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Abstract— This paper addresses the problem of decentralized

learning in the presence of data poisoning attacks. In this

problem, we consider a collection of nodes connected through a

network, each equipped with a local function. The objective is to

compute the global minimizer of the aggregated local functions,

in a decentralized manner, i.e., each node can only use its local

function and data exchanged with nodes it is connected to.

Moreover, each node is to agree on the said minimizer despite

an adversary that can arbitrarily change the local functions of

a fraction of the nodes. This problem setting has applications

in robust learning, where nodes in a network are collectively

training a model that minimizes the empirical loss with possibly

attacked local data sets. In this paper, we propose a novel

decentralized learning algorithm that enables all nodes to reach

consensus on the optimal model, in the absence of attacks,

and approximate consensus in the presence of data poisoning

attacks.

I. INTRODUCTION

This paper concerns decentralized federated learning that
has seen several applications in the past decade [1]–[4]. In
decentralized federated learning, we have a set of nodes
connected via a communication network which are col-
laboratively learning a model that minimizes the empirical
risk. However, in some scenarios, nodes may be subjected
to malicious attacks, which break most learning algorithms
developed for faultless networks [5], [6]. Therefore, it is of
significant importance to develop learning algorithms that are
robust to attacks.

The decentralized federated learning problem in an ad-
versarial environment can also be considered as a Robust
Decentralized Global Optimization (RDGO) problem. From
this perspective, the data set at each node implicitly defines
a local function fi(x), where x 2 Rn is the optimization
variable, and all nodes are required to approximate the
minimizer x⇤ of the sum of their local functions. This
problem has been studied in the past, but only for limited
cases. For example, [7] and [8] solved the RDGO problem
under a scalar model assumption. Different from these works,
in this paper, we consider a milder type of attacks known as
data poisoning attacks. These are conducted by an omniscient
attacker who changes the local functions of the attacked
node. Note, however, that attacked nodes are still able to
execute its optimization/communication protocol. Moreover,
our algorithm is developed for the high-dimensional case,
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which is much more challenging than the low-dimensional
case since high-dimensionality poses a higher requirement
on the computational complexity and the scaling of the
approximation error with respect to dimension. Moreover,
compared with [7] and [8], we provide a much tighter
bound on the distance between the estimation and the true
minimizer.

A. Our Contributions

The main contributions of this paper are:
1. We propose a novel filtering algorithm which robustly
estimates the weighted sum of a set of vectors in Rn in
the presence of data poisoning attacks. It is presented as
Algorithm 2. Moreover, the distance between the computed
weighted sum and the true value scales well with the dimen-
sion n (/

p
n), and the fraction ✏ of attacked vectors (/ ✏).

The algorithm is also light-weight since its computational
complexity scales linearly with n.
2. We propose an algorithm that solves the RDGO problem
(or the decentralized federated learning problem) in the
presence of data-poisoning attacks. The algorithm guarantees
the Euclidean distance between the obtained minimizer and
the true one (in the absence of attacks) to be proportional
to

p
n and ✏, which is proved in Theorem 1. Moreover, the

proposed algorithm tolerates an attack up to half of the nodes.
We also note that, any result in this paper can be conve-

niently applied to the distributed case, even when the attack is
Byzantine. More details regarding this claim can be obtained
in Remark 5.

B. Related Works

As mentioned above, the Robust Distributed Learning
(RDL) problem has been intensively studied. Recent works
[9] and [10] solved the RDGO problem using a Robust Mean
Estimation (RME) algorithm developed in [11]. The authors
of these two works prove that, using their algorithms, the
trained model parameter is close to the optimal up to some
constant error. However, this error scales with

p
✏ where ✏

is the fraction of attacked nodes, and at most 1/4 nodes
can be attacked. Papers [12] and [13] adopt the gradient
compression technique and the trimmed-mean error filtering
technique, respectively, which robustify their gradient de-
scent algorithms against almost half of nodes being attacked,
but leaves a problem that the distance between the computed
model parameter and the true one scales linearly with the
dimension n of the parameter space. Paper [14] made an
attempt to limit the impact of the adversary by adding a
regularization term in the loss function. On the other hand,
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this term renders the error bound in [14] proportional to the
number of attacked nodes, which is not desirable.

