
Distributed User-Level Private Mean Estimation
Antonious M. Girgis, Deepesh Data, and Suhas Diggavi

Email: amgirgis@ucla.edu, deepesh.data@gmail.com, suhas@ee.ucla.edu.

Abstract—Traditionally, an item-level differential privacy frame-
work has been studied for applications in distributed learning.
However, when a client has multiple data samples, and might
want to also hide its potential participation, a more appropriate
notion is that of user-level privacy [1]. In this paper, we develop
a distributed private optimization framework that studies the
trade-off between user-level local differential privacy guarantees
and performance. This is enabled by a novel distributed user-
level private mean estimation algorithm using distributed private
heavy-hitter estimation. We use this result to develop the privacy-
performance trade-off for distributed optimization.

I. INTRODUCTION

Differential privacy (DP) [2] has become the de facto
standard for measuring the privacy guarantees. When applying
to distributed learning settings where data is stored at several
client devices (each client may have multiple data points) and
a server aims to learn a model, the traditional DP literature
focuses on making neighboring datasets indistinguishable,
where two datasets are neighbors if they differ in a single data
point at a single user. This is called item-level DP. However,
in distributed learning, a client may not even want to reveal
whether it participated or not, which is equivalent to requiring
the privacy of its entire local dataset (not just of a single data
point). This is called user-level DP, which has recently seen
some attention [1], [3]–[6].

We can obtain user-level DP from item-level DP by using
group privacy [7], but this degrades the privacy parameter
by a multiplicative factor of the number of data points in a
local dataset, which may be impractical. We can achieve a
significantly better user-level privacy guarantee by assuming
concentration of gradients [5], which essentially reduces their
sensitivity and thereby the required noise magnitude.

Our contributions: Our distributed learning algorithm is based
on distributed private mean estimation that enables clients to
privatize their gradients and the server to aggregate them for
use in iterative optimization. We present these novel distributed
private mean estimation algorithms with user-level privacy, for
the scalar case (Algorithm 1), which is used as a building
block for the vector case (Algorithm 5). At the core of our
algorithms is a method of privately estimating the range of
the gradients using the idea of private heavy-hitter estimation.
We give the user-level privacy-accuracy trade-off in Theorem
1 (scalar case) & Theorem 2 (vector case). We present its
application to distributed learning in Theorem 3. This can be
extended using privacy amplification methods (e.g., shuffling

All authors are with the University of California, Los Angeles, USA.
This work was supported in part by NSF grants 2139304 and 2007714.

or secure aggregation) along with composition theorems (see
[8] and Remark 5).

Related work: There has been a lot of recent work in applying
item-level DP to machine learning algorithms (see [9]–[12] and
references therein), and much less work on user-level privacy,
with notable exceptions in [1], [3]–[6]. Our algorithms are
inspired from that in [5], but with an important distinction that
[5] only provide user-level central DP guarantees, whereas,
our algorithms provide user-level local DP guarantees; in
distributed learning with an untrusted server, clients need local
DP guarantees. Our algorithm is based on distributed private
heavy-hitter estimation, whereas it is not clear how the median-
based mechanism in [5], could be made distributed.

Paper organization: We formulate the problem of mean
estimation with user-level LDP and give some preliminaries in
Section II. We present our private mean estimation algorithms
and the results (both scalar and vector case) in Section III
and apply these to an optimization framework in Section IV.
We provide the proof outlines of our private mean estimation
results in Section V. Proof details are provided in appendices
of the full version [8].

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a set of n users, each having a local dataset of
m samples. Let Di = {x(i)

1 , . . . , x(i)
m } denote the local dataset

at the i-th user for i 2 [n], where x(i)
j 2 X and X ⇢ Rd.

We define D = (D1, . . . ,Dn) 2 (Xm)n as the entire dataset.
The users are connected to an untrusted server who wants to
estimate the mean x = 1

mn

Pn
i=1

Pm
j=1 x

(i)
j . Users want to

preserve the privacy of their local datasets while minimizing
the worst-case expected error for estimating x; see (2).

We first define differential privacy (DP) and the difference
between user-level and item-level privacy. We say that two
datasets D, D0 are neighboring with respect to distance metric
dis if we have dis(D,D0)  1.

Definition 1. (Differential Privacy) Let ✏, � � 0. A randomized
mechanism M : D ! ⇥ is said to be (✏, �)-DP with respect to
dis if for any neighboring datasets D,D0 and any measurable
set ✓ ✓ ⇥, we have

Pr (M (D) 2 ✓)  e✏ Pr (M (D0) 2 ✓) + �. (1)

If � = 0, then the privacy is referred to as pure DP.

Remark 1 ((Central) item-level DP vs (central) user-level
DP [5]). When we have more than one user (i.e., n > 1)
and a space D , (Xm)n, by choosing dis (D,D0) =

Algorithm 1 Meanscalar(D, ⌧, ✏0, �): Distributed Private Mean
Estimation for Scalars

1: Inputs: D = (D1, . . . ,Dn), Di = (x(i)
1 , . . . , x(i)

m), x(i)
j 2

[�B,B], concentration radius ⌧ , and user-level LDP
parameters ✏0, �.

2: [a, b] Rangescalar (D, ⌧, ✏0/2) (Algorithm 3).
3: for User i 2 [n] do
4: zi Meanuser

scalar
�
Di, [a, b],

✏0
2 , �

�

5: Return: x̂ = 1
n

Pn
i=1 zi.

Pn
i=1

Pm
j=1 {x(i)

j 6= x0(i)
j }, we recover the standard definition

of the DP [2], [7], which we call (central) item-level DP. In
the central item-level DP, two datasets D, D0 are neighboring
if they differ in a single item. On the other hand, by choosing
dis (D,D0) =

Pn
i=1 {Di 6= D0

i}, we call it (central) user-
level DP, where two datasets D,D0 2 (Xm)n are neighboring
when they differ in a local dataset of any single user. Observe
that when each user has a single item (m = 1), then both
item-level and user-level privacy are equivalent.

Remark 2 (User-level Local Differential Privacy (LDP)). When
we have a single user (i.e., n = 1 and D = Xm), by choosing
dis (D,D0) = {D 6= D0} for D,D0 2 Xm, we call it user-
level LDP. In this case each user privatize her own local dataset
using a private mechanism.

Our objective is to design user-level LDP mechanisms Mi :
Xm ! ⇥i for i 2 [n] and an estimator x̂ : ⇥1⇥. . .⇥⇥n ! X
to minimize the worst-case expected error:

R✏,� = inf
{Mi2M✏,�}

inf
x̂

sup
D2(Xm)n

E
h
kx̂� xk2

i
, (2)

where M✏,� denotes the set of all possible user-level (✏, �)-LDP
mechanisms, and the expectation is taken over the randomness
in M1, . . . ,Mn and x̂.

As mentioned in Section I, we can significantly improve the
user-level privacy guarantees (beyond what can be achieved
by applying the group privacy) by assuming concentration of
the input vectors.

Now, we define the concentration condition for a set of
samples and the sub-Gaussian random vector.

