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Abstract—Feature selection (FS) approaches rank features
based on the score of the coefficients with labels. However,
these selected features usually lead to a suboptimal solution
to classification problems as they are selected independently.
Moreover, with large dimensional feature sets, the computational
complexity of FS algorithms can be prohibitively high. In this
paper, we first formulate the feature selection problem as an
integer programming model. Then we propose to utilize the
strong computation ability of quantum annealers to solve the
discrete integer programming problems, where the quantum
annealer has the potential to be significantly faster than classical
solvers to solve discrete optimization problems. We also design a
wrapper algorithm to choose the optimal parameters of QUBO.
Experiments show that our proposed strategy can select the
representative features in the NSL-KDD dataset. Compared with
HHO, WOA, PSO, and other algorithms, our strategy retains the
least features to minimize the detection time, while the accuracy
increase to 89.2%. Our algorithm also shows a good performance
in computation time, detection rate and precision.

Index Terms—Quantum annealing, quantum machine learning,
feature selection, QUBO

I. INTRODUCTION

In many machine learning problems, the data is composed

of high dimensional feature vectors, which typically lead to

performance degradation due to the curse of dimensionality

[1]. Moreover, high-dimensional data contains noisy and re-

dundant features, which will cause overfitting and make the

data less interpretable. Feature selection (FS) is an effective

solution to address these issues. To be specific, FS algorithms

pick a relevant and possibly small portion of features for the

classifier to be used in supervised learning. As a result, the

algorithms’ learning time is significantly reduced, and also

the model’s interpretability is improved.

In the literature, the FS algorithms could be classified by the

way feature sets are evaluated and employed in data analysis,

which defines filter, wrapper, and embedded techniques [2].

As a pre-processing phase before the learning algorithm,

filter-based approaches rate the features and then pick those

with high ranking scores. Wrapper-based approaches use the

learning algorithm that will be used in the end to score

the features. The learning algorithm is combined with FS in

embedded approaches. Filter-based approaches for supervised

FS are the focus of our research.

Generally, a filter-based FS problem can be formulated

as a binary linear programming model, which maximizes a

certain performance criterion. The performance criteria can

be Pearson coefficients [3], mutual information (MI) [4] or

others. One popular heuristic solution is to assign a score

to each feature separately, and then pick the top-k ranked

features. However, the features chosen by the heuristic meth-

ods are typically unsatisfactory for the following reasons.

On one hand, the heuristic method calculates each feature’s

score separately, without taking the feature correlation into

consideration. For example, it is possible that features a and

b both have low scores, but the combination ab has a very

high score [5]. The filter method does not consider features

a and b in this scenario, even if both should be chosen. On

the other hand, this method is not able to deal with redundant

characteristics. For example, features a and b both have high

scores, but they are significantly connected. Thus, both a and

b will be chosen and lead to an increase of computation

complexity. Another category of current researches treats the

FS process as a global optimization problem in which a subset

of characteristics is selected at the same time, which can better

capture the correlations among features. The minimum test

collection problem is such an example [6], in which binary

variables are connected with features and constraints are set

to quantify the coefficients between elements. However, it is

difficult for classical solvers to get the solution for large-scale

discrete optimization problems.

To overcome the issues mentioned above, we first build an

integer programming model for FS and then reformulate this

model as a QUBO model which can be solved by quantum

annealers. Generally, the development of quantum computing

techniques can be categorized into two directions: gate-based

quantum computers and quantum annealers. Currently, the

gate-based quantum computer is limited to less than 100

quantum bits [7]. D-Wave Systems Inc., on the other hand,

manufactures quantum annealers with 5,000 quantum bits

(qubits). The D-Wave quantum annealer has just been verified

for its strong computation ability to solve binary optimization

issues [8]. We use a general framework to reformulate the

integer programming FS model into a QUBO model. In this

framework, we divided features into multiple classes and select

a certain number of features. To fully utilize the computation

ability of quantum annealers, we also take the correlation

between features and model them as the constraints in the

problem. Then we use a wrapper method to determine the best

combination of parameters for models, including the number

of features selected from each class, etc. At last, we benchmark

our proposed algorithm on NSL-KDD dataset to demonstrate

the effectiveness of our method.
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The paper is organized as follows. In Section II, we discuss

the integer programming FS model and the way to reformulate

it as a QUBO model. In Section III and IV, we show the

case studies and experiments results. We conclude our work

in Section V.