II. PRELIMINARIES

A. Notation
Let R, R+, and N denote the set of real, positive real, and

natural numbers, respectively. Given a vector v 2 Rn where
n is a positive natural number, we use kvk2 to denote the l2
norm of v. Also, we define the all-ones vector of length n
by 1n = (1, 1, . . . , 1)T and In to be the identity matrix of
order n. The largest and smallest singular values of a matrix
A 2 Rn⇥p are denoted by �M (A) and �m(A), respectively,
where n, p are positive natural numbers. Moreover, we use
rf(x) to denote the gradient of a function f : Rn ! R
evaluated at x 2 Rn. Further let r 2 R+. We denote by
B(x, r) = {y 2 Rn|ky � xk2  r} the ball centered at x
with radius r.

A weighted directed graph G = (V, E ,A) is a triple
consisting of a set of vertices V = {v1, v2, . . . , vp} with
cardinality p, a set of edges E ✓ V ⇥ V , and a weighted
adjacency matrix A 2 Rp⇥p which will be defined very
soon. The set of in-neighbors of a vertex i 2 V , denoted by
N in

i = {j 2 V|(j, i) 2 E}, is the set of vertices connected
to i by an edge. Similarly, the set of out-neighbors of a
vertex i 2 V is defined by N out

i = {j 2 V|(i, j) 2 E}.
We assume each vertex is both an in-neighbor and an out-
neighbor of itself. The weighted adjacency matrix A of the
graph G is defined entry-wise. The entry in the i-th row and
j-th column, aij , satisfies 0 < aij < 1 if (i, j) 2 E and
otherwise aij = 0.

B. Problem Formulation
We consider a set P of p nodes connected via a communi-

cation network, modelled as a directed graph G = (V, E ,A).
The set V in G represents the set of nodes and the set E
represents the set of communication links between all pairs
of nodes. In particular, an edge (i, j) 2 E exists if and only
if node j can receive information from node i. Moreover,
each communication link (i, j) is associated with a positive
scalar value aij > 0, which, we recall, is the (i, j)-th entry
of A.

Definition 1. Consider a set P of p nodes connected via
a communication network. Each node i 2 P is equipped
with a local function fi : Rn ! R where x 2 Rn is the
optimization variable. The RDGO problem asks each node to
find an optimizer x⇤ of the aggregation of the local functions:

f =
X

i2P

fi,

using its local function fi and messages exchanged with
its neighboring nodes, notwithstanding some local functions
have been altered by a data poisoning attack.

In the decentralized federated learning problem, each
node i has a local data set Zi = {zi1, zi2, . . . , ziN} of
cardinality N . The federated learning problem asks all
nodes to collectively minimize the following risk function

1
N

Pp
i=1

PN
j=1 l(w, zij) with respect to w. In this case,

each local function fi(w) = 1
N

PN
j=1 l(w, zij) is implicitly

defined by the local data set Zi at node i. The aggregation
f of local functions is also named as the global function in
this paper.

C. Attack Model

The solution to the global optimization problem is trivial
in the absence of attacks [15]–[18]. However, the problem
gets more interesting, and also more complicated, when some
nodes are subject to attacks. In this paper, we assume that
a subset Pb ⇢ P of nodes are subject to a data poisoning
attack, which is able to replace the original function fj of
an attacked node j 2 Pb with any other function chosen by
the adversary. Moreover, we define Sg = S\Sb to be the set
of attack-free nodes. For simplicity, we also use f̃i to denote
the local function of an attack-free node i 2 Sg after the data
poisoning attack. It is trivially seen that, for an attack-free
node i, f̃i = fi.

The adversary that launches the data poisoning attack is
assumed to be omniscient, i.e., it has full knowledge of the
communication graph, the local functions of all nodes, the
algorithm each node executes, etc. Moreover, it is able to
arbitrarily alter the local functions of the attacked nodes.
However, differently from Byzantine attacks, we assume that
all nodes, even those subject to data poisoning attacks, are
able to execute their protocols correctly. Also, in the context
of this paper, we assume the attack is perpetrated before the
nodes start executing the algorithm that solves the RAGD
problem, which we discuss in the next section. The attacked
local functions will not change once the algorithm starts
running. This definition of the data poisoning attack is in
line with other works (for example [19], [20], [21], and [22])
where data poisoning attacks are studied.

Remark 1. It was argued in [7] that it is impossible to
exactly recover the optimizer x⇤ when some local functions
are attacked by an adversary and when there is no special
relationships between the local functions. Therefore, instead
of exactly recovering the optimizer x⇤, we study in this paper
how well each node can approximate x⇤ using its possibly
attacked local function and messages exchanged with its
neighbors.