Definition 2 (Concentration). A set of (random) vectors yn =
(y1, . . . , yn), each taken from [�B,B]d is (⌧, �)-concentrated
if there exists y0 2 [�B,B]d such that with probability at least
1� �,

max
i2[n]
kyi � y0k2  ⌧. (3)

Definition 3 (Sub-Gaussian random vector). A random vector
x 2 Rd is said to be sub-Gaussian with proxy variance �2 if
for any u 2 Rd with kuk2 = 1, the random variable uTx is
sub-Gaussian with proxy variance �2.

Throughout this paper, we assume that the samples {x(i)
j :

i 2 [n], j 2 [m]} are drawn from a bounded space X ,
[�B,B]d ⇢ Rd for some d � 1. Furthermore, we assume

Algorithm 2 Meanuser
scalar(D, [a, b], ✏0, �)

1: Inputs: D = (x1, . . . , xm), concentration range [a, b], and
user-level LDP parameters ✏0, �.

2: Sample ⌫ ⇠ N (0, 12(b�a)2 log(1.25/�)
✏20

).
3: Return: z =

Q
[a,b] y + ⌫, where y = 1

m

Pm
j=1 xj andQ

[a,b] is the projection operator onto [a, b].

that the samples x(i)
j , i 2 [n], j 2 [m] are i.i.d. sub-Gaussian

random vectors with proxy variance �2.

III. PRIVATE MEAN ESTIMATION

In this section, we present our distributed user-level LDP
mechanism to estimate the mean x. We start with the scalar case
when d = 1 in Section III-A. Then, we extend our algorithm
for d-dimensional space in Section III-B.

A. Scalar Case

Suppose x(i)
j 2 [�B,B] for all i 2 [n] and j 2 [m].

Furthermore, the samples x(i)
j are i.i.d. sub-Gaussian with

proxy �2. Let yi = 1
m

Pm
j=1 x

(i)
j denote the mean of the

local samples at the i-th user for i 2 [n]. Thus, {yi}
are sub-Gaussian random variables with proxy �2

m which
implies that the set yn = (y1, . . . , yn) is (⌧, �)-concentrated,
where ⌧ = �

q
log(2n/�)

m for any � 2 (0, 1) (e.g., see [13,
Theorem 1.14]).

The mean estimation process works in two stages similar
to [5]. In the first stage, the server privately estimates the range
in which the means y1, . . . , yn lie with high probability. In the
second stage, each user projects her mean value yi into the
determined range from the first step. Then, all users send user-
level LDP versions of their projected samples to the central
server. The first stage mechanism is denoted by Rangescalar and
is presented in Algorithm 3, and the second stage mechanism
is denoted by Meanscalar and is presented in Algorithm 1. We
give an outline of both these algorithms below.

In Rangescalar we first divide the original range [�B,B]
into k = B/⌧ bins, where ⌧ is the concentration parameter
of y1, . . . , yn. Then, each user sends a private version of
the closest bin to her mean value yi (using the mechanism
Rangeuser

scalar as described in Algorithm 4). The server estimates
the frequencies (the number of means close to each bin) under
user-level LDP constraints. We use a Hadamard Response
mechanism similar to the one proposed in [14] to estimate the
highest frequency under user-level LDP constraints. Observe
that if the means (y1, . . . , yn) lie in radius ⌧ and the server
succeeds to estimate the highest frequency correctly, then we
get yi 2 R , [amax � 3⌧, amax + 3⌧] for all i 2 [n]. In
Meanscalar, each client projects her mean yi onto the estimated
range R from the first stage. The objective of this projection
is that the user-level sensitivity will decrease from 2B to 2⌧ ,
where ⌧ = O(1p

m
). In other words, the user-level sensitivity

will decrease by increasing the number of samples per user
using this projection step. After the projection, each user adds

a Gaussian noise with a variance function of the user-level
sensitivity (⌧) and LDP parameter ✏0 to preserve privacy.

Theorem 1. The mechanism Meanscalar (D, ⌧, ✏0, �) is user-
level (✏0, �)-LDP. Furthermore, if {x(i)

j } are sub-Gaussian
with proxy �2, then yn = (y1, . . . , yn) are (⌧, �)-concentrated,
where yi = 1

m

Pm
j=1 x

(i)
j and ⌧ = �

q
log(2n/�)

m . With
probability at least 1� �, we have

E1 := E

2

64

������
1

nm

nX

i=1

mX

j=1

x(i)
j �Meanscalar (D, ⌧, ✏0, �)

������

2
3

75

 O
✓
⌧2 log(1/�)

n✏20

◆
, (4)

where � = min
n
1, � + 2B

⌧ exp
⇣
� n(e✏0/2�1)2

200(e✏0/2+1)2

⌘o
.

We provide a proof of Theorem 1 in Section V. Observe
that Theorem 1 provides privacy-utility trade-offs for ✏0 <
1. However, we can obtain similar results for general ✏0 by
adapting the variance of the Gaussian noise using the results
in [15], [16]

Remark 3 (Gaussian vs. Laplace Noise). In Meanuser
scalar, users

add Gaussian noise to achieve user-level (✏0, �)-LDP. Instead
of Gaussian noise, we can add a Laplace noise Lap(12⌧✏0

) to
get a pure user-level ✏0-LDP with the same estimation error
as (4) in Theorem 1.

Remark 4 (User-level LDP vs user-level DP). In [5], the
authors proposed a (central) user-level DP mean estimation
algorithm that achieves estimation error O(⌧2

n2✏2) with proba-
bility (1� �c), where �c = min{1, � + B

⌧ e
�n✏

8 } and ✏ is the
(central) DP parameter. Although, the confidence probability
1� � is almost same for both user-level LDP and user-level
DP, it is clear that there is a gap of O(n) in the estimation
error between the central and the local models. This is not
surprising as the same gap appears in the item-level DP and
LDP as well [17], [18]. In order to amplify the privacy of the
user-level LDP to match with that of the user-level DP, we can
assume the existence of a trusted shuffler [19]–[21] or secure
aggregation [22] between the users and the untrusted server.
See Appendix D for more details.

B. Vector Case

In this section, we present the user-level LDP mechanism
for general d dimensional spaces. We assume that the samples
x(i)
j 2 X , [�B,B]d for all i 2 [n] and j 2 [m].

Furthermore, the samples x(i)
j are sub-Gaussian random vector

with proxy �2. Let yi = 1
m

Pm
j=1 x

(i)
j denote the mean of

the local samples at the i-th user for i 2 [n]. Thus, yi are
sub-Gaussian random vectors with proxy �2

m which implies
that the set yn = (y1, . . . , yn) are (⌧, �)-concentrated, where
⌧ = �

q
log(2n/�)

m and � > 0 is arbitrary [13], [23].
We follow similar steps as in the centralized Algorithm

presented in [5] for user-level DP mean estimation. The idea

Algorithm 3 Rangescalar (D, ⌧, ✏0): Distributed Private Range
Estimation for Scalars

1: Inputs: D = (D1, . . . ,Dn), Di = (x(i)
1 , . . . , x(i)

m), x(i)
j 2

[�B,B], concentration radius ⌧ , and user-level LDP
parameter ✏0.