II. OPTIMIZATION MODELS AND ALGORITHMS

In this paper, we aim to select M(M ≤ N) sub-features

from N features, which make the classification result as close

to the ground-truth distribution as possible. To achieve this,

we formulate the FS problem as a binary linear programming

model to maximize the relevant features while minimizing the

redundant features. Then, we reformulate the binary linear

model to a QUBO problem and use quantum annealers to

solve it.

A. Integer Programming Model of FS

We assume our task is on a data set D := (fm
n ,Y) with

n elements and m features per data. Let S = {1, 2, ...,m} be

the feature labels, and S1,S2, ...Sp represent p feature classes,

where S = S1 ∩ S2 ∩ ... ∩ Sp. We divide these features into

multiple classes as a limited number of qubits are provided. We

prefer to choose features that are helpful in classifying samples

and provide valuable information to the data labels. At the

same time, we remove features that are similar to other features

to not feed machine learning algorithms duplicate data.

Define x as a binary decision variable vector that determines

which features are chosen. Feature i is selected if xi is 1, and

otherwise feature i is not selected. With the notations defined

before, we aim to get the best subset by optimally choosing

the features. In the optimization model, the objective function

contains two components. The first component depicts the

impact of characteristics on the marked class [9], which is

called importance component and represented in a form that

grows as additional terms are added:
∑

i=1 I(fi, y)xi. The

importance vector I(fi, y) represents the common information

of the individual features x1, . . . , xn with class label y, and

is therefore a measure for the importance of each feature.

With the objective function, the importance component is

maximized.

On the other hand, we depict the independence by the sec-

ond component, which is defined as
∑

i

∑
j<i I(fi, fj)xixj .

This matrix I(fi, fj) represents the common information

among the individual features, and therefore measures their

redundancy. The objective function optimizes the similarity

between the selected features and the data labels while mini-

mizing the similarity between the features themselves.

The relative weighting of independence and importance

components is represented by a parameter α (0 ≤ α ≤ 1). We

balance the two parts by adjusting α to study their influence

on the classification performance.

In sum, we have the optimization model as follows:

min
x

⎧⎨
⎩

1− α

k(k − 1)/2

∑
i

∑
j<i

I(fi, fj)xixj − α

k

∑
i

I(fi, y)xi

⎫⎬
⎭

(1)

s.t.
∑
i∈Sj

xi = Kj , ∀ Sj ⊆ S; (2)

∑
i∈Cg

xi ≤ 1, ∀ Cg ∈ C; (3)

∑
i∈Eg

xi = Tg, ∀ Eg ∈ E; (4)

xi − xj ≤ 0, ∀(i, j) ∈ M. (5)

For constraint (2), we assume that the data set has p main

categories. Then, we have a list of constant integers K1 to

Kp, which decides how many features will be selected from

each category. It is worth mentioning that the number K1 to

Kp are decided by experiments in Section 2.

For constraint (3), it is given based on the fact that some

features are redundant. For example, in Cg , features a and b
both have high scores, but they contain the same information.

To minimize the redundancy of the subset, At most one can

be selected. We have set C to store all the conflict sets.

For constraint (4), some features are essential and have the

priority to be selected. For example, in E, We to need select

T1 features. We have set E to store all these essential sets.

For constraint (5), some features are highly correlated. For

example, feature a has a low score when b is not in the subset,

but ab has a high score. That implies that, feature a should

not be selected when b is not selected. We have set M to store

all these groups.

Although building the FS problem as a binary integer

program problem is able to increase the accuracy and inter-

pretability, problem (1) is still NP-hard [10]. According to

[11], Gurobi solves integer linear programs using the branch-

and-bound algorithm, in which it splits the search space into

smaller branches and discards the branches whose lower bound

is higher than the current solution. Since the search space is

exponentially increasing with the size of binary linear prob-

lems (BLP), the computational complexity of this approach is

exponential in the worst case. As a result, when the size of

binary variables is large, or the constraints are too complex,

it will be difficult or even impossible for the classical solver

to get a global optimal result.

