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Abstract—Feature selection (FS) approaches rank features
based on the score of the coefficients with labels. However,
these selected features usually lead to a suboptimal solution
to classification problems as they are selected independently.
Moreover, with large dimensional feature sets, the computational
complexity of FS algorithms can be prohibitively high. In this
paper, we first formulate the feature selection problem as an
integer programming model. Then we propose to utilize the
strong computation ability of quantum annealers to solve the
discrete integer programming problems, where the quantum
annealer has the potential to be significantly faster than classical
solvers to solve discrete optimization problems. We also design a
wrapper algorithm to choose the optimal parameters of QUBO.
Experiments show that our proposed strategy can select the
representative features in the NSL-KDD dataset. Compared with
HHO, WOA, PSO, and other algorithms, our strategy retains the
least features to minimize the detection time, while the accuracy
increase to 89.2%. Our algorithm also shows a good performance
in computation time, detection rate and precision.

Index Terms—Quantum annealing, quantum machine learning,
feature selection, QUBO

I. INTRODUCTION

In many machine learning problems, the data is composed
of high dimensional feature vectors, which typically lead to
performance degradation due to the curse of dimensionality
[1]. Moreover, high-dimensional data contains noisy and re-
dundant features, which will cause overfitting and make the
data less interpretable. Feature selection (FS) is an effective
solution to address these issues. To be specific, FS algorithms
pick a relevant and possibly small portion of features for the
classifier to be used in supervised learning. As a result, the
algorithms’ learning time is significantly reduced, and also
the model’s interpretability is improved.

In the literature, the FS algorithms could be classified by the
way feature sets are evaluated and employed in data analysis,
which defines filter, wrapper, and embedded techniques [2].
As a pre-processing phase before the learning algorithm,
filter-based approaches rate the features and then pick those
with high ranking scores. Wrapper-based approaches use the
learning algorithm that will be used in the end to score
the features. The learning algorithm is combined with FS in
embedded approaches. Filter-based approaches for supervised
FS are the focus of our research.

Generally, a filter-based FS problem can be formulated
as a binary linear programming model, which maximizes a
certain performance criterion. The performance criteria can
be Pearson coefficients [3], mutual information (MI) [4] or

others. One popular heuristic solution is to assign a score
to each feature separately, and then pick the top-k ranked
features. However, the features chosen by the heuristic meth-
ods are typically unsatisfactory for the following reasons.
On one hand, the heuristic method calculates each feature’s
score separately, without taking the feature correlation into
consideration. For example, it is possible that features a and
b both have low scores, but the combination ab has a very
high score [5]. The filter method does not consider features
a and b in this scenario, even if both should be chosen. On
the other hand, this method is not able to deal with redundant
characteristics. For example, features a and b both have high
scores, but they are significantly connected. Thus, both a and
b will be chosen and lead to an increase of computation
complexity. Another category of current researches treats the
FS process as a global optimization problem in which a subset
of characteristics is selected at the same time, which can better
capture the correlations among features. The minimum test
collection problem is such an example [6], in which binary
variables are connected with features and constraints are set
to quantify the coefficients between elements. However, it is
difficult for classical solvers to get the solution for large-scale
discrete optimization problems.

To overcome the issues mentioned above, we first build an
integer programming model for FS and then reformulate this
model as a QUBO model which can be solved by quantum
annealers. Generally, the development of quantum computing
techniques can be categorized into two directions: gate-based
quantum computers and quantum annealers. Currently, the
gate-based quantum computer is limited to less than 100
quantum bits [7]. D-Wave Systems Inc., on the other hand,
manufactures quantum annealers with 5,000 quantum bits
(qubits). The D-Wave quantum annealer has just been verified
for its strong computation ability to solve binary optimization
issues [8]. We use a general framework to reformulate the
integer programming FS model into a QUBO model. In this
framework, we divided features into multiple classes and select
a certain number of features. To fully utilize the computation
ability of quantum annealers, we also take the correlation
between features and model them as the constraints in the
problem. Then we use a wrapper method to determine the best
combination of parameters for models, including the number
of features selected from each class, etc. At last, we benchmark
our proposed algorithm on NSL-KDD dataset to demonstrate
the effectiveness of our method.
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The paper is organized as follows. In Section II, we discuss
the integer programming FS model and the way to reformulate
it as a QUBO model. In Section III and IV, we show the
case studies and experiments results. We conclude our work
in Section V.