2: All users divide the interval [�B,B] into k = B/⌧ disjoint
intervals, each with width 2⌧ . Let T := {1, 2, . . . , k} be
the set of middle points of intervals.

3: for User i 2 [n] do
4: zi Rangeuser

scalar (Di, ⌧, ✏0, T).
5: Send zi to the server – here zi 2 Rk.
6: The server computes z = 1

n

Pn
i=1 zi. (Here, for any a 2 T ,

z(a) denotes an estimate of the frequency of a, i.e., the
fraction of yi’s that are closest to a).

7: Let amax = argmaxa2T z(a).
8: Return: R = [amax � 3⌧, amax + 3⌧]

of the private mean estimation Algorithm is to observe that the
means y1, . . . , yn are concentrated in `2-norm with radius ⌧ .
Similar to [5], we first apply an encoding step to bound them
in `1-norm with radius O(⌧p

d
). This step can be obtained

by applying a random rotation as in [5], [10] or by applying
Kashin’s representation as in [11]. Then, we apply the scalar
Algorithm 3 for each coordinate separately. The private mean
estimation for d-dimensional vectors is denoted by Meanvector
and is presented in Algorithm 5.

Theorem 2. The mechanism Meanvector (D, ⌧, ✏0, �) is user-
level (✏0, �)-LDP. Furthermore, if {x(i)

j } are sub-Gaussian ran-
dom vectors with proxy �2, then yn = (y1, . . . , yn) are (⌧, �)-
concentrated, where yi =

1
m

Pm
j=1 x

(i)
j and ⌧ = �

q
log(2n/�)

m .
With probability 1� �, we have

E2 := E

2

64

������
1

mn

nX

i=1

mX

j=1

x(i)
j �Meanvector (D, ⌧, ✏0, �)

������

2
3

75

 O
✓
⌧2d log(dn/�) log(1/�)

n✏20

◆
, (5)

where � = min
n
1, 2� + ⇣

o
, ✏00 = ✏0

2d , and ⇣ =

2d2B
p

log(dn/�)

⌧ exp

✓
� n(e✏

0
0�1)2

200(e✏
0
0+1)2

◆
.

We provide a proof of Theorem 2 in Section V.

IV. EMPIRICAL RISK MINIMIZATION

In this section, we present an application of the private
mean estimation algorithms under user-level LDP constraints
to Federated Learning (FL), where a set of n users are
connected to a central server to solve the following empirical
risk minimization (ERM) problem:

1We assume that k is a power of 2. Otherwise we assume the size of T is
K = 2dlog2(k)e (the smallest power of 2 larger than k).

Algorithm 4 Rangeuser
scalar (D, ⌧, ✏0, T)

1: Inputs: D = (x1, . . . , xm), xj 2 [�B,B]; concentration
radius ⌧ ; user-level LDP parameter ✏0; T = [k] be the set
of middle points of the intervals.

2: Compute y = 1
m

Pm
j=1 xj .

3: Compute ⌫ = argminj2[k] |y � aj | (the index of a point
in T closest to y).

4: Let Hk be Hadamard matrix.1
5: Compute m = 1p

k
Hke⌫ , where e⌫ denotes the basis vector

corresponding to ⌫.
6: Sample j ⇠ Unif[k] and compute z:

z =

8
<

:
+Hk(j)

⇣
e✏0+1
e✏0�1

⌘
w.p. 1

2 +
p
km(j)
2

e✏0�1
e✏0+1

�Hk(j)
⇣

e✏0+1
e✏0�1

⌘
w.p. 1

2 �
p
km(j)
2

e✏0�1
e✏0+1

7: Return: z

argmin
✓2C

⇣
F (✓,D) =

1

n

nX

i=1

Fi (✓,Di)
⌘
. (6)

Here, C ⇢ Rd is a closed convex set. Each user has a local
dataset Di = {di1, . . . , dim} of m samples and Fi (✓,Di) =
1
m

Pm
j= f (dij , ✓) denotes the loss function at the i-th user

local dataset Di w.r.t. the model ✓. Our goal is to solve the
ERM problem in (6) while providing user-level privacy.

In Algorithm 6, we propose a user-level local DP stochastic
gradient descent (ULDP-SGD). At each iteration of the ULDP-
SGD, we choose uniformly at random a set of k users. Each user
applies a full gradient of the local function Fi (✓). Then, the
server estimates under user-level LDP constraints the average of
gradients 1

km

P
i2Ut

Pm
j=1r✓tf (✓t; dij) and takes a descent

step.
We state the (per-iteration) privacy and convergence results

of Algorithm 6 below and prove it in Appendix C.

Theorem 3. Let the set C be convex with diameter D and the
function f (✓; .) : C ! R be convex and L-Lipschitz continuous
with respect to the `2-norm. Let ✓⇤ = argmin✓2C F (✓) denote
the minimizer of the problem (6). The Algorithm Aulpd is user-
level (✏0, �)-LDP per iteration. If we run Algorithm Auldp over
T iterations with learning rate schedule ⌘t =

D
G
p
t
, then

E [F (✓T+1)]� F (✓⇤) = O
✓
DG

log(T)p
T

◆
(7)

with probability at least 1 � �T , where G =

L

r⇣
1 + cd log(dn/�) log(1/�) log(2n/�)

qnm✏20

⌘
, c = 28800, q = k

n ,

� = 1
nlog(n)+2 , �T = min{1, 2T� + T ⇣}, ✏00 = ✏0

2d , and

⇣ =
2d2B
p

log(dn/�)

⌧ exp
⇣
� qn(e✏

0
0�1)2

200(e✏
0
0+1)2

⌘
.

Remark 5 (Privacy guarantee). Theorem 3 states the per-
iteration user-level local DP guarantee of Algorithm 6.
With slight modifications in our mean estimation algorithm
Meanvector, we can apply shuffling or secure aggregation
to convert these to user-level central DP guarantees [22],

Algorithm 5 Meanvector (D, ⌧, ✏0, �): Distributed Private Mean
Estimation for Vectors

1: Inputs: D = (D1, . . . ,Dn), Di = (x(i)
1 , . . . , x(i)

m), x(i)
j 2

[�B,B]d, concentration radius ⌧ , and user-level LDP
parameters ✏0, �.

2: Let D = Diag(w), where w ⇠ Unif{�1, 1}.
3: Compute U = 1p

d
HdD

4: Set ✏00 = ✏0
2d and ⌧ 0 = 10⌧

q
log(nd/�)

d .
5: for l 2 [d] do
6: for User i 2 [n] do
7: Compute x̂(i)

j (l) = (Ux(i)
j)(l) (the l-th coordinate

of the vector Ux(i)
j) for j 2 [m].

8: Let Di,l = (x̂(i)
1 (l), . . . , x̂(i)

m (l)).
9: Let Dl = (D1,l, . . . ,Dn,l).

10: R(l) Rangescalar
�
Dl, ⌧ 0, ✏00

�

11: for User i 2 [n] do
12: Sample j ⇠ Unif[d].
13: Let zi := [0, . . . , 0, d ⇥ zi(j), 0, . . . , 0], which has a

non-zero element in the j-th location.
14: zi(j) Meanuser

scalar
�
Di,j , R(j), ✏0/2, �

�
.