Specially, the work in [12] shows that the worst-case

complexity is O(Mbd), where M is the cost of expanding

subproblems, b is the branching factor, and d is the search

depth. As d depends on the size of the BLP instance, making

it actually worst-case exponential time.

B. QUBO Model

Quantum annealing (QA) provides a new method to solve

BLP problems. According to [13], the computation complexity

of QA is expected to be O(e
√
N ), where N is the instance size.
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Notation Description
Descision
variable

xi
equals to 1, if feature i is in the subset;
otherwise, equals to 0

Parameters n number of total features
k number of selected features
Ki number of selected features in subset Si

α bias of importance and independence parts
Set S Feature labels. S = 1, 2, ...,m

Si Feature subsets. S = S1 ∩ S2 ∩ ... ∩ Sn

I Vector of feature coefficients
Y Labels of elements
Cg Vector of conflict features. Cg = {1,3,4,...}
C Set of conflict vectors. Cg ∈ C
Eg Vector of essential features. Eg = {1,3,4,...}
E Set of essential vectors. Eg ∈ E

M
Set of supplement features.
E = {{1,3},{4,5},...}

Some researches have been proposed to utilize QA to solve

integer programming problems [14]. To solve this problem

efficiently, we further reformulate problem (1) to a QUBO

problem, which can be solved by D-Wave quantum annealers.
In recent years, Quantum annealer has been developed as

a new and effective approach to solve a QUBO problem.

Quantum annealer can be used to solve discrete optimization

problems with specific structures because it tends to retain

lowest energy state. If a problem can be expressed as energy

states of a system, it can be fed to quantum annealers to

solve. The Quantum Processing Unit (QPU) of a quantum

annealer, which functions like the CPU in a classical computer,

is made up of connected qubits that create a graph topology.

This creates a physical system whose energy is measured by a

function of its states called the Hamiltonian [15]. An arbitrary

QUBO problem can be expressed by a Hamiltonian function:

f =

N−2∑
i=0

N−1∑
j=i+1

Ji,jσ
Z
i σ

Z
j +

N−1∑
i=0

hiσ
Z
i , (6)

where σ̂i denotes a Pauli - z matrix acting on qubit i with

eigenvalues ±1. Coefficient Ji,j decides whether σ̂i and σ̂j is

related, which corresponds to the second part (independence)

of our model, while hi corresponds to the independence

part. In our optimization problem, we definite selected feature

vector as x∗, which contains the variables described in the

previous section. Therefore, each of these variables is assigned

to a given variable index i in the QUBO model. As xi ∈ {0, 1}
and σi ∈ {+1,−1}. We reformulate xi as

(
1− σZ

i

)
/2 . Thus,

solving a QUBO problem is equivalent to finding a binary

vector x∗ which minimizes f

x∗ = argmin
x

f(x). (7)

We create a matrix Q:

Qii = αk ∗ I(fi, y), i ∈ S; (8)

Qij = (1− α)I(fi, fj), i ∈ S, i ≤ j, (9)

where the diagonal matrix Qii corresponds to the importance

part, and Qij corresponds to the independence part. Conse-

quently, we can transform (1) to

min
x

H1 = xtQx. (10)

Algorithm 1 Reformulate and solve a QUBO model

Input: I: Information matrix

K: Set of number of features in each class

Output: features vector x∗

1: Create the binary integer programming model (1) - (5).

2: Reformulate the objective function to QUBO problem.

3: Write constraints (2) - (5) to constraint satisfaction prob-

lems.

4: Add reformulated constraints (2) - (5) to QUBO.

5: Implement the QUBO model onto the quantum annealer.

6: return x∗.

According to the definition, the QUBO model is uncon-

strained. However, constraints (2) - (5) need to be added to

the Hamiltonian function added to QUBO model as a penalty

term [16]. For example, constrain (2) is transformed to

H2 =

z∑
i=1

P1

⎛
⎝∑

i∈Sj

xi −Kj

⎞
⎠

2

, (11)

where P1 is the penalty weight.

