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Abstract—Traditionally, an item-level differential privacy frame-
work has been studied for applications in distributed learning.
However, when a client has multiple data samples, and might
want to also hide its potential participation, a more appropriate
notion is that of user-level privacy [1]. In this paper, we develop
a distributed private optimization framework that studies the
trade-off between user-level local differential privacy guarantees
and performance. This is enabled by a novel distributed user-
level private mean estimation algorithm using distributed private
heavy-hitter estimation. We use this result to develop the privacy-
performance trade-off for distributed optimization.

I. INTRODUCTION

Differential privacy (DP) [2] has become the de facto
standard for measuring the privacy guarantees. When applying
to distributed learning settings where data is stored at several
client devices (each client may have multiple data points) and
a server aims to learn a model, the traditional DP literature
focuses on making neighboring datasets indistinguishable,
where two datasets are neighbors if they differ in a single data
point at a single user. This is called item-level DP. However,
in distributed learning, a client may not even want to reveal
whether it participated or not, which is equivalent to requiring
the privacy of its entire local dataset (not just of a single data
point). This is called user-level DP, which has recently seen
some attention [1]], [3]-[6].

We can obtain user-level DP from item-level DP by using
group privacy [7], but this degrades the privacy parameter
by a multiplicative factor of the number of data points in a
local dataset, which may be impractical. We can achieve a
significantly better user-level privacy guarantee by assuming
concentration of gradients [S[], which essentially reduces their
sensitivity and thereby the required noise magnitude.

Our contributions: Our distributed learning algorithm is based
on distributed private mean estimation that enables clients to
privatize their gradients and the server to aggregate them for
use in iterative optimization. We present these novel distributed
private mean estimation algorithms with user-level privacy, for
the scalar case (Algorithm [I), which is used as a building
block for the vector case (Algorithm E). At the core of our
algorithms is a method of privately estimating the range of
the gradients using the idea of private heavy-hitter estimation.
We give the user-level privacy-accuracy trade-off in Theorem
[[ (scalar case) & Theorem [2 (vector case). We present its
application to distributed learning in Theorem [3| This can be
extended using privacy amplification methods (e.g., shuffling
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or secure aggregation) along with composition theorems (see
(8] and Remark [3).

Related work: There has been a lot of recent work in applying
item-level DP to machine learning algorithms (see [9]-[12]] and
references therein), and much less work on user-level privacy,
with notable exceptions in [[1], [3]—[6]. Our algorithms are
inspired from that in [5], but with an important distinction that
[S5] only provide user-level central DP guarantees, whereas,
our algorithms provide user-level local DP guarantees; in
distributed learning with an untrusted server, clients need local
DP guarantees. Our algorithm is based on distributed private
heavy-hitter estimation, whereas it is not clear how the median-
based mechanism in [5], could be made distributed.

Paper organization: We formulate the problem of mean
estimation with user-level LDP and give some preliminaries in
Section [[I| We present our private mean estimation algorithms
and the results (both scalar and vector case) in Section @
and apply these to an optimization framework in Section
We provide the proof outlines of our private mean estimation
results in Section [V, Proof details are provided in appendices
of the full version [8]].

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a set of n users, each having a local dataset of
m samples. Let D; = {a:gl), . ,ngl)} denote the local dataset
at the i-th user for i € [n], where :vy) € X and X C R%
We define D = (Dy,...,D,) € (X™)" as the entire dataset.
The users are connected to an untrusted server who wants to
estimate the mean T = ~- 3" | ™, xg-z). Users want to
preserve the privacy of their local datasets while minimizing
the worst-case expected error for estimating 7; see (2).

We first define differential privacy (DP) and the difference
between user-level and item-level privacy. We say that two
datasets D, D’ are neighboring with respect to distance metric
dis if we have dis(D,D’) < 1.

Definition 1. (Differential Privacy) Let ¢, > 0. A randomized
mechanism M : D — O is said to be (e, )-DP with respect to
dis if for any neighboring datasets D, D’ and any measurable
set § C O, we have

Pr(M(D) €0) <ePr(M(D') €0)+6. (1)
If § = 0, then the privacy is referred to as pure DP.

Remark 1 ((Central) item-level DP vs (central) user-level
DP [5]). When we have more than one user (i.e., n > 1)
and a space D = (X™)", by choosing dis(D,D’) =



Algorithm 1 Meangc, (D, 7, €0, 9): Distributed Private Mean
Estimation for Scalars
xﬁ,?) 2P e

1: Inputs: D = (Dy,...,D,,), D; = (1'5%),..., J
[-B, B], concentration radius 7, and user-level LDP
parameters €g, 6.

[a, b] + Range, ., (D, 7, €0/2) (Algorithm [3).

for User i € [n] do

user
z; < Meang,,

e p = LS )
Return: & = - > ", 2.

(Di,[a,b] o 5)

’ 9

DR DY ]l{x‘gl) # a:;(z) }, we recover the standard definition
of the DP [2], [7], which we call (central) item-level DP. In
the central item-level DP, two datasets D, D’ are neighboring
if they differ in a single item. On the other hand, by choosing
dis(D,D’) = Y.i_, I{D; # D}}, we call it (central) user-
level DP, where two datasets D, D’ € (X™)" are neighboring
when they differ in a local dataset of any single user. Observe
that when each user has a single item (m = 1), then both
item-level and user-level privacy are equivalent.