15: Compute ẑ = 1
n

Pn
i=1 zi

16: Return: x̂ = U
�1ẑ.

[24]. Then, in order to obtain the privacy guarantee of our
entire algorithm, we can either use the strong composition
theorem [7] or use the Rényi DP guarantees which provides
better composition bounds [12], [21]. See Appendix D for
more details.

V. PROOFS OF THEOREM 1 AND THEOREM 2
Proof of Theorem 1. The algorithm Meanscalar is composed of
two sub-routines Rangescalar and Meanuser

scalar. In order to show
that Meanscalar satisfies user-level (✏0, �)-LDP, it suffices to
prove that Rangescalar satisfies user-level (✏0/2, 0)-LDP and
Meanuser

scalar satisfies user-level (✏0/2, �)-LDP, and then the result
follows by composing these two mechanisms.
• Rangescalar is user-level (✏0/2, 0)-LDP: We show this along

with other results that will be useful to bound the error in the
following lemma (which is proved in Appendix A).

Lemma 1. Rangescalar(D, ⌧, ✏0) is user-level ✏0-LDP. Further-
more, if the samples x(i)

j are sub-Gaussian with proxy �2, then
with probability at least 1� �, we have

yi 2 [a, b] Rangescalar(D, ⌧, ✏0) 8i 2 [n] (8)

where yi =
1
m

Pm
j=1 x

(i)
j is the average of local samples at the

i-th user, and � = min
n
1, � + 2B

⌧ exp
⇣
� n(e✏0/2�1)2

200(e✏0/2+1)2

⌘o
.

This lemma shows that with probability at least 1� �, the
server can privately estimate an interval of length 6⌧ in which
the averages y1, . . . , yn of local samples at all users lie. Thus,
each user can project the average of her local samples onto
this interval without hurting the estimation accuracy of the

second stage. Furthermore, the sensitivity of replacing a user
with another one would be 6⌧ = O(1p

m
) instead of 2B. As a

result, each user adds a noise as a function of ⌧ that reduces
the estimation error.
• Meanuser

scalar is user-level (✏0/2, �)-LDP: Consider any two
neighboring local datasets Di = (x(i)

1 , . . . , x(i)
m), D0

i =
(x0(i)

1 , . . . , x0(i)
m). Let yi = 1

m

Pm
j=1 x

(i)
j denotes the average

of local samples in D; similarly define y0i. The user-level
sensitivity for computing its projection

Q
[a,b] yi is bounded by

�2yi = sup
Di,D0

i2[�B,B]m

���
Y

[a,b]

(yi)�
Y

[a,b]

(y0i)
���  (b� a).

Thus, from [7, Theorem 3.22] we get that by setting �2 =
12(b�a)2 log(1.25/�)

✏20
, and the output zi =

Q
[a,b](yi)+⌫i satisfies

user-level
�
✏0
2 , �

�
-LDP.

Bounding the error of Meanscalar: Let [a, b]
Rangescalar(D, ⌧, ✏0/2) and ỹi = ⇧[a,b]yi. Note that
(b � a) = 6⌧ . Let x̂ = 1

n

Pn
i=1 zi be the estimator of

the exact mean x = 1
n

Pn
i=1 yi. Thus, we have

E

2

4
�����
1

n

nX

i=1

ỹi �
1

n

nX

i=1

zi

�����

2
3

5 = E

2

4
�����
1

n

nX

i=1

⌫i

�����

2
3

5 =
�2

n

=
432⌧2 log(1.25/�)

n✏20
= O

✓
⌧2 log(1/�)

n✏20

◆
.

From Lemma 1, we have that yi = ỹi for all i 2 [n] with
probability at least 1� �. Thus, we get that, with probability
at least 1��, the error E1 (defined in (4)) is bounded by E1 =

O
⇣

⌧2 log(1/�)
n✏20

⌘
, This completes the proof of Theorem 1. ⌅

Proof of Theorem 2. First we prove that Meanvector (described
in Algorithm 5) is user-level (✏0, �)-LDP. Observe that we
run Rangescalar for each coordinate with privacy parameter
✏00 = ✏0/2d. Then, we user chooses uniformly at random
one coordinate to apply the Algorithm Meanuser

scalar with privacy
parameters ✏0/2, �. Thus, by composition, we get that the
Algorithm 5 is user-level (✏0, �)-LDP.

In order to prove the error bound, we follow the same
steps as in [5]. We first state a lemma from [5] about `1-norm
concentration using random rotation. The proof then is obtained
by combining this with the scalar case properties.

Lemma 2 (Random rotation [5]). Let U = 1p
d
HdD, where

Hd be Hadamard matrix and D be a diagonal matrix with
i.i.d. uniformly random {±1} entries. Let x1, . . . , xn, x0 2 Rd.
With probability at least 1� �, we have

max
i2[n]
kUxi �Ux0k1 

10maxi kxi � x0k2
p
log(dn/�)p

d

Since {x(i)
j } are i.i.d. sub-Gaussian random vectors with

proxy variance �2, we have that y1, . . . , yn are (⌧, �)-
concentrated, where ⌧ = �

q
log(2n/�)

m . Thus, from Lemma 2,
we have that maxi2[n] kỹi � ỹ0k1  ⌧ 0 with probability at
least 1� 2�, where ỹi =

1
m

Pm
j=1 Ux(i)

j , ỹ0 = Uy0 (y0 is the

Algorithm 6 Auldp: ULDP-SGD

1: Inputs: Datasets D = (D1, . . . ,Dn), where Di =
{di1, . . . , dim} for i 2 [n]; user-level LDP privacy pa-
rameters ✏0, �; gradient norm bound C; and learning rate
schedule {⌘t}.

2: Initialize: ✓0 2 C
3: for t 2 [T] do
4: Sampling of users: A uniformly random set Ut of k

users is chosen.
5: for users i 2 Ut do
6: for j = 1, 2, . . . ,m do
7: Compute gradient: x(i)

j
r✓tf (✓t; dij) /max

n
1,

kr✓tf(✓t;dij)k2

C

o

8: Let D̃i :=
�
x(i)
1 , . . . , x(i)

m
�

9: Let D̃ =
�
D̃i : i 2 Ut

�

10: Let � 1
nlog(n)+2 and ⌧ C

p
log(2n/�)

m

11: Aggregate: gt Meanvector
�
D̃, ⌧, ✏0, �

�

12: Gradient Descent ✓t+1
Q

C (✓t � ⌘tgt), where
Q

C
denotes the projection operator onto C.

13: Output: The model ✓T .

center of concentration), and ⌧ 0 =
10⌧
p

log(dn/�)p
d

. Thus, from
Lemma 1, we get that with probability at least 1��0, we have

ỹi(l) 2 R(l) Rangescalar(Dl, ⌧
0, ✏00), 8i 2 [n], l 2 [d] (9)

where �0 = min
n
1, 2� + 2

p
dB

⌧ 0 exp
⇣
� n(e✏

0
0/2�1)2

200(e✏
0
0/2+1)2

⌘o
.