For constraint (3), the equivalent penalty is

H3 =
∑
q=1

P2xixj , (12)

If xi and xj are both equal to 1, the value of QUBO model will

increase the penalty value. When one of them is 0, the value

of QUBO model does not change. Thus, the model prefer to

select at most 1 feature when the penalty is sufficiently high.

For constraint (4), the equivalent penalty is

H4 =
∑
r=1

P3

⎛
⎝∑

i∈Eg

xi − T

⎞
⎠

2

, (13)

when T features are selected, the QUBO model gets the local

minimum value.

Following the same transformation, we can transform con-

straint (5) to:

H5 =
∑
l=1

P4 (xi − xixj)
2
. (14)

When xi = 1 and xj = 0, the value of QUBO model will

increase, and otherwise it does not change. Thus, feature

i could only be selected when j has been selected. We

notice that all the reformulated constraints are polynomials

of xi and xixj . Therefore, they are added to the matrix Q,

which ensure our final model is a QUBO problem. After the

reformulation, we feed the formulated QUBO problem to the

quantum annealer to solve. The whole proposed algorithm is

presented in Algorithm 1.

C. Search the best K

As mentioned before, in case that the number of qubits is not

sufficient to solve the whole problem, we divide large feature

sets into small subsets. Moreover, some data sets naturally
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have multiple feature classes, while we only need to consider

the independence defined in (1) within each class. However,

a question arises that how to choose the optimal value of

K for the QUBO model, which decides how many features

are selected from each subset. Wrapper feature selection is a

popular strategy for selecting the feature subset but takes a

long time. This challenge can be alleviated by using a high-

speed quantum solver to train parameters for our proposed

Quantum feature selection (QFS) model.

At first, we solve the binary linear model without constraints

(2). This means we use a flexible variable set K and decide the

number of features in each class without limitations. Then we

calculate the selected features in each class and use them as the

initial set K. Then we adjust the parameter set K by Algorithm

2 to search for the best combination that achieves the best

performance. Thus, we transform the original objective of

the selection from m features to adjusting |K| parameters,

where |K| << m. In each iteration, we maintain the smallest

energy of the objective function to select the representative

features. Obviously, the value initialization is very important.

Our model is able to help decrease the possibility of dropping

into a local minimum solution and use the least iterations to

find the optimal solution during the value initialization. The

convergence curve of our method is shown in Fig. 4. The

ability of our method to find an optimal solution is at least

not weak compared to other wrapper FS methods.

The whole proposed algorithm is presented in Algorithm 2.

In the last paragraph, we already have an initial parameter set

K and we use our QFS method to get an optimal feature set x.

xi is the selected features in subsets Si, where x = x1 ∩x2 ∩
...∩xp. We perform the classification and obtain accuracy by

using a classifier, such as the support vector classifier (SVC)

[17]. If the current total feature number falls within the range

of goal T , where T is the total number of selected features

and T =
∑

i Ki, we select one subset from S, such as S1.

Then, another feature will be chosen from this class. Assume

K1 features are chosen from S1 in the last loop, we apply this

feature subset to QA to select K1 +1 features. Assume x∗
1 is

the best outcome of S1, we can use x∗
1 to update x. Let x∗

to be x∗
1 ∩ x2 ∩ ... ∩ xp, then use that value to determine a

new accuracy. Each feature class will go through this method

once again until the best result is found. The best accuracy

can then be achieved by updating the set K. If the greatest

accuracy does not change, we end the loop.

We choose one class, and one less feature from that class

may be chosen, if the current total number of features is

more than the objective T . Continue like we did in the last

sentence and give K an update. The set K can be utilized as

the initial parameter set for target T − 1 after we obtain the

best parameter set K of target T . Some optimal results of

different T are shown in Table III.

III. CASE STUDY

In section II, we presented our novel QFS algorithm. The

current section contains a study of different experiments to

Algorithm 2 Search the best K

Input: T : Number of total selected features

K: Set of initial parameters

I: Information matrix.

α: weight balance parameter.

m: max iteration.