II. OPTIMIZATION MODELS AND ALGORITHMS

In this paper, we aim to select M (M < N) sub-features
from N features, which make the classification result as close
to the ground-truth distribution as possible. To achieve this,
we formulate the FS problem as a binary linear programming
model to maximize the relevant features while minimizing the
redundant features. Then, we reformulate the binary linear
model to a QUBO problem and use quantum annealers to
solve it.

A. Integer Programming Model of FS

We assume our task is on a data set D := (f/*,Y) with

n elements and m features per data. Let S = {1,2,...,m} be
the feature labels, and S1, S,, ...S,, represent p feature classes,
where S = S; NSy N...NS,. We divide these features into
multiple classes as a limited number of qubits are provided. We
prefer to choose features that are helpful in classifying samples
and provide valuable information to the data labels. At the
same time, we remove features that are similar to other features
to not feed machine learning algorithms duplicate data.

Define x as a binary decision variable vector that determines
which features are chosen. Feature ¢ is selected if x; is 1, and
otherwise feature i is not selected. With the notations defined
before, we aim to get the best subset by optimally choosing
the features. In the optimization model, the objective function
contains two components. The first component depicts the
impact of characteristics on the marked class [9], which is
called importance component and represented in a form that
grows as additional terms are added: )., I(f;,y)x;. The
importance vector I( f;,y) represents the common information
of the individual features z1,...,x, with class label y, and
is therefore a measure for the importance of each feature.
With the objective function, the importance component is
maximized.

On the other hand, we depict the independence by the sec-
ond component, which is defined as }°, > ., I(fi, fj)zix;.
This matrix I(f;, f;) represents the common information
among the individual features, and therefore measures their
redundancy. The objective function optimizes the similarity
between the selected features and the data labels while mini-
mizing the similarity between the features themselves.

The relative weighting of independence and importance
components is represented by a parameter o (0 < o < 1). We
balance the two parts by adjusting « to study their influence
on the classification performance.

In sum, we have the optimization model as follows:
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For constraint (2), we assume that the data set has p main
categories. Then, we have a list of constant integers K; to
K, which decides how many features will be selected from
each category. It is worth mentioning that the number K; to
K, are decided by experiments in Section 2.

For constraint (3), it is given based on the fact that some
features are redundant. For example, in C,, features a and b
both have high scores, but they contain the same information.
To minimize the redundancy of the subset, At most one can
be selected. We have set C to store all the conflict sets.

For constraint (4), some features are essential and have the
priority to be selected. For example, in E, We to need select
T, features. We have set E to store all these essential sets.

For constraint (5), some features are highly correlated. For
example, feature a has a low score when b is not in the subset,
but ab has a high score. That implies that, feature a should
not be selected when b is not selected. We have set M to store
all these groups.

Although building the FS problem as a binary integer
program problem is able to increase the accuracy and inter-
pretability, problem (1) is still NP-hard [10]. According to
[11], Gurobi solves integer linear programs using the branch-
and-bound algorithm, in which it splits the search space into
smaller branches and discards the branches whose lower bound
is higher than the current solution. Since the search space is
exponentially increasing with the size of binary linear prob-
lems (BLP), the computational complexity of this approach is
exponential in the worst case. As a result, when the size of
binary variables is large, or the constraints are too complex,
it will be difficult or even impossible for the classical solver
to get a global optimal result.

Specially, the work in [12] shows that the worst-case
complexity is O(Mb?), where M is the cost of expanding
subproblems, b is the branching factor, and d is the search
depth. As d depends on the size of the BLP instance, making
it actually worst-case exponential time.

