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Abstract—The Benders’ decomposition algorithm is a tech-
nique in mathematical programming for complex mixed-integer
linear programming (MILP) problems with a particular block
structure. The strategy of Benders’ decomposition can be de-
scribed as a strategy of divide and conquer. The Benders’
decomposition algorithm has been employed in a variety of
applications such as communication, networking, and machine
learning. However, the master problem in Benders’ decompo-
sition is still NP-hard, which motivates us to employ quantum
computing. In the paper, we propose a hybrid quantum-classical
Benders’ decomposition algorithm. We transfer the Benders’ de-
composition’s master problem into the quadratic unconstrained
binary optimization (QUBO) model and solve it by the state-of-
the-art quantum annealer. Then, we analyze the computational
results and discuss the feasibility of the proposed algorithm.
Due to our reformulation in the master problem in Benders’
decomposition, our hybrid algorithm, which takes advantage
of both classical and quantum computers, can guarantee the
solution quality for solving MILP problems.

Index Terms—Benders’ Decomposition, Mixed-integer Linear
Programming, Hybrid Quantum-Classical Computing, Quantum
Computing, Communication, Networking

I. INTRODUCTION

In recent years, mixed-integer linear programming (MILP)
is widely employed in many fields includes but is not limited to
planning and scheduling [1], transportation and telecommuni-
cations [2], energy and resource management [3] [4], network
design [5], and vehicle routing [6]. However, because MILP
is an NP-hard problem [7] [8], it is desirable to have powerful
solutions to solve large-scale MILP problems.

Benders’ decomposition algorithm [9] provides an efficient
way to solve the MILP problem. In recent years, the Benders’
decomposition method has become a popular algorithm. It
exploits the structure of the MILP problem and successfully
reduces the computation workload. Benders’ decomposition
divides a MILP problem into a master problem and a sub-
problem. The subproblem is a linear programming model that
has strong duality. During the iterative solving process, the
optimality cuts and feasibility cuts obtained from the solution
of the subproblem will be added to the master problem. The
iterative process will stop when the gap between the upper
bound provided by the master problem and the lower bound
provided by the subproblem is sufficiently small. However, the
master problem in Benders’ decomposition is still NP-hard,
which motivates us to employ quantum computing.

Due to the characteristics of parallel computing, the quan-
tum computer can simultaneously calculate the final result with

every possible model input. Therefore, quantum computers are
often considered to have surpassed the computational speed of
classical computers. The quantum advantage has been proved
by quantum algorithms, including Deutch-Jozsa Algorithm
[10], Grover’s Algorithm [11], Shor’s Algorithm [12]. In
recent years, leading quantum computer companies such as D-
Wave, IBM, Google, IonQ, Honeywell have made significant
progress in hardware design. Normally, their quantum comput-
ers are in one of the two groups (i.e., analog quantum model,
universal quantum gate model). D-Wave currently provides the
quantum computer with the largest number of qubits on the
market. By deploying the Ising model, the D-Wave’s quantum
annealer computer can solve the problem formulated by the
quadratic unconstrained binary optimization (QUBO) model.
It depicts the energy state with coupling qubits interaction and
externally applied fields [13].

The power of quantum computers and challenges in MILP
problems inspire us to design a hybrid quantum-classical
Benders’ decomposition algorithm by jointly using quantum
computing and classical computing techniques. However, there
are several obstacles when we try to use Benders’ com-
position to combine quantum and classical computing. The
first difficulty is how to convert the problem into an integer
linear programming (ILP) problem recognized by the quantum
computer. The Second difficulty is how to convert the NP-hard
ILP problem into a QUBO model as an input to a quantum
computer. In addition, the third difficulty is how to reformat
the output of quantum computers from the binary solution to
the decimal numeral system.

To overcome the above challenges, this paper reformulates
the master problem as an ILP model in Benders’ decomposi-
tion under the MILP problem. We transfer the master problem,
which is an ILP model, into a QUBO form. Although the
master problem in the Benders’ decomposition is still NP-
hard, we overcome this issue by proposing a hybrid Benders’
decomposition algorithm with the D-Wave hybrid quantum
computer for the MILP problem. Finally, we study a simple
case to evaluate the performance of the D-Wave hybrid solver
in solving the MILP problem. The contributions of this paper
are summarized as follows.

• We propose a hybrid quantum-classical Benders’ decom-
position algorithm to find the solution for the MILP
problem. Our hybrid quantum-classical Benders’ decom-
position algorithm converges and returns the correct final
result as the classical algorithm does.
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• We propose an ILP model for the master problem in
Benders’ decomposition for the MILP problem. We re-
formulate the ILP model as a QUBO model recognized
by the quantum annealing machine.