Output: The final set K∗

1: x∗ ← QFS(K, α, I);
2: Max acc ← SV C(x∗);
3: K∗ ← K;

4: while iteration < m do
5: if sum(K∗) ≤ T then
6: for Ki ∈ K∗ do
7: K∗

i := Ki + 1;

8: x∗
i ← QFS(K∗

i , α, I);
9: Update x∗ by x∗

i ;

10: accuracy a ← SV C(x∗);
11: Insert a to vector A.

12: if Max(A) > Max acc then
13: Max acc ← Max(A);
14: Update K∗.

15: if sum(K∗) > T then
16: for Ki ∈ K∗ do
17: K∗

i := Ki − 1;

18: x∗
i ← QFS(K∗

i , α, I);
19: Update x∗ by x∗

i ;

20: accuracy a ← SV C(x∗) ;

21: Insert a to vector A.

22: if Max(A) > Max acc then
23: Max acc ← Max(A);
24: Update K∗.

25: return K∗.

evaluate the performance of QFS. For this purpose, we use

NSL-KDD dataset, which is synthetic and taken from real

world data sources.

A. Data set

To verify the performance of the QFS algorithm in Intrusion

Detection System (IDS) feature selection, we adopt the NSL-

KDD network intrusion detection dataset for experiments.
1) Dataset Analysis: NSL-KDD data set is an improved

version of KDDCUP99 [18], which is a DARPA98 IDS-based

attack simulator that simulates four main types of attacks.

Compared with the KDDCUP99 dataset, the NSL-KDD has

all of the same characteristics as the original KDDCUP99,

but it has been cleaned of redundant records and has had

the proportion of connection types adjusted to make it more

reasonable and dependable for classification tests. The NSL-

KDD dataset is a classic dataset that has been used in the

field of anomaly detection. It acts as a helpful benchmark

for academics to contrast their proposed strategies against.

KDDTraint+ and KDDTest+ are subsets of the NSL-KDD

dataset. They are divided as the training set and the test set.

The network attacks contain four types [19]:
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TABLE I
THE FEATURES OF NSL-KDD DATASET.

Classification of features Number Name of features

The basic features of network connections 9
(1) duration, (2) protocol type, (3) service, (4) flag, (5) src bytes, (6) dst bytes, (7) land,

(8) wrong fragment, (9) urgent

The content related features of network connections 13

(10) hot, (11) num failed logins, (12) logged in, (13) num compromised, (14)
root shell, (15) num root, (16) su attempted, (17) num file creations, (18) num shells,

(19) num access files, (20) num outbound cmds, (21) is host login, (22)
is guest login

The time related traffic features
of network connections

9
(23) count, (24) srv count, (25) serror rate, (26) srv serror rate, (27) rerror rate, (28)

srv rerror rate, (29) same srv rate, (30) diff srv rate, (31) srv diff host rate

Host based traffic features of network connections 10

(32) dst host count, (33) dst host srv count, (34) dst host same srv rate, (35)
dst host diff srv rate, (36) dst host same src port rate, (37)

dst host srv diff host rate, (38) dst host serror rate, (39) dst host srv serror rate,
(40) dst host rerror rate, (41) dst host srv rerror rate

TABLE II
THE DISTRIBUTION OF SAMPLE CATEGORIES.

Data category KDDTrain+ KDDTest+ Number of samples
Normal 65120 11536 76656
DoS 36944 6251 43195
Probe 10786 2421 13207
R2L 995 2653 3648
U2R 52 67 119
All 113897 22928 136825

• Denial of Service Attacks (DoS): It is an attempt by the

attacker to restrict network usage by disrupting service

availability to the intended users.

• User to Root Attacks (U2R): Occur when the attacker has

access from a normal user account and tries to gain root

access through system vulnerabilities.

• Remote to Local Attacks (R2L): The attacker does not

have an account on local system but tries to gain access

through sending network packets to exploit the vulnera-

bilities and gain access as a local user.

• Probing Attacks: Occur when the attacker scans the

system network to collect information about the system

in aims to use it for avoiding the system security control.

The detailed feature names and distribution of sample

categories are shown in Tables I and II from [20]. The NSL-

KDD dataset includes four types of features, which are the

basic features of network connections (9 in total), the content

related features of network connections (13 in total), the time

related traffic features of network connections (9 in total), and

the host based traffic features of network connections (10 in

total), where each feature may be:

• an integer, for example, the number of times the system

sensitive files and directories were accessed.