B. QUBO Model
Quantum annealing (QA) provides a new method to solve

BLP problems. According to [13], the computation complexity
of QA is expected to be O(e‘m), where NV is the instance size.
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Notation | Description

equals to 1, if feature ¢ is in the subset;

Descision

variable otherwise, equals to 0
Parameters number of total features
number of selected features
number of selected features in subset S;
bias of importance and independence parts
Set Feature labels. S =1,2,...,m

Feature subsets. S=S1NS2N...NS,
Vector of feature coefficients

Labels of elements

Vector of conflict features. C, = {1,3.4,...}
Set of conflict vectors. C4 € C

Vector of essential features. Eg = {1,34,...}
Set of essential vectors. By € E

Set of supplement features.

E = {{13}.{45}...}

izl oo ki I Bl Rabl I

Some researches have been proposed to utilize QA to solve
integer programming problems [14]. To solve this problem
efficiently, we further reformulate problem (1) to a QUBO
problem, which can be solved by D-Wave quantum annealers.

In recent years, Quantum annealer has been developed as
a new and effective approach to solve a QUBO problem.
Quantum annealer can be used to solve discrete optimization
problems with specific structures because it tends to retain
lowest energy state. If a problem can be expressed as energy
states of a system, it can be fed to quantum annealers to
solve. The Quantum Processing Unit (QPU) of a quantum
annealer, which functions like the CPU in a classical computer,
is made up of connected qubits that create a graph topology.
This creates a physical system whose energy is measured by a
function of its states called the Hamiltonian [15]. An arbitrary
QUBO problem can be expressed by a Hamiltonian function:

N-2 N—1

f= ZZJZJO'ZO'Z-FZ}IUZ,

=0 j=1i+1

(6)

where 6; denotes a Pauli - z matrix acting on qubit ¢ with
eigenvalues 1. Coefficient J; ; decides whether &; and 6; is
related, which corresponds to the second part (independence)
of our model, while h; corresponds to the independence
part. In our optimization problem, we definite selected feature
vector as x*, which contains the variables described in the
previous section. Therefore, each of these variables is assigned
to a given variable index 7 in the QUBO model. As z; € {0,1}
and 0; € {+1, —1}. We reformulate z; as (1 — o) /2. Thus,
solving a QUBO problem is equivalent to ﬁndmg a binary
vector x* which minimizes f

* = argmin f(x). (7
We create a matrix Q:

where the diagonal matrix Q;; corresponds to the importance
part, and Q;; corresponds to the independence part. Conse-
quently, we can transform (1) to

min H; = x'Qx. (10)
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Algorithm 1 Reformulate and solve a QUBO model
Input: I: Information matrix
K: Set of number of features in each class
Output: features vector x*

1: Create the binary integer programming model (1) - (5).

2: Reformulate the objective function to QUBO problem.

3: Write constraints (2) - (5) to constraint satisfaction prob-
lems.

4: Add reformulated constraints (2) - (5) to QUBO.

5: Implement the QUBO model onto the quantum annealer.

: return x*.

According to the definition, the QUBO model is uncon-
strained. However, constraints (2) - (5) need to be added to
the Hamiltonian function added to QUBO model as a penalty
term [16]. For example, constrain (2) is transformed to

2
Z P> @i : (11
i€S;
where P is the penalty weight.
For constraint (3), the equivalent penalty is
12)

Hjy = E PQ'Q’.I':L,]'?
q=1

If z; and x; are both equal to 1, the value of QUBO model will
increase the penalty value. When one of them is 0, the value
of QUBO model does not change. Thus, the model prefer to
select at most 1 feature when the penalty is sufficiently high.
For constraint (4), the equivalent penalty is
2

H4*ZP3 sz )

i€Ey

13)

when T features are selected, the QUBO model gets the local
minimum value.
Following the same transformation, we can transform con-

straint (5) to:
=S A
1=1

When z; = 1 and x; = 0, the value of QUBO model will
increase, and otherwise it does not change. Thus, feature
¢ could only be selected when j has been selected. We
notice that all the reformulated constraints are polynomials
of x; and x;x;. Therefore, they are added to the matrix Q,
which ensure our final model is a QUBO problem. After the
reformulation, we feed the formulated QUBO problem to the
quantum annealer to solve. The whole proposed algorithm is
presented in Algorithm 1.

