

Animated�Vega-Lite:�Unifying�Animation�with�a�
Grammar�of�Interactive�Graphics�

Jonathan�Zong*,�Josh�Pollock*,�Dylan�Wootton,�Arvind�Satyanarayan�

Abstract—�We�present�Animated�Vega-Lite,�a�set�of�extensions�to�Vega-Lite�that�model�animated�visualizations�as�time-varying�data�
queries.� In�contrast�to�alternate�approaches�for�specifying�animated�visualizations,�which�prize�a�highly�expressive�design�space,�
Animated�Vega-Lite�prioritizes�unifying�animation�with�the�language’s�existing�abstractions�for�static�and�interactive�visualizations�to�
enable�authors�to�smoothly�move�between�or�combine�these�modalities.�Thus,�to�compose�animation�with�static�visualizations,�we�
represent�time�as�an�encoding�channel.�Time�encodings�map�a�data�field�to�animation�keyframes,�providing�a�lightweight�specification�
for�animations�without�interaction.� To�compose�animation�and�interaction,�we�also�represent�time�as�an�event�stream;�Vega-Lite�
selections,�which�provide�dynamic�data�queries,�are�now�driven�not�only�by�input�events�but�by�timer�ticks�as�well.�We�evaluate�the�
expressiveness�of�our�approach�through�a�gallery�of�diverse�examples�that�demonstrate�coverage�over�taxonomies�of�both�interaction�
and�animation.�We�also�critically�reflect�on�the�conceptual�affordances�and�limitations�of�our�contribution�by�interviewing�five�expert�
developers�of�existing�animation�grammars.�These�reflections�highlight�the�key�motivating�role�of�in-the-wild�examples,�and�identify�three�
central�tradeoffs:�the�language�design�process,�the�types�of�animated�transitions�supported,�and�how�the�systems�model�keyframes.�

Index Terms—Information�visualization,�Animation,�Interaction,�Toolkits,�Systems,�Declarative�Specification�

1 INTRODUCTION

Rapid�prototyping� is�critical� to� the�visualization�authoring�process.�
When�making�an�explanatory�graphic,�rapid�prototyping�allows�a�vi-
sualization�author�to�evaluate�candidate�designs�before�committing�to�
refining�one�in�detail.�For�exploratory�data�analysis,�rapid�prototyping�is�
equally�key�as�visualization�is�just�one�part�of�a�broader�workflow,�with�
analysts�focused�on�producing�and�analyzing�a�chart�to�yield�insight�
or�seed�further�analysis.�However,�consider�the�friction�of�visualizing�
faceted�data:� an�author�might�choose�between�depicting�facets�as�a�
small�multiples�display,�on-demand�via�interaction�(e.g.,�dynamic�query�
widgets),�or�played�sequentially�via�animation.� These�designs�make�
different�trade-offs�between�time�and�space�and,�as�a�result,�research�
results�suggest�they�afford�readers�different�levels�of�clarity,�time�com-
mitment,�and�visual�interest�[33].�Despite�these�differences,�the�designs�
express�a�shared�goal�—�to�visualize�different�groupings�of�the�data�—�
and�a�visualization�author�might�reasonably�expect�to�be�able�to�easily�
move�between�the�three�to�make�the�most�appropriate�choice.�

Unfortunately,�existing�visualization�toolkits�can�present�a�highly�
viscous� [44]� specification�process�when�navigating� this� time-space�
trade-off.� One� class� of� toolkits� supports� either� interaction� or� ani-
mation,� but� not� both.� Such� systems� include� Vega� [38]� and� Vega-
Lite�[36]�—�which�offer�interaction�primitives�in�the�form�of�signals�
and�selections�but�do�not�provide�abstractions�for�animation�—�as�well�
as�gganimate�[43],�Data�Animator�[46],�Canis�/�CAST�[9,�10],�and�
Gemini/Gemini2� [19,20]�— which express animation in terms of transi-
tions�between�discrete�visualization�states�known�as�keyframes�but�do�
not�provide�treatment�for�interaction.�As�a�result,�these�systems�force�vi-
sualization�authors�to�prematurely�commit�[44]�to�either�an�interaction-
or�animation-friendly�abstraction�when�choosing�their�prototyping�tool,�
and�thus�limit�authors’�ability�to�explore�alternative�designs.�A�second�
class�of�toolkits�(including�D3�[3]�and�Plotly�[1])�support�both�modali-
ties�but�do�so�via�largely�distinct�abstractions�(namely,�transitions�or�
frames�for�animation,�and�event�handlers�or�a�typology�of�techniques�
for�interaction).�Thus,�an�author�must�often�either�restructure�or�rewrite�
their�specifications�to�consider�interaction�and�animation�in�parallel.�

In�this�paper,�we�present�Animated�Vega-Lite:�extensions�to�Vega-
Lite�to�support�data-driven�animation.� Its�design�is�motivated�by�the�
key�insight�that�interaction�and�animation�are�parallel�concepts�(Sect.�3).�
Whereas�interactions�transform�data�(e.g.�filtering)�and�update�visual�
properties�(e.g.�re-coloring�marks)�in�response�to�user�input,�animations�
do�the�same�in�response�to�a�timer.�From�this�perspective,�interactive�
and�animated�visualization�techniques�occupy�a�spectrum�of�dynamic,�
event-driven�behaviors.� Thus,� with�Animated�Vega-Lite,� animated�
visualizations�(like�their�interactive�counterparts)�are�modeled�as�time-
varying�data�queries�—�an�approach�that�allows�us�to�provide�a�unified�
set�of�abstractions�for�static,�interactive,�and�animated�visualizations.�

Animated�Vega-Lite�offers�two�abstractions�of�time�that�allow�ani-
mations�to�compose�with�Vega-Lite’s�existing�grammars�of�static�and�
interactive�visualizations�(Sect.�4).�From�the�perspective�of�interaction,�
time�is�an�event�stream:�a�source�of�events�analogous�to�clicks�and�
keypresses�produced�by�a�user.�These�events�drive�Vega-Lite�selec-
tions,�which�apply�dynamic�data�queries�to�visual�encodings.�Thus,�by�
modeling�time�as�an�event�stream,�users�can�seamlessly�specify�and�
move�between�interactive�and�animated�behavior�in�the�same�specifica-
tion.�From�the�perspective�of�Vega-Lite’s�grammar�of�graphics,�time�
is�an�encoding�channel.�Just�as�x and�y encodings�map�data�values�to�
spatial�positions�measured�in�pixels,�a�time encoding�maps�data�values�
to�temporal�positions�measured�in�elapsed�milliseconds.�Compared�to�
the�event�stream�abstraction,�the�encoding�channel�abstraction�is�lighter-
weight,�but�less�expressive.�This�allows�a�visualization�author�to�get�
started�quickly�with�an�animated�chart�and�to�move�easily�between�an�
animated�and�a�faceted�visualization�by�switching�a�time channel�for�a�
row or�column one.�And,�for�added�customizability,�users�can�always�
turn�a�time-as-encoding�specification�into�a�time-as-event-stream�one.�

We�implement�a�prototype�compiler�that�synthesizes�a�low-level�
Vega�specification�with�shared�reactive�logic�for�interaction�and�anima-
tion�(Sect.�5).�Following�best�practices�[32],�we�assess�our�contribution�
with�multiple�evaluation�methods.�Through�a�diverse�example�gallery�
(Sect.�6),�we�demonstrate�that�Animated�Vega-Lite�covers�much�of�
Yi�et�al.’s�interaction�taxonomy�[51]�and�Heer�&�Robertson’s�anima-
tion�taxonomy�[12]�while�preserving�Vega-Lite’s�low�viscosity�and�
systematic�generativity.� We�also�interview�five�expert�developers�of�
four�existing�animated�visualization�grammars�[9,�10,�19,�20,�42,�46]�
to�critically�reflect�[35]�on�the�tradeoffs,�conceptual�affordances,�and�
limitations�of�our�system�(Sect.�7).�We�discuss�the�important�role�ex-
ample�visualizations�play�in�grammar�design�and�analyze�three�areas�of�
tradeoffs:�the�language�design�process,�support�for�animations�within�
vs.�between�encodings,�and�models�of�animation�keyframes.�

•� Jonathan�Zong�and�Josh�Pollock�are�co-first�authors.�
•� The�authors�are�with�MIT�CSAIL.�E-mails:�{jzong,�jopo,�dwootton,�

arvindsatya}@mit.edu.�

Manuscript�received�xx�xxx.�201x;�accepted�xx�xxx.�201x.�Date�of�Publication�
xx�xxx.�201x;�date�of�current�version�xx�xxx.�201x.�For�information�on�
obtaining�reprints�of�this�article,�please�send�e-mail�to:�reprints@ieee.org.�
Digital�Object�Identifier:�xx.xxxx/TVCG.201x.xxxxxxx�

mailto:reprints@ieee.org
mailto:reprints@ieee.org

2 RELATED WORK

Our�contribution�is�motivated�by�perceptual�work�on�the�value�of�com-
bining�interaction�and�animation,� and�is� informed�by�the�design�of�
existing�toolkits�for�authoring�animated�data�visualizations.�

2.1 Animation in Information Visualization
In�a�classic�2002�paper,�Tversky�et�al.�[47]�question�the�efficacy�of�
animated�graphics.�In�reviewing�nearly�100�studies�comparing�static�
and�animated�graphics,� the�authors�were�unable� to�find�convincing�
cases�where�animated�charts�were�strictly�superior�to�static�ones.�Vi-
sualization�researchers�have�since�contributed�a�body�of�studies�that�
have�identified�reasons�to�be�both�optimistic�and�cautious�about�the�
value�of�animation�in�visualization.�For�instance,�several�studies�have�
demonstrated�advantages�when�animating�chart�transitions�[5, 7, 12, 18]�
or�directly�animating�data�values�to�convey�uncertainty�[13, 17].�How-
ever,�these�studies�have�also�echoed�concerns�from�Tversky�et�al.�that�
animations�are�often�too�complex�or�fast�to�be�perceived�accurately�—�
for�instance,�Robertson�et�al.�found�that�animated�trend�visualizations�
are�outperformed�by�static�small�multiples�displays�[33].�

To�ameliorate�these�limitations�of�animation,�Tversky�et�al.�suggest�
composing�animation�with�interactivity,�particularly�through�techniques�
that�allow�reinspection�or�focusing�on�subsets�of�depicted�data.�Robert-
son�et�al.� began�to�probe�this�question�by�testing�an�interactive�alter-
native�alongside�the�static�and�animated�stimuli�—�here,�clicking�an�
individual�mark�adds�an�overlaid�line�that�depicts�its�trajectory�over�time.�
They�find�that�although�participants�are�no�more�accurate�under�this�
interactive�condition,�they�perform�faster�when�using�this�visualization�
for�data�analysis�[33].�In�follow-up�work,�Abukhodair�et�al.�[2]�further�
contextualize�Robertson’s�results,�finding�that�interactive�animation�
can�be�effective�and�significantly�more�accurate�than�animation�alone�
when�users�want�to�drill�down�into�the�data�or�have�specific�questions�
about�points�of�interest.�More�recent�results�are�similarly�promising:�in�
eye-tracking�studies,�Greussing�et�al.�[11]�find�that�interactive�animated�
graphics�not�only�received�more�attention�than�static�or�interactive-only�
equivalents,�but�these�charts�also�produced�higher�knowledge�acqui-
sition�in�participants.�The�authors�believed�that�the�enhanced�affects�
on�memory�and�performance�resulted�from�an�increase�in�engagement�
and�attention�on�the�visualization,�which�is�in�line�with�additional�re-
search�on�attention�[4].� Our�work�is�motivated�by�these�results.� By�
providing�a�unified�abstraction�of�interaction�and�animation,�Animated�
Vega-Lite�allows�analysts�to�rapidly�switch�between�the�two�modalities,�
or�compose�them�together�to�best�suit�their�needs.� Moreover,�as�our�
abstractions�preserve�Vega-Lite’s�generative�properties,�we�believe�our�
contribution�lowers�the�threshold�for�conducting�future�such�studies�by�
allowing�researchers�to�more�systematically�isolate,�vary,�and�compare�
individual�interaction�and�animation�techniques.�

