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Abstract

The classic roles of mitochondria in energy production, metabolism, and apoptosis have been well defined. However, a growing body
of evidence suggests that mitochondria are also active players in regulating stem cell fate decision and lineage commitment via
signaling transduction, protein modification, and epigenetic modulations. This is particularly interesting for spermatogenesis, during
which germ cells demonstrate changing metabolic requirements across various stages of development. It is increasingly recognized
that proper male fertility depends on exquisitely controlled plasticity of mitochondrial features, activities, and functional states. The
unique role of mitochondria in germ cell ncRNA processing further adds another layer of complexity to mitochondrial regulation
during spermatogenesis. In this review, we will discuss potential regulatory mechanisms of how mitochondria swiftly reshape their
features, activities, and functions to support critical germ cell fate transitions during spermatogenesis. In addition, we will also review
recent findings of how mitochondrial regulators coordinate with germline proteins to participate in germ cell-specific activities.
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Introduction

Each cell containshundredstothousands of mitochondria,
and each mitochondrion contains multiple copies of
mitochondrial genomic DNA (mtDNA) (Cole 2016).
As the ‘powerhouse’ of the cell, mitochondria need to
rapidly adapt their functions in response to changing
cellular metabolic needs, substrate availabilities, as well
as physiological and pathological cues. Notably, it is not
just enzymatic activities in the tricarboxylic acid cycle
(TCA cycle, also called citric acid cycle or Krebs cycle)
and mitochondrial respiration that control mitochondrial
performance. Mitochondrial features, including their
morphology,  architecture, numbers,  subcellular
localization, and interaction with other organelles, also
vary in a cell type and developmental stage-dependent
manner to critically affect the mitochondrial functional
state. The plasticity of mitochondrial features is largely
regulated by mitochondrial dynamics (i.e. fusion and
fission), which not only enable coordinated response of
individual mitochondria to extracellular stimuli but also
reshape mitochondrial features to indirectly control their
metabolic profiles and functions (Mishra & Chan 2016).

Further, mounting evidence suggests that mitochondria
arenotjusta’powerhouse’ ofthecell, they areincreasingly
recognized as active players in stem cell differentiation
and development. For example, metabolites from the
TCA cycle may function as epigenetic cofactors to
initiate transcriptional reprogramming (Wellen et al.
2009, Cai et al. 2011, Hwang et al. 2016, van der
Knaap & Verrijzer 2016), while reactive oxygen species
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(ROS) from mitochondrial respiration act as signaling
molecules or protein oxidation modifiers to regulate
transcription and protein activity (Zhang et al. 2016b).
In spermatogenesis, the process of postnatal male germ
cell development, millions of sperm are generated
per day from mouse adult testes, which require highly
coordinated mitochondrial and metabolic activities.
Interestingly, germline mitochondria differ remarkably
in features, activities, and functions across varying
stages of spermatogenesis (Varuzhanyan & Chan 2020),
suggesting that developmental stimuli and metabolic
needs are intertwined at mitochondria to regulate
germ cell fate decision and male fertility. Hereby,
we reviewed recent key findings of mitochondrial
regulation during spermatogenesis, including a growing
understanding of metabolic transitions at critical stages
in spermatogenesis, germ cell-specific mitochondrial
functions, as well as coordination between germline
factors and common mitochondrial modulators that are
shared with somatic cells.

Mitochondria at a glance

Mitochondria are double-membrane organelles that
are found in almost all eukaryotic cells. The double-
membrane divides mitochondria into five distinct
regions: the outer mitochondrial membrane (OMM),
intermembrane space, the inner mitochondrial
membrane (IMM), cristae, and the matrix (Fig. 1.
Mitochondrial structure). The OMM acts as a barrier
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Figure 1 Mitochondrial metabolism and communication network with nucleus and ER. The TCA cycle begins with the reaction that combines
acetyl-CoA with oxaloacetate to form citrate. NADH and FADH2 that are generated from the TCA cycle provide electrons passing through ETC-I
to IV to O,, releasing energy to establish a proton gradient across IMM for final ATP production via ATP synthase in ETC-V. Metabolites that are
produced in the TCA cycle such as acetyl-CoA and a-KG serve as cofactors for epigenetic regulators that modulate chromatin modifications and
DNA methylation. ROS that are generated during OXPHOS may induce protein oxidative modifications or serve as a secondary messenger to
trigger signaling cascades. Excess ROS may cause DNA damage in the mitochondria or in the nucleus. The communication between
mitochondria and ER is facilitated by mitochondrial associate membrane (MAM), which regulates lipid metabolism, calcium homeostasis, and
mitochondria dynamics. I-V, ETC I-V; V, ATP synthase; Ac, acetyl group; Me, methyl group.