= xiy) (14)

C. Search the best K

As mentioned before, in case that the number of qubits is not
sufficient to solve the whole problem, we divide large feature
sets into small subsets. Moreover, some data sets naturally
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have multiple feature classes, while we only need to consider
the independence defined in (1) within each class. However,
a question arises that how to choose the optimal value of
K for the QUBO model, which decides how many features
are selected from each subset. Wrapper feature selection is a
popular strategy for selecting the feature subset but takes a
long time. This challenge can be alleviated by using a high-
speed quantum solver to train parameters for our proposed
Quantum feature selection (QFS) model.

At first, we solve the binary linear model without constraints
(2). This means we use a flexible variable set K and decide the
number of features in each class without limitations. Then we
calculate the selected features in each class and use them as the
initial set K. Then we adjust the parameter set K by Algorithm
2 to search for the best combination that achieves the best
performance. Thus, we transform the original objective of
the selection from m features to adjusting |K| parameters,
where |K| << m. In each iteration, we maintain the smallest
energy of the objective function to select the representative
features. Obviously, the value initialization is very important.
Our model is able to help decrease the possibility of dropping
into a local minimum solution and use the least iterations to
find the optimal solution during the value initialization. The
convergence curve of our method is shown in Fig. 4. The
ability of our method to find an optimal solution is at least
not weak compared to other wrapper FS methods.

The whole proposed algorithm is presented in Algorithm 2.
In the last paragraph, we already have an initial parameter set
K and we use our QFS method to get an optimal feature set x.
x; is the selected features in subsets S;, where x = X1 Nxo N
...Nx,. We perform the classification and obtain accuracy by
using a classifier, such as the support vector classifier (SVC)
[17]. If the current total feature number falls within the range
of goal 7', where T is the total number of selected features
and T = zl K;, we select one subset from S, such as 5.
Then, another feature will be chosen from this class. Assume
K features are chosen from .S; in the last loop, we apply this
feature subset to QA to select K; + 1 features. Assume x7J is
the best outcome of S7, we can use x} to update x. Let x*
to be x7 N Xy N ... N X,, then use that value to determine a
new accuracy. Each feature class will go through this method
once again until the best result is found. The best accuracy
can then be achieved by updating the set K. If the greatest
accuracy does not change, we end the loop.

We choose one class, and one less feature from that class
may be chosen, if the current total number of features is
more than the objective T'. Continue like we did in the last
sentence and give K an update. The set K can be utilized as
the initial parameter set for target 7' — 1 after we obtain the
best parameter set K of target 7. Some optimal results of
different T" are shown in Table III.

III. CASE STUDY

In section II, we presented our novel QFS algorithm. The
current section contains a study of different experiments to
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Algorithm 2 Search the best K

Input: 7: Number of total selected features
K: Set of initial parameters
I: Information matrix.
a: weight balance parameter.
m: max iteration.

Output: The final set K*

I x* + QFS(K,a,I);

2: Max_acc + SVCO(x*);

3 K* « K;

4: while iteration < m do

5 if sum(K*) < T then

6 for K; € K* do

7: Ky =K;+1;

8 X! «— QFS(K},a,1);

9: Update x* by x;

10: accuracy a  SVC(x*);
11: Insert a to vector A.

12: if Max(A) > Maz_acc then
13: Max_acc < Max(A);
14: Update K*.

15: if sum(K*) > T then

16: for K; € K* do

17: K/ =K;—-1;

18: X; — QFS(K}, o, I);

19: Update x* by x ;

20: accuracy a « SVC(x*) ;
21: Insert a to vector A.

22: if Max(A) > Max_acc then
23: Max_acc < Max(A);
24: Update K*.

25: return K*.

evaluate the performance of QFS. For this purpose, we use
NSL-KDD dataset, which is synthetic and taken from real
world data sources.