D. Assumptions

We study the RGDO problem under the following assump-
tions, some of which have already been discussed:

Assumption 1. The communication graph is fixed, con-
nected, and doubly-stochastic (i.e., the adjacency matrix A
of the graph is a doubly-stochastic matrix). Moreover, the
weight associated with each link is known to the correspond-
ing receiver node, for example, node j is aware of aij for
any i 2 P .

Assumption 2. There exists an 0 < ✏ < 1
2 , known to all

nodes in the network, such that for any node j, the sum
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of link weights corresponding to its attacked in-neighbors is
upper bounded by ✏, i.e.:

X

i2N in
j \Sb

aij  ✏, 8j 2 P. (1)

Assumption 3. Each local function is differentiable, and the
Euclidean distance between the gradients of any two local
functions evaluated at any point x in the working domain is
upper bounded by some constant  > 0, i.e.:

krfi(x)�rfj(x)k2  , 8i, j 2 P. (2)

Assumption 4. The global function f is L-smooth and ⌫-
strongly convex, each local function fi is L0-smooth.

Assumption 1 is a constraint on the communication net-
work topology. This assumption is the simplest one that
enables a solution to the Decentralized Average Consensus
(DAC) problem, where a network of nodes, each having a
local initial value, seeks to agree on the average of their
initial values [23], [24]. Assumption 2 restricts the power
of the adversary. For example, if node j has k neighbors
and the weight on each link to node j is 1/k, Assumption 2
requires that less than half of the links can be attacked since
✏ is required to be smaller than 1/2. Similar assumptions
were made in [8], with the slight difference that in [8] it
is assumed that the number of attacked nodes in a neigh-
borhood is upper-bounded. Assumption 3 is widely accepted
in decentralized (distributed) machine learning literature, for
example, [25] and [9] adopted very similar assumptions to
enable filtering information from attacked nodes. Assumption
4 is also widely accepted in decentralized optimization
literature. Also note that by Assumption 4 the optimizer x⇤

of function f is unique, and hence all nodes are essentially
asked to reach consensus on this unique optimizer.

III. THE RESILIENT AVERAGING GRADIENT DESCENT
ALGORITHM

In this section, we introduce an algorithm called Resilient
Averaging Gradient Descent (RAGD), which enables all
nodes to approximate the global minimum x⇤ and thus
solves the RDGO problem. Algorithm 1 is a pseudo-code
description of the RAGD algorithm.

The RAGD algorithm has two loops, an inner loop (lines
4-8) and an outer loop (lines 3-16). In the inner loop, all the
nodes are asked to run a linear iterative algorithm aiming at
reaching consensus on the average of their local estimates.
The input parameter ⌧ controls the number of iterations
executed in the inner loop. The estimate at node j in t-th
iteration of the outer loop and k-th iteration of the inner
loop is denoted by xk

j [t]. To proceed, we directly provide
the following result on the convergence property of the inner
loop.

Lemma 1. Consider a set P of nodes and assume each
starts with an initial value x0

i [t] and executes lines 4-8 of
the RAGD algorithm in parallel. Define x̄[t] = 1

p

P
i2P x0

i [t]

and dk[t] = maxi,j2P kxk
i [t] � xk

j [t]k2. The following two
properties hold for any t 2 N:

Algorithm 1: Resilient Averaging Gradient Descent
(RAGD) Algorithm for Node j

Input: {aij |i 2 N in
j }, f̃j , ✏, ⌘, ⌧ 2 N;

Initialization: x0
j [0] := 0;

for t = 0, 1, 2, . . . do

for k = 0, 1, 2, . . . , ⌧ � 1 do

Broadcast xk
j [t] ;

Receive xk
i [t] from i 2 N in

j ;
xk+1
j [t] :=

P
i2N in

j
aijxk

i [t];
end

Compute and broadcast the gradient
Xj [t] := rf̃j(x⌧

j [t]) of its local function;
Receive Xi[t] from i 2 N in

j ;
µ̂j [t] := RWSE({(aij , Xi[t]), i 2 N in

j }, ✏) where
the RWSE algorithm will be introduced in
Section IV;
x0
j [t+ 1] := x⌧

j [t]� ⌘µ̂j [t];
end

Output: x⌧
j [t];

1) 1
p

P
i2P x⌧

i [t] = x̄[t], 8⌧ 2 N,
2) there exists an ↵ 2 R+ and a ⇢ 2 (0, 1) such that for

any ⌧ 2 N, d⌧ [t]  ↵⇢⌧d0[t].