to macromolecule diffusion and regulates the release
of signals (e.g. ROS and pro-apoptotic molecules like
cytochrome c¢) from mitochondria to the cytoplasm (Li
et al. 1997, Rostovtseva & Colombini 1997, Adrain
et al. 2001). The IMM is linked to the OMM via several
contactsites that are necessary for metabolites exchange,
coordination of mitochondrial dynamics, and protein
transport (Reichert & Neupert 2002). Cristae are pouch-
like structures that contain the machinery for oxidative
phosphorylation (OXPHOS) (Mannella 2006, Quintana-
Cabrera et al. 2018), while the mitochondrial matrix is
the site of the TCA cycle, as well as mtDNA replication,
transcription, and protein translation (Kuhlbrandt 2015).

The mtDNA is a circular double-stranded molecule
with ~16 kb that encodes 13 polypeptides, 2 ribosomal
RNAs, and 22 tRNAs (Anderson et al. 1981, Bibb et al.
1981). The mtDNA replication does not coincide with
the cell cycle and occurs independently from nuclear
DNA (Bogenhagen & Clayton 1977). DNA polymerase
gamma (POLG) with 3’-5" exonuclease proofreading
activity is the primary polymerase that mediates mtDNA
replication (Ropp & Copeland 1996, Copeland &
Longley 2003). The mtDNA encodes polypeptides
in enzyme complexes of electron transport chain
(ETC), including NADH CoQ reductase (complex 1),
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cytochrome b (complex [ll), subunits I, I, and Il of
cytochrome c oxidase (complex 1V), and subunits 6 and
8 of the H+ ATPase (Anderson et al. 1981, Bibb et al.
1981). Other mitochondrial proteins are encoded by
the nuclear DNA and imported into mitochondria by
translocase complexes at OMM and IMM (Reichert &
Neupert 2002, Chacinska et al. 2009). For example,
mitochondrial transcription factor A (TFAM) is a nuclear
DNA coded protein responsible for recruiting POLG to
activate mtDNA transcription and subsequent mtDNA
packaging into nucleoids (Fisher & Clayton 1988, Kanki
et al. 2004). Disruption of Tfam causes embryonic
lethality and decreases mtDNA copy number in mice
(Larsson et al. 1998), whereas upregulated TFAM
protein level in mtDNA mutant mice partially rescues
mitochondrial functions (Jiang et al. 2017).
Mitochondrial features and functions vary by cell
type. Cells that require a lot of energy, such as muscle
and liver cells, contain hundreds or thousands of
mitochondria (Anversa et al. 1980). In contrast, some
other cells, such as mature red blood cells, have
few mitochondria (Tablin & Weiss 1985). Mature
mammalian spermatozoon contains ~75 mitochondria
in its midpiece (Otani et al. 1988). The mitochondrial
morphology also varies from sacks and ovals to tubular
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shapes, depending on cell type (Nixon et al. 1994,
Das et al. 2012). To precisely coordinate the responses
of individual mitochondria to various developmental
cues, physiological changes, and pathological stress,
mitochondria need to share their membrane and
exchange their contents via continuous mitochondrial
fusion (mitofusion) and fission, collectively known
as mitochondrial dynamics (Chan 2012, Mishra &
Chan 2014). Disrupting fusion or fission increases
the heterogeneity of mitochondria (Chen et al.
2005, 2007).

In many mammalian cells, mitochondria present
as a branched reticular network that radiates from
the nucleus (Frazier et al. 2006). This unique spatial
distribution allows mitochondria to readily connect and
exchange materials with other subcellular organelles
(Vance 1990, Prachar 2003, Desai et al. 2020). For
example, mitochondria and endoplasmic reticulum (ER)
are often closely associated via tethering at specific sites,
so-called mitochondria-associated membrane (Vance
1990). The interaction between mitochondria and ER
is crucial for mitochondrial fission (Friedman et al.
2011), lipid synthesis (Vance 1990), calcium signaling
(Rizzuto et al. 1998, de Brito & Scorrano 2008), and
mtDNA maintenance (Lewis et al. 2016). Mitochondria
also communicate with the nucleus via anterograde
(from the nucleus to mitochondria) and retrograde (from
mitochondria to the nucleus) signaling pathways, which
are facilitated by the contacts between mitochondria
and the nucleus (Prachar 2003, Desai et al. 2020). These
close contacts enable the transport of mitochondria-
derived molecules (such as cholesterol and ROS) to the
nucleus, regulating gene expression (Desai et al. 2020).