• We employ the quantum computer provided by D-Wave
to solve the MILP problem by their Leap™ quantum
cloud service. Our experiments show the possibility of
using quantum computing to solve the MILP.

The rest of this paper is organized as follows. Section
II introduces the basics about the MILP problem and the
Benders’ decomposition. Section III illustrates our hybrid
quantum-classical Benders’ Decomposition algorithm. Section
IV validates our algorithm by showing the corresponding
simulation. Finally, Section V concludes the whole paper.

II. MILP AND BENDERS’ DECOMPOSITION BASICS

A. Mixed-integer Linear Programming

MILP has been widely adopted optimization problems that
include but are not limited to communication and networks. In
the field of communication, for instance, it has been employed
to the resource allocation in wavelength division multiple
access (WDMA) [14], multi-access edge computing (MEC)
[15], offloading for fog computing [16], etc. Furthermore,
it plays an essential role in the field of network research,
such as minimizing the network delay [17], scheduling virtual
network re-configurations [18], and improving the supply
chain network [19]. Besides civilian applications, it is no doubt
that MILP has been adopted for military purposes such as
assisting military pilot training [20]. These demonstrate that
MILP is a powerful tool for either classical problems or future
popular topics such as communication networks and resource
allocation. Consider a MILP model as follows:

max
x,y

c⊺x+ h⊺y

s.t. Ax+Gy ≤ b,

x ∈ X, x ∈ {0, 1}n , y ∈ Rp
+.

(1)

Here x is a vector with binary variables and A is its corre-
sponding coefficient matrix in constraints. y is a vector with
non-negative continuous variables and G is its corresponding
coefficient matrix in constraints. c⊺ is the coefficient vector of
variable x in the objective function and h⊺ is the coefficient
vector of variable y in the objective function.

B. Benders’ Decomposition for MILP

We first provide a brief introduction of the Benders’ Decom-
position. In the MILP problem (1), for each possible choice
of x̄ ∈ X , we find the best choice for y by solving a linear
program. So we regard y as a function of x. Then we replace
the contribution of y to the objective with a scalar variable
representing the value of the best choice for a given x̄. We
start with a crude approximation to the contribution of y and
then generate a sequence of dual solutions to tighten up the
approximation. Hence, the original MILP problem in (1) can
be written equivalently to a master problem as follows.

Fig. 1. The structure of hybrid Benders’ decomposition algorithm for MILP
using both quantum and classical computing

Master Problem: max
x,t

c⊺x+ t

s.t. (b−Ax)
⊺
uk ≥ t for k ∈ K̂,

(b−Ax)
⊺
rj ≥ 0 for j ∈ Ĵ ,

x ∈ X, x ∈ {0, 1}n , t ∈ R.

(2)

We denote K and J as the extreme points uk and extreme
rays rk of the dual polyhedron Q =

{
u ∈ Rm

+ | G⊺u ≥ h
}

generated by the linear programming’s duality, which is called
the subproblem. The subproblem is as follows.

Subproblem: zLP (x) = min
u

(b−Ax)
⊺
u

s.t. G⊺u ≥ h,

u ∈ Rm
+ .

(3)

In the subproblem, if the inner product between (b−Ax) and
any dual ray rj

′
is negative then zLP (x) = −∞. Equivalently,

in this situation, the dual problem of Problem (3) is infeasible.
Then, x does not allow a feasible solution to the original
mixed-integer problem (1). Thus, we have a new feasibility
cut, i.e.,

(b−Ax)⊺rj
′
≥ 0, j′ ∈ J. (4)

If x satisfies (4), then we yield an extreme point uk′
and the

value of zLP (x) is given by

zLP (x) = min
k′∈K

(b−Ax)
⊺
uk′

. (5)

Thus, problem (1) is written equivalently as problem (2) by
denoting zLP (x) as a continuous real number variable t.
Equation (5) posts a new optimality cut in master problem.
In addition to the extreme points and extreme rays, we use K̂
and Ĵ to denote the current known extreme points and extreme
rays of Q, respectively, where K̂ ⊆ K and Ĵ ⊆ J .

III. HYBRID QUANTUM-CLASSICAL BENDERS’
DECOMPOSITION

Quantum computer is a powerful tool to solve NP-hard
integer problems. Accordingly, we introduce the quantum
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TABLE I
TABLE OF COMMON CONSTRAINT-PENALTY PAIRS

Constraint Equivalent Penalty

x1 + x2 = 1 P (x1 + x2 − 1)2

x1 + x2 ≥ 1 P (1− x1 − x2 + x1x2)2

x1 + x2 ≤ 1 P (x1x2)

x1 + x2 + x3 ≤ 1 P (x1x2 + x1x3 + x2x3)

computer to solve the master problem in (2) since it has
a special formulation that can convert to an ILP problem.
The subproblem is a linear programming model which can
be solved well on the classical computer. As Fig. 1 shows,
we design a hybrid algorithm in which the master problem
is solved by the quantum computing techniques and the sub-
problem is solved by the classical computing techniques. The
two different computers are communicating with each other.
The subproblem returns new optimality and feasibility cuts to
tighten the bounds of the master problem. The integer solution
returned from the master problem gives the subproblem a
direction to find new optimality and feasibility cuts.