• a category, such as agreement type.

• a decimal number, representing, for example, percentage

of REJ bad Connections.

• a boolean (0/1) value, which usually be considered as a

category.

The data preprocessing is helpful to improve the accuracy of

classification and ensure the reliability of the results. As the

dataset has mixed data types of numbers and characters which

are difficult to deal with, the one-hot encoding method is used

Fig. 1. Importance of each feature

to map different characters to different values. We convert

the categorical variables to integer variables by assigning each

category a class number. For the output label, we have classes

(0 - 4), where class 0 represents the normal access, and class

1-4 represents each type of attack. Moreover, the dataset is

normalized to eliminate the influence of features of different

orders of magnitude on the calculation results, thus reducing

the classification error. After one-hot encoding, the values of

each feature are normalized to the interval [0, 1], and they can

be normalized by as [20]:

x∗ =
x− xmin

xmax − xmin
. (15)

where x∗ is the normalized value, x is the original value, and

xmin and xmax represent the maximum and minimum values

of the same feature vector.

Fig. 1 shows the similarity of each feature with the output

labels by their Pearson correlation coefficient (PCC), which

will be defined below, with the classification variable in Fig.

1, for example. At the left-hand end, there are four pretty

significant features, followed by a drop. The coefficients with

the label are higher for characteristics 23 to 40. As a result,

the issue is figuring out how to pick up sufficient critical traits.

B. Basic Settings

There are several ways to evaluate the common information

of two vectors. In this part, we introduce two common used

functions to calculate the coefficient matrix I, which contains

the similarity between the feature vector and the label vector

by Iii, and the similarity between the two features by Iij . The
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Algorithm 3 Search for α. Given the information matrix I,
find the α that maximize the accuracy of classification method

SV C(x)

Input: I: Common information matrix.

s: step size.

Output: α: weight balance parameter.

1: α ← 0.05;

2: m acc ← 0;

3: acc ← SV C(α, I);
4: while α < 1 do
5: if m acc < acc then
6: m acc ← acc;
7: α ← α;

8: α ← α + s;

9: acc ← SV C(α, I);

10: return α.

matrix I can be transformed to the matrix Q in QUBO model

by the method in section 2. As all the coefficients could be

calculated in parallel, the run time of the algorithm matches

the O(1) complexity. The functions to calculate matrix are

listed below:

1) Pearson: The PCC is used to assess the linear correlation

between two variables X,Y and can be determined using

the provided formulation. The covariance of X and Y is

represented by the function Cov(X,Y ). The value of y might

be anywhere between +1 and −1. y = +1 indicates that X
and Y are totally positively correlated. y = 0 implies that X
is not correlated to Y at all. Finally, a value of −1 indicates

that X and Y are fully negatively correlated.

p =
Cov (X,Y )√
D (X)

√
D (Y )

. (16)

2) Mutual information: MI is a measure of how much

information one random variable has about another variable,

according to [21]. The MI is officially defined as follows:

I(x; y) =
n∑

i=1

n∑
j=1

p(x(i), y(j)) log

(
p(x(i), y(j))

p(x(i))p(y(j))

)
. (17)

where MI is zero when x and y are statistically independent.

As mentioned before, α is used as an optimization param-

eter, which defines the relative weighting of independence

(greatest at α = 0) and importance (greatest at α = 1) [9].

After data preprocessing, we use a search method to determine

the value of α which is most suitable for NSL-KDD dataset.

With an initial α, we can create the Q by α and I by (8) and

(9). Then, with the QFS method (without constraint (2)), we

get a optimal feature set x. Apply x to a SVC classification

method we get the accuracy acc. Thus, we definite a function

acc = SV C(α, I). The detailed search process is shown in

Algorithm 3.

Fig. 2 shows the results by tuning α from 0.1 to 0.9. The

feature independence component has a higher weighting on the

left side when α is near to zero, while the model emphasising

Fig. 2. QUBO feature selection with an increasing α

Fig. 3. Flow chart of the training process

the feature importance when α is near to one. We notice that

when α = 0.75 the model get the best accuracy.