A. Data set

To verify the performance of the QFS algorithm in Intrusion
Detection System (IDS) feature selection, we adopt the NSL-
KDD network intrusion detection dataset for experiments.

1) Dataset Analysis: NSL-KDD data set is an improved
version of KDDCUP99 [18], which is a DARPA9S IDS-based
attack simulator that simulates four main types of attacks.
Compared with the KDDCUP99 dataset, the NSL-KDD has
all of the same characteristics as the original KDDCUP99,
but it has been cleaned of redundant records and has had
the proportion of connection types adjusted to make it more
reasonable and dependable for classification tests. The NSL-
KDD dataset is a classic dataset that has been used in the
field of anomaly detection. It acts as a helpful benchmark
for academics to contrast their proposed strategies against.
KDDTraint+ and KDDTest+ are subsets of the NSL-KDD
dataset. They are divided as the training set and the test set.
The network attacks contain four types [19]:
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TABLE I
THE FEATURES OF NSL-KDD DATASET.

Classification of features Number Name of features
The basic features of network connections 9 (1) duration, (2) protocol_type, (3) service, (4) flag, (5) src_bytes, (6) dst_bytes, (7) land,
(8) wrong_fragment, (9) urgent
(10) hot, (11) num_failed_logins, (12) logged_in, (13) num_compromised, (14)
. root_shell, (15) num_root, (16) su_attempted, (17) num_file_creations, (18) num_shells,
The content related features of network connections 13 (19) num_access_files, (20) num_outbound_cmds, (21 is_host_login, (22)
is_guest_login

The time related traffic features 9 (23) count, (24) srv_count, (25) serror_rate, (26) srv_serror_rate, (27) rerror_rate, (28)
of network connections srv_rerror_rate, (29) same_srv_rate, (30) diff_srv_rate, (31) srv_diff_host_rate

(32) dst_host_count, (33) dst_host_srv_count, (34) dst_host_same_srv_rate, (35)
Host based traffic features of network connections 10 dst_host_diff_srv_rate, (36) dst_host_same_src_port_rate, (37)

dst_host_srv_diff_host_rate, (38) dst_host_serror_rate, (39) dst_host_srv_serror_rate,

(40) dst_host_rerror_rate, (41) dst_host_srv_rerror_rate

TABLE II
THE DISTRIBUTION OF SAMPLE CATEGORIES.

Data category ~ KDDTrain+ KDDTest+  Number of samples
Normal 65120 11536 76656

DoS 36944 6251 43195

Probe 10786 2421 13207

R2L 995 2653 3648

U2R 52 67 119

All 113897 22928 136825

Denial of Service Attacks (DoS): It is an attempt by the
attacker to restrict network usage by disrupting service
availability to the intended users.

User to Root Attacks (U2R): Occur when the attacker has
access from a normal user account and tries to gain root
access through system vulnerabilities.

Remote to Local Attacks (R2L): The attacker does not
have an account on local system but tries to gain access
through sending network packets to exploit the vulnera-
bilities and gain access as a local user.

Probing Attacks: Occur when the attacker scans the
system network to collect information about the system
in aims to use it for avoiding the system security control.

The detailed feature names and distribution of sample
categories are shown in Tables I and II from [20]. The NSL-
KDD dataset includes four types of features, which are the
basic features of network connections (9 in total), the content
related features of network connections (13 in total), the time
related traffic features of network connections (9 in total), and
the host based traffic features of network connections (10 in
total), where each feature may be:

« an integer, for example, the number of times the system

sensitive files and directories were accessed.

« a category, such as agreement type.

o a decimal number, representing, for example, percentage

of REJ bad Connections.

