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A B S T R A C T   

EuIII and YbIII complexes with the carbazole-dipicolinato ligand dpaCbz2−, namely K3[Eu(dpaCbz)3] and K3[Yb 
(dpaCbz)3], were isolated. The EuIII complex displayed metal-centered emission upon one-photon excitation with 
a sensitized emission efficiency ΦLn

L of 1.8±0.3%, corresponding to an intrinsic emission efficiency ΦLn
Ln of 46% 

and a sensitization efficiency of ηsens 3.9%, with an emission lifetime of the emissive state τ of 1.087±0.005 ms. 
The YbIII complex displayed ΦLn

L of 0.010±0.001%, and a τ of 2.32±0.06 μs The EuIII-centered emission was 
sensitized as well upon two-photon excitation and a two-photon absorption cross-section σ2PA of 63 GM at 750 
nm was determined for the complex. The one- or two-photon sensitized emission intensity of the EuIII complex 
changes by more than two-fold when the solvent viscosity is varied in the range 0.5–200 cP and the emission is 
independent of dissolved oxygen. The YbIII complex displays a change in emission intensity as well. However, in 
this case, a dependence of the emission intensity on dissolved oxygen content was observed.   

1. Introduction 

The unique luminescence properties of lanthanide (LnIII) ions make 
them interesting as luminescent labels and in sensing applications 
[1–13]. The emission is based on f-f transitions; the latter are core or
bitals and thus the transitions are line-like, leading to emission with high 
colour purity. Long luminescence lifetimes are observed, due to the 
forbidden nature of the f-f transitions. The long lifetimes enable 
time-delayed emission spectroscopy which improves signal-to-noise 
ratio [14–16]. However, the direct excitation is inefficient, and the an
tenna effect is used to sensitize the emission more efficiently through a 
ligand chromophore (Fig. 1a). Excitation through the antenna effect 
leads to a beneficial large Stokes shift of sensitized emission. In addition, 
use of ligand chromophores enables tuning of the chemical and spec
troscopic properties of the complexes through judicious functionaliza
tion [6,14,17–20]. 

We reported recently a dipicolinato-based ligand functionalized with 
a carbazole moiety (dpaCbz2−) to sensitize EuIII and TbIII emission [21] 

and that the TbIII complex can be used for temperature sensing due to 
deactivation of the TbIII 5D4 excited state through back-energy transfer 
to both a triplet state and a twisted intramolecular charge transfer 
(TICT) [22], whose population is dependent on the viscosity of the 
medium [23,24]. In situ determination of viscosity is important, as it is a 
function of intra- and extracellular mass transport [25,26]. In addition, 
changes in blood and plasma viscosity can be a sign of diabetes and 
hypertension [25,27,28]. Finally, the properties of materials, such as 
hydrogels, are related to their viscosity [29,30]. While macroscopic 
viscosity is easily measured [25], new methods of determination are 
needed at the microscale, for example in the cellular environment [25], 
such as through the use of luminescent viscosity sensors. Molecular ro
tors are recent examples of such sensors [31,32]. Despite the advantages 
of using emissive LnIII ions for imaging applications, only a few examples 
of viscosity sensors using these ions are known, such as YbIII porphyr
inato complexes with a Kläui ligand with emission lifetimes that almost 
tripled between 0.5 and 200 cP [33]. Some of us demonstrated sensing 
the viscosity using the K3[Eu(CPAD)3] complex, for which an increase in 
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the emission intensity of ~2-fold (λexc = 400 nm) or ~5.8-fold (λexc =

800 nm) in the viscosity range 0–200 cP was observed [24]. 
Carbazole (Fig. 1b), the functional group present in the sensitizer 

dpaCbz2−, is capable of two-photon absorption (2 PA) [34–36]. This 
excitation process with simultaneous absorption of two photons with 
half of the energy required by one-photon excitation (1 PA) (Fig. 1a) [37, 
38], allows the use of excitation wavelengths in the near infrared (NIR) 
[39–42], the biological window in which the tissues are transparent. At 
these wavelengths, the quality of the images may be improved, due to 
deeper tissue penetration, and in vivo cell imaging is enabled [39,40,43, 
44]. Organic dyes [45] and transition metal complexes [46] have been 
successfully deployed in 2 PA imaging; yet, organic dyes photobleach, 
and both dyes and complexes show short emission lifetimes and narrow 
Stokes shifts, which limits their usefulness. 