Remark 2 (User-level Local Differential Privacy (LDP)). When
we have a single user (i.e., n =1 and D = X™), by choosing
dis (D, D’) = 1{D # D'} for D,D’ € X, we call it user-
level LDP. In this case each user privatize her own local dataset
using a private mechanism.

Our objective is to design user-level LDP mechanisms M; :
X™ — O, for i € [n] and an estimator & : ©1 x...x0,, = X
to minimize the worst-case expected error:

Res= inf inf sup E[Ha%—f”ﬂ,

MieMc s} & pe(am)n

2

where M. s denotes the set of all possible user-level (¢, d)-LDP
mechanisms, and the expectation is taken over the randomness
in My,...,M,, and z.

As mentioned in Section [[, we can significantly improve the
user-level privacy guarantees (beyond what can be achieved
by applying the group privacy) by assuming concentration of
the input vectors.

Now, we define the concentration condition for a set of
samples and the sub-Gaussian random vector.

Definition 2 (Concentration). A set of (random) vectors y” =
(y1,---,Yn), each taken from [—B, B]d is (7,7)-concentrated
if there exists yo € [—B, B]” such that with probability at least
L=,

3)

max [|y; — yoll2 < 7.
i€[n]
Definition 3 (Sub-Gaussian random vector). A random vector
x € R? is said to be sub-Gaussian with proxy variance o? if
for any u € RY with ||ul|? = 1, the random variable u”'z is

sub-Gaussian with proxy variance o2.

Throughout this paper, we assume that the samples {afgz) :
i € [n],j € [m]} are drawn from a bounded space X =
[-B, B]Y c R? for some d > 1. Furthermore, we assume

Algorithm 2 Means,. (D, [a, b], €9, )

1: Inputs: D = (z4,...,x,,), concentration range [a, b], and
user-level LDP parameters ¢, .

2: Sample v ~ N(0, 12(b_a)261‘2)g(1'25/5)).

3: Return: z =[], v+ v, where y = L Y7

[, is the projection operator onto [a, b].

m

j=1 ; and

that the samples :L'j(vi)ﬂ: € [n],j € [m] are i.i.d. sub-Gaussian
2

random vectors with proxy variance o~.

III. PRIVATE MEAN ESTIMATION

In this section, we present our distributed user-level LDP
mechanism to estimate the mean =. We start with the scalar case
when d = 1 in Section [III-A| Then, we extend our algorithm
for d-dimensional space in Section [[II-B}

A. Scalar Case
Suppose 2 e [-B,B] for all ¢ € [n] and j € [m)].

! (@)

Furthermore, the samples x,” are i.i.d. sub-Gaussian with

proxy o2 Let y; = + Z;"le;z) denote the mean of the
local samples at the i-th user for ¢ € [n]. Thus, {y;}
are sub-Gaussian random variables with proxy %2 which
implies that the set ¥y = (y1,...,yn) is (7,7)-concentrated,

where 7 = o 71%(3”/7)

Theorem 1.14]).

The mean estimation process works in two stages similar
to [5]]. In the first stage, the server privately estimates the range
in which the means y1, ..., ¥y, lie with high probability. In the
second stage, each user projects her mean value y; into the
determined range from the first step. Then, all users send user-
level LDP versions of their projected samples to the central
server. The first stage mechanism is denoted by Range,.,,, and
is presented in Algorithm (3] and the second stage mechanism
is denoted by Mean,,, and is presented in Algorithm u} We
give an outline of both these algorithms below.

In Range,,, we first divide the original range [—B, B]
into k = B/t bins, where 7 is the concentration parameter
of y1,...,yn. Then, each user sends a private version of
the closest bin to her mean value y; (using the mechanism
RangelSs, as described in Algorithm [4). The server estimates
the frequencies (the number of means close to each bin) under
user-level LDP constraints. We use a Hadamard Response
mechanism similar to the one proposed in [|14] to estimate the
highest frequency under user-level LDP constraints. Observe
that if the means (y1,...,y,) lie in radius 7 and the server
succeeds to estimate the highest frequency correctly, then we
get ;i € R 2 [amax — 37, Gmax + 37] for all i € [n]. In
Meang,1ar, €ach client projects her mean y; onto the estimated
range R from the first stage. The objective of this projection
is that the user-level sensitivity will decrease from 2B to 27,
where 7 = O(#m) In other words, the user-level sensitivity
will decrease by increasing the number of samples per user
using this projection step. After the projection, each user adds

for any v € (0,1) (e.g., see [13,



a Gaussian noise with a variance function of the user-level
sensitivity (7) and LDP parameter ¢ to preserve privacy.

