animals in fragments, a hormone involved 
with the vertebrate stress response and general energy metabolism 
(Bercovitch and Ziegler, 2002; Creel et al., 2002), was 3.5 times that of 
animals from continuous forest (Chapman et al., 2006b). Teasing apart 
the impacts of such diverse, interacting perturbations will be exceed-
ingly difficult, and would involve a very well-funded, interdisciplinary 

effort that is rarely seen. However, this does not alter the reality that 
these interactions are occurring in most human-altered ecosystems. 

5. What needs to be done 

Despite ample research demonstrating the negatives effects of 
chemicals released into the environment (Landrigan et al., 2018), strong 
public support for protecting the environment (Feinberg and Willer, 
2013), inequitable distribution of exposure to toxic chemicals that calls 
for fairer treatment (Landrigan et al., 2018), and decades of legislation 
and litigation (Chiapella et al., 2019), it is clear society has failed to 
protect environmental health. Society is not effectively adopting a pre-
cautionary principle, rather it is allowing new chemicals and forms of 
environmental contaminants to be generated in huge quantities and only 
responding well after the negative consequences of these actions are 
made apparent, if even then. 

Let us provide one example following an environmental contaminant 
from its creation to the present day. Many people will be aware of 
Bisphenol A, or BPA. This is a synthetic monomer and estrogenic com-
pound that was first used in 1958 in polycarbonate plastics, epoxy resin 
linings of canned foods and beverage containers, and as dental sealants 
(Seachrist et al., 2016). It became well known because of public demand 
to have it removed from our water bottles. In 1982 it was shown to cause 
cancer in rats (Seachrist et al., 2016). In 2007, a panel of experts 
assembled by the National Institutes of Health (NIH) and the Environ-
mental Protection Agency (EPA) in the United States reviewed the 
extensive research that was available and concluded that BPA is an 
endocrine disruptor and is likely associated with increased breast and 
prostate cancer (Seachrist et al., 2016). In 2008, Canada banned the use 
of BPA in products for infants (Lofstedt, 2013). In 2009, a review pub-
lished in the Proceedings of the Royal Society B demonstrated health 
effects in a wide range of aquatic organisms. In 2012, the use of BPA was 
banned in baby bottles and infant formula packaging in the United 
States. Yet, it is still widely used globally. In 2003, more than 2.7 million 
metric tons of BPA were made and in 2015 production increased to 4.9 
million metric tons. Over 90% of people tested in the US have detectable 
levels of BPA in their bodies (Seachrist et al., 2016) and the EPA esti-
mates 500,000 kg leach into the environment each year. The market 
value of BPA production was expected to be USD $20 billion in 2020 
(Grand Review Research, 2020). Thus, despite strong evidence con-
cerning its dangers to the health of people and wildlife and strong public 
knowledge of its dangers (Lofstedt, 2013), this chemical is not only 
widely used, but its use is increasing. Together with BPA, the use of its 
replacements (i.e., BPS) is on the rise, despite studies showing rapid and 
negative health effects (Ferguson et al., 2019). This cycle, where a 
chemical is replaced with a substitute of equal, if not worse, environ-
mental and health outcomes, is referred to as “regrettable substitution”. 
Like BPA and BPS, other examples include flame retardants like tris (1,3 
dichloro-2-propyl) phosphate (TDCPP) or polybrominated diphenyl 
ethers (PBDEs) which were replaced with organophosphate esters. 

Our evaluation of the exposure of terrestrial wildlife in the tropics to 
pollution-pesticides, pharmaceuticals, and plastics reveals a very diverse 
set of problems and point to a strong need to improve the overall 
governance of toxic chemicals globally. In tackling these problems much 
can be learned from past efforts to regulate chemical use (Chiapella 
et al., 2019) and from efforts to respond to acid rain, ozone depletion, 
and climate change (Grennfelt et al., 2020; Morrisette, 1989). Interna-
tional efforts to regulate acid rain and ozone depletion are considered by 
many to represent a success story, particularly in North America and 
Europe. In contrast, attempts to mitigate climate change are only now 
beginning to make progress (IPCC, 2014, 2021). Dealing with each of 
these issues required producing extensive credible scientific infor-
mation delivered to the public and policy makers. The role of scientists 
has been as “honest brokers” (Pielke Jr, 2007). 