The use of LnIII ions, which do not suffer from these drawbacks, for 2 
PA was pioneered by Lakowicz and co-workers [47,48]. Work by 
Andraud, Maury and co-workers on dipicolinato- and 
cyclononane-based EuIII complexes displaying 2 PA-sensitization 
showed that ligands with highly polarizable charge-transfer (CT) states 
result in systems with improved 2 PA cross-sections (σ2PA) [38,49–52]. 
This work has enabled the development of LnIII-based 2 PA labels dyes 
emitting both in the visible and NIR emitters [53–60]. In addition to 
labelling, LnIII complexes are also useful in sensing chemical species and 
physicochemical properties. Palsson and co-workers demonstrated 
sensing of bicarbonate, a biologically relevant species in aqueous solu
tion, using 2 PA-sensitized emission [61]. As mentioned above, our 
group also reported viscosity sensing, which was accomplished through 
2 PA-sensitized emission [24]. Although successful, the long synthetic 
route to synthesize the H2CPAD ligand and the low solubility of the 
complex in aqueous solution limits future applications in biological 
systems. To increase our knowledge of 2 PA-sensitized LnIII emission and 
expand the number of easily accessible water-soluble LnIII-based vis
cosity sensors, we investigated the sensitizer dpaCbz2−. H2dpaCbz 
(Fig. 1b, Figure S1) and its LnIII complexes (LnIII = EuIII, GdIII, YbIII; 
Figure S2) were previously isolated by the de Bettencourt-Dias and 
Sigoli groups [21]. 

2. Experimental section 

All commercially obtained reagents were of analytical grade and 
used as received. Solvents were dried by standard methods. The stock 
solutions of europium(III) and ytterbium(III) chloride were prepared by 
dissolving the chloride salt in water. The concentration of the metal was 
determined by complexometric titration with EDTA (0.01 M) using 
xylenol orange as indicator [62]. 

Photophysical characterization. Solutions with concentrations 1 
× 10−4 M were used to obtain the emission and excitation spectra. The 
photoluminescence data were obtained in a Fluorolog-3 spectrofluo
rimeter (Horiba FL3-22-iHR550), with an excitation monochromator 

with 1200 grooves/mm and gratings blazed at 330 nm and an emission 
monochromator with 1200 grooves/mm and gratings blazed at 500 nm. 
An ozone-free 450 W xenon lamp (Ushio) was used as radiation source. 
The excitation spectra, corrected for instrumental function, were 
measured between 250 and 500 nm. The emission spectra were 
measured in the range 550–725 nm using a Hamamatsu 928P detector. 
All emission spectra were corrected for instrumental function. The 
emission decay curves were obtained using a TCSPC system and a Xe 
pulsed lamp as excitation source, for the EuIII complex, or a Horiba 
SpectraLED model S-370 (peak wavelength = 370 ± 10 nm, ~4 pJ/ 
pulse), for the YbIII complex. The energies of the ligand’s singlet and 
triplet levels were obtained at ~77 K by deconvolution of the fluores
cence and phosphorescence spectra, respectively, into their Franck- 
Condon progression and are reported as the 0-0 transition [63]. The 
quantum yield of the sensitized emission (ϕEu

L ) of the EuIII complex was 
determined using an integrating sphere (model F-3018) coupled directly 
to the spectrofluorimeter. A solution containing only the solvent was 
used as blank, and then was replaced by a solution containing the 
compound. The sample was measured on- and -out-of-the beam path in 
order to account for any re-absorption effects. The quantum yield of the 
samples, as percentage, was determined using Equation (1). 