C. Testing Process

In Fig. 3, we depict how the experimental system was

intended to function in terms of feature selection and clas-

sification techniques. Following the data preprocessing, we

compute the correlations between features and labels using

the previous two metrics, including Pearson and MI. The data

will be utilized to determine the parameters of the QFS Model.

After that, we get the optimal feature subsets by QFS and

compare the performance with other FS models.

IV. EXPERIMENTS RESULT

In this section, we compare our method with other feature

selection methods by evaluating the accuracy of various clas-

sification models trained on the respective feature subsets.

Classification performance is an important evaluation cri-

terion of feature selection for intrusion detection. Several

classification performance metrics can be found in the review

of [22].

• TP—True Positive: The label data is positive and the

prediction result is positive.
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Fig. 4. Convergence curve of different methods

• FN—False Positive: The label data is positive and the

prediction result is negative.

• FP—False Positive: The label data is negative and the

prediction result is positive.

• TN—True Negative: The label data is negative and the

prediction result is negative.

There are several metrics that may be used to assess feature

selection algorithms including:

• Accuracy: Accuracy is the percentage of accurately pre-

dicted samples to all samples that were forecasted, which

ranges from (0, 1). Accuracy measures the classifier’s

overall performance and is calculated as follows:

accuracy =
TP + TN

TP + FP + TN + FN
. (18)

• Precision: Precision is the capability of a classification

model to identify only the relevant data points in the

dataset. It is estimated by the ratio of correctly predicted

positive samples to all predicted positive samples as

follows:

precision =
TP

TP + FP
. (19)

• Detection rate: Detection rate is also called recall. It

estimates the ability of a model to discover all the relevant

data points by the ratio of the number of correctly

predicted positive samples to the total number of true

positive samples. It is estimated as follows:

recall =
TP

TP + FN
. (20)

SVC models are then trained using the specified feature

subsets. We do cross validation on each model and present

the mean and standard deviation of classification accuracy.

In this paper, we compare the performance of different

number of selected features. The results of different feature

selection algorithms are shown in Table IV. According to Table

IV, QFS algorithm selects 12 most representative features

from the NSL-KDD dataset, accounting for 29.26% of the

total number of features. Compared with HHO [23], SSA

[24], WOA [25] and PSO [26] algorithms, the total number

TABLE III
SAMPLES OF SELECTED FEATURE SETS

Number of features Selected set of features

9 [1,2,3,28,32,33,34,35,38]
12 [0,1,2,3,7,28,32,33,34,35,36,40]
14 [0,1,2,3,4,5,7,28,32,33,34,35,37,38]
19 [0,1,2,3,4,5,6,7,16,20,22,32,33,34,35,36,37,38,39]

TABLE IV
FEATURE SELECTION RESULTS OF DIFFERENT FEATURE SELECTION

ALGORITHMS

Amount Features ACC
QFS 12 [0,1,2,3,7,28,32,33,34,36,38,40] 0.894
HHO 18 [0,1,2,3,4,5,9,11,18,20,23,28,29,30,35,36,37,38] 0.862
SSA 21 [1,4,5,8,10,11,15,17,18,19,20,21,26,27,28,29,33,35,36,37,39] 0.856
WOA 14 [0,3,4,5,7,8,10,12,17,24,27,28,35,39] 0.878
PSO 13 [0,2,4,5,7,15,18,19,25,28,29,34,40] 0.882

of features in the four types of attack datasets is reduced by

14.6%, 21.9%, 4.8%, 2.4%.

Then we measured the classification performance using

the selection results of HHO, SSA, WOA, PSO, and QFS

algorithms as feature subsets. SVC classifier is used as the

classification algorithm. The classification accuracy of differ-

ent algorithms is shown in Table IV and V. Our QFS algorithm

achieved around 90% accuracy, improved by 3.2%, 4.8%,

1.6% and 1.2% compared to the other four FS algorithms.