A similar result can be found in [26]. Due to page
limitations certain proofs are omitted.

In the outer loop, all nodes are first asked to reach
consensus on the average of their local estimates by exe-
cuting the inner loop. Then each node is asked to compute
and broadcast the gradient of its (possibly attacked) local
function (lines 9-10). We note that some gradients are not
reliable since some local functions have been altered by the
data poisoning attack. Upon receiving gradients from all its
neighbors, each node runs a screening algorithm (the RWSE
algorithm) which allows each node to resiliently approximate
the weighted average of the gradients it receives (line 11),
and in the end updates its local parameter by performing
a gradient descent step based on the output of the RWSE
algorithm (line 15).

Remark 2. In line 9 of Algorithm 1, we ask each node j to
compute the gradient of its (possibly attacked) local function
evaluated at its current local estimate x⌧

j [t]. If node j is free
from attack, then Xj [t] = rfj(x⌧

j [t]), i.e., the computed
gradient equals the gradient of its original local function
evaluated at the same point. However, if node j is attacked,
we make no assumptions on the relationship between Xj [t]
and rfj(x⌧

j [t]) except that Xj [t] exists.

IV. THE ROBUST WEIGHTED SUM ESTIMATION
ALGORITHM

In this section, we study the problem of how each node
can resiliently compute the weighted sum of its neighbors’
gradients under assumptions 1-3, despite a portion of the
gradients having been attacked. To solve this problem, we
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propose a novel algorithm termed the Robust Weighted Sum
Estimation (RWSE) algorithm.

The RWSE algorithm is not only the key for solving the
RDGO problem, but also has other applications, for exam-
ple, it can be conveniently applied to solve the distributed
Byzantine-resilient federated learning problem1. Moreover,
we note that the robust weighted sum estimation problem is
a generalization of the well-known RME problem, hence the
RWSE algorithm solves the robust mean estimation problem
assuming Assumptions 1-3 hold.

A. Algorithm Description
Since the execution node j is fixed, in this section we

drop this index and represent the weights {aij : i 2 P} by
{ai : i 2 P}. Note that

P
i2P ai = 1 by Assumption 1. Let

S be the set of in-neighbors of node j, the message Xi that
node j receives from node i satisfies:

Xi = rfi, i 2 Sg (3)

where we also dropped time indices t and ⌧ and used rfi in
lieu of rfi(x⌧

i [t]) for simplicity. The goal is to approximate
the weighted average µg =

P
i2S airfi using the data

{(a1, X1), (a2, X2), . . . , (ap, Xp)} under Assumptions 2 and
3. Algorithm 2 is a pseudo code description of the RWSE
algorithm.

Algorithm 2: Robust Weighted Sum Estimation
(RWSE)

Input: {(a1, X1), (a2, X2), . . . , (ap, Xp)}, ✏;
Initialization: g := 1, temp := 0, w0 := 0,
V := {X1, X2, . . . , Xp}, Ve := {}, ge := 0;

while g > 1� ✏ do

compute the Euclidean distance between every
pair of nodes and find out a pair with the
maximum distance. If there are multiple pairs,
pick one of them arbitrarily. Without loss of
generality we assume that vectors Xi and Xh

are picked;
si :=

P
z2V (azkXi �Xzk2);

sh :=
P

z2V (azkXh �Xzk2);
if si > sh then

u := i;
else

u := h;
end

V := V \{Xu}, g := g � au, temp := u;
end

if atemp > ✏ then

Ve =: V [ {Xtemp}, ge := g + atemp;
else

Ve := V , ge := g;
end

Output: µ̂ := 1
ge

P
i2Ve

aiXi;

1See [9] for a formal definition of the distributed Byzantine-resilient
federated learning problem.
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Fig. 1. Visualization of Algorithm 2

To explain the RWSE algorithm we describe its execution
on the example in Figure 1. In Figure 1, a red dot denotes
an attacked vector while a black dot denotes an attack-free
vector. All attack-free vectors (black dots) lie in a ball with
diameter  whereas there are no restrictions on the position
of attacked vectors. In each iteration, the execution node first
finds the pair of vectors (i, h) with the maximum Euclidean
distance (subgraph (a), also line 4 in Algorithm 2), then
computes and compares the weighted sum of the distance
between vector i and all other vectors and the weighted
sum of the distance between vector h and all other vectors
(subgraph (b) and (c), also lines 5-6 in Algorithm 2). In the
problem instance represented by Figure 1, vector h is closer
to the rest of vectors compared with the attacked vector i,
hence in the last subgraph (d) vector i is removed according
to lines 6-12 in Algorithm 2.