The mitochondrial features (i.e. morphology,
subcellular distribution, and interaction with other
organelles) are largely regulated by mitochondrial
dynamics (Bereiter-Hahn & Voth 1994). For example,
elevated mitofusion leads to elongated tubular
mitochondria thatfavor OXPHQOS, while fission increases
small mitochondria (Mishra & Chan 2016). Further,
mitochondrial dynamics contribute to mitochondrial
health by coupling with the autophagic machinery to
remove dysfunctional mitochondria for degradation
(Twig et al. 2008, Hailey et al. 2010, Youle & van der
Bliek 2012, Abeliovich et al. 2013, Pickles et al. 2018).
Dysregulated mitofusion and fission may cause mtDNA
instability and reduced respiratory capacity (Chan 2012).

Functions of Mitochondria as more than just the
powerhouse of the cell

Mitochondria play a central role in bioenergetics and
metabolism through the TCA cycle, B-oxidation, and
OXPHOS (Nsiah-Sefaa & McKenzie 2016). The TCA
cycle starts from acetyl coenzyme A (CoA), which is
generated from oxidative decarboxylation of pyruvate,
B-oxidation of fatty acids, and amino acid degradation
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(Krebs 1970) (Fig. 1). NADH and FADH2 from the TCA
cycle provide electrons passing through ETC to O,,
releasing energy to mitochondrial respiratory complexes
[-1V to establish a proton gradient across IMM (Mitchell
1961). The proton gradient further powers ATP synthase
in complex V to drive ATP synthesis (Mitchell 1961).
Compared to 2 ATP generated from glycolysis, the
TCA cycle and OXPHOS produce ~32 ATP per glucose
(Rich 2003). Mitochondria are therefore called the
‘powerhouse’ of the cell (Siekevitz 1957, Dunn &
Grider 2021).

Importantly, accumulating evidence suggests that
mitochondria contribute to multiple cellular and
biological processes, such as cell signaling, proliferation,
and lineage commitment, well beyond their canonical
roles in metabolism and OXPHOS (Osellame et al.
2012, Chandel 2014, Chandel 2015, Chakrabarty &
Chandel 2021). Metabolites generated through the
TCA cycle not only provide precursors for anabolism of
nucleotides, lipids, and amino acids but also serve as
cofactors for enzymes in epigenetic regulation (Wellen
et al. 2009, Cai et al. 2011, Hwang et al. 2016). For
instance, acetyl-CoA provides the acetyl group to
histone acetyltransferases for histone acetylation and
thus plays an essential role in transcription activation
(Wellen et al. 2009). Pluripotent stem cells (PSCs) need
high levels of acetyl-CoA and histone acetylation for the
maintenance of pluripotency (Moussaieff et al. 2015).
Another key product of the TCA cycle, a-ketoglutarate
(a-KG), serves as cofactors for ten-eleven translocation
enzymes and Jumonji family histone demethylases,
which are responsible for demethylation of DNA and
histones (Klose et al. 2006, Yang et al. 2014). In general,
a-KG promotes demethylation, while succinate and
fumarate act as antagonists to a-KG-dependent functions
(van der Knaap & Verrijzer 2016). An elevated ratio of
a-KG to succinate has been shown to promote DNA
and histone demethylation, which is key to maintain
the pluripotency of naive mouse PSCs (Carey et al.
2015). By contrast, a-KG accelerates early endoderm
and neuroectoderm differentiation in primed human
and mouse PSCs (TeSlaa et al. 2016, Zhu et al. 2020).
Overall, these studies highlight that these metabolites
from mitochondrial metabolism are important regulators
for transcription and histone modification that ultimately
dictate stem cell fate decisions.