Theorem 1. The mechanism Meanse (D, T,¢€0,0) is user-
level (e, 0)-LDP. Furthermore, if {xlgl)} are sub-Gaussian
with proxy o2, then y"™ = (y1,...,yn) are (7,7)-concentrated,

where y; = %Z;’;lx?) and T = a\/%. With

probability at least 1 — 3, we have

2
n m

1 i
— Z Z .’135 ) _ Meangcatar (D> T, €0, 6)
nm

i=1 j=1

<0 (72 log(1/6)> ’

& =E

nel @

where 3 = min {1,7 + ?exp (—%) }

We provide a proof of Theorem [T in Section [V. Observe
that Theorem [I provides privacy-utility trade-offs for ¢y <
1. However, we can obtain similar results for general €3 by
adapting the variance of the Gaussian noise using the results
in [15], [16]

Remark 3 (Gaussian vs. Laplace Noise). In Meang ., users

add Gaussian noise to achieve user-level (g, 6)-LDP. Instead
of Gaussian noise, we can add a Laplace noise Lap(lf—OT) to
get a pure user-level €p-LDP with the same estimation error
as (@) in Theorem

Remark 4 (User-level LDP vs user-level DP). In [5], the
authors proposed a (central) user-level DP mean estimation
algorithm that achieves estimation error (9(7;—;) with proba-
bility (1 — 3.), where 8. = min{1,7 + Ze~5} and € is the
(central) DP parameter. Although, the confidence probability
1 — (3 is almost same for both user-level LDP and user-level
DP, it is clear that there is a gap of O(n) in the estimation
error between the central and the local models. This is not
surprising as the same gap appears in the item-level DP and
LDP as well [17], [18]]. In order to amplify the privacy of the
user-level LDP to match with that of the user-level DP, we can
assume the existence of a trusted shuffler [[19]-[21]] or secure
aggregation [22] between the users and the untrusted server.
See Appendix [D for more details.

B. Vector Case

In this section, we present the user-level LDP mechanism
for general d dimensional spaces. We assume that the samples
2V e X £ [-B,B)" for all i € [n] and j € [m].

(@)

Furthermore, the samples x ;  are sub-Gaussian random vector

with proxy o®. Let y; = =~ >7", ;vgl) denote the mean of
the local samples at the i-th user for i € [;1] Thus, y; are
sub-Gaussian random vectors with proxy Z- which implies
that the set 4™ = (y1,...,Yyn) are (7,7)-concentrated, where
7= 0/ 282 and 5 > 0 is arbitrary [13], [23].

We follow similar steps as in the centralized Algorithm
presented in [5] for user-level DP mean estimation. The idea

Algorithm 3 Range, . (D, T, €o): Distributed Private Range
Estimation for Scalars
xs,?) P e

1: Inputs: D = (Dy,...,D,), Di:(acgz),..., ;
[-B, B], concentration radius 7, and user-level LDP
parameter ¢.

2: All users divide the interval [— B, B] into k = B/7 disjoint
intervals, each with width 27. Let 7 := {1,2,...,k} be
the set of middle points of intervals.

: for User ¢ € [n] do

z; < Rangegor, (Diy 7y €0,T).

Send z; to the server — here z; € R¥.

: The server computes z = % 2?21 z;. (Here, forany a € T,
z(a) denotes an estimate of the frequency of a, i.e., the
fraction of y;’s that are closest to a).

7: Let amax = argmax,ec7 z(a).

8: Return: R = [ayax — 3T, Gmax + 37]

of the private mean estimation Algorithm is to observe that the
means ¥y1, ..., Y, are concentrated in ¢o-norm with radius 7.
Similar to [S], we first apply an encoding step to bound them
in {oo-norm with radius O(_=). This step can be obtained
by applying a random rotation as in [5], [10] or by applying
Kashin’s representation as in [[11]. Then, we apply the scalar
Algorithm |3| for each coordinate separately. The private mean
estimation for d-dimensional vectors is denoted by Meanyecior
and is presented in Algorithm [5

Theorem 2. The mechanism Meanyecor (D, T, €0,9) is user-
level (€, d)-LDP. Furthermore, if {xy)} are sub-Gaussian ran-
dom vectors with proxy o2, then y™ = (y1,...,yn) are (1,7)-

concentrated, where y; = % Z;":l mgz) and T =0 %.

With probability 1 — (3, we have
2

J
52 =FK %szg) - Meanvector (DvTv 6075)

i=1 j=1

<0 <72d10g(dn/7) 10g(1/5)> 7

2
neg

&)

min< 1,2y + §}, €@ = 3%
N n(eéé)—l)2
200(e0+1)2 )

We provide a proof of Theorem [2]in Section [V

where B = and ( =

2d? By/log(dn/~)

— exp

IV. EMPIRICAL RISK MINIMIZATION

In this section, we present an application of the private
mean estimation algorithms under user-level LDP constraints
to Federated Learning (FL), where a set of n users are
connected to a central server to solve the following empirical
risk minimization (ERM) problem:

'We assume that k is a power of 2. Otherwise we assume the size of 7 is
K = 22201 (the smallest power of 2 larger than k).



Algorithm 4 Rangel., (D, 7,e0,T)

I: Inputs: D = (z1,...,2m), T
radius 7; user-level LDP parameter €y; 7 =
of middle points of the intervals.

2: Compute y = -+ 37", ;.

3: Compute v = arg mincy |y
in 7 closest to ).

4: Let Hj, be Hadamard matrixE]

5: Compute m = ikae,,, where e, denotes the basis vector
corresponding to v.

6: Sample j ~ Unif[k]

€ [—B, BJ; concentration
[k] be the set

— a;| (the index of a point

and compute z:

. e Vki
O () e g TR
- . €0 VEi €0

~H(j) (SEL) wp. 4 - YERUlenol

7: Return: z

1 n
arg min (F (0,D) = - ; F; (0,D;) ) (6)
Here, C C R? is a closed convex set. Each user has a local
dataset D; = {d;1,...,d;m} of m samples and F; (0, D;) =
1 Z;": f(di;,0) denotes the loss function at the i-th user
local dataset D; w.r.t. the model 6. Our goal is to solve the
ERM problem in (6) while providing user-level privacy.