Fig. 5, 6, 7 show that the accuracy, precision and detection

rate of feature subset produced by different feature selection

algorithms. For Normal, Probe, DoS, and R2L datasets, the

average precision of QFS is 89.8%. It increases by 2.70%,

8.30%, 2.88%, and 6.34% compared to HHO, SSA, WOA

and PSO algorithms. The performance of R2L is not as good

as the other types because the samples of R2L only account

a small part of training and testing sets. It would be a better

way to train a separate feature subset for R2L attacks.

We also measure the performance of the two evaluation

method mentioned in Section III in Table VI. We found that

Pearson coefficients retains more information and achieves

better performance. Compared with MI, the weighted average

precision, recall and accuracy rate of four types increases by

3.7%, 5.4% and 3.2%.

Fig. 5. Classification accuracy on different algorithms
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Fig. 6. Classification precision on different algorithms

Fig. 7. Classification recall on different algorithms

TABLE V
COMPARISON BETWEEN SEVERAL FEATURE SELECTION ALGORITHMS

USING NSL-KDD DATASET

Accuarcy
Data Category QFS HHO SSA WOA PSO

Normal 0.852 0.846 0.817 0.887 0.812
Probe 0.985 0.937 0.924 0.865 0.804
DoS 0.803 0.887 0.860 0.834 0.817
R2L 0.987 0.919 0.856 0.846 0.787

Fig. 8. Occurrence of features of the samples

It seems QA is much better than classical solvers. However,

the performance of D-wave annealers is still limited by the

noise. With the increase of problem size, more qubits are

needed, which also leads to the increase of noise. Thus, the

Fig. 9. Repetition of samples from the D-Wave quantum annealer

actual computation complexity depends on the complexity

of problems. To overcome the randomness of the D-wave

annealer, 200 same samples are performed to find the best

optimal result. In Fig. 8, the occurrence and deviation of

features in the 200 repetitions are shown. The blue bar

indicates that this feature’s label is set to 1 and that it was

selected in the optimal outcome, while the red bar indicates

that it was not selected. Fig. 9 shows with the repetition of

QFS, the lowest energy decreases and the accuracy increases.

Fig. 10. Feature selection and detection time of different algorithms

In Table VII, we compare the feature selection and detection

time of five alternative algorithms to further highlight the

benefit of our QFS technique. The time spent removing irrel-

evant and redundant features is referred to as feature selection

time. The detection time is an indication of how long the

SVC classifier took to train the model with the representative

feature subsets we chose. It can be seen from Fig. 10 that the

feature selection time of QFS algorithm is shorter than other

algorithms, which indicates that QFS algorithm can find the

optimal solution with a higher speed while maintaining the

accuracy. At the same time, QFS algorithm remove redundant

features, which considerably increases the detection speed.

In comparison to the other four feature selection algorithms,

the detection time of QFS algorithm is reduced by 64.83%,

288

Authorized licensed use limited to: University of Houston. Downloaded on March 06,2023 at 23:33:20 UTC from IEEE Xplore.  Restrictions apply. 



TABLE VI
COMPARISON BETWEEN TWO DIFFERENT INFORMATION EVALUATION METHODS

Mutual Information Pearson
Data Category precision recall accuracy precision recall accuracy Amount of Elements

Normal 0.836 0.978 0.901 0.864 0.969 0.913 9711
Dos 0.987 0.909 0.946 0.982 0.935 0.958 5740

Probe 0.826 0.740 0.781 0.805 0.986 0.887 1106
R2L 0.994 0.424 0.783 0.995 0.494 0.754 2199

TABLE VII
COMPUTATION TIME OF DIFFERENT ALGORITHMS

QFS HHO SSA WOA PSO
Detection time (s) 24.02 70.48 56.68 28.22 26.72
Selection time (s) 786.87 1689 2579.91 3042.12 2793

50.91%, 7.94%, and 6.12% .

V. CONCLUSION

In this study, we proposed an integer programming model

for FS that balances the feature subset’s importance and inde-

pendence. We then considered the interaction between features

and reformulated it into a QUBO problem, which is different

from past work. Our experiments have been run on quan-

tum hardware, which further demonstrates that our algorithm

is effective. To demonstrate our framework’s effectiveness,

we performed experiments by comparing different common

feature selection methods and the resulting performance on

different classifiers. Our experimental results showed that our

method outperforms other methods.
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