Φ =
(IB − IS)

(LS − LB)
× 100 (1) 

L and I are the scattering and emission integrated areas, respectively. 
The subscripts B and S stand for blank and sample, respectively. 

For the YbIII complex the quantum yield was determined by the 
dilution method using Equation (2). The standard for quantum yield 
measurements was [Yb(tta)3(H2O)2] (ϕ ~ 0.12, in air-saturated toluene) 
[64]. The excitation wavelength for sample and quantum yield standard 
was chosen to ensure a linear relationship between the intensity of 
emitted light and the concentration of the absorbing/emitting species (A 
≤0.05). 

Φx =
Gradx

Gradstd
×

n2
x

n2
std

×
Istd

Ix
Φstd (2) 

Grad is the slope of the plot of the emission area as a function of 
absorbance, n is the refractive index of the solvent, I is the intensity of 
the excitation source at the excitation wavelength and Φ is the quantum 
yield for sample x and standard std. 

The intrinsic quantum yield ϕEu
Eu was determined using equation (3). 

ϕEu
Eu =

Arad

Atot
(3) 

Atot is the total emission rate (Atot = kR + kNR = 1/τexp) and Arad is the 
radiative emission rate [65]. 

The sensitization efficiency (ηsens) was determined using equation 
(4). 

ηsens =
ϕEu

L

ϕEu
Eu

(4) 

Two-photon emission setup. A Spectraphysics Mai Tai Ti:Sapphire 
tunable laser generates 80 fs excitation pulses centered between 710 and 
820 nm. This excitation pulse propagates toward a pair of chirped 
mirrors (Femtolasers GSM216), introduced to compensate for any 
dispersion introduced from other optics. A half wave plate (Thorlabs 
WPH10M − 780) was placed in the beam path and set at the magic angle 
54.7◦ to remove polarization dependence. In order to modulate the 
power, a neutral density filter was utilized with an OD varying between 
0.4 and 0.8. The incident pulse was focused using a 100 mm convex lens 
(Thorlabs LA1509) into the center of a 1 cm quartz sample cell. The 
emission of the sample was collected at a right angle by a reflective 
objective (20× magnification) and focused into an Ocean Optics 
USB2000+ UV-VIS Spectrometer. The typical spectral range used on the 
spectrometer was 180 nm–870 nm. The excitation wavelengths of 720 

Fig. 1. a) Modified Jablønski diagram of the antenna effect with one- (1 PA) 
and two-photon (2 PA) absorption. F designates fluorescence, P phosphores
cence, ISC intersystem crossing, ET energy transfer, BT back-transfer, L lumi
nescence, NR non-radiative pathways, and S states with singlet and T states 
with triplet multiplicity [24]. b) Structure of H2dpaCbz (carbazole moiety 
highlighted in red). 
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nm and 750 nm were chosen for linearity of signal with sample con
centration as well as to enable direct comparison of the EuIII complex 
with the 2 PA rhodamine B standard. 

Two-photon absorption cross section. The two photon absorption 
cross sections were determined via a Two-Photon Excited Fluorescence 
(TPEF) procedure using equation (5) [52]. 

σ2PA =
F
Fr

ϕr

ϕ
cr

c
σr

2PA, (5) 

F are the fluorescence intensities, ϕ are the luminescence quantum 
yields, c are the concentrations, and the superscript r denotes the 
reference compound. For the EuIII complexes ϕ = ϕEu

L . Rhodamine B in 
methanol was used as the reference at 750 nm with ϕr = 70% and σr

2PA =

67 GM [66]. The concentration of the reference varied between 0.1 and 
1 mM. The cross section of K3[Eu(dpaCbz)3] (0.2 mM) in TRIS/HCl 
aqueous solution (pH ~7.4, 4% DMSO) was determined by exciting the 
sample at 750 nm followed by collecting the spectra using an integration 
time of 10 s, a boxcar width of 2 pixels, and a power ranging from 200 to 
270 mW. The intensity for all samples was determined by integrating the 
spectrum from 550 nm to 715 nm. 