In Algorithm [6] we propose a user-level local DP stochastic
gradient descent (ULDP-SGD). At each iteration of the ULDP-
SGD, we choose uniformly at random a set of & users. Each user
applies a full gradient of the local function F; (6). Then, the
server estimates under user-level LDP constraints the average of
gradients - D icut, Z:nzl Vo, f (64 d;;) and takes a descent
step.

We state the (per-iteration) privacy and convergence results
of Algorithm [6] below and prove it in Appendix

Theorem 3. Let the set C be convex with diameter D and the
Sunction f (0;.) : C — R be convex and L-Lipschitz continuous
with respect to the {s-norm. Let 0* = arg mingec F' (0) denote
the minimizer of the problem (6). The Algorithm Aypq is user-
level (eg, 0)-LDP per iteration. If we run Algorithm Auigp over
T iterations with learning rate schedule 1, = e \[, then

E[F (01)] - F(0°) = O (Dak’j(jf ))

with probability at least 1 Br, where G =
L\/(1+ cdlog(dn/*y)10g(12/6)10g(2n/'y)>, ¢ = 28800, ¢ — &

)

gnmeg n’
— — ! €
7= nlog(n)+2’ Br = min{l,2Ty + T(}, ¢ = 24

C _ 2d2B l:g(dn/w) exp ( B 2(107;((65:’)/_1)22).
e“041)

and

Remark 5 (Privacy guarantee). Theorem [3 states the per-
iteration user-level local DP guarantee of Algorithm [6.
With slight modifications in our mean estimation algorithm
Meanyecor, We can apply shuffling or secure aggregation
to convert these to user-level central DP guarantees [22],

Algorithm 5 Meanyecor (D, 7, €0, 9): Distributed Private Mean
Estimation for Vectors

I: Inputs: D = (Dy,...,Dy), Di = (217, ... 2, zgi) €
[~ B, B]¢, concentration radius 7, and user-level LDP

parameters €g, J.
2: Let D = Diag(w), where w ~ Unif{—1, 1}.

3: Compute U = inD

4: Set ¢y = % and 7/ = 107 71%(7;(1/”)

s: for [ € [d] do

6: for User i € [ng do _

7: Compute (1) = (ng-l))(l) (the I-th coordinate
of the vector ny ) for j € [m)].

8: Let Dy = (217(1),..., &% (1))

9: Let ﬁl = (51717 .. ,?n l)

10: R(l) + Rangey o (D1, 7/, €f)

11: for User i € [n] do

12: Sample j ~ Unif[d].

13: Let z; :=[0,...,0,d X z(j),0,...,0], which has a

non-zero element in the 7j-th location.
14: (]) — Mean‘:f:{dr (Dij7R(j),60/2,5).

15: Compute 2 = * Zl 1%
16: Return: & = U~ 12.

[24]. Then, in order to obtain the privacy guarantee of our
entire algorithm, we can either use the strong composition
theorem [/] or use the Rényi DP guarantees which provides
better composition bounds [[12], [21]. See Appendix E] for
more details.

V. PROOFS OF THEOREM [IJAND THEOREM [2]

Proof of Theorem |I| The algorithm Meang,,, is composed of
two sub-routines Range,, .. and Meang.,.. In order to show
that Meang.,,, satisfies user-level (eg,d)-LDP, it suffices to
prove that Range,,,, satisfies user-level (€y/2,0)-LDP and
Mean(o ., satisfies user-level (ep/2,4)-LDP, and then the result
follows by composing these two mechanisms.

o Range,,,. is user-level (¢y/2, 0)-LDP: We show this along
with other results that will be useful to bound the error in the

following lemma (which is proved in Appendix [A).

Lemma 1. Rangesca,ar(D T,€0) is user-level eg-LDP. Further-

more, if the samples a:j are sub-Gaussian with proxy o2, then
with probability at least 1 — (3, we have
yi € [a,b] + Rangescalar(D,T, €o) Vi € [n] 8)

is the average of local samples at the
n(e0/2-1)? ) }
200(e€0/2+41)2 :
This lemma shows that with probability at least 1 — 3, the
server can privately estimate an interval of length 67 in which
the averages y1,...,y, of local samples at all users lie. Thus,
each user can project the average of her local samples onto
this interval without hurting the estimation accuracy of the

where y; = + Z] 1x
i-th user, and 8 = min {1 v+ 2B exp (—



second stage. Furthermore, the sensitivity of replacing a user
with another one would be 67 = O(\/%) instead of 2B. As a
result, each user adds a noise as a function of 7 that reduces
the estimation error.

e Meang.,. is user-level (€/2,)-LDP: Consider any two
neighboring local datasets D, = (xg ), o ,:chfl)), D, =
(a:/l(i), . /(1)) Let y; = Z] 1 935 ") denotes the average
of local samples in D; 51m11arly define y;. The user-level
sensitivity for computing its projection H[a’b] y; is bounded by

[ TTw) - TTwh| <

[a,b] [a,b]

Agy; = sup

D;,D}€[-B,B]™

(b—a).