Condition on the event that ỹi(l) 2 R(l) for all l 2 [d],
i 2 [n]. Let zi denote a r.v. taking values in {dzi(1) ·
e1, . . . , dzi(d) · ed} uniformly at random, where zi(l) =
Meanuser

scalar(Di,j , R(j), ✏0/2, �) and e1, . . . , ed are the basis
vectors in Rd. Note that dzi(l) · el is a length d vector whose
l’th component is equal to dzi(l) and all other components are
equal to zero.

It is easy to see that E[zi] = ỹi for all i 2 [n] and that zi
has bonded variance, i.e., Ekzi� ỹik2 = O

⇣
d2(⌧ 0)2 log(1/�)

✏20

⌘
–

proof is in Appendix B.
Since ỹ1, . . . , ỹn are independent we have that

E
�����
1

n

nX

i=1

(zi � ỹi)

�����

2

= O

d2 (⌧ 0)2 log(1/�)

n✏20

!
(10)

Thus, we have that the error E2 (defined in (5)) is bounded by

E2 = E
�����
1

n

nX

i=1

(ỹi � zi)

�����

2

 O
✓
⌧2d log(dn/�) log(1/�)

n✏20

◆
.

From the union bound, we have that ỹi(l) 2 R(l) for all l 2 [d],
i 2 [n] with probability at least 1��, where � = min

n
1, 2�+

⇣
o

, ✏00 = ✏0
2d , and ⇣ =

2d2B
p

log(dn/�)

⌧ exp

✓
� n(e✏

0
0�1)2

200(e✏
0
0+1)2

◆
.

This completes the proof of Theorem 2. ⌅

REFERENCES

[1] H. B. McMahan, G. Andrew, U. Erlingsson, S. Chien, I. Mironov,
N. Papernot, and P. Kairouz, “A general approach to adding differential
privacy to iterative training procedures,” arXiv preprint arXiv:1812.06210,
2018.

[2] C. Dwork, F. McSherry, K. Nissim, and A. D. Smith, “Calibrating
noise to sensitivity in private data analysis,” in Theory of Cryptography
Conference (TCC), 2006, pp. 265–284.

[3] Y. Liu, A. T. Suresh, F. X. X. Yu, S. Kumar, and M. Riley, “Learning
discrete distributions: user vs item-level privacy,” Advances in Neural
Information Processing Systems, vol. 33, pp. 20 965–20 976, 2020.

[4] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond
inferring class representatives: User-level privacy leakage from federated
learning,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 2019, pp. 2512–2520.

[5] D. Levy, Z. Sun, K. Amin, S. Kale, A. Kulesza, M. Mohri, and
A. T. Suresh, “Learning with user-level privacy,” arXiv preprint
arXiv:2102.11845, 2021.

[6] B. Ghazi, R. Kumar, and P. Manurangsi, “User-level differentially private
learning via correlated sampling,” in Advances in Neural Information
Processing Systems, 2021.

[7] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Foundations and Trends® in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[8] A. M. Girgis, D. Data, and S. Diggavi, “Distributed user-level private
mean estimation,” 2022, available online on arXiv.

[9] A. M. Girgis, D. Data, S. N. Diggavi, P. Kairouz, and A. T.
Suresh, “Shuffled model of federated learning: Privacy, accuracy and
communication trade-offs,” IEEE J. Sel. Areas Inf. Theory, vol. 2, no. 1,
pp. 464–478, 2021. [Online]. Available: https://doi.org/10.1109/JSAIT.
2021.3056102

[10] A. T. Suresh, X. Y. Felix, S. Kumar, and H. B. McMahan, “Distributed
mean estimation with limited communication,” in International Confer-
ence on Machine Learning. PMLR, 2017, pp. 3329–3337.

[11] W. Chen, P. Kairouz, and A. Özgür, “Breaking the communication-
privacy-accuracy trilemma,” in Annual Conference on Neural Information
Processing Systems, 2020.

[12] A. Girgis, D. Data, and S. Diggavi, “Renyi differential privacy of the
subsampled shuffle model in distributed learning,” Advances in Neural
Information Processing Systems, vol. 34, 2021.

[13] P. Rigollet, “High dimensional statistics,” Lecture Notes, Cambridge, MA,
USA: MIT Open-CourseWare, 2015.

[14] J. Acharya, Z. Sun, and H. Zhang, “Hadamard response: Estimating
distributions privately, efficiently, and with little communication,” in The
22nd International Conference on Artificial Intelligence and Statistics.
PMLR, 2019, pp. 1120–1129.

[15] B. Balle and Y.-X. Wang, “Improving the gaussian mechanism for
differential privacy: Analytical calibration and optimal denoising,” in
International Conference on Machine Learning. PMLR, 2018, pp.
394–403.

[16] S. A. Vinterbo, “A closed form scale bound for the (✏, �)-differentially
private gaussian mechanism valid for all privacy regimes,” arXiv preprint
arXiv:2012.10523, 2020.

[17] A. Beimel, K. Nissim, and E. Omri, “Distributed private data analysis: Si-
multaneously solving how and what,” in Annual International Cryptology
Conference. Springer, 2008, pp. 451–468.

[18] T. H. Chan, E. Shi, and D. Song, “Optimal lower bound for differentially
private multi-party aggregation,” in European Symposium on Algorithms.
Springer, 2012, pp. 277–288.

[19] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, K. Talwar, and
A. Thakurta, “Amplification by shuffling: From local to central differential
privacy via anonymity,” in Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms. SIAM, 2019, pp. 2468–2479.

[20] V. Feldman, A. McMillan, and K. Talwar, “Hiding among the clones: A
simple and nearly optimal analysis of privacy amplification by shuffling,”
arXiv preprint arXiv:2012.12803, 2020, open source implementation of
privacy https://github.com/apple/ml-shuffling-amplification.

[21] A. M. Girgis, D. Data, S. N. Diggavi, A. T. Suresh, and
P. Kairouz, “On the rényi differential privacy of the shuffle
model,” in CCS ’21: 2021 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, Republic of Korea, November
15 - 19, 2021. ACM, 2021, pp. 2321–2341. [Online]. Available:
https://doi.org/10.1145/3460120.3484794

[22] P. Kairouz, Z. Liu, and T. Steinke, “The distributed discrete gaussian
mechanism for federated learning with secure aggregation,” arXiv preprint
arXiv:2102.06387, 2021.

[23] R. Vershynin, High-Dimensional Probability: An Introduction with
Applications in Data Science. Cambridge University Press, 2018, vol. 47.

[24] A. M. Girgis, D. Data, S. N. Diggavi, P. Kairouz, and A. T. Suresh,
“Shuffled model of differential privacy in federated learning,” in The
24th International Conference on Artificial Intelligence and Statistics,
AISTATS 2021, April 13-15, 2021, Virtual Event, ser. Proceedings
of Machine Learning Research, A. Banerjee and K. Fukumizu,
Eds., vol. 130. PMLR, 2021, pp. 2521–2529. [Online]. Available:
http://proceedings.mlr.press/v130/girgis21a.html

[25] S. Shalev-Shwartz et al., “Online learning and online convex optimization,”
Foundations and Trends® in Machine Learning, vol. 4, no. 2, pp. 107–
194, 2012.