A. Quantum Formulation

Quantum annealers are able to solve the optimization
problem in a QUBO formulation. To leverage state-of-art
quantum annealers provided by D-Wave, the ILP problem has
to be converted to the corresponding QUBO formulation. The
definition of QUBO are (6) and (7). Let f :{0, 1}n → R be a
quadratic polynomial over binary variables x of length n and
qij is corresponding cost coefficient of xixj . We get equation
(6)

fQ (x) =

n−1∑
i=0

n−1∑
j=0

qijxixj = x⊺Qx. (6)

The QUBO problem consists of finding a binary vector
x∗ that is minimal with respect to f among all other binary
vectors, namely,

x∗ = argminx f (x) . (7)

Here x is a vector of binary variables where the length of
n, and Q is either an upper-diagonal matrix or a symmetric
matrix. Since (6) is an unconstrained optimization model,
we need to reformulate our constrained ILP as unconstrained
QUBO by using penalties. Next, we get the optimal solution
by finding the best penalty coefficients of the constraints.
The principles of transforming classical constraints to their
equivalent penalties are displayed in the TABLE I. Here x1,
x2 and x3 are binary variables. si is a binary slack variable.
al is the coefficient for the corresponding slack variable. b is
a constant. P is a user-defined penalty coefficient.

B. Variable Representation

Now consider problem (2), the initial binary decision vari-
ables make up the vector x ∈ X with length of n. In order to
reformulate the master problem into the QUBO formulation,
we needs to represent the continuous variable t using binary
bits. We use a binary vector w with length of M bits to
replace continuous variable t and denote it as a new discrete
number t̄ ∈ Q. In general, t̄ requires the binary numeral system
assigning M bits to replace continuous variable t. Then we
can recover the t̄ by

t̄ =

m̄+∑
i=−m

2iwi+m −
m̄−∑
j=0

2jwj+(1+m+m̄+)

= t̄ (w) .

(8)

In (8), m̄++1 is the number of bits that assigned to represent
positive integer part, m is the number of bits assigned to
represent the positive decimal part, and m̄−+1 is the number
of bits that represent the negative integer part.

C. QUBO Setup

Let’s reconsider problem (2) and replace t̄ in (8). The new
problem is only depend on binary decision variables x and w.
Then, the new master problem is

max
x,w

c⊺x+

m̄+∑
i=−m

2iwi+m −
m̄−∑
j=0

2jwj+(1+m+m̄+)

s.t. (b−Ax)
⊺
uk,≥ t̄ (w) , for k ∈ K̂,

(b−Ax)
⊺
rj ≥ 0, for j ∈ Ĵ ,

x ∈ X, x ∈ {0, 1}n ,
w ∈W, w ∈ {0, 1}M .

(9)

Then we create a new binary decision variable collection
x′ = {w,x} to set up our QUBO matrix, where the length of
the binary vector x′ is n+M . According to the rule of setting
up QUBO, we will transfer our objective and constraints one
by one to be a symmetric matrix.

1) Objective Function: Because the quantum computer
only accepts a quadratic polynomial over binary variables.
Following the principle of the QUBO formulation, we convert
the objective function to be a QUBO matrix as follows.

c⊺x+

m̄+∑
i=−m

2iwi+m −
m̄−∑
j=0

2jwj+(1+m+m̄+)

⇒Qobj = x⊺diag (c)x+

m̄+∑
i=−m

wi+m2iwi+m

−
m̄−∑
j=0

wj+(1+m+m̄+)2
jwj+(1+m+m̄+).

(10)
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2) Optimality Cuts: Similarly, following the principle of
constraint-penalty pairs in TABLE I, we not only introduce
the penalty but also convert the optimality cuts constraint to
be a QUBO matrix as follow.

t̄ (w) +
(
uk

)⊺
Ax ≤ b⊺uk, for k ∈ K̂.

⇒Pk

t̄ (w) +
(
uk

)⊺
Ax+

l̄K∑
l=0

2lsKkl − b⊺uk

2

,

where l̄K =

⌈
log2

(
b⊺uk −min

w,x

(
t̄ (w) +

(
uk

)⊺
Ax

))⌉
.