To achieve similar sorts of advances with new environmental con-
taminants will require the creation and coordination of teams and 
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networks. The efforts to control air pollution and climate change 
required strong networks of scientists and policy makers to push poli-
ticians to initiate change (Grennfelt et al., 2020). These networks can 
present a unified voice to lobby support, change consumer preferences, 
and pressure industry. Given the diversity of the contaminants and their 
sources, the difficulty of monitoring wildlife health and population size, 
and the complex cultural landscape in which change will have to occur, 
the coordination of similar multidisciplinary teams of international 
collaborators will be essential. 

The creation of credible scientific information will require the 
development of long-lasting infrastructure that both continuously 
monitor the impacts of environmental contamination and generate 
science-based policy options. With respect to acid rain, infrastructure to 
monitor atmospheric concentrations, cross-border transport, and depo-
sition of air pollutants was established in 1970. The information derived 
from this monitoring formed the basis for the Convention on Long-Range 
Transboundary Air Pollution in 1979 and one of the first steps to 
meaningful regulation (Grennfelt et al., 2020). The infrastructure 
needed to monitor the impacts of environmental contamination on 
wildlife will require long-term monitoring of exposure and population 
dynamics at field stations around the globe. These field stations will 
result in collateral conservation gains (Sarkar et al., 2019). The time 
may be right to instigate such efforts as they can be coupled with the call 
for monitoring of emerging infectious diseases from wildlife following 
the coronavirus pandemic (Bernstein et al., in press). 

Producing this information will require training and mobilizing 
scientists from around the world. Ultimately, while the benefits will be 
reaped globally, the ownership of the solutions must rest with the people 
who ultimately bear the costs and/or reap their benefits. Thus, signifi-
cant investment must be placed in building the education, research, and 
management capacity in many tropical developing countries. This 
training must involve an education system that promotes a connection 
with nature and wilderness (Kareiva, 2008; Zaradic et al., 2009). Data 
on wildlife exposure does not stand on its own and needs to be 
contextualized to make it useful. Thus, researchers will need to spend 
considerable time in the field attempting to understand pathways of 
exposure and causes of population stress that could act in combination 
with contaminants to negatively impact populations (Sarkar and 
Chapman, 2021). Furthermore, to derive effective policy options, it 
often takes considerable effort and time in the field interacting with 
local communities to understand their needs and working with policy 
makers to realize their constraints (Chapman et al., in review). 

Ultimately, scientists must produce and communicate informa-
tion that will effectively inform policy decisions and motivate ac-
tion. This requires that the information produced be salient (relevant 
and timely), credible (authoritative, believable, and trusted), and 
legitimate (developed via a process that considers the values and per-
spectives of all actors) in the eyes of researchers, policymakers, media, 
and agents that create action (Cook et al., 2013). The growing demand 
for better synergy between science and policy and the meaningful 
implementation of their recommendations has led to new environmental 
frameworks for both research and society (Völker et al., 2019; Watson 
et al., 2020). In particular, there is a move away from focusing on the 
gap between research findings and their implementation, towards more 
attention on properly contextualizing the lessons from successes, as well 
as challenges (Cvitanovic and Hobday, 2018; Toomey et al., 2017). 
Within the science-to-action context, ‘communication strategies’ are 
explicitly a part of a ‘political strategy’. All too often environmental 
protection is poorly presented to society so that it appears to be a costly 
trade-off where social and economic opportunities are forfeited to ach-
ieve environmental protection that may or may not be needed. It is 
hardly surprising, therefore, that environmental protection is sometimes 
seen to be placed above the individual's welfare - the paycheck that 
comes at the end of the week or the amount of crop that can be produced 
to support a family. New and better ways of communicating with and 
educating the public, lobbyist, industry, and policymakers are needed – 

including a tool kit that converts scientific information into legally 
binding policy and action. One important component of this tool kit will 
be efforts to promote the co-creation of scientific knowledge and policy 
options between scientists and policy makers. 

Today, wildlife's exposure to anthropogenic chemicals is greater than 
ever given the amounts being produced. New dangers are becoming 
recognized, such as those from microplastics and nanoparticles. How-
ever, many of the answers to the question of how to find policy options 
to contaminants are known and the path of how to construct a healthier 
planet is discernible. The question that needs to be asked is whether 
humanity has the will to do the right thing and forge a healthy and 
equitable future for people and wildlife. 
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