Emission Intensity Dependence. The laser power was varied be
tween 50 and 420 mW to determine the effect of the laser power on the 
intensity of the spectrum at 615 nm. The power dependence of the two- 
photon excited emission of K3[Eu(dpaCbz)3] was determined at an 
excitation wavelength of 750 nm. Similar collection parameters were 
utilized as described above for the two-photon cross section measure
ments. All spectra were found to have a linear relationship between the 
log of the intensity and the log of the power at the λmax. 

Excitation Scans. The intensity at 615 nm was determined upon 
excitation between 710 and 820 nm. Similar collection parameters were 
used as described above. 

Viscosity Sensing Measurements. 0.2 mM solutions of K3[Eu 
(dpaCbz)3] were prepared in different mixtures of methanol and glyc
erol to obtain a wide range of viscosities. The emission spectra were 
obtained exciting at 336 nm, for one-photon absorption, or at 720 nm, 
for two-photon excitation, and P = 235 mW. The intensity of the 5D0 → 
7F2 transition was plotted as a function of the viscosity. 

3. Results and discussion 

As in other solvents [21,22], upon excitation at 340 nm, K3[Ln 
(dpaCbz)3] (Ln = EuIII and YbIII) in TRIS/HCl buffered water:DMSO 
display the characteristic EuIII-centered 5D0→7FJ (J = 0–4) (Figure S3a 
right) and characteristic YbIII-centered 2F5/2 → 2F7/2 emissions 
(Figure S3b right). The excitation spectra (Figures S3a and S3b left) 
resemble the absorption spectrum of the ligand [22], as expected for 
sensitized emission. The efficiencies of sensitization of 3.9% and of 
sensitized emission of 1.8% (Table 1) for the EuIII emission are moder
ate, despite the favorable triplet state energy, intrinsic emission effi
ciency and emission lifetime. The moderate values are attributed to the 
long donor-acceptor distance of 6.5146 Å that decreases the energy 
transfer probability [21]. For YbIII, the efficiency of sensitized emission 
is 0.10% and comparable to other YbIII-dipicolinato complexes, as is the 

excited state lifetime of 2.32 μs (Table 1) [50,67–70]. 
2 PA excitation of the EuIII complex is accomplished in a broad range 

of wavelengths, as shown in Figure S4; for our studies we excited the 
complex at 720 or 750 nm to enable comparison with the 2 PA standard 
rhodamine B (Figure S5) [66]. Upon 2 PA, the characteristic 
metal-centered emission pattern is observed (Fig. 2). The emission in
tensity I shows a quadratic dependence on the laser power P (Inset of 
Fig. 2), which confirms the 2 PA process. The 1 PA and 2 PA emission 
spectra are identical (Figures 2 and S3a), as expected for processes 
which involve the same excited state. 

At 63 GM, the σ2PA for the EuIII complex (Table 1) is an order of 
magnitude lower than for known EuIII complexes [24,50]. Yet this 
ligand, which can be easily synthesized in one step, as opposed to other 
known complexes, is very versatile, as it displays 2 PA to sensitize EuIII 

emission and its TbIII complex can be used for temperature sensing [22]. 
The presence of a twisted intramolecular charge-transfer (TICT) state 