3) Feasibility Cuts: Similarly, following the principle of
constraint-penalty pairs in TABLE I, we convert the feasibility
cuts constraint to be a QUBO matrix with penalties as follows:(

rj
)⊺

Ax ≤ b⊺rj , for j ∈ Ĵ .

⇒Pj

(
rj
)⊺

Ax+
l̄J∑
l=0

2lsJkl − b⊺rj

2

,

where l̄J =
⌈
log2

(
b⊺rj −min

x

((
rj
)⊺

Ax
))⌉

.

D. Proposed Algorithm

We deploy the D-Wave solver in our proposed heuristic
algorithm to solve the model. In addition, we need to carefully
tune the penalties for a decent QUBO model. An extremely
large penalty may cause quantum annealer malfunctioning
since it will explode the coefficients. Similarly, a soft penalty
may make quantum annealer ignore the corresponding con-
straints. As long as the penalty is well-tuned, the quantum
solver will give the right answer with a relatively high proba-
bility. Therefore, we summarize our proposed hybrid quantum-
classical Benders’ decomposition algorithm as Algorithm 1.

IV. NUMERICAL VALIDATION

We validate the proposed algorithm by running on a hybrid
D-Wave quantum processing unit (QPU). Because the input of
interest to practice is too large to fit onto current-model QPUs
and be solved directly by quantum annealing. We choose to
use the hybrid model instead of the pure QPU. The reason for
using the hybrid model is that the hybrid solver overcomes
a lot of input size barriers and allows the QPU to accept a
large input. More details can be found in [21]. We accessed
the D-Wave system by Leap™ quantum cloud service.

A. Example Setup

In our simulation, we consider a simple problem to test
our proposed quantum algorithm, where x ∈ X , x ∈ {0, 1}2,
y ∈ Y , y ≥ 0

Algorithm 1 Hybrid Quantum-Classical Benders’ Decompo-
sition Algorithm

Require: Initial sets K̂ of extreme points and Ĵ of extreme
rays of Q
t̄ ← +∞
t ← −∞
while | t̄− t |≥ ϵ do

P ← Appropriate penalties numbers or arrays
Q ← Reformulate both objective and constraints in (2)

and construct the QUBO formulation by using correspond-
ing rules

x′ ← Solve problem (6) by quantum computer.
t̄ ← Extract w and replace the t̄ with t̄ (w) (8)
zLP (x) ← Solve the problem (3)
t ← zLP (x)
if zLP (x) = −∞ then

An extreme ray j of Q has been found.
Ĵ = Ĵ ∪ {j}

else if zLP (x) < t̄ and t̄ ̸= +∞ then
An extreme point k of Q has been found.
K̂ = K̂ ∪ {k}

end if
end while
return t̄, x

A =



0 0
0 0
0 0
0 0
−1 −1
−1 0
−1 0
0 −1
0 −1


, G =



1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, b =



1
1
1
1
−1
0
0
0
0


,

h⊺ =
[
8 9 5 6

]
, c⊺ =

[
−15 −10

]
.

B. Result

Fig. 2 shows how our proposed hybrid quantum-classical
Benders’ decomposition algorithm adds optimality and feasi-
bility cuts to get the solution and corresponding t̄. In the exam-
ple, the algorithm takes 4 rounds to let | t̄− t | converge. Four
cuts are added iteratively in the space and tighten the feasible
region. The algorithm can find the optimal solution in each
round. Therefore, Fig. 2 demonstrates that our algorithm is
reliable and efficient. In Fig. 3, the hidden dashed line denotes
that the lower bound in the corresponding round is negative
infinity. As we can see in the graph, the upper bound and lower
bound converge. Our algorithm only takes two rounds to find
the non-negative infinity lower bound. This result proves that
our proposed algorithm is mathematically consistent with the
classical Benders’ decomposition algorithm. In other words,
as long as the classical Benders’ decomposition algorithm can
solve it, our algorithm can at least achieve the same.
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Fig. 2. Benders’ Decomposition Process

V. CONCLUSION

In this paper, we not only reformulate the master problem
of Benders’ decomposition for the MILP problem as an ILP
model but also successfully convert it to a QUBO model. Our
hybrid quantum-classical Benders’ decomposition algorithm
converges and returns the correct final result as the classi-
cal algorithm does. In addition to that, our algorithm also
guarantees the solution quality for solving the MILP problem.
In our simulation, we solved an NP-hard MILP problem by
using the hybrid quantum computer provided by D-Wave.
Therefore, we can conclude that the quantum computer can
potentially replace the classical computer in solving the NP-
hard master problem of Benders’ decomposition algorithm in
MILP problems.
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