Thus, f2rom [7, Theorem 3.22] we get that by setting 02 =
12(b=a)" 108(1-25/9) "and the output z; = [0, () +v satisfies

€2

user-level (<,6)-LDP.

Bounding the error of Meangy,,: Let [a,b] <+
Rangey . (D, 7,€0/2) and §; = Iy Note that
(b—a) = 67. Let & = +>" 2z be the estimator of
the exact mean T = 1 3" | y;. Thus, we have

1 1 ¢ 1 ] e
P e P 2N N
i= i=

=1
_ 43272 log(l 25/6)
nes

-

From Lemma [I, we have that y; = g; for all i € [n] with
probability at least 1 — 3. Thus, we get that, with probability
at least 1 — 3, the error &; (defined in (4)) is bounded by & =

@ (%(21/6)) This completes the proof of Theorem |

neo

2 log(1 /5)) |

2
neg

Proof of Theorem 2] First we prove that Meanyeco; (described
in Algorithm [5) is user-level (g, d)-LDP. Observe that we
run Range,,, for each coordinate with privacy parameter
€, = €o/2d. Then, we user chooses uniformly at random
one coordinate to apply the Algorithm Meanyy,, with privacy
parameters €y/2,6. Thus, by composition, we get that the
Algorithm [3] is user-level (¢g, d)-LDP.

In order to prove the error bound, we follow the same
steps as in [5]. We first state a lemma from [5|] about ¢,-norm
concentration using random rotation. The proof then is obtained
by combining this with the scalar case properties.

Lemma 2 (Random rotation [5]). Let U = ideD, where
H, be Hadamard matrix and D be a diagonal matrix with
i.i.d. uniformly random {£1} entries. Let 1, ..., 2,, 1o € R
With probability at least 1 — v, we have

— zo|2+/log(dn /)
Nz

Since {xy)} are i.i.d. sub-Gaussian random vectors with
2, we have that yi,...,y, are (7,7)-

proxy variance o~
\/@ . Thus, from Lemma [2}
Jollee < 7' with probability at

least 1 — 2, where §; = - >_7" Umgi), 5o = Uyo (yo is the

10 max; ||z,
max || Ux; — max; |lz:
i€[n]

Uzyl|, <

concentrated, where 7 = o
we have that max;cpy [|; —

Algorithm 6 A4,: ULDP-SGD

1I: Inputs: Datasets D = (D4,...,D,,), where D; =
{di1,...,dim} for i € [n]; user-level LDP privacy pa-
rameters €, d; gradient norm bound C'; and learning rate
schedule {n;}.

2: Initialize: 6y € C

3: for t € [T] do

Sampling of users: A uniformly random set U, of k
users is chosen.
for users ¢ € U; do

for j=1,2,...,m do
e ()
: Compute gradient: T —
Vo, f (01; diy) [ max {1, 172Gl |

8: Let D; := (a:gi), . ,1‘7(7?)

9. LetD = (D;:i€lUy)
10: Let’y(—mandTF%@n/w
11 Aggregate: g, +— Meanvwor(D 7,€0,0)
12: Gradient Descent 0, ; < [[. (0; — 7:8;), where [],

denotes the projection operator onto C.
13: Output: The model 6.

center of concentration), and 7/ = — Y22/ 1Og(dn/ " Thus, from
Lemma [1] I, we get that with probability at least 1— /', we have

7:(1) € R(l) + Rangey (D1, 7', €0), Vi € [n],1 € [d] (9)
2\/3

n(e® 0/2—1

Xp ( T 200(ef o/2+1)2)}'
Condition on the event that yl(l) € R(l) for all I € [d],

i € [n]. Let z; denote a r.v. taking values in {dz(1) -
e1,...,dz;(d) - eq} uniformly at random, where z;(I) =
Meanio (D, i, R(j),€0/2,5) and eq,...,eq are the basis
vectors in R?. Note that dz;(l) - ¢; is a length d vector whose
I’th component is equal to dz;(!) and all other components are
equal to zero.

It is easy to see that E[z;] = ¢; for all ¢ € [n] and that z;
-2 dz(T/)210g(1/6)
e

€0

where 3 = mln{l 2v +

has bonded variance, i.e., E||z; —
proof is in Appendix
Since 91, ..., Y, are independent we have that

%i(z il =o (dQ (7-/)21(;g(1/5)> (10)

neg

Thus, we have that the error & (defined in ) is bounded by
2

RN 72dlog(dn/~)log(1/d

L35 2| < o (Zlostdn/lost1jo)),

— nes

From the union bound, we have that ;(1) € R(l) for all [ € [d],

i € [n] with probability at least 1 — 3, where 8 = min {1, 2+
2d*B

€ 2 log(dn/~) n(e0—1)2
) e = g and ¢ = HEVEHI o (‘HZ
This completes the proof of Theorem

E

E =E
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APPENDIX A
OMITTED DETAILS FROM SECTION [V} PROOF OF LEMMA [T]
Lemma (Restating Lemma E). Range,.....(D, 7, €0) is user-level €g-LDP. Furthermore, if the samples 335-2)
with proxy o2, then with probability at least 1 — 3, we have

scalar (Da T, 60) Vi € [n] (1 1)

are sub-Gaussian

y; € [a,b] + Range

, c0/2_
where y; = % E;n:l xy) is the average of local samples at the i-th user, and = min {1, v+ ? exp (—%) }