in dpaCbz2−, across the carbazole and pyridine functional groups [22, 
23], was confirmed through the temperature dependence of the phos
phorescence spectra of the analogous GdIII complex, that displayed 
maxima at 500 and 440 nm at 298 and 77 K, respectively [22]. As 
changes in viscosity lead changes in population of CT states [23], we 
prepared solutions of K3[Ln(dpaCbz)3] (Ln = EuIII or YbIII) in varying 
ratios of methanol and glycerol to isolate solutions with viscosities in the 
range 0.5–200 cP. The K3[Eu(dpaCbz)3] complex shows a more than 
doubling of its emission intensity under both one- and two-photon 
excitation (Fig. 3a and b), a similar increase to the two other known 
LnIII-based viscosity sensors [24,33]. Thus, this complex is the second 
reported viscosity sensor using two-photon sensitized EuIII-centered 
emission. An increase in emission intensity as a function of the viscosity 
was observed for the YbIII complex as well (Figure S6a). However, this 

Table 1 
Photophysical data of the dpaCbz2− complexes of EuIII and TbIII. S and T denote the singlet and triplet state energies of the ligand, respectively, τ the emission lifetime, 
ΦLn

Ln the intrinsic emission efficiency, ΦLn
L the sensitized emission efficiency, ηsens the sensitization efficiency, and σ2PA the two-photon absorption cross-section. λexc =

340 nm.  

Complex Solventa Sb [cm−1] Tb [cm−1] τ ϕLn
Ln [%]  ϕLn

L [%]  ηsens [%] σ2PA
c [GM]d 

K3[Eu(dpaCbz)3] Water:DMSO 26,030±400 [21] 23,460±350 [21] 1.087±0.005 ms 46 1.8±0.3 3.9 63±8 
K3[Yb(dpaCbz)3] Water:DMSO 2.32±0.06 μs – 0.010±0.001 – –  

a In aqueous TRIS/HCl buffered solution (pH ~7.4, 4% DMSO). 
b As the GdIII complex at 77 K [63]. 
c λexc = 750 nm. 
d 1 GM = 10−50 cm4 s photon−1 molecule−1. 

Fig. 2. Emission spectra of the complex K3[Eu(dpaCbz)3] obtained at different 
laser powers. The inset shows the plot of log (I) as a function of log (P). 
[complex] = 0.2 mM in TRIS/HCl buffered solution (4% DMSO, pH ~7.4). 
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intensity change was strongly dependent upon O2 concentration 
(Figure S6b), consistent with non-radiative quenching of the ligand’s 
triplet level though interaction with oxygen, which in turn decreases the 
metal ion’s emission lifetime [71], indicating that in this complex this 
pathway is competitive with the energy transfer from the triplet level to 
the emissive state of YbIII. Thus, the use of this YbIII complex for viscosity 
sensing will not be further discussed. Nonetheless, while not pursued 
here, this oxygen sensitivity makes the complex interesting as an oxygen 
sensor. 

Methanol and glycerol have different amounts of dissolved oxygen; 
the mole fractions at 298 K and 101.3 kPa are 4.15 × 10−4 for methanol 
and 4.8 × 10−6−5.5 × 10−6 for glycerol [72,73]. To ensure that emis
sion behavior in the case of the EuIII complex is due to solvent viscosity, 
and not quenching through oxygen [71,74], the emission lifetimes were 
determined. At 1.497±0.002 ms in methanol, and 1.604±0.006 ms in 
1:9 methanol:glycerol (Figures S7 – S10), these are non-equivalent, 
confirming quenching of the triplet level of the ligand by molecular 
O2. To determine the extent of the O2 influence, we investigated the 
emission intensity of the 0.2 mM solutions of K3[Eu(dpaCbz)3] with 
varying amounts of methanol and glycerol in the absence of O2. 
Although the concentration of O2 slightly influences the emission in
tensity of K3[Eu(dpaCbz)3] in pure methanol, it does not influence it in 
other methanol:glycerol solvent mixtures (Figure S11). That indicates 
that a high concentration of O2 is needed to have a significant effect, and 

the observed emission intensity changes are almost exclusively due to 
viscosity changes. The emission lifetimes of the K3[Eu(dpaCbz)3] com
plex in degassed methanol and degassed 1:9 methanol:glycerol are 
equivalent, which further confirms that the emission intensity changes 
are due to viscosity changes (Table 2 and Figures S7 – S10). 