In addition, we use a scalar variable temp to store the
identity of the latest removed vector. By Assumption 2 if
the weight ai associated to a vector Xi satisfies ai > ✏, then
this vector cannot be attacked. Therefore, if a vector Xi with
weight ai > ✏ is removed at some iteration and then the
algorithm terminates, there is no harm restoring this vector
Xi since it must be a good vector. By doing so we have
the following guarantee of the weight sum of the remaining
vectors: ge � 1� 2✏, where ge is defined in line 14 and line
16 in Algorithm 2.

B. Performance

The termination of Algorithm 2 (RWSE) is guaranteed by
line 4, and its performance is characterized by the following
lemma, which shows how close the output µ̂ of the RWSE
algorithm is from the true average µg .

Lemma 2. Consider the RWSE algorithm with inputs
{(a1, X1), (a2, X2), . . . , (ap, Xp)} satisfying: (1) a1 + a2 +
· · · + ap = 1; (2) ai > 0, 8i 2 P ; (3) krfi � rfhk2 
, 8i, h 2 P , and ✏ satisfying (4) ✏ < 1

2 . Define µg =Pp
i=1 airfi. The output µ̂ of the RWSE algorithm satisfies:

kµ̂� µgk2 
✓
2 +

3� 4✏

(1� 2✏)2

◆
✏. (4)

Remark 3. We see that the RWSE algorithm scales well
with the dimension n, since the computational complexity
of the RWSE algorithm grows linearly with of n. Moreover,
according to Lemma 2, the error of the RWSE algorithm
scales with ✏, which outperforms many RME algorithms
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whose error scales with
p
✏ [11]. It is also noteworthy

that the error of the RWSE algorithm scales with , which
implicitly grows with

p
n.

V. PERFORMANCE OF THE RAGD ALGORITHM

In this section we prove the correctness of the RAGD
algorithm. We start with an intuitive explanation of the
RAGD algorithm: the inner loop can be considered as an
initialization step, in which each node initializes their esti-
mate to be the average of estimates of all nodes throughout
the network, up to some error which decreases exponentially
with ⌧ by Lemma 1. Executing lines 9-12 in Algorithm 1
brings the following two consequences:
1. The average of local estimates moves towards the mini-
mum point (or a minimum point if there are multiple), up to
some constant error.
2. The distance between two local estimates may increase.

From the previous discussion we observe the following
two facts: (1) the local estimates of all nodes are clustered
in a ball, and (2) the centroid of the ball moves towards
the minimizer up to a constant error. It is a natural con-
sequence of these two facts that the estimate at any node
is close to the minimizer. We recall the definition dk[t] =
maxi,j2P kxk

i [t] � xk
j [t]k2 and proceed with the following

two propositions which formally state the observations men-
tioned above:

Proposition 1. Consider a set P of nodes in a communi-
cation network satisfying Assumption 1. Each node has a
local function which satisfies Assumptions 3 and 4 and some
local functions are altered by a data poisoning attack which
satisfies Assumption 2. Let all nodes run the RAGD algorithm
in parallel. For any step size ⌘ > 0 and any given input
r > 0, there always exist a ⌧0 2 N such that d⌧ [t]  r
implies d⌧ [t+ 1]  r for any t 2 N, if ⌧ � ⌧0.

Proposition 2. Let the assumptions in Proposition 1 hold
and further let d⌧ [t]  r for any t, ⌧ 2 N and r > 0. Then
the following equation holds for any ⌘ > 0:

x̄[t+ 1]� x̄[t] = �⌘

p
rf(x̄[t]) +

⌘

p
l[t], (5)

for some l[t] satisfying kl[t]k2  pc✏(+2L0r)+pL0r, where
c✏ =

3✏�4✏2

(1�2✏)2 .