Proof. In order to prove that Range,..(D, T, €0) is user-level €o-LDP, it suffices to show that Rangejea. (D, T, €0) is user-level
¢o-LDP. , N .
Consider an arbitrary user i € [n] and two local datasets D; = (2$”,...,2%)), D! = (2,7,...,2,"). Let
Z = {+H () (g;;—j}) :j€{1,---,k}} denote all possible outputs of the mechanism R,qpge. Thus, we get
me <0
Pr [Rangeqcalar (D ) = Z] k ZJ 1 2 Yhlmil)l e e€0+}
sup sup ; < sup NG
D, Dl B,B™ ze 2 Pr[Range . (D) = 2| ~ p, piel-B,B™ 1 E 1 klmj (j)] eco—1
=13~ 3 et
@ x Z] 13+ 5 5ag (12)
leo—-1
% Z; 13~ 3 St
< e

user

where the step (a) is obtained from the fact that m;(j), m;(j) € {j:ik, }. Thus, the private range mechanism Rangey . is
user level (g, 0)-LDP.

Now, suppose that {xgl)} are o2

sub-Gaussian. Thus, y" = (y1,...,yn) are (7,7)-concentrated, where y; = — Z;” 1 :U;i)

and T = o4/ % (e.g., see [[13| Theorem 1.14]). We show that with probability 1 — 3, we have y; € [a,b] for all i € [n],
where [a, b] < Range .. (D, T, €9, 0). Condition on the event that y™ = (y1,...,y,) are concentrated with radius 7. Hence,
there exists yo € [—B, B] such that |y; — yo| < 7 for all ¢ € [n]. In Algorithm lél we split the interval [-B, B] into T' = =
interval each with width 27, where T denotes the set of middle points of intervals. For each i € [n], let v; = arg minge7 |y; — af
be the closest bin in 7 to the exact value y;. We define f(a) = £ 3" | 1(v; = a) as the fraction (frequency) of elements
in y™ that are close to the bin a for each bin a € 7. Observe that when y™ are concentrated with radius 7, we expect that
f(a) =0 for all @ € T except two adjacent bins.
Let z; < Ranges ~of the i-th user. Thus, we have

scalar
1@@4::% k:HkU)(Zm:tl>{V%nﬁjffo—l}

> H(j)Vim; () (13)

where step (a) follows from m; = Hye,,, and step (b) follows from ?21 H,(j/)H] (j) = HyH] = kxI;,. Thus,z = 2 37" | 7,
is unbiased estimate of f = [f(a1),..., f(ax)], i.e., E[z] =f. ,
2
ety

n(ed-1)’

Observe that z(j) is a sum of i.i.d. Bernoulli random variables for j € [k]. Thus, Z(j) is a sub-Gaussian with proxy

and E[z(j)] = f(a;). Hence, from [13| Theorem 1.14], we get that

2
t’n (660 - 1)
Primax|z(j) — f(a;)| > t] <2kexp | ————F— (14)
i€lk] 8 (eh +1)

2
n(e -1
By setting t = %, with probability at least 1 — 2k exp <(2)> , we get

max [z(j) — f(a;)| < (15)

1
jelk] 5



With probability 1 — ~, since there are only two adjacent bins of non-zero frequencies, one of them has a frequency f(a) > %
Let amax be the bin that has the maximum estimated frequency. Conditioned on the event , the amax Will be equal one of
these two non-zero bins that has non-zero frequencies. This can be seen as follows:

Let jy,j2 € [k] be such that f(aj,), f(a;,) > 0 and we know that one of them, say, ji, has f(a;,) > 1. Since apax =
arg max;e i) Z(4), by (I3), we have Z(j1),2(j2) € [, 5] and Z(ji) < £,VI € [k] \ {1, j2}. Hence, amax € {j1,J2}-

This implies that each y; lies within 37 of ayax. Thus, from union bound we conclude that y; € [amax — 37, Gmax + 37] for
all ¢ € [n] with probability at least 1 — 8. This completes the proof of Lemma ]

APPENDIX B
OMITTED DETAILS FROM SECTION [V} REMAINING DETAILS IN THE PROOF OF THEOREM [2]

Variance of z;: Recall that z; is a r.v. that takes values in {dz;(1) - eq,...,dz;(d) - eq} uniformly at random, where
zi(1) = Meangee, (D j, R(j),€0/2,6) and e1, . .., e, are the basis vectors in R%. Note that dz; (1) - e; is a length d vector whose
I’th component is equal to dz;(l) and all other components are equal to zero.

E [|l=s = %ll*] = E [ll2il1] — E [117:/]

d

= LS PR [0 -
=1
d

=dY E [z - 7l
=1
d

Qa7 +Ep?) — |7l
=1

(b) ~ -
= d||gil|* + d*E[?] — [|3:]?

_ 212067 l%g(1.25/6) (A Dl
Yo (W) +d(d—1)(r')?
€0

@O<fv¥bgu&>

2
€0

In (a), we used z;(1) = g;(1) + v for every [ € [d], where v ~ N (0, 12(b_“)2i§g(1'2s/6))
0

, with (b —a) = 67 (see MeanlSs,,)

and also the fact that 7;(/) and v are independent. In (b) we used ||7;]|> = 27:1 7:(1)2. In (c), we used that each coordinate of
7; is bounded by 7. In (d) we assumed log(1/8) > Q(e?).