« a boolean (0/1) value, which usually be considered as a

category.
The data preprocessing is helpful to improve the accuracy of
classification and ensure the reliability of the results. As the
dataset has mixed data types of numbers and characters which
are difficult to deal with, the one-hot encoding method is used
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Fig. 1. Importance of each feature

to map different characters to different values. We convert
the categorical variables to integer variables by assigning each
category a class number. For the output label, we have classes
(0 - 4), where class O represents the normal access, and class
1-4 represents each type of attack. Moreover, the dataset is
normalized to eliminate the influence of features of different
orders of magnitude on the calculation results, thus reducing
the classification error. After one-hot encoding, the values of
each feature are normalized to the interval [0, 1], and they can
be normalized by as [20]:

* T — Tmin

X

_ (15)
Tmaz — Tmin

where 2* is the normalized value, x is the original value, and
Tmin and Tyq, represent the maximum and minimum values
of the same feature vector.

Fig. 1 shows the similarity of each feature with the output
labels by their Pearson correlation coefficient (PCC), which
will be defined below, with the classification variable in Fig.
1, for example. At the left-hand end, there are four pretty
significant features, followed by a drop. The coefficients with
the label are higher for characteristics 23 to 40. As a result,
the issue is figuring out how to pick up sufficient critical traits.

B. Basic Settings

There are several ways to evaluate the common information
of two vectors. In this part, we introduce two common used
functions to calculate the coefficient matrix I, which contains
the similarity between the feature vector and the label vector
by L;;, and the similarity between the two features by I;;. The
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Algorithm 3 Search for «. Given the information matrix I,
find the « that maximize the accuracy of classification method
SVC(x)

Input: I: Common information matrix.

s: step size.

Output: o: weight balance parameter.
I: o < 0.05;
2: m_acc < 0;
3 acc + SVC(a,I);
4: while a < 1 do

5: if m_acc < acc then

6
7

8
9

m_acc < acc;
a—

a— a+s;

acc + SVC(a,1);

10: return c.

matrix I can be transformed to the matrix Q in QUBO model
by the method in section 2. As all the coefficients could be
calculated in parallel, the run time of the algorithm matches
the O(1) complexity. The functions to calculate matrix are
listed below:

1) Pearson: The PCC is used to assess the linear correlation
between two variables X,Y and can be determined using
the provided formulation. The covariance of X and Y is
represented by the function Cov(X,Y"). The value of y might
be anywhere between +1 and —1. y = +1 indicates that X
and Y are totally positively correlated. y = 0 implies that X
is not correlated to Y at all. Finally, a value of —1 indicates
that X and Y are fully negatively correlated.

_ Cov (X,Y)
P VD (X) /DY)

2) Mutual information: MI is a measure of how much
information one random variable has about another variable,
according to [21]. The MI is officially defined as follows:

p(e(), y(5)
(pw(i))p(yu)))' a7

where MI is zero when = and y are statistically independent.

As mentioned before, « is used as an optimization param-
eter, which defines the relative weighting of independence
(greatest at o = 0) and importance (greatest at « = 1) [9].
After data preprocessing, we use a search method to determine
the value of o which is most suitable for NSL-KDD dataset.
With an initial «, we can create the Q by « and I by (8) and
(9). Then, with the QFS method (without constraint (2)), we
get a optimal feature set x. Apply x to a SVC classification
method we get the accuracy acc. Thus, we definite a function
acc = SVC(a,I). The detailed search process is shown in
Algorithm 3.

Fig. 2 shows the results by tuning o from 0.1 to 0.9. The
feature independence component has a higher weighting on the
left side when « is near to zero, while the model emphasising

(16)

n

I(z;y) =Y ) pla(i), y(5)) log

i=1j=1
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Fig. 3. Flow chart of the training process

the feature importance when « is near to one. We notice that
when a = 0.75 the model get the best accuracy.

C. Testing Process

In Fig. 3, we depict how the experimental system was
intended to function in terms of feature selection and clas-
sification techniques. Following the data preprocessing, we
compute the correlations between features and labels using
the previous two metrics, including Pearson and MI. The data
will be utilized to determine the parameters of the QFS Model.
After that, we get the optimal feature subsets by QFS and
compare the performance with other FS models.

IV. EXPERIMENTS RESULT

In this section, we compare our method with other feature
selection methods by evaluating the accuracy of various clas-
sification models trained on the respective feature subsets.