2.2 Authoring Interaction and Animation
In�Sect.�3.1,�we�describe�the�conceptual�similarities�between�Animated�
Vega-Lite�and�Functional�Reactive�Programming�(FRP).�Moreover,�in�
Sect.�7�we�conduct�a�detailed�comparison�between�Animated�Vega-Lite�
and�gganimate�[42],�Data�Animator�[46],�Gemini/Gemini2� [19,�20],�
and�Canis/CAST�[9,�10].� Here,�we�instead�survey�other�systems�for�
authoring�interaction�and�animation�that�have�informed�our�approach.�

Visualization�toolkits�such�as�D3�[3],�Plotly�[1],�and�Matplotlib�[14]�
offer�a�number�of�facilities�for�authoring�and�composing�interaction�and�
animation�including�typologies�of�techniques�(e.g.,�brushing,�hovering,�
and�animation�frames)�through�to�event�callbacks�and�transition�func-
tions.�Technique�typologies�can�help�foster�a�rapid�authoring�process,�
allowing�designers�to�easily�instantiate�common�techniques,�but�also�
present�a�sharp�abstraction�cliff�[44].� If�designers�wish�to�produce�
more�custom�interaction�or�animation�techniques,�they�must�turn�to�
an�entirely�different�notation:� authoring�low-level,�imperative�event�
callbacks�or�transition�functions.�This�abstraction�cliff�also�increases�
the�viscosity�of�the�authoring�process�[44].� For�instance,� to�switch�
between�the�static,�interactive,�and�animated�displays�of�faceted�data�
described�in�the�introduction�using�D3�would�involve�restructuring�the�
specification�code�in�non-trivial�ways�—�a�problem�that�is�exacerbated�

Example� Interaction�intent�[51]� Animation�type�[12]�
technique�

Conditional Select� —�
encoding
Panning Explore� View�transformation�
Zooming Abstract�/�Elaborate� View�transformation�
Axis re-scaling Reconfigure� Substrate�

transformation�
Axis sorting Reconfigure� Ordering�
Filtering Filter� Filtering�
Enter/exit Explore� Timestep�
Multi-view Connect� —�
Changing Encode� Visualization�change,�
encodings Data�schema�change�

Table�1.�Techniques�common�to�interaction�and�animation�taxonomies.�

if�HTML�templates�are�used�to�generate�the�SVG�rather�than�the�d3-
selection,�as�is�increasingly�the�case�when�working�with�modern�
frontend�frameworks�such�as�Svelte,�Vue,�or�React.�

In�contrast,�Animated�Vega-Lite,� like� its�predecessor,� prioritizes�
concise�high-level�declarative�specification.�As�Sect.�3�describes,�users�
can�make�atomic�edits�(i.e.,�changing�individual�keywords,�or�adding�
a�localized�handful�of�lines�of�specification�code)�to�rapidly�explore�
designs�across�the�three�modalities.�The�tradeoff,�however,�is�one�of�
expressiveness.� Animated�Vega-Lite�users�are�limited�to�composing�
language�primitives;�while�these�primitives�are�sufficient�to�broadly�
cover�interaction�and�animation�taxonomies�(Sect.�6),�their�expressive�
range�will�necessarily�be�smaller�than�their�lower-level�counterparts.�

3 MOTIVATION: UNIFYING INTERACTION AND ANIMATION

In�this�section,�we�discuss�similarities�between�interaction�and�anima-
tion�that�we�observe.� These�similarities�drive�our�design�decisions,�
allowing�us�to�extend�Vega-Lite�with�only�minimal�additional�language�
primitives,�and�yielding�a�low-viscosity�grammar�that�makes�it�easy�to�
switch�between�static,�interactive�and�animated�modalities.�

3.1 Conceptually Bridging Interaction and Animation
We�observe�that�interaction�and�animation�share�conceptual�similarities�
at�both�low�and�high�levels�of�abstraction.�At�a�low�level�of�abstraction,�
Functional�Reactive�Programming�(FRP)�languages�like�Flapjax�[26]�
and�Fran�[8],�as�well�as�FRP-based�visualization�toolkits�like�Vega�[37],�
have�shown�that�interaction�and�animation�can�both�be�modeled�as�
event�streams.�The�Vega�example�gallery�demonstrates�how�this�uni-
fied�abstraction�offers�consistency,�with�similar�semantics�expressed�
through�similar�syntactic�forms�[44].�Namely,�the�gallery�recreates�the�
Gapminder�global�health�scatter�plot,�originally�an�animated�visualiza-
tion�produced�by�Hans�Rosling�[34],�but�as�an�interactive�visualization�
driven�by�the�DimpVis�direct�manipulation�technique�[21].� We�ob-
serve�that,�although�it�would�be�tedious�to�do�manually,�a�user�could�
convert�this�interactive�visualization�back�to�the�original�animated�one�
by�replacing�signals�near�the�top�of�the�dataflow,�which�react�to�in-
coming�drag�events,�with�signals�that�respond�to�timer�events�instead:�
where�these�signals�map�the�drag�event’s�position�to�a�year�value,�the�
timer�signals�would�simply�emit�the�next�year�value�on�each�event.�
The�rest�of�the�downstream�reactive�logic�would�remain�unchanged.�
However,�as�the�Vega�authors�found�[38],�additional�language�design�is�
necessary�to�ensure�FRP�primitives�compose�together�with�grammar�of�
graphics�constructs�and�to�facilitate�higher-level�authoring�of�dynamic�
visualizations.�

To�analyze�conceptual�similarities�between�interaction�and�anima-
tion�at�a�higher-level�of�abstraction,�we�look�to�Yi�et�al.�[51]�and�Heer�
and�Robertson�[12]�that�taxonomize�techniques�for�each�modality�re-
spectively.�These�taxonomies�are�defined�by�drawing�on�example�visu-
alizations,�and�although�they�have�been�defined�separately,�share�many�
motivating�techniques�(Table�1).�For�example,�Heer�and�Robertson�cite�

A C DB E

Fig.�1.�An�analyst’s�workflow�with�Animated�Vega-lite.�A)�Static�visualization�of�bird�migrations.�B)�Adding�interaction�to�hover�over�a�migration�path�
and�view�a�tooltip.�C)�Switching�from�static�lines�to�animated�circle�marks.�D)�Adding�animated�path�trails�for�the�previous�5�days.�E)�Adding�an�
interactive�slider�to�scrub�through�the�animation.�

panning�as�an�example�of�view�transformation�because�it�changes�the�
reader’s�viewpoint�while�leaving�data�schemas�and�encodings�intact.�
Yi�et�al.�also�consider�panning,�categorizing�it�as�an�example�of�an�
explore�interaction,�because�it�involves�showing�a�new�subset�of�data�as�
points�shift�in�and�out�of�the�viewport.�Zooming,�another�example�of�
view�transformation,�is�also�described�as�an�abstract/elaborate�inter-
action�because�it�can�be�used�to�show�data�at�different�levels�of�detail.�
As�we�show�in�Table�1,�we�observe�substantial�overlap�in�techniques�
referenced�by�both�taxonomies.� Though�select� interactions�lack�an�
explicitly�defined�corresponding�animation�type,�conditional�encoding�
is�a�commonly�used�technique�in�animated�visualizations.� Similarly,�
though�there�is�no�corresponding�category�in�Heer�and�Robertson’s�tax-
onomy�for�connect�interactions,�animations�applied�to�shared�backing�
data�across�multiple�views�can�fulfill�the�same�purpose�of�highlighting�
relationships�between�related�points.�

3.2 Low-Viscous Authoring: An Example Usage Scenario
A�unified�abstraction�for�static,� interaction�and�animation�also�pro-
motes�a�low-viscous�authoring�process�(i.e.,�being�able�to�easily�switch�
between�modalities,�or�compose�them�together).�To�illustrate�the�affor-
dances�of�this�approach,�we�present�an�example�walkthrough�following�
Imani,�an�orthonologist,�as�she�plans�a�new�birdwatching�expedition.�
Imani�has�a�bird�migration�dataset�comprising�the�average�latitudes�and�
longitudes�for�a�variety�of�bird�species,�for�every�day�of�the�year�[22].�
To�ensure�a�productive�trip,�Imani�wants�uncover�how�migration�pat-
terns�correspond�to�different�times�of�the�year�and�geographic�regions.�

Static (Fig. 1A). Imani�begins�her�analysis�with�a�static�visualization�
to�get�an�overview�of� the�dataset.� She�plots�a�map,� and�visualizes�
migration�paths�using�line�marks:� each�bird�species�is�depicted�as�a�
single,�uniquely-colored�line,�connecting�the�individual�daily�points�
along�their�given�latitudes�and�longitudes.�However,�Imani�is�quickly�
overwhelmed�as�the�size�of�the�dataset�produces�too�many�overlapping�
lines�for�this�static�view�to�be�useful,�even�after�adjusting�mark�opacity.�

Interactive (Fig. 1B). To�pick�out�individual�bird�species,�and�begin�
a�cycle�of�generating�and�answering�hypotheses,�Imani�thinks�to�layer�
some�interactivity�on�the�static�display.� She�adds�a�point�selection�
named�highlight and�driven�by�mouseover�events.�By�default�this�
selection�is�populated�with�the�data�tuple�underneath�the�mouse�cursor,�
and�additional�tuples�are�added�or�toggled�when�the�shift modifier�
key�is�pressed.� Imani�writes�a�conditional�encoding�to�interactively�
adjust�mark�appearance:�selected�paths�are�drawn�at�full�opacity�and�
in�a�larger�size,�while�unselected�paths�are�drawn�with�lower�opacity�
and�at�a�smaller�size.� Thus,� as�Imani�moves�her�mouse�across� the�
visualization,�she�is�able�to�better�trace�individual�paths,�and�she�adds�a�
tooltip�encoding�channel�to�surface�and�note�species’�names.�

This�interactive�view�gives�Imani�a�better�sense�of�migration�paths.�

But,�to�be�able�to�plan�her�expedition,�she�needs�to�understand�where�dif-
ferent�bird�species�may�be�on�any�given�day.�Until�this�point,�Imani�has�
used�vanilla�Vega-Lite�abstractions.�In�the�subsequent�steps,�we�show�
how�features�of�Animated�Vega-Lite�help�Imani�deepen�her�analysis.�

Time Encoding Channel (Fig. 1C). Imani�swaps�to�a�circle�mark�
and�maps�day (a�field�that�encodes�the�day�of�the�year�from�0�to�365)�to�
the�new�time�encoding�channel.�With�these�two�edits,�each�bird�species�
is�drawn�as�a�circle�indicating�its�location�on�a�particular�day,�and�the�
visualization�animates�through�day values.�Imani�can�now�follow�the�
path�bird�species�travel�over�the�course�of�a�year.�

Time Event Stream (Fig. 1D). Imani,�however,�is�keenly�aware�that�
her�dataset�only�contains�average�values�for�each�species.�Birds�tend�to�
appear�at�a�given�location�within�a�small�window�of�time�around�the�
average�day�in�the�dataset.�Thus,�to�ensure�she�does�not�make�an�erro-
neous�conclusion,�Imani�wants�to�visualize�this�variability�as�a�path�trail.�
To�do�so,�she�adds�a�new�point�selection�named�spread window,�
which�contains�a�custom�predicate�—�a�function�that�identifies�which�
data�tuples�should�be�considered�as�falling�within�the�selection.�In�this�
case,�Imani�writes�a�predicate�to�select�data�from�the�five�days�previous�
to�the�current�day.�She�does�this�by�writing�inequality�expressions�refer-
encing�the�reserved�name�anim value,�which�stores�the�current�data�
value�of�the�animation.�In�contrast�to�the�existing�highlight point�
selection,�which�is�updated�on�user�input�events,�spread window
is�instead�populated�and�re-populated�on�every�timer�tick.� She�uses�
spread window to�dynamically�filter�the�circle�marks,�ensuring�only�
data�values�that�lie�within�the�selection�are�displayed�and�animated.�To�
visually�distinguish�the�current�day’s�points,�she�also�elaborates�the�
time�encoding�into�an�explicit�selection�called�current frame and�
uses�it�to�drive�a�conditional�opacity�encoding.� She�renders�current�
points�at�full�opacity�while�rendering�the�trailing�points�at�less�opacity.�

Composing Interaction + Animation (Fig. 1E). While�watching�
this�path-trail�animation,�Imani�notices�that�a�cluster�of�birds�appear�
to�visit�Pensacola,�Florida�during�late�March�and�notes�this�region�as�
a�potential�location�for�her�expedition.� However,�before�she�lets�her�
colleagues�know,�she�wants�to�investigate�the�migration�patterns�of�the�
birds�that�come�through�the�area�—�if�these�species�tend�to�co-locate�in�
other�parts�of�the�world,�there�is�less�of�a�reason�for�birders�to�travel�
to�Pensacola�specifically.�To�answer�this�question,�Imani�needs�finer�
control�over� the�animation�state.� She�binds� the�current frame
selection�to�an�interactive�range�slider,�and�can�now�toggle�between�
animating�and�interactively�sliding�the�day field.�She�scrubs�the�slider�
to�the�day�when�the�birds�pass�through�Pensacola,�and�to�track�these�
species�in�the�visualization,�she�modifies�the�interactive�highlight
selection�to�fire�on�click�instead�of�hover.� Imani�multi-selects�(i.e.,�
clicking�with�the�shift key�pressed)�the�birds�that�pass�through�the�
area,�and�then�scrubs�to�a�different�day.�Here�Imani�can�see�that�these�

1955

2005

A B

C

Fig.�2.�Animated�Vega-Lite�specification�of�the�influential�Gapminder�animation�[34].�(A)�A�minimal�specification�using�only�time�encoding.�(B)�The�
same�specification�elaborated�to�show�default�encoding�properties�and�a�default�selection.�(C)�Selected�keyframes�from�the�resulting�animation.�

birds�come�from�5�unique�nesting�sites�across� the�mid-west�US� to�
eastern�Canada.� This�is�promising�as�it�indicates�that�these�species�
uniquely�overlap�in�Pensacola,�making�it�a�prime�viewing�destination.�

Summary. With�Animated�Vega-Lite,�Imani�was�able�to�move�be-
tween�static,�interactive,�and�animated�visualizations�through�a�series�
of�atomic�edits�or�otherwise�localized�changes�rather�than�larger-scale�
refactoring�or�restructuring�of�code.�Moreover,�we�have�extended�Vega-
Lite’s�high-level�affordances�to�animation:�Imani�was�able�to�express�an-
imation�as�data�selections�and�transformations,�rather�than�manipulating�
keyframes�or�specifying�transition�states;�and,�the�Animated�Vega-Lite�
compiler�synthesized�appropriate�defaults�and�underlying�machinery�
for�the�animation�to�unfold�correctly.�Finally,�as�Animated�Vega-Lite�
offers�a�unified�abstraction,�Imani�was�able�to�reuse�Vega-Lite’s�existing�
primitives�to�author�mixed�interactive-animated�visualizations�as�well�
as�custom�techniques�without�the�need�for�special-purpose�functions�—�
e.g.,�combining�animations�with�on-click�highlighting�and�composing�
selections�with�a�window�data�transform�to�draw�trailing�marks,�rather�
than�using�a�shadow function�as�with�gganimate.�

4 A GRAMMAR OF ANIMATION IN VEGA-LITE

In�Animated�Vega-Lite,�users�specify�animation�using�a�time�encod-
ing�channel�and�timer-driven�selections.� Time�encodings�provide�a�
light-weight�way�to�convert�faceted�static�visualizations�into�animations.�
To�further�customize�the�animation�design�or�easily�add�interaction,�
users�can�specify�animations�as�selections�instead.�Selections�express�
dynamic�data�queries,�and�are�now�populated�either�by�input�events�(as�
with�vanilla�Vega-Lite)�or,�now,�via�timer�ticks.�Defined�selections�can�
then�be�used�to�drive�data�transformations,�scale�functions,�or�condi-
tionally�encode�visual�properties.�Our�animation�model�expressively�
extends�existing�abstractions�for�static�and�interactive�visualizations�
while�minimally�increasing�language�surface�area�and�complexity.�

4.1 Time Encoding Channel

In�Vega-Lite,�encodings�determine�how�data�values�map�to�the�visual�
properties�of�a�mark�(also�known�as�channels).� Vega-Lite�includes�
two�channels�for�spatial�position,�x and�y.�Animated�Vega-Lite�adds�
a�new�channel�for�temporal�position,�called�time.�A�user�specifies�a�
time�encoding�by�providing�a�field property,�which�is�a�string�of�the�
name�of�a�data�column.�The�field�can�be�any�measure�type�with�a�sort�
order�(quantitative,�temporal,�ordinal),�and�does�not�necessarily�need�
to�represent�a�timestamp.� The�system�uses�distinct�values�from�this�
column�to�group�data�rows�into�temporal�facets�called�keyframes.�Over�
the�duration�of�the�animation,�each�keyframe�is�shown�sequentially.�

Fig.�2A�shows�the�Animated�Vega-Lite�specification�for�Rosling’s�
Gapminder�animation�[34].�The�time�encoding,�highlighted�in�yellow,�
maps�the�dataset’s�year field�to�the�time�encoding�channel.�The�system�
uses�the�distinct�values�of�year to�group�rows�into�keyframes.�In�other�
words,�there�is�one�keyframe�per�possible�value�of�year in�the�dataset�
(i.e.�1955, 1960, 1965, ..., 2005)�(Fig.�2C).�

4.1.1� Key�Field�
In-betweening,�more�commonly�called�tweening,�is�a�standard�anima-
tion�technique�that�involves�generating�additional�frames�to�smoothly�
transition�between�two�keyframes.�By�adding�tweening,�the�animation�
will�give�the�visual�impression�of�continuous�change�over�time�even�
when�data� represents�discrete�measurements.� In�data�visualization,�
tweening�takes�on�additional�meaning�as�it�requires�generating�and�
interpolating�between�values�that�are�not�present� in� the�dataset.� In�
Animated�Vega-Lite,�to�specify�tweening�between�keyframes,�the�user�
specifies�a�key property�in�the�time�encoding�channel,�which�refer-
ences�a�field�name.�This�key�field�is�used�to�group�rows�together�across�
keyframes.� For�two�given�successive�keyframes,�rows�that�share�the�
same�value�for�the�key�field�are�treated�as�the�start�and�end�states�for�a�
single�mark�instance.�Key�values�should�be�unique�within�a�keyframe�
to�prevent�ambiguity;�otherwise,�a�single�mark�instance�might�have�
multiple�start�or�end�states,�resulting�in�undefined�behavior.�If�the�user�
does�not�specify�a�key�field,�the�Animated�Vega-Lite�compiler�attempts�
to�infer�a�sensible�default�based�on�the�mark�type�and�other�specified�
categorical�channels�such�as�color or�detail —�an�approach�that�
follows�Vega-Lite’s�existing�inferences.�

In�the�Gapminder�example,�Fig.�2B�shows�the�Gapminder�spec�from�
Fig.�2A�with�default�values�specified�explicitly.�Here,�country is�used�
as�the�default�key�field�as�it�is�also�encoded�on�the�color encoding�
channel.�Consider�the�successive�keyframes�with�year values�1955�
and�1960.�For�each�year,�each�scatterplot�point�is�identified�by�a�unique�
country value.�Therefore,�to�tween�from�1955�to�1960,�the�system�
interpolates�the�two�rows�for�each�country�to�produce�the�corresponding�
in-between�point�at�each�animation�frame.�

4.1.2� Time�Scale�
An�encoding�uses�a�scale�function�to�map�from�the�data�domain�to�a�
visual�range.� For�spatial�encoding�channels,�this�range�is�measured�
in�pixels�relative�to�the�bounding�box�of�the�rendered�visualization.�
For�the�time�encoding�channel,�we�measure�the�range�in�milliseconds�
elapsed�from�the�start�of�the�animation.� Users�specify�the�timing�of�
the�animation�using�a�time�scale�(for�example,�by�specifying�either�an�
overall�animation�duration�or�the�amount�of�time�between�keyframes�as�
a�step).�As�with�existing�encoding�channels,�if�a�scale�is�not�specified�
by�the�user,�Vega-Lite�infers�default�scale�properties.�By�default,�scales�
for�the�time�encoding�channel�use�the�unique�values�of�the�backing�field�
as�the�scale�domain,�and�create�a�default�step�range�with�500ms�per�
domain�value.�For�example,�the�Gapminder�domain�is�a�list�of�every�
fifth�year�between�1955�and�2005,�inclusive.�The�default�range�maps�
1955�to�0ms,�1960�to�500ms,�1965�to�1000ms,�and�so�on.�A�user�can�
override�this�default�range�to�slow�down�or�speed�up�the�animation.�

Though�the�default�domain�is�sufficient�to�express�most�common�
animations,� a�user�may�want� to�override� the�domain.� Supplying�a�
custom�domain�is�useful�for�specifying�non-keyframe-based�animations�
that�require�direct�reference�to�in-between�values,�or�require�animating�
through�values�that�are�missing�from�the�dataset.�For�example,�Fig.�3�
shows�an�example�of�such�a�use�case.�The�animation�should�advance�

Fig.�3.�Animation�of�Dunkin’�Donuts�stores’�opening�and�closing�times.�
With�a�custom�domain�and�predicate,�the�animation�advances�through�24�
hours�at�a�constant�rate�and�conditionally�colors�each�store�if�the�current�
time�is�between�the�store’s�open�and�close�times.�

through�24-hour�time�span�at�a�constant�rate.�However,�the�dataset�does�
not�contain�a�field�that�has�values�that�are�evenly�spaced�in�the�desired�
domain.�So,�with�a�default�scale�domain,�the�animation�would�appear�
to�jump�between�time�stamps�rather�than�move�through�them�smoothly.�
To�achieve�the�desired�behavior,�the�user�instead�specifies�a�custom�
domain�representing�the�continuous�interval�between�00:00�and�23:30.�

4.1.3� Re-scale�
By�default,� the�visualization’s�data� rectangle� (or�viewport)� is�fixed�
to�the�initial�extents�of� the�x- and�y-scales�calculated�from�the�full�
dataset.� However,�for�keyframe�animations,�only�a�subset�of�data�is�
shown�at�any�given�time.�If�a�user�wants�to�re-calculate�the�viewport�
bounds�based�on�only�the�data�included�in�the�current�keyframe,�rather�
than�the�original�full�dataset,�they�can�set�a�flag�in�the�time�encoding�
called�rescale.�When�rescale is�true,�the�viewport’s�bounds�are�
recomputed�at�each�step�of�the�animation.�We�refer�to�this�concept�as�
re-scaling�because�re-calcuating�the�viewport�bounds�involves�updating�
the�domains�of�the�x and�y scales�at�each�keyframe.�

Fig.�4�demonstrates�the�use�of�rescale.� Rescale�is�enabled�in�
Fig.�4A,�where�the�viewport�updates�according�to�the�current�selection.�
The�visualization�remains�tightly�zoomed�on�the�currently�displayed�
bars,�with�the�longest�bar�always�scaled�to�nearly�the�full�width�of�the�
viewport.�In�contrast,�Fig.�4B�has�rescaling�disabled.�The�viewport�is�
initially�calculated�with�the�full�dataset�and�remains�fixed.�This�would�
be�appropriate�for�Gapminder,�because�we�want�to�show�the�countries�
moving�along�a�fixed�scale.� However,�it�is�less�helpful�for�bar�chart�
race.�Instead�of�enabling�positional�comparisons�to�a�fixed�scale,�the�
animation�prioritizes�making�the�ordering�of�the�top-ranked�bars�salient.�

4.2 Selections with a Timer Event Stream
Selections�are�subsets�of�data�points�that�are�populated�when�updates�
occur�in�an�event�stream.�In�Vega-Lite’s�interactive�grammar,�selections�
are�defined�using�streams�of�user�input�events�(e.g.,�clicks,�mouse�move-
ments,�or�keyboard�presses).�The�system�uses�the�event’s�properties�to�
query�a�set�of�data�points.�The�selected�data�can�then�be�applied�to�up-
date�downstream�primitives�in�the�visualization�specification�including�
data�transformations,�scale�functions,�or�conditional�visual�encodings.�
For�example,�a�selection�defined�using�the�mouseover event�may�be�
used�to�highlight�marks�that�a�user�hovers�over�with�their�cursor.�Under�
the�hood,�the�selection�receives�a�stream�of�mouseover events�with�
x and�y coordinates�in�pixels.� It�uses�the�scales�associated�with�the�
x and�y encoding�channels�to�invert�these�screen�coordinates�back�to�
data�coordinates�(i.e.�values�in�the�domain�of�the�corresponding�scale).�
A�default�predicate�function�iterates�over�all�rows�in�the�dataset,�and�
includes�the�rows�matching�those�data�values�in�the�selection.�

Animated�selections�are�analogous�to�interactive�selections.�How-
ever,� instead�of� reacting� to� input�events,� animated�selections�use�a�
timer event� stream� to�advance�an� internal� clock� representing� the�
elapsed�time�of�the�animation�in�milliseconds�(ms).�This�clock�resets�to�
0ms�when�it�reaches�the�end�of�the�range�defined�by�the�time�encoding’s�

scale�(i.e.�the�animation�loops�the�duration�of�the�time�scale’s�range).�
As�the�clock�updates,�the�elapsed�time�value�is�mapped�to�a�value�in�
the�time�domain�(i.e.�the�time�encoding’s�field�values).�The�animation�
selection�updates�to�include�all�data�points�matching�that�value.�

As�selections� rely�on�scales� to�convert�map� time� to�data�values,�
selection-based�animations�still�require�a�time�encoding�channel�to�be�
defined.�In�fact,�all�animations�that�can�be�expressed�with�only�a�time�
encoding�can�be�elaborated�into�selection-based�animations.�In�other�
words,�selection-based�animations�are�strictly�more�expressive�than�
animations�using�only�time�encoding.�

4.2.1� Applying�Selections�
In�Vega-Lite,�selections�can�be�applied�to�other�language�constructs,�
including�conditional�mark�encodings,�scale�domains,�or�data�trans-
formations�[52].�This�property�of�composition�continues�to�hold�with�
Animated�Vega-Lite:�animated�and�interactive�selections�can�be�used�
interchangeably�wherever�selections�are�supported�in�the�Vega-Lite�
language.�Therefore,�selections�driven�by�timer�events�inherit�the�ex-
pressiveness�of�interactive�selections�in�terms�of�Yi�et�al.’s�taxonomy�
of� interaction� techniques� [51].� Animations� can� be� used� to:� select�
marks�of�interest;�explore�subsets�of�data�(panning�and�zooming);�re-
configure�data�into�different�transformed�states,�connect�related�items;�
abstract/elaborate�through�overview�and�detail;�and�filter�data�dynami-
cally.�However,�they�cannot�be�used�to�change�the�properties�of�visual�
encodings�on�the�fly,�which�is�an�interaction�technique�that�falls�outside�
of�the�selection-based�model�and�is�a�limitation�of�base�Vega-Lite.�

4.2.2� Predicate�
As�the�animation’s�elapsed�time�advances,�the�selection�uses�the�scale�
defined� in� the� time�encoding� to� invert�elapsed�milliseconds� (in� the�
scale’s�range)�to�a�data�value�(in�the�scale’s�domain).�As�a�result,�at�any�
given�time,�there�is�an�internal�variable�that�has�a�data�value�correspond-
ing�to�the�animation’s�current�time.�When�the�Vega-Lite�specification�
is�compiled�into�Vega,� this�variable�is�represented�as�a�Vega�signal�
called�anim value.�In�the�Gapminder�example,�anim value starts�
at�1955 at�0ms,�and�advances�to�1960, 1965, ..., 2005.�

To�construct�keyframes,�the�selection�queries�a�subset�of�data�tuples�
to�include�in�the�keyframe�based�on�the�current�value�of�anim value.�
By� default,� tuples� are� included� in� the� keyframe� if� their� value� in�
the� time� encoding’s� field� (e.g.� year for� Gapminder)� is� equal� to�
anim value.�However,�to�define�alternate�inclusion�criteria�for�deter-
mining�keyframes,�users�can�specify�custom�predicate�functions.�For�
example,�if�at�every�step�of�the�animation,�a�user�wished�to�show�all�
points�with�year�less�than�or�equal�to�anim value,�they�would�use�
the�following�predicate:�

{"field": "year", "lte": "anim value"}
Previously,�Vega-Lite�did�not�allow�users�to�customize�the�selection�

predicate�because�the�majority�of�interactions�could�be�expressed�us-
ing�a�combination�of�default�predicates�and�selection�transformations.�
Nonetheless,�enabling�predicate�customization�in�the�selection�specifi-
cation�also�increases�the�expressiveness�of�the�interactive�grammar.�

4.2.3� Input�Element�Binding�
Using� the� bind property,� a� user� can� populate� a� selection� using� a�
dynamic�query�widget�(such�as�an�HTML�slider�or�checkbox).� For�
animated�selections,�input�element�binding�offers�a�convenient�way�to�
add�interactive�playback�control�to�the�animation.� For�instance,�the�
user�can�bind�an�animated�selection�to�a�checkbox�to�toggle�whether�
the�animation�is�playing�or�paused.�Similarly,�they�can�bind�a�selection�
to�a�range�slider�and�drag�to�scrub�to�a�specific�time�in�the�animation.�

Scrubbing�the�animation�with�the�slider�surfaces�an�interesting�design�
challenge�when�combining�animation�and� interaction:� how�should�
the� system� delegate� control� between� the� animation� timer� and� user�
interaction?� Initially,�the�animation�is�driven�by�the�timer,�with�the�
slider�visualizing�timer�updates.� When�the�user�starts�dragging�the�
slider,�the�system�pauses�the�animation�and�delegates�control�to�user�
interaction.�Pausing�is�necessary�so�that�the�slider�does�not�continue�to�
advance�forward�while�the�user�is�currently�scrubbing.�When�the�user�is�
done�scrubbing,�they�may�want�to�give�control�back�to�the�animation.�To�

2000 2000

2019

2019

BA A

Fig.�4.�Demonstration�of�the�rescale�time�encoding�property�recreating�a�D3�bar�chart�race�example�[28].�(A)�rescale is�true:�the�viewport�is�
recalculated�on�each�keyframe.�(B)�rescale is�false:�the�viewport�is�calculated�on�the�whole�dataset,�and�does�not�update�with�the�selection.�

facilitate�this,�Animated�Vega-Lite�automatically�includes�a�play/pause�
checkbox�alongside�bound�sliders.�The�user�can�simply�re-check�the�
box�to�give�control�over�the�animation�back�to�the�timer.�

4.2.4� Pausing�
Animated�Vega-Lite� supports�pausing� in� two�ways:� by� interaction,�
and�by�data�value.�Interactive�pauses�are�specified�using�the�filter
property�of�Vega-Lite�event�streams.�Users�can�provide�the�name�of�a�
Vega-Lite�parameter�to�the�filter property�of�a�timer�event�stream.�
Parameters�can�be�either�selections�or�variables.� When�the�provided�
parameter�evaluates�to�true�(i.e.� is�a�non-empty�selection�or�a� true�
boolean�variable),�the�filter�will�capture�incoming�events,�preventing�
the�animation�clock�from�advancing.� When�the�paramater�evaluates�
to�false,� the�events�will�resume�propagating�and�the�animation�will�
continue.� For�example,�a�user�can�bind�a�checkbox�to�a�parameter�
named�is playing,�and�use�the�following�event�stream�definition�to�
pause�the�visualization�when�the�box�is�checked:�

"on":{"type": "timer", "filter": "is playing"}
Pausing�by�data�value�is�specified�using�the�pause property�of�an�

animated�selection�definition.�The�user�provides�a�list�of�data�values�
to�pause�on,�and�the�duration�of�each�pause.�For�example,�a�user�can�
specify�that�the�Gapminder�animation�should�pause�on�the�year�1995�
for�2�seconds,�to�draw�attention�to�the�data�for�that�year:�

"pause": [{"value": 1995, "duration": 2000}]

4.2.5� Global�Easing�
Easing�is�a�common�animation�technique�that�involves�controlling�the�
rate�that�the�animation�timer�advances.�Easing�is�typically�implemented�
using�a�palette�of�pre-defined�functions�that�map�an�animation�time�do-
main�to�a�transformed�time�domain.�For�example,�an�exponential�easing�
function�might�cause�the�animation�clock�to�begin�advancing�slowly,�
and�then�exponentially�accelerate�as�the�animation�progresses.�In�An-
imated�Vega-Lite,�the�animation�clock�advances�linearly�by�default.�
However,�users�can�use�the�easing property�of�a�selection�to�specify�
an�easing�function�to�apply�to�the�whole�duration�of�the�animation.�
Animated�Vega-Lite�exposes�D3’s�named�easing�functions�[27].�

5 IMPLEMENTATION

We�implement�Animated�Vega-Lite�using�a�prototype�compiler,�wrap-
ping�the�existing�Vega-Lite�compiler�to�ingest�Animated�Vega-Lite�spec-
ifications�and�output�a�lower-level�Vega�specification.�The�Animated�
Vega-Lite�prototype�compiler�begins�by�expanding�a�user-supplied�
specification�into�a�“normalized”�format�with�all�implicit�default�values�
filled�in�explicitly.�This�step�includes�generating�default�selections�and�
transforms�for�animations�specified�using�only�time encodings,�and�
filling�in�default�scale�and�key�definitions.�This�normalized�specification�
is�passed�to�the�next�compiler�step�to�simplify�processing.�

To�convert�Animated�Vega-Lite�into�low-level�Vega,�we�use�the�exist-
ing�Vega-Lite�compiler�to�make�the�initial�conversion�into�Vega�(using�
a�copy�of�the�specification�with�animation�removed),�and�then�call�a�
series�of�functions�to�compile�animation-specific�parts�of�the�spec�and�
merge�them�with�the�output�Vega.�Because�Vega-Lite’s�high-level�ab-
stractions�do�not�have�a�one-to-one�mapping�to�low-level�Vega�concepts,�
seemingly-isolated�Vega-Lite�fragments�will�typically�make�changes�
in�many�different�parts�of�the�Vega�spec.�Each�of�these�functions�takes�

in�fragments�of�Animated�Vega-Lite�and�standard�Vega,�and�outputs�a�
partial�Vega�specification�that�includes�dataset,�signal,�scale,�and�mark�
definitions�to�merge�into�the�output.�

Compilation�happens�in�six�steps.� First,�compileAnimation-
Clock uses�definitions�of�animated�selections�and�time�encoding�chan-
nels�to�create�Vega�signals�and�datasets�for�controlling�the�current�state�
of�the�animation,�handling�pausing,�and�interfacing�with�interactive�
playback�controls.�Next,�compileTimeScale takes�in�a�definition�
of�a�time�encoding�alongside�Vega�marks�and�scales.�It�creates�Vega-
level�scales�for�the�time�encoding,�and�signals�to�handle�inversions�
between�the�animation�clock�and�the�corresponding�data�value�at�that�
time.�It�also�applies�rescaling�to�mark�encodings�if�applicable.�com-
pileAnimationSelections then�ingests�definitions�of�animated�
selections�to�produce�Vega�signals�and�datasets�that�implement�custom�
predicates,�pausing�and�easing,�and�input�element�binding.� Fourth,�
compileFilterTransforms takes�animation�selections�and�any�
filter�transforms�that�reference�those�selections,�and�materializes�the�se-
lections�as�filtered�datasets�in�Vega.�These�datasets�provide�the�backing�
data�for�rendering�marks�at�each�keyframe.�compileKey then�uses�
the�time�encoding�specification�to�generate�datasets�and�signals�that�
handle�tweening�between�keyframes.�Finally,�compileEnterExit
supports� top-level� enter� and�exit� encoding�definitions� in�Animated�
Vega-Lite,�converting�them�into�Vega-level�enter�and�exit�encodings.�
Because�of�existing�limitations�in�Vega,�enter�and�exit�currently�are�
not�well-supported�for�animation.� However,�pending�Vega�support,�
designers�should�be�able�to�control�the�behavior�of�visual�encodings�as�
marks�enter�and�exit�the�current�keyframe.�

We�chose�to�implement�our�compiler�as�a�wrapper�around�the�exist-
ing�Vega-Lite�compiler�in�order�to�facilitate�rapid�prototyping.�However,�
our�current�approach�faces�performance�challenges�that�could�be�im-
proved�with�internal�changes�to�Vega�and�Vega-Lite.� For�example,�
we�currently�support�tweening�by�creating�three�separate�datasets:�the�
current�keyframe,�the�next�keyframe,�and�a�joined�dataset�with�tweens�
computed�as�a�derived�column.�This�expensive�operation�causes�notice-
able�lag�on�large�datasets.�In�future�implementations,�we�can�instead�
create�a�Vega�dataflow�operator�that�leverages�the�animation’s�semantics�
to�compute�tweens�more�efficiently.�For�example,�instead�of�computing�
multiple�datasets�independently�and�performing�a�join,�the�operator�can�
create�a�single�dataset�backed�by�a�sliding�window�over�the�time�facets.�

6 EVALUATION: EXAMPLE GALLERY

To�evaluate�Animated�Vega-Lite’s�expressiveness,�we�created�an�exam-
ple�gallery�to�demonstrate�coverage�over�both�Yi�et�al.’s�taxonomy�of�
interaction�intents�[51]�and�Heer�&�Robertson’s�taxonomy�of�transition�
types�in�animated�statistical�graphics�[12].�As�Fig.�5�shows,�we�support�
6�/�7�interaction�categories�and�5�/�7�animation�categories.�

Fig.�5a�demonstrates�an�overview�+�detail�visualization.�A�selection�
controls�a�brush�over�the�bottom�view,�which�sets�the�zoomed�viewport�
of�the�top�view.�This�selection�is�defined�using�a�predicate�that�defines�
a� sliding� window� over� the� x-axis� field.� When� the� brush� is� driven�
by�animation,� the�selection� is�updated�on�each� timer�event.� When�
the�brush�is�driven�by�interaction,�the�selection�is�instead�updated�on�
drag�events.� Because�the�original�Vega-Lite�selection�model�unifies�
panning�and�zooming�as�selections�applied� to�a�scale�domain,� this�
approach�can�be�adapted�to�animate�arbitrary�geometric�panning�and�

Fig.�5.�Animated�Vega-Lite�examples�demonstrating�coverage�over�interaction�and�animation�taxonomies�[12,51]�(see�Fig.�4�for�an�example�substrate�

transform�and�Fig.�3�for�select).�A)�View�transform�via�panning,�abstract/elaborate�via�overview�+�detail,�and�connect ing�multiple�views.�B)�Filtering�

data�via�a�predicate.�C)�Ordering�/�reconfiguring�a�sorted�axis�in�a�bump�chart.�D)�Exploring�sequential�timesteps�of�an�index�chart.�E)�A�hypothetical�
outcome�plot�in�the�style�of�the�New�York�Times�[15].�F)�An�interactive�brush�selection�over�Gapminder.�

zooming�behavior.�This�visualization�demonstrates�a�view�transforma-
tion,�changing�the�reader’s�viewpoint�by�panning�and�zooming�the�top�
view.�It�also�demonstrates�an�abstract/elaborate�intent�by�showing�the�
data�at�different�levels�of�detail�in�the�top�and�bottom�view,�and�the�
connect�intent�by�showing�corresponding�data�across�multiple�views.�

Fig.�4�shows�a�bar�chart’s�x-scale�dynamically�recalculating�on�each�
frame�using�the�rescale property�of�a�time�encoding�(Sect.�4.1.3).�
This� animation� technique� demonstrates� a� substrate� transformation�
through�scale�manipulations.�It�also�demonstrates�the�reconfigure�intent�
by�showing�a�new�spatial�arrangement�of�the�data.�

In�Fig.�3�and�Fig.�5b,�we�apply�a�conditional�filter�over�the�whole�
dataset,� with� filter� parameters� changing� over� time.� In� contrast� to�
faceting,�filtering�can�leverage�custom�selection�predicates�to�show�
and�hide�data�—�a�single�data�point�can�appear�in�multiple�groups.�Both�
taxonomies�contain�a�category�for�filtering,�shown�here�by�adding�or�
removing�elements�from�the�display.�Fig.�3�additionally�demonstrates�a�
select�intent�by�using�conditional�encoding�to�highlight�selected�data.�

Fig.�4�and�Fig.�5c�show�examples�with�a�sorted�axis.�When�a�key
is�specified�in�a�time�encoding,�the�system�automatically�tweens�an�
element’s�position�even�when�its�sort�index�has�changed�in�the�next�
keyframe.�Continually�sorting�elements�as�the�underlying�data�changes�
demonstrates�an�ordering�transition,�as�well�as�a�reconfigure�intent.�

Time�encodings�transition�between�sequential�time�values�by�default�
in�Animated�Vega-Lite�(e.g.�Fig.�2).�Fig.�5d�demonstrates�an�additional�
example�of�this�animation.�A�default�animated�point�selection�is�applied�
to�a�data�transform�that�re-normalizes�a�stock�price�time-series�chart�on�
each�tick.�The�original�Vega-Lite�paper�contains�an�interactive�version�
of�this�example,�which�instead�populates�the�point�selection�on�mouse�
hover�events�[36].� These�examples�demonstrate�timestep�transitions,�
which�also�fulfill�the�explore�intent�by�showing�new�data�points�at�each�
step.�Axis�re-normalization�is�also�an�example�of�a�reconfigure�intent.�

In�addition�to�achieving�broad�coverage�over�the�two�taxonomies,�our�
system�also�supports�simulation�techniques�including�hypothetical�out-
come�plots�(Fig.�5e)�[13].�And,�as�previously�discussed�in�Sect.�4.2.1,�
animated�selections�can�be�applied�to�the�same�set�of�dynamic�visual�be-
haviors�as�interactive�selections.�Consequently,�users�can�easily�switch�
between�timer�and�input�event�streams�when�prototyping�existing�inter-
action�techniques�in�Vega-Lite.�For�example,�Fig.�5a�and�Fig.�5d�show�
animated�selections�driving�common�interaction�techniques�—�panning�
and�re-normalizing,�respectively.�Users�can�also�easily�compose�inter-
action�techniques�with�animated�visualizations�by�defining�additional�
selections.�For�example,�Fig.�5f�demonstrates�an�interactive�brush�used�
to�highlight�a�region�of�an�animated�Gapminder�visualization.�Points�of�
interest�are�conditionally�colored�as�they�enter�or�exit�the�brush�region.�

Discussion and Limitations. Like�the�original�Vega-Lite,�Animated�
Vega-Lite�intentionally�trades�some�limits�to�expressivity�for�gains�in�
concise,�high-level,�declarative�specification.�In�Sects.�7.2.1�&�7.2.2,�we�
detail�this�expressiveness�tradeoff�in�terms�of�the�classes�of�animation�

techniques�(Animated�Vega-Lite�primarily�supports�scene�techniques�
instead�of�segue)�as�well�as�the�implications�on�how�keyframes�are�
modeled�and�generated�(Animated�Vega-Lite�supports�non-parametric�
keyframe�transitions,�and�offers�some�limited�support�for�parametric�
keyframe�transitions).�Thus,�lower-level�and�imperative�languages�will�
necessarily�be�more�expressive:�for�instance,�D3�can�express�both�scene�
and�segue�animations,�but�using�different�language�constructs�(timer�
event�loops�and�transition�functions,�respectively).�As�these�sections�
describe,�offering�high-level�declarative�specification�that�unifies�not�
only�these�distinct�conceptual�models�of�animation,�but�also�interaction�
and�static�charts,�remains�a�compelling�direction�for�future�work.�

By�extending�Vega-Lite,�Animated�Vega-Lite�also�inherits�its�pre-
decessor’s�limitations.�For�instance,�Vega-Lite�selections�cannot�alter�
visual�encodings�or�data�transformation�pipelines�at�runtime�(the�encode�
interaction�type�in�Yi�et�al.’s�taxonomy�[51]);�thus,�Animated�Vega-
Lite�cannot�support�the�visualization�change�or�data�schema�change�
transition�types�in�the�Heer�&�Robertson�taxonomy�[12].�

7 EVALUATION: CRITICAL REFLECTION

To�identify�our�grammar’s�design�tradeoffs,�we�compared�our�approach�
to� existing� animated� visualization� grammars� following� the� critical�
reflections�evaluation�method�[35].� We�recruited�five�developers�of�
existing�grammars:�John�Thompson�and�Leo�Zhicheng�Liu1� of�Data�
Animator�[46],�Tong�Ge�of�Canis�[10]�and�CAST�[9],�Thomas�Lin�
Pedersen�of�gganimate�[43],�and�Younghoon�Kim�of�Gemini�[19]�and�
Gemini2� [20].�We�focused�on�animation�grammar�developers�because�
the�interactive�grammar�was�evaluated�in�the�original�Vega-Lite�paper.�
With�each�participant,�we�conducted�a�one-hour�pre-interview.� We�
then�asked�them�to�asynchronously�engage�with�our�grammar�for�an�
extended�time�by�reading�a�system�walkthrough�and�grammar�docu-
mentation�similar�to�Sect.�3�and�Sect.�4,�respectively,�and�run�examples�
similar�to�those�found�in�Sect.�6.� We�further�suggested�participants�
write�new�specifications�and/or�port�other�examples,�including�exam-
ples�from�their�own�tools.�We�encouraged�participants�to�take�notes�and�
reflect�on�the�design�of�Animated�Vega-Lite�during�the�process.�Finally,�
we�conducted�post-interviews�with�each�participant�that�lasted�30–60�
minutes.�Each�participant�was�offered�a�$125�gift�card�as�compensation.�

Our�goals�were�to�(i)�compare�and�contrast�their�design�processes�
with�ours,� (ii)�understand�differences�and�design�tradeoffs�between�
their�grammars�and�ours,�and�(iii)�generate�insights�about�the�direction�
of� future�animation�grammars.� During� the� interviews,� three�of� the�
authors�of� this�paper�began�developing� initial� thematic�hypotheses.�
After�the�interviews,�we�independently�conducted�a�thematic�analysis�
before�finally�coming�together�and�synthesizing�our�insights,�which�we�
summarize�below.�These�themes�provide�insight�into�the�design�of�our�
grammar,�and�animated�visualization�grammars�more�generally.�

1Thompson�&�Liu�also�co-authored�the�original�critical�reflections�paper�[35].�

7.1 Grammar Design Process
7.1.1� Specific�Examples�Motivate�Grammar�Design�
When�scoping�their�research�projects,�our�interviewees�prioritized�mo-
tivating�examples�that�they�found�personally�compelling.�For�example,�
the�authors�of�Data�Animator�and�Gemini�were�both�motivated�in�part�
by�R2D3�[40].�As�we�discuss�in�the�following�subsections,�the�choosing�
examples�to�support�leads�to�design�tradeoffs,�e.g.�between�scene- and�
segue-dominant�abstractions�(Sect.�7.2.1).� Thus,�a�handful�of�com-
pelling�in-the-wild�examples�can�significantly�influence�the�grammars�
developers�build.� Other�examples�that�were�cited�across�multiple�in-
terviews�included�Gapminder�[34],�Periscopic’s�Gun�Deaths�[31],�and�
animations�in�the�New�York�Times�(NYT)�and�the�Guardian.�

On�the�other�hand,�a�lack�of�existing�examples�may�also�motivate�
a� grammar� developer.� For� example,� to� gain� more� insight� into� the�
popularity�of�animated�visualization�techniques,�Kim�scraped�NYT�
and�Guardian�articles�from�2018�as�well�as�YouTube�videos�from�the�
same�year.�He�noticed�that�about�90%�of�the�animated�visualizations�he�
studied�updated�data,�but�kept�the�encoding�fixed.�R2D3�was�a�notable�
exception.�A�similar�imbalance�can�be�found�in�the�Data-Gifs�example�
gallery�[39],�where�over�half�of�the�examples�have�fixed�encodings.�
Kim�hypothesized�that�the�imbalance�is�influenced�by�the�affordances�of�
existing�tools,�and�decided�to�optimize�Gemini�for�transitions�between�
changing�encodings.�

With�Animated�Vega-Lite,�we�were�motivated�by�the�large�collection�
of�existing�examples�with�static�encodings,�such�as�those�in�the�Data-
Gifs�example�gallery.�This�category�includes�many�prominent�designs�
like�Gapminder�and�bar�chart�races.�Rather�than�focus�on�developing�
an�expressive�language�of�transitions�between�keyframes,�we�focused�
on�an�expressive�language�of�keyframe�generation�via�selections.�Our�
abstractions�facilitate�the�design�of�visualizations�that�must�produce�
many�keyframes�backed�by�a�fixed�encoding.�

7.1.2� Natural�Programming�vs.�Core�Calculus�Design�
To�make�their�systems�easy�to�use�for�their�target�audiences,�the�au-
thors�of�Data�Animator�and�Gemini�aimed�to�develop�grammars�that�
matched�the�existing�mental�models�of�animation�designers.�To�that�end,�
both�groups�conducted�interviews�prompting�experienced�animators�to�
sketch�interfaces�or�write�pseudocode�to�recreate�exemplar�animated�
visualizations�[19, 45].�Fundamental�abstractions�emerged�from�these�
formative�studies.�For�instance,�Gemini’s�studies�yielded�the�concepts�
of�synchronizing�(‘at�the�same�time’)�and�concatenating�(‘then’,�‘af-
ter’)�while�Data�Animator’s�studies�surfaced�designers’�familiarity�with�
keyframes�in�Adobe�After�Effects.� This�design�process�is�known�as�
natural�programming,�where�a�developer�aims�“for�the�language�and�
environment�to�work�the�way�that�nonprogrammers�expect”�[30].�

In�contrast,�we�set�out�to�develop�a�small�core�calculus�[6]�of�ab-
stractions�for�Animated�Vega-Lite,�which�we�outlined�in�Sect.�4.�Our�
design�was�motivated�by�the�desire�to�explore�whether�interaction�and�
animation�could�be�unified.�This�unification�would�likely�not�have�been�
elicited�by�a�target�user.�Because�the�key�idea�of�our�paper�is�to�identify�
a�unified�abstraction,�this�difference�in�approach�results�in�a�design�
tradeoff.�As�Kim�explained,�Animated�Vega-Lite�may�seem�natural�to�
a�Vega-Lite�user,�but�might�present�a�steeper�learning�curve�to�someone�
familiar�with�animation�tools�like�Adobe�AfterEffects,�as�Animated�
Vega-Lite�has�no�explicit�concept�of�a�keyframe.�

Analyzing�these�processes�via�the�Cognitive�Dimensions�of�Nota-
tion�[44],� we�find� that� iterating�closely�with�end�users� in�a�natural�
programming�process�yields�a�grammar�that�closely�maps�to�common�
user�mental�models.� On�the�other�hand,�by�distilling�abstractions�to�
a�reduced�set�of�orthogonal�concepts,�a�core�calculus�process�better�
emphasizes�a�consistent�API�that�has�low�viscosity.�Over-emphasizing�
one�process�or�the�other�may�drag�a�language�design�too�far�to�one�side.�
With�PLIERS,�Coblenz�et�al.�[6]�offer�suggestions�for�how�developers�
may�integrate�and�balance�between�these�approaches.�They�recommend�
a�developer�iterate�between�developing�the�theoretical�foundations�of�
their�language�(core�calculus)�and�the�user-facing�language�(surface�
language).� Moreover,�Coblenz�et�al.� suggest�adapting�natural�pro-
gramming�by�progressively�prompting�a�user�with�incrementally�more�

information�about�a�language’s�proposed�API.�This�additional�scaffold-
ing�can�help�scope�how�natural�programming�studies�explore�mental�
models,�and�also�lets�a�language�developer�gain�insights�even�when�the�
core�calculus�significantly�departs�from�a�user’s�familiar�models.�Inte-
grated�design�processes,�like�PLIERS,�are�likely�to�be�valuable�methods�
for�assessing�future�unified�grammars,�because�these�systems�must�
balance�significant�conceptual�unifications�with�end-users’�ease-of-use.�

7.2 Animation Abstractions and Design Considerations

7.2.1� Scene- vs.�Segue-Dominant�Abstractions�

Several�interviewees�noted�that�Animated�Vega-Lite’s�abstractions�ap-
pear�complementary�to�their�systems.� For�example,�Kim�noted�his�
conceptual�distinction�between�Animated�Vega-Lite�and�Gemini� is�

“[Animated�Vega-Lite]�animates�the�internal�state�within�Vega-Lite,�and�
Gemini�doesn’t�care�about�the�internal�state.� It�just�transforms�be-
tween�two�static�states�of�Vega-Lite.”� Similarly,�Thompson�said�“if�
you�compare�[Animated�Vega-Lite]�directly�to�Data�Animator,�the�two�
of�them�together�would�be�really�nice.� What�one�doesn’t�have,� the�
other�does�really�well.”�For�instance,�he�highlighted�Animated�Vega-
Lite’s�ability�to�automatically�generate�keyframes�from�data�(e.g.,�each�
year keyframe�in�Gapminder)�and�Data�Animator’s�ability�to�pre-
cisely�specify�transitions�between�keyframes�(such�as�staggering)�as�
complementary�components�of�the�two�systems.�He�also�appreciated�
Animated�Vega-Lite’s�ability�to�create�overlapping�keyframes�via�layer-
ing,�as�in�our�bar�chart�race�example�(Fig.�4).�Pedersen�provides�one�
explanation�for�why�our�approach�is�complementary�to�the�existing�
systems�we�studied.�In�his�useR!�2018�keynote,�Pedersen�introduced�
the�concepts�of�a�scene�and�a�segue�animation�[41].�A�scene�animation,�
such�as�Gapminder,�is�one�where�the�data�is�changing�(such�as�countries�
ranging�over�years),�but�the�visual�encoding�is�not.�One�can�imagine�
a�scene�playing�within�a�fixed�stage�(i.e.,�a�static�visual�encoding).�In�
contrast,�a�segue�animation�—�such�as�a�pie�chart�transitioning�to�a�bar�
chart�—�is�one�where�the�visual�encoding�is�changing,�but�the�data�is�
fixed.� In�practice,�the�line�between�a�scene�and�segue�is�not�always�
clear.�For�example,�transitioning�from�a�strip�plot�to�a�box�and�whiskers�
plot�involves�both�a�change�to�the�data�(computing�aggregate�quantities)�
and�a�change�to�the�visual�encoding�(converting�to�box-and-whiskers).�

Using�this�scene�and�segue�distinction,�Animated�Vega-Lite�and�
gganimate�may�be�categorized�as�scene-dominant�grammars.� Both�
systems�aim�to�cover�a�large�space�of�animated�visualizations�with�
fixed�encodings,�such�as�Gapminder�and�bird�migrations.�Both�systems�
support�an�additional�collection�of�visual�encoding�transformations.�For�
example,�Animated�Vega-Lite�supports�rescaling,�panning,�and�zoom-
ing�while�gganimate�supports�transitions�that�can�interpolate�between�
different�shapes�with�the�same�underlying�data.�Though�both�Animated�
Vega-Lite�and�gganimate�are�scene-dominant�systems,�Pedersen�high-
lighted�the�expressiveness�of�Animated�Vega-Lite’s�selection�model�for�
generating�arbitrary�keyframes�from�data�(as�shown�with�the�Dunkin�
example�in� Fig.�3)�as�a�key�conceptual�distinction�between�the�two.�

On�the�other�hand,�Data�Animator,�Canis,�and�Gemini�are�segue-
dominant.�These�systems�have�focused�primarily�on�connecting�two�
distinct�keyframes�that�may�have�distinct�visual�encodings�and�data.�To�
construct�a�transition,�Data�Animator,�Canis,�and�Gemini�each�construct�
a�mapping�between�two�keyframes.�This�approach�works�well�when�the�
data�set�is�fixed,�and�there�are�only�a�few�keyframes�(as�is�typical�when�
showing�a�small�handful�of�segues).� But�as�identified�by�Thompson�
and�Liu,�to�support�an�animation�like�Gapminder,�these�systems�must�
produce�a�keyframe�for�every�year�in�the�dataset.�

As�discussed�in�Sect.�6,�Animated�Vega-Lite�inherits�Vega-Lite’s�
inability�to�represent�complex�runtime�changes�to�visual�encodings�
and�data�transformations.� We�suspect�that�extending�Vega-Lite�with�
these�capabilities�could�enable�segue�animations�in�a�future�version�of�
Animated�Vega-Lite.�To�support�complex�runtime�changes,�Vega-Lite’s�
conditional�encodings�could�be�extended�from�just�mark�properties�to�
mark�types�and�data�transforms�as�in�Ivy�[25].� And�our�support�for�
enter�and�exit�could�be�extended�to�operate�not�just�on�data,�but�also�on�
these�more�expressive�encoding�changes.�

Fig.�6.�Swimming�World�Records�example�from�Data�Animator�[16].�

7.2.2� Modeling�Transitions�Between�Keyframes�

Keyframes�were�the�most�salient�animation�abstraction�in�our�inter-
views.�We�discussed�keyframe�concepts�with�every�interviewee,�and�
they�would�often�use�keyframes�to�pose�comparisons�between�different�
systems’�abstractions.�Every�tool�had�to�make�decisions�about�(i)�how�
to�generate�keyframes�and�(ii)�how�to�transition�between�them.�More-
over,�keyframes�and�transitions�are�useful�abstractions�for�both�scene-
and�segue-dominant�systems.�In�this�subsection�we�surface�an�axis�of�
the�keyframe�design�space:�modeling�transitions�between�keyframes.�

Non-parametric transitions. The�simplest�kind�of�transition�be-
tween�keyframes� is� a� non-parametric� transition.� Consider� a� linear�
sequence�of�keyframes,�where�each�keyframe�describes�an�entire�scene-
graph.� Transitions�between�these�keyframes�are�non-parametric� in�
that�the�same�transition�is�applied�to�every�data�point.� For�example,�
changing�every�bar�to�a�point�in�0.5�seconds�(a�segue�animation)�is�a�
non-parametric�transition�because�the�transition’s�definition�is�indepen-
dent�of�the�mark’s�encoded�data�—�i.e.�its�duration�is�a�constant�value.�
Similarly,�animating�countries�in�Gapminder�(a�scene�animation)�is�
also�a�non-parametric�transition�because�the�transition�applied�to�each�
mark�is�identical�(moving�between�two�points�in�a�fixed�time�interval).�

Animated�Vega-Lite�supports�non-parametric�transitions�via�its�timer,�
easing,�and�interpolation�abstractions,�which�implicitly�specify�a�transi-
tion�across�keyframes.�The�other�libraries�also�support�non-parametric�
transitions�between�pairs�of�keyframes,�but�only�scene-dominant�sys-
tems� (gganimate� and�Animated�Vega-Lite)� support� non-parametric�
transitions�across�many�keyframes.� In� scene-dominant�animations,�
the�same�transition�specification�can�be�reused�across�a�sequence�of�
keyframes�sharing�a�fixed�encoding.�

Parametric transitions. In�contrast�to�non-parametric�transitions,�
parametric�transitions�involve�transition�definitions�that�depend�on�the�
backing�data.�A�common�use�case�for�this�model�is�to�stagger�transi-
tions�—�a�common�segue�technique�that�applies�a�small�delay�to�each�
animated�element�to�make�them�easier�to�track�[12].� Because�para-
metric�transitions�depend�on�data,�individual�marks�can�have�different�
timing�properties�during�the�same�transition.�

Segue-dominant� systems�Data�Animator,� Canis,� and�Gemini� all�
support�parametric�transitions.�But,�as�Thompson�identified�in�his�post-
interview,�parametric�transitions�also�increase�the�expressive�gamut�
of�scene�animations.� For�example,�Fig.�6�shows�“Swimming�World�
Records�Throughout�History”�from�the�Data�Animator�example�gallery.�
This�animated�scatterplot�shows�replays�of�world�record�swimmers.�
The�input�data�includes�swimmers�and�their�final�race�times.� When�
Thompson�tried�to�port�this�example�to�Animated�Vega-Lite,�he�realized�
he�“had�no�clue�how�to�do�it.�The�two�keyframes�in�this�example�are�
very�simple.� All�of�the�circles�at�one�x�position,�and�then�all�of�the�
circles�like�200–400�pixels�to�the�right.�For�us,�you�change�the�speed�of�
each�individual�shape�based�on�a�data�property.”�Animated�Vega-Lite�
could�support�this�animation�by�allowing�users�to�explicitly�define�a�
transition,�with�its�speed�parameterized�by�a�data�value.�

To�support�parametric�transitions,�future�versions�of�Animated�Vega-
Lite�could�use�Lu�et�al.’s�concept�of�“dynamic�functions”�[24].�These�
functions�use�mappings�between�data�and�transitions�to�specify�rate-
of-change�properties�of�transitions�over�time�(e.g.,�encoding�transition�
speed�instead�of�mark�position).�Adapting�this�segue-dominant�concept�
to� Animated� Vega-Lite� could� increase� expressivity,� though� further�
work�is�required�to�understand�its�composition�with�and�implications�
for� static� and� interactive� language� constructs.� For� instance,� segue�
transition�properties�may�more�easily�compose�with�existing�static�and�

interactive�Vega-Lite�constructs�if�translated�back�into�scene�keyframes�
as�direct�encodings�instead�of�rates�(e.g.�instantiating�transition�speed�
as�additional�position�keyframes).�However,�this�would�trade�off�the�
memory�efficiency�of�the�segue�representation.�

Connecting transitions in series and parallel. Some�of�the�most�
compelling�animated�examples�cannot�be�represented�as�a�linear�se-
quence�of�transitions,�parametric�or�not.�For�instance,�Periscopic’s�Gun�
Deaths�animation�[31],�a�visualization�frequently�cited�by�our�inter-
viewees,�cannot�easily�be�represented�even�by�parametric�transitions.�
When�discussing�this�example,�Thompson�remarked:�“This�was�one�
that�I�had�on�my�list�of� ‘oh�it�would�be�so�cool�if�we�could�create�this,’�
and�then�I�could�just�not�figure�out�a�way�of�doing�it.�[...]�How�do�you�
have�the�circle�appear�and�then�drop,�and�then�the�line�keeps�going?�
I�have�no�clue�how�to�do�that�[in�Data�Animator]”.� Authoring�this�
animation�is�difficult�because�there�is�no�linear�transition�specification:�
the�animation�splits�in�two�when�the�circle�drops�and�the�line�continues.�
We�are�not�certain�that�any�of�the�grammars�we�have�discussed�in�our�
critical�reflections�can�easily�express�this�animation,�because�it�involves�
both�scene�and�segue�animation.�

Gemini’s�composition�rules�offer�a�promising�path�for�the�transitions�
necessary� to� support� the� Gun� Deaths� animation.� Gemini’s� concat�
primitive�allows�a�user�to�specify�animations�in�series,�while�its�sync�
primitive�allows�a�user�to�specify�animation�components�that�play�in�
parallel.�Using�these�primitives,�one�could�specify�a�sync�that�splits�the�
animation�into�the�circle�and�the�line,�and�then�concat�the�many�stages�
of�the�Gun�Deaths�animation�together.�More�generally,�concat�and�sync�
allow�a�user�to�model�transitions�as�a�series-parallel�graph�[48].�

However,�this�abstraction�alone�is�not�enough.� While�Gemini�has�
a�rich�transition�language,�it�cannot�generate�keyframes�automatically�
from�data�like�Animated�Vega-Lite.�This�generation�is�necessary�for�the�
Gun�Deaths�animation�to�visualize�individual�points.�Combining�Gem-
ini’s�segue�abstractions�with�Animated�Vega-Lite’s�scene�abstractions�
is�a�promising�future�direction�for�expressive�animation.�

8 CONCLUSION AND FUTURE WORK

Animated�Vega-Lite�contributes�a�low�viscosity,�compositional,�and�
systematically�enumerable�grammar�that�unifies�specification�of�static,�
interactive,�and�animated�visualizations.�Within�a�single�grammar,�au-
thors�can�now�easily�switch�between�the�three�modalities�during�rapid�
prototyping,�and�also�compose�them�together�to�effectively�communi-
cate�and�analyze�faceted�and�time-varying�data.�

Our�grammar� takes�a�promising�step� in�helping�authors�develop�
visualizations�that�leverage�the�dynamic�affordances�of�computational�
media.�During�interviews,�Pedersen�described�unification�as�the�“holy�
grail”�of�data�visualization�APIs:�“A�grammar�of�graphics�that�defines�
how� things� look,� a� grammar� of� animation� that� defines� how� things�
react,�and�a�grammar�of�interaction�that�defines�how�things�interact.�
Having�all�of�that�in�one�unified�theoretical�framework�would�simply�
be�awesome.”�Future�work�might�more�deeply�explore�the�distinctions�
and�tradeoffs�we�surfaced�between�transition�and�keyframe�models,�
or�study�the�implications�of�unification�at�the�lower-level�of�reactive�
programming�semantics�and�data�stream�management.�

Beyond�language�design,�we�hope�that�Animated�Vega-Lite�facili-
tates�future�work�on�interactive�and�animated�visualization�akin�to�the�
role�the�original�Vega-Lite�has�played.� For�instance,�how�might�we�
leverage�Animated�Vega-Lite’s�ability�to�enumerate�static,�interactive,�
and�animated�visualizations�to�study�how�these�modalities�facilitate�
data�analysis�and�communication�—�replicating�and�extending�prior�
work�[33]�more�systematically?�Similarly,�how�might�study�results�be�
codified�in�the�Draco�knowledge�base�[29],�or�exposed�in�systems�like�
Voyager�[49,�50]�or�Lux�[23]�to�recommend�animated�visualizations�
during�exploratory�data�analysis?�To�support�this�future�research,�we�
intend�to�contribute�our�work�back�to�the�open�source�Vega-Lite�project.�

ACKNOWLEDGMENTS

We�thank�our�critical�reflections�interlocutors�and�anonymous�reviewers.�
This�work�was�supported�by�NSF�grants�#1942659�and�#1900991�and�
by�the�NSF’s�SaTC�Program.� This�material�is�based�upon�work�sup-
ported�by�the�National�Science�Foundation�under�Grant�No.�1745302.�

 REFERENCES

[1]� Plotly�Graphing�Libraries,�2012.�https://plotly.com/graphing-libraries/.�
[2]� F.�A.�Abukhodair,�B.�E.�Riecke,�H.�I.�Erhan,�and�C.�D.�Shaw.�Does�inter-

active�animation�control�improve�exploratory�data�analysis�of�animated�
trend�visualization?� In�Visualization�and�Data�Analysis�2013,�vol.�8654,�
pp.�211–223.�SPIE,�Feb.�2013.�doi:�10.1117/12.2001874�

[3]� M.�Bostock,�V.�Ogievetsky,�and�J.�Heer.�D³�Data-Driven�Documents.�IEEE�
Transactions�on�Visualization�and�Computer�Graphics,�17(12):2301–2309,�
Dec.�2011.�doi:�10.1109/TVCG.2011.185�

[4]� H.-J.�Bucher�and�P.�Schumacher.�The�relevance�of�attention�for�selecting�
news�content.�An�eye-tracking�study�on�attention�patterns�in�the�reception�
of�print�and�online�media.� Communications,�31(3),�Jan.�2006.�doi:� 10.�
1515/COMMUN.2006.022�

[5]� F.�Chevalier,�P.�Dragicevic,�and�S.�Franconeri.� The�Not-so-Staggering�
Effect� of�Staggered�Animated�Transitions�on�Visual�Tracking.� IEEE�
Transactions�on�Visualization�and�Computer�Graphics,�20(12):2241–2250,�
Dec.�2014.� Conference�Name:�IEEE�Transactions�on�Visualization�and�
Computer�Graphics.�doi:�10.1109/TVCG.2014.2346424�

[6]� M.�Coblenz,�G.�Kambhatla,�P.�Koronkevich,�J.�L.�Wise,�C.�Barnaby,�J.�Sun-
shine,�J.�Aldrich,�and�B.�A.�Myers.� PLIERS:�A�Process�that�Integrates�
User-Centered�Methods�into�Programming�Language�Design.�ACM�Trans-
actions�on�Computer-Human�Interaction,�28(4):28:1–28:53,�July�2021.�
doi:�10.1145/3452379�

[7]� P.�Dragicevic,�A.�Bezerianos,�W.�Javed,�N.�Elmqvist,�and�J.-D.�Fekete.�
Temporal� distortion� for� animated� transitions.� In� Proceedings� of� the�
SIGCHI�Conference�on�Human�Factors�in�Computing�Systems,�pp.�2009–�
2018.�ACM,�Vancouver�BC�Canada,�May�2011.�doi:�10.1145/1978942.�
1979233�

[8]� C.�Elliott�and�P.�Hudak.�Functional�reactive�animation.� In�Proceedings�of�
the�second�ACM�SIGPLAN�international�conference�on�Functional�pro-
gramming,�ICFP�’97,�pp.�263–273.�Association�for�Computing�Machinery,�
New�York,�NY,�USA,�Aug.�1997.�doi:�10.1145/258948.258973�

[9]� T.�Ge,�B.�Lee,�and�Y.�Wang.�CAST:�Authoring�Data-Driven�Chart�Anima-
tions.� In�Proceedings�of�the�2021�CHI�Conference�on�Human�Factors�in�
Computing�Systems,�CHI�’21,�pp.�1–15.�Association�for�Computing�Ma-
chinery,�New�York,�NY,�USA,�May�2021.�doi:�10.1145/3411764.3445452�

[10]� T.�Ge,�Y.�Zhao,�B.�Lee,�D.�Ren,�B.�Chen,�and�Y.�Wang.� Canis:�A�High-
Level�Language�for�Data-Driven�Chart�Animations.�Computer�Graphics�
Forum,�2020.�Publisher:�The�Eurographics�Association�and�John�Wiley�&�
Sons�Ltd.�doi:�10.1111/cgf.14005�

[11]� E.�Greussing,�S.�H.�Kessler,�and�H.�G.�Boomgaarden.� Learning�From�
Science�News�via�Interactive�and�Animated�Data�Visualizations:�An�Inves-
tigation�Combining�Eye�Tracking,�Online�Survey,�and�Cued�Retrospective�
Reporting.�Science�Communication,�42(6):803–828,�Dec.�2020.�Publisher:�
SAGE�Publications�Inc.�doi:�10.1177/1075547020962100�

[12]� J.� Heer� and� G.� Robertson.� Animated� Transitions� in� Statistical� Data�
Graphics.� IEEE�Transactions�on�Visualization�and�Computer�Graphics,�
13(6):1240–1247,�Nov.�2007.�doi:�10.1109/TVCG.2007.70539�

[13]� J.�Hullman,�P.�Resnick,�and�E.�Adar.� Hypothetical�Outcome�Plots�Out-
perform�Error�Bars�and�Violin�Plots�for�Inferences�about�Reliability�of�
Variable�Ordering.�PLOS�ONE,�10(11):e0142444,�Nov.�2015.�Publisher:�
Public�Library�of�Science.�doi:�10.1371/journal.pone.0142444�

[14]� J.�D.�Hunter.�Matplotlib:�A�2D�Graphics�Environment.�Computing�in�Sci-
ence�Engineering,�9(3):90–95,�May�2007.�Conference�Name:�Computing�
in�Science�Engineering.�doi:�10.1109/MCSE.2007.55�

[15]� N.�Irwin�and�K.�Quealy.�How�Not�to�Be�Misled�by�the�Jobs�Report.�The�
New�York�Times,�May�2014.�

[16]� John�Thompson.�Swimming�World�Records�throughout�History,�2020.�
[17]� A.�Kale,�F.�Nguyen,�M.�Kay,�and�J.�Hullman.� Hypothetical�Outcome�

Plots�Help�Untrained�Observers�Judge�Trends�in�Ambiguous�Data.� IEEE�
Transactions�on�Visualization�and�Computer�Graphics,�25(1):892–902,�
Jan.�2019.�doi:�10.1109/TVCG.2018.2864909�

[18]� Y.�Kim,� M.�Correll,� and�J.�Heer.� Designing�Animated�Transitions� to�
Convey�Aggregate�Operations.� Computer�Graphics�Forum,�38(3):541–�
551,�2019.�doi:�10.1111/cgf.13709�

[19]� Y.�Kim�and�J.�Heer.� Gemini:� A�Grammar�and�Recommender�System�
for�Animated�Transitions�in�Statistical�Graphics.� IEEE�Transactions�on�
Visualization�and�Computer�Graphics,� 27(2):485–494,� 2021.� doi:� 10.�
1109/TVCG.2020.3030360�

[20]� Y.�Kim�and�J.�Heer.�Geminiˆ2:�Generating�Keyframe-Oriented�Animated�
Transitions�Between�Statistical�Graphics.� In�2021�IEEE�Visualization�
Conference�(VIS),�pp.�201–205.�IEEE,�New�Orleans,�LA,�USA,�Oct.�2021.�

doi:�10.1109/VIS49827.2021.9623291�
[21]� B.�Kondo�and�C.�Collins.�DimpVis:�Exploring�Time-varying�Information�

Visualizations�by�Direct�Manipulation.�IEEE�Transactions�on�Visualization�
and�Computer�Graphics,� 20(12):2003–2012,� Dec.� 2014.� Conference�
Name:�IEEE�Transactions�on�Visualization�and�Computer�Graphics.�doi:�
10.1109/TVCG.2014.2346250�

[22]� F.�A.�La�Sorte,�D.�Fink,�W.�M.�Hochachka,�and�S.�Kelling.�Convergence�
of�broad-scale�migration�strategies�in�terrestrial�birds.�Proceedings�of�the�
Royal�Society�B:�Biological�Sciences,�283(1823):20152588,�Jan.�2016.�
Publisher:�Royal�Society.�doi:�10.1098/rspb.2015.2588�

[23]� D.� J.-L.� Lee,� D.� Tang,� K.� Agarwal,� T.� Boonmark,� C.� Chen,� J.� Kang,�
U.� Mukhopadhyay,� J.� Song,� M.� Yong,� M.� A.� Hearst,� and� A.� G.�
Parameswaran.� Lux:� always-on�visualization�recommendations�for�ex-
ploratory�dataframe�workflows.� Proceedings�of�the�VLDB�Endowment,�
15(3):727–738,�Nov.�2021.�doi:�10.14778/3494124.3494151�

[24]� M.�Lu,�N.�Fish,�S.�Wang,�J.�Lanir,�D.�Cohen-Or,�and�H.�Huang.�Enhancing�
Static�Charts�With�Data-Driven�Animations.�IEEE�Transactions�on�Visual-
ization�and�Computer�Graphics,�28(7):2628–2640,�July�2022.�Conference�
Name:�IEEE�Transactions�on�Visualization�and�Computer�Graphics.�doi:�
10.1109/TVCG.2020.3037300�

[25]� A.�M.�McNutt�and�R.�Chugh.� Integrated�Visualization�Editing�via�Parame-
terized�Declarative�Templates.�In�Proceedings�of�the�2021�CHI�Conference�
on�Human�Factors�in�Computing�Systems,�pp.�1–14.�ACM,�Yokohama�
Japan,�May�2021.�doi:�10.1145/3411764.3445356�

[26]� L.�A.�Meyerovich,� A.�Guha,� J.�Baskin,� G.�H.�Cooper,� M.�Greenberg,�
A.�Bromfield,�and�S.�Krishnamurthi.�Flapjax:�a�programming�language�for�
Ajax�applications.� In�Proceedings�of�the�24th�ACM�SIGPLAN�conference�
on�Object�oriented�programming�systems�languages�and�applications,�
OOPSLA�’09,� pp.�1–20.�Association�for�Computing�Machinery,� New�
York,�NY,�USA,�Oct.�2009.�doi:�10.1145/1640089.1640091�

[27]� Mike�Bostock.�d3-ease,�2015.�https://github.com/d3/d3-ease.�
[28]� Mike� Bostock.� Bar� Chart� Race,� Explained,� 2019.�

https://observablehq.com/@d3/bar-chart-race-explained.�
[29]� D.�Moritz,�C.�Wang,�G.�L.�Nelson,�H.�Lin,�A.�M.�Smith,�B.�Howe,�and�

J.�Heer.� Formalizing�Visualization�Design�Knowledge�as�Constraints:�
Actionable�and�Extensible�Models�in�Draco.� IEEE�Transactions�on�Visu-
alization�and�Computer�Graphics,�25(1):438–448,�Jan.�2019.�Conference�
Name:�IEEE�Transactions�on�Visualization�and�Computer�Graphics.�doi:�
10.1109/TVCG.2018.2865240�

[30]� B.�A.�Myers,�J.�F.�Pane,�and�A.�J.�Ko.� Natural�programming�languages�
and�environments.�Communications�of�the�ACM,�47(9):47–52,�Sept.�2004.�
doi:�10.1145/1015864.1015888�

[31]� Periscopic.�United�States�gun�death�data�visualization,�2013.�
[32]� D.�Ren,�B.�Lee,�M.�Brehmer,�and�N.�H.�Riche.�Reflecting�on�the�Evaluation�

of�Visualization�Authoring�Systems� :� Position�Paper.� In�2018� IEEE�
Evaluation�and�Beyond�- Methodological�Approaches�for�Visualization�
(BELIV),�pp.�86–92,�Oct.�2018.�doi:�10.1109/BELIV.2018.8634297�

[33]� G.�Robertson,�R.�Fernandez,�D.�Fisher,�B.�Lee,�and�J.�Stasko.�Effectiveness�
of�Animation�in�Trend�Visualization.� IEEE�Transactions�on�Visualization�
and�Computer�Graphics,� 14(6):1325–1332,� Nov.�2008.�doi:� 10.1109/�
TVCG.2008.125�

[34]� H.� Rosling.� The� best� stats� you’ve� ever� seen,� 2006.�
https://www.ted.com/talks/hans� rosling� the�best� stats�you�ve�ever� seen.�

[35]� A.� Satyanarayan,� B.� Lee,� D.� Ren,� J.� Heer,� J.� Stasko,� J.� Thompson,�
M.�Brehmer,�and�Z.�Liu.�Critical�Reflections�on�Visualization�Authoring�
Systems.� IEEE�Transactions�on�Visualization�and�Computer�Graphics,�pp.�
1–1,�2019.�doi:�10.1109/TVCG.2019.2934281�

[36]� A.�Satyanarayan,�D.�Moritz,�K.�Wongsuphasawat,�and�J.�Heer.�Vega-Lite:�
A�Grammar�of�Interactive�Graphics.� IEEE�Transactions�on�Visualization�
and�Computer�Graphics,�23(1):341–350,�Jan.�2017.� Conference�Name:�
IEEE�Transactions�on�Visualization�and�Computer�Graphics.�doi:� 10.�
1109/TVCG.2016.2599030�

[37]� A.�Satyanarayan,�R.�Russell,�J.�Hoffswell,�and�J.�Heer.�Reactive�Vega:�A�
Streaming�Dataflow�Architecture�for�Declarative�Interactive�Visualization.�
IEEE�Transactions�on�Visualization�and�Computer�Graphics,�22(1):659–�
668,�Jan.�2016.�Conference�Name:�IEEE�Transactions�on�Visualization�
and�Computer�Graphics.�doi:�10.1109/TVCG.2015.2467091�

[38]� A.�Satyanarayan,�K.�Wongsuphasawat,�and�J.�Heer.�Declarative�interaction�
design�for�data�visualization.� In�Proceedings�of�the�27th�annual�ACM�
symposium�on�User� interface�software�and� technology,� UIST�’14,� pp.�
669–678.�Association�for�Computing�Machinery,�New�York,�NY,�USA,�
Oct.�2014.�doi:�10.1145/2642918.2647360�

[39]� X.� Shu,� A.� Wu,� J.� Tang,� B.� Bach,� Y.� Wu,� and� H.� Qu.� What� Makes�

https://www.ted.com/talks/hans
https://observablehq.com/@d3/bar-chart-race-explained
https://github.com/d3/d3-ease
https://10.1109/MCSE.2007.55
https://plotly.com/graphing-libraries

a�Data-GIF�Understandable?� IEEE�Transactions�on�Visualization�and�
Computer�Graphics,�27(2):1492–1502,�Feb.�2021.�doi:�10.1109/TVCG.�
2020.3030396�

[40]� Stephanie�Yee�and�Tony�Chu.�A�visual�introduction�to�machine�learning,�
Part�II,�2015.�http://www.r2d3.us/visual-intro-to-machine-learning-part-2/.�

[41]� Thomas� Lin� Pedersen.� The� Grammar� of� Animation,� July� 2018.�
https://www.youtube.com/watch?v=21ZWDrTukEs.�

[42]� Thomas�Lin�Pedersen.� gganimate�has�transitioned�to�a�state�of�release,�
2019.�https://www.data-imaginist.com/2019/gganimate-has-transitioned-
to-a-state-of-release/.�

[43]� Thomas�Lin�Pedersen�and�David�Robinson.� A�Grammar�of�Animated�
Graphics,�2019.�https://gganimate.com/.�

[44]� Thomas�RG�Green.� Cognitive�dimensions�of�notations.� In�A.�Sutcliffe�
and�L.�Macaulay,�eds.,�People�and�Computers�V,�pp.�443–460.�Cambridge�
University�Press,�Cambridge,�UK,�1989.�

[45]� J.�Thompson,�Z.�Liu,�W.�Li,�and�J.�Stasko.� Understanding�the�Design�
Space�and�Authoring�Paradigms�for�Animated�Data�Graphics.�Computer�
Graphics�Forum,�39(3):207–218,�2020.�doi:�10.1111/cgf.13974�

[46]� J.�R.�Thompson,�Z.�Liu,�and�J.�Stasko.�Data�Animator:�Authoring�Expres-
sive�Animated�Data�Graphics.�In�Proceedings�of�the�2021�CHI�Conference�
on�Human�Factors�in�Computing�Systems,�CHI�’21,�pp.�1–18.�Association�
for�Computing�Machinery,� New�York,� NY,�USA,�May�2021.�doi:� 10.�
1145/3411764.3445747�

[47]� B.� Tversky,� J.� B.� Morrison,� and� M.� Betrancourt.� Animation:� can� it�
facilitate?� International�Journal�of�Human-Computer�Studies,�57(4):247–�
262,�Oct.�2002.�doi:�10.1006/ijhc.2002.1017�

[48]� Wikipedia�contributors.� Series–parallel�graph�—�Wikipedia,�The�Free�
Encyclopedia,�2022.�

[49]� K.�Wongsuphasawat,�D.�Moritz,�A.�Anand,�J.�Mackinlay,�B.�Howe,�and�
J.�Heer.�Voyager:�Exploratory�Analysis�via�Faceted�Browsing�of�Visualiza-
tion�Recommendations.�IEEE�Transactions�on�Visualization�and�Computer�
Graphics,�22(1):649–658,�Jan.�2016.�Conference�Name:�IEEE�Transac-
tions�on�Visualization�and�Computer�Graphics.�doi:�10.1109/TVCG.2015.�
2467191�

[50]� K.�Wongsuphasawat,�Z.�Qu,�D.�Moritz,�R.�Chang,�F.�Ouk,�A.�Anand,�
J.�Mackinlay,� B.�Howe,� and�J.�Heer.� Voyager�2:� Augmenting�Visual�
Analysis�with�Partial�View�Specifications.� In�Proceedings�of�the�2017�
CHI�Conference�on�Human�Factors�in�Computing�Systems,�CHI�’17,�pp.�
2648–2659.�Association�for�Computing�Machinery,�New�York,�NY,�USA,�
May�2017.�doi:�10.1145/3025453.3025768�

[51]� J.�S.�Yi,�Y.�a.�Kang,�J.�Stasko,�and�J.�Jacko.� Toward�a�Deeper�Under-
standing�of�the�Role�of�Interaction�in�Information�Visualization.� IEEE�
Transactions�on�Visualization�and�Computer�Graphics,�13(6):1224–1231,�
Nov.�2007.�doi:�10.1109/TVCG.2007.70515�

[52]� J.�Zong,�D.�Barnwal,�R.�Neogy,�and�A.�Satyanarayan.�Lyra�2:�Designing�
Interactive�Visualizations�by�Demonstration.� IEEE�Transactions�on�Vi-
sualization�and�Computer�Graphics,�27(2):304–314,�Feb.�2021.�doi:�10.�
1109/TVCG.2020.3030367�

https://gganimate.com
https://www.data-imaginist.com/2019/gganimate-has-transitioned
https://www.youtube.com/watch?v=21ZWDrTukEs
http://www.r2d3.us/visual-intro-to-machine-learning-part-2

	Introduction
	Related Work
	Animation in Information Visualization
	Authoring Interaction and Animation

	Motivation: Unifying Interaction and Animation
	Conceptually Bridging Interaction and Animation
	Low-Viscous Authoring: An Example Usage Scenario

	A Grammar of Animation in Vega-Lite
	Time Encoding Channel
	Key Field
	Time Scale
	Re-scale

	Selections with a Timer Event Stream
	Applying Selections
	Predicate
	Input Element Binding
	Pausing
	Global Easing

	Implementation
	Evaluation: Example Gallery
	Evaluation: Critical Reflection
	Grammar Design Process
	Specific Examples Motivate Grammar Design
	Natural Programming vs. Core Calculus Design

	Animation Abstractions and Design Considerations
	Scene- vs. Segue-Dominant Abstractions
	Modeling Transitions Between Keyframes

	Conclusion and Future Work