APPENDIX C
PROOF OF THEOREM[3]

Theorem (Restating Theorem @. Let the set C be convex with diameter D and the function f (0;.) : C — R be convex and
L-Lipschitz continuous with respect to the {3-norm. Let 0* = arg mingec F' (0) denote the minimizer of the problem (6). The
Algorithm Aypq is user-level (eq,0)-LDP per user per iteration. If we run Algorithm Aq, over T iterations with learning

rate schedule n, = GL\/{, then

E[F (07.1)] — F (6") = O <DGlo\g/(:IZ)> (16)

with probability at least 1 — By, where G = L\/(l 4 IOg(d"/W);Zi(ig/)‘s) 10g(2n/7))’ g=% y= 1 Br=min{1,2Ty+
TC), €)= . and ¢ = 2d? By/log(dn/~v) exp ( qn(e0—1)2 )

T2 T 200(e0+1)2

Proof. The privacy is directly obtained from the fact that at each iteration the private gradients are obtained from the Algorithm
private mean estimation Meanyeor Which is user-level (eg, d)-LDP. Thus, the ULDP-SGD Algorithm is user-level (g, d)-LDP
per iteration.



Observe that if the function f(6,d) is L-Lipschitz continuous with respect to £2-norm, then the gradient ||V f(0,d)|l2 < L

(see e.g., [25, Lemma 2.6]) . At any iteration ¢ € [T, let xy) = Vo, f(0:,d;;), and y; = % Z;”Zl x;z) for i € Uy, j € [m)].

Thus, we get that {xij )} are sub-Gaussian with proxy L2. Thus, the samples (y; : i € U;) are (7,7) concentrated, where

_ log(2n/v)
T = Ly/ 20

At iteration ¢ € [T] of Algorithm E, the server receives the average of km private gradients {xﬁz) 11 € Uy, j € [m]} using
(#)
J

the private mean estimation Algorithm Meanyecor. Since Algorithm Meanyec 1S an unbiased estimate of ﬁ Zieut Z;”:l x
with probability at least 1 — 3 (see Theorem , we get that E [Mea nvemr(D)} = VF (0, D) where the expectation with respect

to the randomness of user sampling and the randomness in the Algorithm Meanyecor. Now we show that g, has a bounded
second moment.

Lemma 3. [f the function f (0;.) : C — R is convex and L-Lipschitz continuous with respect to the {y-norm, then we have

Elg, |2 < L? <1 N cdlog(dn/~) log(lgé) log(?n/’y)) 7

gnmeg

a7

with probability at least 1 — 3, where ¢ = 28800 is a global constant, = min{l,?v + C}, € = 5%, and
C _ 2d? By/log(dn/~) exp (_ qn(eeé—l)z >

™ 200(e%0 +1)2

Proof. Under the conditions of the lemma, we have from [25, Lemma 2.6] that |Vof (6;d)|| < L, which implies that
IVoF(8)|| < L. Thus, we have

Elg.l; = IIE ]I +Ellg, — E[&] 13

(@ _ SN
< L +E|g;, —E[g] 2

(%) 24 cLleog(nd/v)kloggl/(S) log(2n/7)
me3

with probability at least 1 — /3, where ¢ = 28800 is a global constant. Step (a) follows from the fact that |V, F' (6;) || < L.
Step (b) follows from Theorem [ |

Thus, from union bound and Lemma [3, with probability 1 — 37, we have E|g,||3 < G? for all t € [T], where Br = T3

and G = L (1 + = log(dn/v)ql:;isgs) log(QnM)) and ¢ = k/n. Now, we can use standard SGD convergence results for convex
0

functions. In particular, we use the following result from [26].

Lemma 4 (SGD Convergence [26]). Let F () be a convex function, and the set C has diameter D. Consider a stochastic
gradient descent algorithm 0,1 < [[o (6; — mg:), where g, satisfies E[g] = Vo, F (6;) and E|g:||3 < G By setting
= GL\/Z’ we get

2+ log (T log (T’
E[F (07)) - F (67) < 20218 @) _ <DG o8 ( )> . (18)
VT VT
As a result, Algorithm E] satisfies the premise of Lemma |4} Now, using the bound on G? from Lemma [3, we have that the
output fr of Algorithm [6] satisfies

E[F (0r41)] - F(0*) =0 (DG%) 19)

This completes the proof of Theorem [3] ]

APPENDIX D
USER-LEVEL LDP IN THE SHUFFLE MODEL

In this section, we extend our proposed algorithms for private mean estimation and empirical risk minimization to the shuffle
model to provide a strong (central) user-level DP as well as user-level LDP. In the shuffle model, each user applies a user-level
LDP mechanisms to preserve privacy of her own local dataset. We assume there exists a secure shuffler between the users and
the central server. The shuffler receives the users’ reports (the output of the user-level LDP mechanism) and randomly permutes
them before passing them to the server.



Let M : X" — © be user-level LDP mechanism, D; € X™ be the local dataset at the i-th client, and D = (Dy,...,D,).
Let H, : ©™ — O™ denote the shuffling operation that takes n inputs and outputs their uniformly random permutation. We
define the shuffling mechanism as follow:

Mghutie (D) = Hp (M (D1),...,M(Dy)). (20)

In section we extend the private mean estimation results in the shuffle model and in Section !?—B, we present the results
of the ERM in the shuffle model.