For simplicity, we define ⇠ = pc✏( + 2L0r) + pL0r.
Inequality (5) shows that, if we compare the average at the
iteration t + 1 and the average at iteration t, we determine
that the average x̄[t] is updated with a “polluted” gradient,
which differs from the true gradient rf(x̄[t]) by a vector l[t]
whose Euclidean norm is upper bounded by ⇠, using step size
⌘
p . As we will soon see, this “polluted” gradient only leads
to a constant error.

Theorem 1. Consider a set of nodes in a communication
network satisfying Assumption 1, each equipped with a local
function satisfying Assumption 3. Moreover, assume a subset
of nodes are subject to a data poisoning attack satisfying
Assumption 2. For any user input r > 0, suppose all nodes

in the network run the RAGD algorithm with ⌘ = p
L and

parameter ⌧ � ⌧0 defined in Proposition 1, then the output
of every node j 2 P at any time t 2 N satisfies:

kx⌧
j [t]� x⇤k2  �kkx0

j [0]� x⇤k2 +
⇠

(1� �)L
+ r, (6)

where � =
p

1� ⌫
L .

Proof. We observe that, by choosing ⌘ = p
L , the update rule

(5) for the average degenerates to:

x̄[t+ 1]� x̄[t] = � 1

L
(rf(x̄[t]� l[t]). (7)

By Assumption 4, the function f is both ⌫-strongly convex
and L-smooth. This implies for any pair x, y 2 Rn, the
following two inequalities hold:

f(y)� f(x)  rfT (x)(y � x) +
L

2
ky � xk22, (8)

f(x)� f(y) � rfT (y)(x� y) +
⌫

2
ky � xk22. (9)

A simple reorganization of Equation (9) yields:

f(y)� f(x)  rfT (y)(y � x)� ⌫

2
ky � xk22. (10)

We consider the following set of equalities and inequalities
for any x, y 2 Rn and x+ = x � 1

Lrf(x), which will be
used later.

f(x+)� f(y)

= f(x+)� f(x) + f(x)� f(y)

 rfT (x)(x+ � x) +
L

2
kx+ � xk22

+rfT (x)(x� y)� ⌫

2
kx� yk22

= rfT (x)(x+ � y) +
1

2L
krf(x)k22 �

⌫

2
kx� yk22

= rfT (x)(x� 1

L
rf(x)� y)

+
1

2L
krf(x)k22 �

⌫

2
kx� yk22

= rf(x)T (x� y)� 1

2L
krf(x)k22 �

⌫

2
kx� yk22.

In particular, when y = x⇤, we have:

0  f(x+)� f(x⇤)

 rfT (x)(x� x⇤)� 1

2L
krf(x)k22

� ⌫

2
kx� x⇤k22. (11)
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In the following we prove the result stated in the theorem.

kx̄[t+ 1]� x⇤k2

= kx̄[t]� x⇤ � 1

L
(rf(x̄[t])� l[t])k2

 kx̄[t]� x⇤ � 1

L
rf(x̄[t])k2 +

1

L
kl[t]k2

 kx̄[t]� x⇤ � 1

L
rf(x̄[t])k2 +

⇠

L
(a)


r
(1� ⌫

L
)kx̄[t]� x⇤k22++

⇠

L
(b)
= �kx̄[t]� x⇤k2 +

⇠

L
, (12)

where in step (a) we plug in Equation (11) with x = x̄[t]
and in step (b) we use the definition � =

p
1� ⌫

L . We note
that � 2 (0, 1). Solving Equation (12) recursively gives:

kx̄[t]� x⇤k2  �tkx̄[0]� x⇤k2 +
⇠

(1� �)L
. (13)

Together with Proposition 1 we finish the proof.

Remark 4. Our RAGD algorithm guarantees that the dis-
tance between the computed minimizer and the true global
minimizer (in the absence of attacks) is bounded by a
constant error term. This differs some existing works [8],
[27] in which the computed minimizer is only guaranteed
to lie in the smallest hyper-rectangle that contains all local
minimizers. Moreover, our error term scales linearly withp
n and ✏ when at most half of nodes are under attack.

Remark 5. We also note that, the RAGD algorithm can
be conveniently extended to solving the Byzantine-resilient
distributed optimization problem2. To solve this problem,
we ask, in each iteration, the central server to collect the
gradients X1, X2, . . . , Xp from all workers and then execute
the RWSE algorithm using identical weight values (i.e.,
ai = 1

p , 8i = 1, 2, . . . p). Then the central server is asked
to send the output of the RWSE algorithm to all the workers
and all workers update its estimate with the received value.
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