[26] O. Shamir and T. Zhang, “Stochastic gradient descent for non-smooth
optimization: Convergence results and optimal averaging schemes,” in
International conference on machine learning, 2013, pp. 71–79.

[27] B. Balle, J. Bell, A. Gascón, and K. Nissim, “The privacy blanket of the
shuffle model,” in Annual International Cryptology Conference. Springer,
2019, pp. 638–667.

[28] J. Ullman, “Cs7880. rigorous approaches to data privacy,” 2017. [Online].
Available: http://www.ccs.neu.edu/home/jullman/cs7880s17/HW1sol.pdf

https://doi.org/10.1109/JSAIT.2021.3056102
https://doi.org/10.1109/JSAIT.2021.3056102
https://github.com/apple/ml-shuffling-amplification
https://doi.org/10.1145/3460120.3484794
http://proceedings.mlr.press/v130/girgis21a.html
http://www.ccs.neu.edu/home/jullman/cs7880s17/HW1sol.pdf

APPENDIX A
OMITTED DETAILS FROM SECTION V: PROOF OF LEMMA 1

Lemma (Restating Lemma 1). Rangescalar(D, ⌧, ✏0) is user-level ✏0-LDP. Furthermore, if the samples x(i)
j are sub-Gaussian

with proxy �2, then with probability at least 1� �, we have

yi 2 [a, b] Rangescalar(D, ⌧, ✏0) 8i 2 [n] (11)

where yi =
1
m

Pm
j=1 x

(i)
j is the average of local samples at the i-th user, and � = min

n
1, � + 2B

⌧ exp
⇣
� n(e✏0/2�1)2

200(e✏0/2+1)2

⌘o
.

Proof. In order to prove that Rangescalar(D, ⌧, ✏0) is user-level ✏0-LDP, it suffices to show that Rangeuser
scalar(D, ⌧, ✏0) is user-level

✏0-LDP.
Consider an arbitrary user i 2 [n] and two local datasets Di = (x(i)

1 , . . . , x(i)
m), D0

i = (x
0(i)
1 , . . . , x

0(i)
m). Let

Z = {±Hk(j)
⇣

e✏0+1
e✏0�1

⌘
: j 2 {1, · · · , k}} denote all possible outputs of the mechanism Rrange. Thus, we get

sup
Di,D0

i2[�B,B]m
sup
z2Z

Pr [Rangescalar (Di) = z]

Pr [Rangescalar (D0
i) = z]

 sup
Di,D0

i2[�B,B]m

1
k

Pk
j=1

1
2 +

p
k|mi(j)|

2
e✏0�1
e✏0+1

1
k

Pk
j=1

1
2 �

p
k|m0

i(j)|
2

e✏0�1
e✏0+1

(a)


1
k

Pk
j=1

1
2 + 1

2
e✏0�1
e✏0+1

1
k

Pk
j=1

1
2 �

1
2
e✏0�1
e✏0+1

 e✏0

(12)

where the step (a) is obtained from the fact that mi(j),m0
i(j) 2 {± 1p

k
, }. Thus, the private range mechanism Rangeuser

scalar is
user level (✏0, 0)-LDP.

Now, suppose that {x(i)
j } are �2 sub-Gaussian. Thus, yn = (y1, . . . , yn) are (⌧, �)-concentrated, where yi =

1
m

Pm
j=1 x

(i)
j

and ⌧ = �
q

log(2n/�)
m (e.g., see [13, Theorem 1.14]). We show that with probability 1� �, we have yi 2 [a, b] for all i 2 [n],

where [a, b] Rangescalar (D, ⌧, ✏0, �). Condition on the event that yn = (y1, . . . , yn) are concentrated with radius ⌧ . Hence,
there exists y0 2 [�B,B] such that |yi � y0|  ⌧ for all i 2 [n]. In Algorithm 4, we split the interval [�B,B] into T = B

⌧
interval each with width 2⌧ , where T denotes the set of middle points of intervals. For each i 2 [n], let ⌫i = argmina2T |yi�a|
be the closest bin in T to the exact value yi. We define f(a) = 1

n

Pn
i=1 1 (⌫i = a) as the fraction (frequency) of elements

in yn that are close to the bin a for each bin a 2 T . Observe that when yn are concentrated with radius ⌧ , we expect that
f(a) = 0 for all a 2 T except two adjacent bins.

Let zi Rangeuser
scalar of the i-th user. Thus, we have

E [zi] =
1

d

kX

j=1

Hk(j)

✓
e✏0 + 1

e✏0 � 1

◆p
km(j)

e✏0 � 1

e✏0 + 1

�

=
1

d

kX

j=1

Hk(j)
p
kmi(j)

(a)
=

1

d

kX

j=1

Hk(j)H
T
k (j)e⌫i

(b)
= e⌫i ,

(13)

where step (a) follows from mi = Hke⌫i and step (b) follows from
Pk

j=1 Hk(j)HT
k (j) = HkH

T
k = k⇥Ik. Thus, z = 1

n

Pn
i=1 zi

is unbiased estimate of f = [f(a1), . . . , f(ak)], i.e., E [z] = f .

Observe that z(j) is a sum of i.i.d. Bernoulli random variables for j 2 [k]. Thus, z(j) is a sub-Gaussian with proxy
4
⇣
e✏

2
0+1

⌘2

n
⇣
e✏

2
0�1

⌘2

and E[z(j)] = f(aj). Hence, from [13, Theorem 1.14], we get that

Pr[max
j2[k]

|z(j)� f(aj)| > t]  2k exp

0

B@�
t2n
⇣
e✏

2
0 � 1

⌘2

8
�
e✏

2
0 + 1

�2

1

CA (14)

By setting t = 1
5 , with probability at least 1� 2k exp

�

n
⇣
e✏

2
0�1

⌘2

200
⇣
e✏

2
0+1

⌘2

!
, we get

max
j2[k]

|z(j)� f(aj)| 
1

5
. (15)

With probability 1� �, since there are only two adjacent bins of non-zero frequencies, one of them has a frequency f(a) � 1
2 .

Let amax be the bin that has the maximum estimated frequency. Conditioned on the event (15), the amax will be equal one of
these two non-zero bins that has non-zero frequencies. This can be seen as follows:

Let j1, j2 2 [k] be such that f(aj1), f(aj2) > 0 and we know that one of them, say, j1, has f(aj1) � 1
2 . Since amax =

argmaxj2[k] z(j), by (15), we have z(j1), z(j2) 2 [3
10 ,

7
10] and z(jl) <

1
5 , 8l 2 [k] \ {j1, j2}. Hence, amax 2 {j1, j2}.

This implies that each yi lies within 3⌧ of amax. Thus, from union bound we conclude that yi 2 [amax � 3⌧, amax + 3⌧] for
all i 2 [n] with probability at least 1� �. This completes the proof of Lemma 1. ⌅

APPENDIX B
OMITTED DETAILS FROM SECTION V: REMAINING DETAILS IN THE PROOF OF THEOREM 2

Variance of zi: Recall that zi is a r.v. that takes values in {dzi(1) · e1, . . . , dzi(d) · ed} uniformly at random, where
zi(l) = Meanuser

scalar(Di,j , R(j), ✏0/2, �) and e1, . . . , ed are the basis vectors in Rd. Note that dzi(l) · el is a length d vector whose
l’th component is equal to dzi(l) and all other components are equal to zero.