Another solvent property, namely its polarity, can influence the 
emission intensity of the LnIII as well, as high polarity solvents can sta
bilize ligand CT states [75] and thus the excited state energy of the 
ligand, which changes the ligand → LnIII energy transfer rates. To ensure 
that the energy of the ligand excited state is not affected by the solvent 
polarity, the phosphorescence spectra of the [Gd(dpaCbz)3] complex 
were obtained in 100% methanol and 1:9 methanol:glycerol 
(Figure S12). The lack of significant change of the phosphorescence 
emission bands confirms that the emission intensity changes are solely 
due to the viscosity of the medium. 

4. Conclusions 

In summary, LnIII complexes with an easily synthesized carbazole- 
functionalized pyridine-bis(carboxylate) chelator display EuIII and 
YbIII emission. EuIII emission using two-photon absorption was observed 
with a σ2PA of 63 GM. A change in emission intensity as a function of the 
viscosity was observed for the EuIII complex upon excitation with one- 
photon and, as a rare example, using two-photon excitation. These re
sults establish this carbazole-based ligand as a versatile building block in 
temperature and viscosity sensing and in 2 PA dyes. These results 
contribute to our knowledge in the fields of imaging, sensing of physi
cochemical properties in materials and diagnosis in microscale systems. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
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Fig. 3. (a) Emission spectra of K3[Eu(dpaCbz)3] (λexc = 380 nm) upon one- 
photon excitation with varying viscosities. (b) Emission spectra of K3[Eu 
(dpaCbz)3] (λexc = 720 nm) upon two-photon excitation with varying viscos
ities. The insets show the plot of the emission intensity at 615 nm as a function 
of viscosity. [complex] = 0.2 mM. Solutions with varying ratios of MeOH: 
glycerol were used with viscosity in the range 0.5–200 cP. 

Table 2 
Emission lifetimes of K3[Eu(dpaCbz)3] in the presence (τO2) and absence (τno O2) 
of oxygen.  

Solvent τO2
a [ms] τno O2

b [ms] 

Methanol 1.497±0.002 1.599±0.003 
1:9 methanol:glycerol 1.604±0.006 1.604±0.003 

[complex] = 0.2 mM, λexc = 380 nm. 
a Determined in the presence of O2. 
b Determined in the absence of O2. 
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[70] A. D’Aléo, G. Pompidor, B. Elena, J. Vicat, P.L. Baldeck, L. Toupet, R. Kahn, 
C. Andraud, O. Maury, Two-photon microscopy and spectroscopy of lanthanide 
bio-probes, ChemPhysChem : Eur.J. Chem. Phys. Phys. Chem. 8 (2007) 
2125–2132. 

[71] E.R.H. Walter, J.A. Gareth Williams, D. Parker, Solvent polarity and oxygen 
sensitivity, rather than viscosity, determine lifetimes of biaryl-sensitized terbium 
luminescence, Chem. Commun. 53 (2017) 13344–13347. 

[72] I. Kutsche, G. Gildehaus, D. Schuller, A. Schumpe, Oxygen solubiltiies in aqueous 
alcohol solutions, J. Chem. Eng. Data 29 (1984) 286–287. 

[73] T. Sato, Y. Hamada, M. Sumikawa, S. Araki, H. Yamamoto, Solubility of oxygen in 
organic solvents and calculation of the hansen solubility parameters of oxygen, Ind. 
Eng. Chem. Res. 53 (2014) 19331–19337. 

[74] A.T. Bui, A. Grichine, A. Duperray, P. Lidon, F. Riobé, C. Andraud, O. Maury, 
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