A. Private Mean Estimation

In order to use the results of privacy amplification by shuffling [[12], [19]-[21], [27], it is required that the local mechanism

M to be pure user-level eo-LDP. Thus, we replace the Gaussian noise added in line 2 in Algorithm [2| with Laplace noise to give

we sample v ~ Lap <2b) Thus, the mechanism

user a
€0

pure user-level LDP. In other words, we suppose in mechanism Meang,,..,

user

Mea Nscalar

is pure user-level €y-LDP.

Theorem 4. In the shuffle model, the mechanism Meanyecor (D, T, €9, 0) is user-level (eg,0)-LDP. For eq < 1, the output of the
shuffler is (central) user-level (e, d)-DP, where § € (0,1) and € is given by:

e=0 (60 log(l/5)> . 21

n
Furthermore, if {zgz)} are sub-Gaussian random vectors with proxy o2, then y™ = (y1,...,yn) are (7,7)-concentrated,
where y; = %n ZT:l xél) and T =0 %. With probability 1 — (8, we have
2
1 o= 72dlog(dn
E=F P ;;x§ ) — Mean,ector (D, T,¢€0,0) <O <§€(%/7)) 7 (22)

2 e
where B = m1n{1,2’y+<}, 66 = %’ and C = mexp <_1’L(€0—1)2>

200(e%0+1)2

Proof. Tt is clear that the mechanism Meanyecor (D, 7, €0, d) is user-level (¢q, 0)-LDP as we replaced the Gaussian noise with
Laplace noise. since each user LDP mechanism is identical and are €;-LDP, from privacy amplification by shuffling [27,
Corollary 5.3.1], we get that the output of the shuffler is user-level (e, d), where § € (0,1) and € is given by:

e=0 <Inin{1,60}660 log(;/5)> . (23)

when ¢y < 1, we get that e = O ( €94/ w . The estimation error analysis is exactly the same as the Gaussian noise case
given in Appendix [B] This completes the proof of Theorem [ ]

Remark 6 (Achieving the mean estimation of the (central) user-level DP). Observe that by substituting ¢ =

o (min{l7 €0 e/ log(;/‘;)) from into the mean estimation error in (22), we get that

2
n m

1 i 72dlog(dn/v)log (1/6
(‘:2 =K mi ZZZ’() - Meanvecmr (D,T, 60,6) S @) ( g( /fY) g< / >> .

J n2e2

i=1 j=1

This matches the mean square error of the central user-level DP Algorithm proposed in [5]. However, our Algorithm additionally
provides LDP guarantees for the users.



B. Private ERM

In this section, we extend the empirical risk minimization problem presented in Section to the shuffle model. The
main difference in Algorithm [6 is that each user follows the changes in the private mean estimation Algorithm proposed in
Section [D-A] and we assume that there exists a trusted shuffler between the users and the server.

Theorem 5. Let the set C be convex with diameter D and the function f (0;.) : C — R be convex and L-Lipschitz continuous
with respect to the ly-norm. Let 8* = argmingec F (0) denote the minimizer of the problem (6). The Algorithm Aypq is
user-level (ey,0)-LDP per iteration. Furthermore, for e —0 < 1, the Algorithm Aupq is (central) user-level (e, 6)-DP, where
d € (0,1) and € is given by

T log(2¢T/d)log(2/6
6:o<€0\/‘1 0g(24 /)og(/)) o1
n
If we run Algorithm Ayg, over T iterations with learning rate schedule 1; = GA\/E’ then
log(T
E[F (§7.1)] — F(6") = O <DG jg) (25)
with probability at least 1 — 37, where G = L\/(l + Cdlog(d%ﬁigg(%/v)), ¢ = 28800, ¢ = % Y= W Br =
0
. I _ e _ 2d?>B+/log(dn/v) (7 qn(e€671)2>
min{1, 27y + T(}, € = 5%, and { = ——r——"—>exp 200117 )"

Proof. 1t is straightforward that the Algorithm Ajpq is user-level (€0, 0)-LDP per iteration as we use the private mean estimation
Meanyecor at each iteration. Furthermore, at each iteration, a set of k users are choosen at random. Thus from Theorem {4} the
output of the shuffler is (central) user-level (Et, %%)'DP’ where ¢, = O <€0 1(”5(5:/5)) Thus, from uniform sampling [28|],
we get that the Algorithm Ay, is (central) user-level (et, %)-DP per iteration, where €¢; = g€;. From composition theorem [7,

Corollary 3.21], we get that the Algorithm Ayjpq is (central) user-level (e, §)-DP, where € = O 60\/ a log@qTé 9) log(2/ 5)>.
The convergence results follows exactly from our proofs in Appendix [C} This completes the proof of Theorem [3] |

n’

Remark 7. Observe that substituting ¢ = O (eo \/qT log(2qTT/L’5) log(2/6)>’ T= %, and ¢ = £, we get that

(26)

E[F (0r.1)] - F(#") =0 (DLIOg(T/5)3log(nd/’y) dlog(l/é))

n+/me

with probability at least 1 — S7. Furthermore, when v = and the number of users n is arbitrary large, we get that

1
log(n) +9

1 2 —ne2 /400 " *
Br < —mioy +nPe "0/ - 0 as €9 < 1 and n — oo.
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