Further, ROS from OXPHOS may alter protein
functions via oxidative modification or actas a secondary
messenger to trigger signaling cascades, but excessive
ROS production will cause oxidative damages (Chandel
et al. 1998, Lo Conte & Carroll 2013, Holmstrom &
Finkel 2014). Intracellular ROS exist primarily in three
forms: superoxide anions (O,7), hydrogen peroxide
(H,0,), and hydroxyl radicals (OH). H,0, is thought
to be the main ROS form in signaling transduction,
likely due to its long half-life and the ability to quickly
diffuse across membranes (Holmstrom & Finkel 2014).
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Oxidation of cysteine thiol groups is the most common
oxidative protein modification (Bigarella et al. 2014).
Such a modification may cause functional changes of
proteins in their stability, subcellular localization, and
communication with other proteins, which, in some
cases, affect cell fate decision (Dansen et al. 2009, Velu
et al. 2017). Cellular redox homeostasis is maintained
by the balance between ROS-producing and ROS-
scavenging systems. A moderate increase of ROS may
promote cell proliferation and survival (Le Belle et al.
2011, Morimoto et al. 2013). However, excessive ROS
will overwhelm the cellular antioxidant capacity and
trigger apoptosis (Guo et al. 2010, Ito et al. 2016). Thus,
cellular ROS is a double-edged sword, and its levels must
be tightly regulated to maintain normal cell functions.

Mitochondria in male germ cells

Dynamic changes of mitochondrial features
during spermatogenesis

Mammalian spermatogenesis is a complex multi-step
process supported by a rare population of spermatogonial
stem cells (SSCs) (Oakberg 1971, Roosen-Runge &
Holstein 1978, Hara et al. 2014, de Rooij 2017).
In mice, SSCs undergo mitotic divisions to produce
more SSCs and support a pool of undifferentiated
spermatogonia (Mecklenburg & Hermann 2016). In
response to developmental signals, such as retinoic
acid, undifferentiated spermatogonia transition into type
A1l differentiating spermatogonia, which will further
develop into type B spermatogonia to form spermatocytes
and then haploid spermatids via meiosis. Spermatids
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subsequently enter spermiogenesis to mature into
spermatozoa, by going through nuclear condensation,
acrosome formation, and tail development. Finally,
mature but non-motile spermatozoa will be released
from the seminiferous epithelium to the epididymis via a
process known as spermiation. The entire process takes
approximately 35 days from type A1 spermatogonia to
spermiation in mice (Clermont 1972, Griswold 2016).
During spermatogenesis, mitochondrial morphology,
size, and localization change markedly (Fig. 2), as
reported by early studies using transmission electron
microscopy (TEM). Three different morphological
types of mitochondria have been described in germ
cells — ‘orthodox’, ‘intermediate’, and ‘condensed’
(De Martino et al. 1979, Hess et al. 1993, Meinhardt
et al. 1999, Vertika et al. 2020). Spermatogonia and
early spermatocytes usually carry the conventional
orthodox type of mitochondria that are small and
spherical organelles with greater matrix and thin
cristae (De Martino et al. 1979, Hess et al. 1993,
Meinhardt et al. 1999). While mitochondria are
randomly dispersed in the cytoplasm of rodent germ
cells (De Martino et al. 1979, Meinhardt et al. 1999),
in prepubertal spermatogonia from humans and pigs,
mitochondria appear to be distributed at one side
of the nucleus close to the basement membrane of
testicular tubules (Voigt et al. 2021). In zygotene and
pachytene spermatocytes at the early stages of meiosis,
the mitochondria with ‘intermediate’ configuration are
found around the nucleus (De Martino et al. 1979,
Meinhardt et al. 1999). Late spermatocytes and early
spermatids contain condensed forms of mitochondria
with enlarged matrix and vesicular cristae, randomly
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Figure 2 Alteration of mitochondrial morphology and metabolism during spermatogenesis. Spermatogonia carry orthodox mitochondria, which
are small, spherical organelles containing large matrix and thin cristae. Compared to undifferentiated spermatogonia, differentiating
spermatogonia have higher mitochondrial respiration and ROS levels, as well as increased expressions of mitochondrial regulators. Zygotene
and pachytene spermatocytes tend to have elongated mitochondria (intermediate) that are localized around the nucleus. In late spermatocytes
and spermatids, mitochondria are small and condensed with an enlarged matrix and vesiculate cristae. In spermatozoa, mitochondria of
‘intermediate’ type are helically arranged end to end in the midpiece of flagella. Lactate and pyruvate are required for energy production via
OXPHOS in both spermatocytes and spermatids. Spermatozoa utilize glycolysis for survival but require both glycolysis and OXPHOS for motility

and fertilization.
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distributed throughout the cytoplasm (De Martino
et al. 1979). In elongated spermatids, mitochondria
with ‘intermediate’ configuration are aligned along
the outer dense fibers in the forming tail (Hess et al.
1993). At the end of spermiogenesis, mitochondria
are helically arranged end-to-end in the midpiece of
flagella in spermatozoa (De Martino et al. 1979). These
dramatic changes in mitochondrial features are critical
to spermatogenesis and thus need to be precisely
regulated to support the cascades of key events in germ
cell development.