Classification performance is an important evaluation cri-
terion of feature selection for intrusion detection. Several
classification performance metrics can be found in the review
of [22].

o« TP—True Positive: The label data is positive and the

prediction result is positive.
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Fig. 4. Convergence curve of different methods

o FN—False Positive: The label data is positive and the
prediction result is negative.

o FP—False Positive: The label data is negative and the
prediction result is positive.

o TN—True Negative: The label data is negative and the
prediction result is negative.

There are several metrics that may be used to assess feature
selection algorithms including:

o Accuracy: Accuracy is the percentage of accurately pre-
dicted samples to all samples that were forecasted, which
ranges from (0, 1). Accuracy measures the classifier’s
overall performance and is calculated as follows:

TP+TN
TP+FP+TN+FN’

« Precision: Precision is the capability of a classification
model to identify only the relevant data points in the
dataset. It is estimated by the ratio of correctly predicted
positive samples to all predicted positive samples as
follows:

accuracy =

(18)

TP
TP+ FP’

o Detection rate: Detection rate is also called recall. It
estimates the ability of a model to discover all the relevant
data points by the ratio of the number of correctly
predicted positive samples to the total number of true
positive samples. It is estimated as follows:

TP
recall = TP+ FN (20)
SVC models are then trained using the specified feature
subsets. We do cross validation on each model and present
the mean and standard deviation of classification accuracy.
In this paper, we compare the performance of different
number of selected features. The results of different feature
selection algorithms are shown in Table IV. According to Table
IV, QFS algorithm selects 12 most representative features
from the NSL-KDD dataset, accounting for 29.26% of the
total number of features. Compared with HHO [23], SSA
[24], WOA [25] and PSO [26] algorithms, the total number

precision = (19)

TABLE III
SAMPLES OF SELECTED FEATURE SETS

Number of features | Selected set of features

9 [1,2,3,28,32,33,34,35,38]

12 [0,1,2,3,7,28,32,33,34,35,36,40]

14 [0,1,2,3,4,5,7,28,32,33,34,35,37,38]

19 [0,1,2,3,4,5,6,7,16,20,22,32,33,34,35,36,37,38,39]

TABLE IV
FEATURE SELECTION RESULTS OF DIFFERENT FEATURE SELECTION
ALGORITHMS
Amount  Features ACC

QFS 12 [0,1,2,3,7,28,32,33,34,36,38,40] 0.894
HHO 18 [0,1,2,3,4,5,9,11,18,20,23,28,29,30,35,36,37,38] 0.862
SSA 21 [1,4,5,8,10,11,15,17,18,19,20,21,26,27,28,29,33,35,36,37,39]  0.856
WOA 14 [0,3,4,5,7,8,10,12,17,24,27,28,35,39] 0.878
PSO 13 [0,2,4,5,7,15,18,19,25,28,29,34,40] 0.882

of features in the four types of attack datasets is reduced by
14.6%, 21.9%, 4.8%, 2.4%.

Then we measured the classification performance using
the selection results of HHO, SSA, WOA, PSO, and QFS
algorithms as feature subsets. SVC classifier is used as the
classification algorithm. The classification accuracy of differ-
ent algorithms is shown in Table IV and V. Our QFS algorithm
achieved around 90% accuracy, improved by 3.2%, 4.8%,
1.6% and 1.2% compared to the other four FS algorithms.
Fig. 5, 6, 7 show that the accuracy, precision and detection
rate of feature subset produced by different feature selection
algorithms. For Normal, Probe, DoS, and R2L datasets, the
average precision of QFS is 89.8%. It increases by 2.70%,
8.30%, 2.88%, and 6.34% compared to HHO, SSA, WOA
and PSO algorithms. The performance of R2L is not as good
as the other types because the samples of R2L only account
a small part of training and testing sets. It would be a better
way to train a separate feature subset for R2L attacks.