E
⇥
kzi � ỹik2

⇤
= E

⇥
kzik2

⇤
� E

⇥
kỹik2

⇤

=
1

d

dX

l=1

d2E
⇥
zi(l)

2
⇤
� kỹik2

= d
dX

l=1

E
⇥
zi(l)

2
⇤
� kỹik2

(a)
= d

dX

l=1

�
ỹi(l)

2 + E[⌫2]
�
� kỹik2

(b)
= dkỹik2 + d2E[⌫2]� kỹik2

= d2
12(6⌧ 0)2 log(1.25/�)

✏20
+ (d� 1)kỹik2

(c)
 O

d2 (⌧ 0)2 log(1/�)

✏20

!
+ d(d� 1)(⌧ 0)2

(d)
= O

d2 (⌧ 0)2 log(1/�)

✏20

!

In (a), we used zi(l) = ỹi(l) + ⌫ for every l 2 [d], where ⌫ ⇠ N (0, 12(b�a)2 log(1.25/�)
✏20

), with (b� a) = 6⌧ 0 (see Meanuser
scalar)

and also the fact that ỹi(l) and ⌫ are independent. In (b) we used kỹik2 =
Pd

l=1 ỹi(l)
2. In (c), we used that each coordinate of

ỹi is bounded by ⌧ 0. In (d) we assumed log(1/�) � ⌦(✏20).

APPENDIX C
PROOF OF THEOREM 3

Theorem (Restating Theorem 3). Let the set C be convex with diameter D and the function f (✓; .) : C ! R be convex and
L-Lipschitz continuous with respect to the `2-norm. Let ✓⇤ = argmin✓2C F (✓) denote the minimizer of the problem (6). The
Algorithm Aulpd is user-level (✏0, �)-LDP per user per iteration. If we run Algorithm Auldp over T iterations with learning
rate schedule ⌘t =

D
G
p
t
, then

E [F (✓T+1)]� F (✓⇤) = O
✓
DG

log(T)p
T

◆
(16)

with probability at least 1��T , where G = L

r⇣
1 + cd log(dn/�) log(1/�) log(2n/�)

qnm✏20

⌘
, q = k

n , � = 1
nlog(n)+2 , �T = min{1, 2T�+

T ⇣}, ✏00 = ✏0
2d , and ⇣ =

2d2B
p

log(dn/�)

⌧ exp

✓
� qn(e✏

0
0�1)2

200(e✏
0
0+1)2

◆
.

Proof. The privacy is directly obtained from the fact that at each iteration the private gradients are obtained from the Algorithm
private mean estimation Meanvector which is user-level (✏0, �)-LDP. Thus, the ULDP-SGD Algorithm is user-level (✏0, �)-LDP
per iteration.

Observe that if the function f(✓, d) is L-Lipschitz continuous with respect to `2-norm, then the gradient kr✓f(✓, d)k2  L
(see e.g., [25, Lemma 2.6]) . At any iteration t 2 [T], let x(i)

j = r✓tf(✓t, dij), and yi =
1
m

Pm
j=1 x

(i)
j for i 2 Ut, j 2 [m].

Thus, we get that {x(j)
i } are sub-Gaussian with proxy L2. Thus, the samples (yi : i 2 Ut) are (⌧, �) concentrated, where

⌧ = L
q

log(2n/�)
k .

At iteration t 2 [T] of Algorithm 6, the server receives the average of km private gradients {x(i)
j : i 2 Ut, j 2 [m]} using

the private mean estimation Algorithm Meanvector. Since Algorithm Meanvector is an unbiased estimate of 1
km

P
i2Ut

Pm
j=1 x

(i)
j

with probability at least 1�� (see Theorem 2), we get that E
h
Meanvector(D̃)

i
= rF (✓t,D) where the expectation with respect

to the randomness of user sampling and the randomness in the Algorithm Meanvector. Now we show that gt has a bounded
second moment.

Lemma 3. If the function f (✓; .) : C ! R is convex and L-Lipschitz continuous with respect to the `2-norm, then we have

Ekgtk22  L2

✓
1 +

cd log(dn/�) log(1/�) log(2n/�)

qnm✏20

◆
, (17)

with probability at least 1 � �, where c = 28800 is a global constant, � = min
n
1, 2� + ⇣

o
, ✏00 = ✏0

2d , and

⇣ =
2d2B
p

log(dn/�)

⌧ exp

✓
� qn(e✏

0
0�1)2

200(e✏
0
0+1)2

◆
.

Proof. Under the conditions of the lemma, we have from [25, Lemma 2.6] that kr✓f (✓; d) k  L, which implies that
kr✓F (✓)k  L. Thus, we have

Ekgtk22 = kE [gt] k22 + Ekgt � E [gt] k22
(a)
 L2 + Ekgt � E [gt] k22
(b)
 L2 +

cL2d log(nd/�) log(1/�) log(2n/�)

km✏20

with probability at least 1� �, where c = 28800 is a global constant. Step (a) follows from the fact that kr✓tF (✓t) k  L.
Step (b) follows from Theorem 2. ⌅

Thus, from union bound and Lemma 3, with probability 1� �T , we have Ekgtk22  G2 for all t 2 [T], where �T = T�

and G = L

r⇣
1 + cd log(dn/�) log(1/�) log(2n/�)

qnm✏20

⌘
and q = k/n. Now, we can use standard SGD convergence results for convex

functions. In particular, we use the following result from [26].

Lemma 4 (SGD Convergence [26]). Let F (✓) be a convex function, and the set C has diameter D. Consider a stochastic
gradient descent algorithm ✓t+1

Q
C (✓t � ⌘tgt), where gt satisfies E [gt] = r✓tF (✓t) and Ekgtk22  G2. By setting

⌘t =
D

G
p
t
, we get

E [F (✓T)]� F (✓⇤)  2DG
2 + log (T)p

T
= O

✓
DG

log (T)p
T

◆
. (18)

As a result, Algorithm 6 satisfies the premise of Lemma 4. Now, using the bound on G2 from Lemma 3, we have that the
output ✓T of Algorithm 6 satisfies

E [F (✓T+1)]� F (✓⇤) = O
✓
DG

log(T)p
T

◆
(19)

This completes the proof of Theorem 3. ⌅

APPENDIX D
USER-LEVEL LDP IN THE SHUFFLE MODEL

In this section, we extend our proposed algorithms for private mean estimation and empirical risk minimization to the shuffle
model to provide a strong (central) user-level DP as well as user-level LDP. In the shuffle model, each user applies a user-level
LDP mechanisms to preserve privacy of her own local dataset. We assume there exists a secure shuffler between the users and
the central server. The shuffler receives the users’ reports (the output of the user-level LDP mechanism) and randomly permutes
them before passing them to the server.