We also measure the performance of the two evaluation
method mentioned in Section III in Table VI. We found that
Pearson coefficients retains more information and achieves
better performance. Compared with MI, the weighted average
precision, recall and accuracy rate of four types increases by

3.7%, 5.4% and 3.2%.
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Accuracy

08
0.6
04
02
0

Normal Probe

QFs HHO @ SSA WOA PSO

Fig. 5. Classification accuracy on different algorithms

Authorized licensed use limited to: University of Houston. Downloaded on March 06,2023 at 23:33:20 UTC from IEEE Xplore. Restrictions apply.



Precision

1
) |\ ‘l ‘
0

Normal Probe
® QFS HHO @ SSA

DoS R2L

WOA PSO

Fig. 6. Classification precision on different algorithms
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Fig. 7. Classification recall on different algorithms

TABLE V
COMPARISON BETWEEN SEVERAL FEATURE SELECTION ALGORITHMS
USING NSL-KDD DATASET

Accuarcy
Data Category  QFS HHO SSA WOA  PSO
Normal 0.852  0.846  0.817 0.887 0.812
Probe 0.985 0937 0924  0.865 0.804
DoS 0.803 0.887  0.860  0.834 0.817
R2L 0987 0919 0.856  0.846 0.787
250
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Fig. 8. Occurrence of features of the samples

It seems QA is much better than classical solvers. However,
the performance of D-wave annealers is still limited by the
noise. With the increase of problem size, more qubits are
needed, which also leads to the increase of noise. Thus, the
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Fig. 9. Repetition of samples from the D-Wave quantum annealer

actual computation complexity depends on the complexity
of problems. To overcome the randomness of the D-wave
annealer, 200 same samples are performed to find the best
optimal result. In Fig. 8, the occurrence and deviation of
features in the 200 repetitions are shown. The blue bar
indicates that this feature’s label is set to 1 and that it was
selected in the optimal outcome, while the red bar indicates
that it was not selected. Fig. 9 shows with the repetition of
QFS, the lowest energy decreases and the accuracy increases.

Selection time Detection time

Pso. po I

WOA WOA

s I
o
ars I

0 500 1000 1500 2000

Time (second)

2500 3000 3500 0 10 20 30

40 50
Time (second)
Fig. 10. Feature selection and detection time of different algorithms

In Table VII, we compare the feature selection and detection
time of five alternative algorithms to further highlight the
benefit of our QFS technique. The time spent removing irrel-
evant and redundant features is referred to as feature selection
time. The detection time is an indication of how long the
SVC classifier took to train the model with the representative
feature subsets we chose. It can be seen from Fig. 10 that the
feature selection time of QFS algorithm is shorter than other
algorithms, which indicates that QFS algorithm can find the
optimal solution with a higher speed while maintaining the
accuracy. At the same time, QFS algorithm remove redundant
features, which considerably increases the detection speed.
In comparison to the other four feature selection algorithms,
the detection time of QFS algorithm is reduced by 64.83%,
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TABLE VI
COMPARISON BETWEEN TWO DIFFERENT INFORMATION EVALUATION METHODS

Mutual Information Pearson
Data Category precision recall accuracy precision recall accuracy Amount of Elements
Normal 0.836 0.978 0.901 0.864 0.969 0.913 9711
Dos 0.987 0.909 0.946 0.982 0.935 0.958 5740
Probe 0.826 0.740 0.781 0.805 0.986 0.887 1106
R2L 0.994 0.424 0.783 0.995 0.494 0.754 2199
TABLE VII

COMPUTATION TIME OF DIFFERENT ALGORITHMS

QFS HHO  SSA WOA PSO
Detection time (s)  24.02 7048  56.68 28.22 26.72
Selection time (s)  786.87 1689 257991 3042.12 2793

50.91%, 7.94%, and 6.12% .

V. CONCLUSION

In this study, we proposed an integer programming model
for FS that balances the feature subset’s importance and inde-
pendence. We then considered the interaction between features
and reformulated it into a QUBO problem, which is different
from past work. Our experiments have been run on quan-
tum hardware, which further demonstrates that our algorithm
is effective. To demonstrate our framework’s effectiveness,
we performed experiments by comparing different common
feature selection methods and the resulting performance on
different classifiers. Our experimental results showed that our
method outperforms other methods.
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