Let M : Xm ! ⇥ be user-level LDP mechanism, Di 2 Xm be the local dataset at the i-th client, and D = (D1, . . . ,Dn).
Let Hn : ⇥n ! ⇥n denote the shuffling operation that takes n inputs and outputs their uniformly random permutation. We
define the shuffling mechanism as follow:

Mshuffle (D) = Hn (M (D1) , . . . ,M (Dn)) . (20)

In section D-A, we extend the private mean estimation results in the shuffle model and in Section D-B, we present the results
of the ERM in the shuffle model.

A. Private Mean Estimation

In order to use the results of privacy amplification by shuffling [12], [19]–[21], [27], it is required that the local mechanism
M to be pure user-level ✏0-LDP. Thus, we replace the Gaussian noise added in line 2 in Algorithm 2 with Laplace noise to give
pure user-level LDP. In other words, we suppose in mechanism Meanuser

scalar, we sample ⌫ ⇠ Lap
⇣
2 (b�a)

✏0

⌘
. Thus, the mechanism

Meanuser
scalar is pure user-level ✏0-LDP.

Theorem 4. In the shuffle model, the mechanism Meanvector (D, ⌧, ✏0, �) is user-level (✏0, 0)-LDP. For ✏0  1, the output of the
shuffler is (central) user-level (✏, �)-DP, where � 2 (0, 1) and ✏ is given by:

✏ = O

✏0

r
log(1/�)

n

!
. (21)

Furthermore, if {x(i)
j } are sub-Gaussian random vectors with proxy �2, then yn = (y1, . . . , yn) are (⌧, �)-concentrated,

where yi =
1
m

Pm
j=1 x

(i)
j and ⌧ = �

q
log(2n/�)

m . With probability 1� �, we have

E2 := E

2

64

������
1

mn

nX

i=1

mX

j=1

x(i)
j �Meanvector (D, ⌧, ✏0, �)

������

2
3

75  O
✓
⌧2d log(dn/�)

n✏20

◆
, (22)

where � = min
n
1, 2� + ⇣

o
, ✏00 = ✏0

2d , and ⇣ =
2d2B
p

log(dn/�)

⌧ exp

✓
� n(e✏

0
0�1)2

200(e✏
0
0+1)2

◆
.

Proof. It is clear that the mechanism Meanvector (D, ⌧, ✏0, �) is user-level (✏0, 0)-LDP as we replaced the Gaussian noise with
Laplace noise. since each user LDP mechanism is identical and are ✏0-LDP, from privacy amplification by shuffling [27,
Corollary 5.3.1], we get that the output of the shuffler is user-level (✏, �), where � 2 (0, 1) and ✏ is given by:

✏ = O

min{1, ✏0}e✏0

r
log(1/�)

n

!
. (23)

when ✏0  1, we get that ✏ = O
✓
✏0

q
log(1/�)

n

◆
. The estimation error analysis is exactly the same as the Gaussian noise case

given in Appendix B. This completes the proof of Theorem 4 ⌅

Remark 6 (Achieving the mean estimation of the (central) user-level DP). Observe that by substituting ✏ =

O
✓
min{1, ✏0}e✏0

q
log(1/�)

n

◆
from (23) into the mean estimation error in (22), we get that

E2 := E

2

64

������
1

mn

nX

i=1

mX

j=1

x(i)
j �Meanvector (D, ⌧, ✏0, �)

������

2
3

75  O
✓
⌧2d log(dn/�) log (1/�)

n2✏2

◆
.

This matches the mean square error of the central user-level DP Algorithm proposed in [5]. However, our Algorithm additionally
provides LDP guarantees for the users.

B. Private ERM

In this section, we extend the empirical risk minimization problem presented in Section IV to the shuffle model. The
main difference in Algorithm 6 is that each user follows the changes in the private mean estimation Algorithm proposed in
Section D-A and we assume that there exists a trusted shuffler between the users and the server.

Theorem 5. Let the set C be convex with diameter D and the function f (✓; .) : C ! R be convex and L-Lipschitz continuous
with respect to the `2-norm. Let ✓⇤ = argmin✓2C F (✓) denote the minimizer of the problem (6). The Algorithm Aulpd is
user-level (✏0, 0)-LDP per iteration. Furthermore, for ✏� 0  1, the Algorithm Aulpd is (central) user-level (✏, �)-DP, where
� 2 (0, 1) and ✏ is given by

✏ = O

✏0

r
qT log(2qT/�) log(2/�)

n

!
(24)

If we run Algorithm Auldp over T iterations with learning rate schedule ⌘t =
D

G
p
t
, then

E [F (✓T+1)]� F (✓⇤) = O
✓
DG

log(T)p
T

◆
(25)

with probability at least 1 � �T , where G = L

r⇣
1 + cd log(dn/�) log(2n/�)

qnm✏20

⌘
, c = 28800, q = k

n , � = 1
nlog(n)+2 , �T =

min{1, 2T� + T ⇣}, ✏00 = ✏0
2d , and ⇣ =

2d2B
p

log(dn/�)

⌧ exp
⇣
� qn(e✏

0
0�1)2

200(e✏
0
0+1)2

⌘
.

Proof. It is straightforward that the Algorithm Aulpd is user-level (✏0, 0)-LDP per iteration as we use the private mean estimation
Meanvector at each iteration. Furthermore, at each iteration, a set of k users are choosen at random. Thus from Theorem 4, the

output of the shuffler is (central) user-level
⇣
✏̃t,

�
2qT

⌘
-DP, where ✏̃t = O

✓
✏0
q

log(2T/�)
qn

◆
. Thus, from uniform sampling [28],

we get that the Algorithm Aulpd is (central) user-level
�
✏t,

�
2T

�
-DP per iteration, where ✏t = q✏̃t. From composition theorem [7,

Corollary 3.21], we get that the Algorithm Aulpd is (central) user-level (✏, �)-DP, where ✏ = O
✓
✏0

q
qT log(2qT/�) log(2/�)

n

◆
.

The convergence results follows exactly from our proofs in Appendix C. This completes the proof of Theorem 5. ⌅

Remark 7. Observe that substituting ✏ = O
✓
✏0

q
qT log(2qT/�) log(2/�)

n

◆
, T = n

q , and q = k
n , we get that

E [F (✓T+1)]� F (✓⇤) = O

DL

log(T/�)3 log(nd/�)
p
d log(1/�)

n
p
m✏

!
(26)

with probability at least 1� �T . Furthermore, when � = 1
nlog(n)+2

and the number of users n is arbitrary large, we get that
�T  1

nlog(n) + n2e�n✏20/400 ! 0 as ✏0  1 and n!1.

	Introduction
	Preliminaries and Problem Formulation
	Private Mean Estimation
	Scalar Case
	Vector Case

	Empirical Risk Minimization
	Proofs of Theorem 1 and Theorem 2
	References
	Appendix A: Omitted Details from Section V: Proof of Lemma 1
	Appendix B: Omitted Details from Section V: Remaining Details in the Proof of Theorem 2
	Appendix C: Proof of Theorem 3
	Appendix D: User-Level LDP in The Shuffle Model
	Private Mean Estimation
	Private ERM