Mitochondria and piRNA biogenesis in male
germ cells

In postnatal germ cells, nuage, the amorphous electron-
dense granule with no limiting membrane has been
identified in the cytoplasm using TEM (Fawcett et al.
1970, Eddy 1974). These germline granules consist of
ribonucleoproteins and participate in the biogenesis
of P-element-induced wimpy testis (PIWI)-interacting
RNA (piRNA) (Paniagua et al. 1985, Aravin et al. 2006,
Girard et al. 2006, Watanabe et al. 2006). Based on
its size, subcellular location, and components, nuage
is classified as intermitochondrial cement (IMC, also
named pi-body), piP-body, and chromatoid body in
male germ cells (Eddy 1975, Paniagua et al. 1985,
Chuma et al. 2009). Both IMC and piP-body are in close
proximity to mitochondria and contain mitochondrion-
localized proteins (Eddy 1974, Aravin et al. 2009,
Chuma et al. 2009). Clustered mitochondria with
‘cementing materials’ are uniquely present at IMC in
pro-spermatogonia, postnatal spermatogonia, and early
stage spermatocytes (Eddy 1974, Chuma et al. 2009),
though it remains unclear how mitochondria or IMC
structurally and functionally communicate with other
types of nuage.

ThepiRNAsaresmallncRNAswith ~24-34 nucleotides
in length, which have been identified in diverse species
(Aravin et al. 2006, Girard et al. 2006, Grivna et al.
2006, Lau et al. 2006, Watanabe et al. 2006). Two
classes of piRNAs have been described during mouse
spermatogenesis: pre-pachytene and pachytene piRNAs.
Pre-pachytene piRNAs maintain germline DNA integrity
by repressing the expression of transposable elements, a
function essential for germ cell development and male
fertility. Pre-pachytene piRNAs are mainly processed by
PIWI proteins MILI and MIWI2 in pro-spermatogonia,
postnatal spermatogonia, and spermatocytes before
the pachytene stage (Aravin et al. 2008, Kuramochi-
Miyagawa et al. 2008). By contrast, pachytene piRNAs
are expressed abundantly in spermatocytes and round
spermatids, and their biogenesis is mediated by MILI and
MIWI (Deng & Lin 2002, Aravin et al. 2006, 2007, 2008,
Reuter et al. 2011). Pachytene piRNAs display enormous
diversity in their sequences and their functions remain
to be a highly debated topic in the field (Vourekas et al.
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2012, Homolka et al. 2015, Dai et al. 2019, Wu et al.
2020).

Bioenergetic preference is precisely regulated to
support critical events in spermatogenesis

Mammalian SSCs and spermatogonia are located at
the base of seminiferous tubules, while spermatocytes
and spermatids sequentially migrate from the basal
compartment toward the adluminal region (Roosen-
Runge & Holstein 1978). It has been implicated
that progenitors and differentiating spermatogonia
preferentially resided in regions adjacent to the
interstitial space with easy access to O, provided by
testicular vasculature, whereas the SSCs located in
an avascular hypoxic environment (Chan et al. 2014,
DeFalcoetal. 2015, Lord & Nixon 2020). The differences
in oxygen availability may contribute to different
metabolic preferences in SSCs and their differentiating
counterparts. In alignment with this observation, several
studies support that high glycolysis level favors long-term
self-renewal of SSCs. For example, rodent SSCs show
increased regenerative capacity when cultured under a
glycolysis-optimized condition (Helsel et al. 2017). In a
study by Kanatsu-Shinohara et al., Myc/Mycn deficiency
reduced glycolytic activity, which led to compromised
self-renewal of SSCs (Kanatsu-Shinohara et al. 2016). By
contrast, upregulation of glycolysis by small molecule
PS48 or by enforced expression of PDPK1 or AKT1
promoted the establishment of SSC primary culture
from the C57BL/6 mouse strain (Kanatsu-Shinohara
et al. 2016), which is otherwise proven difficult under
conventional conditions.

Although a low oxygen tension environment appears
to be beneficial for the long-term maintenance of
undifferentiated spermatogonia in vitro (Oatley et al.
2016, Helsel et al. 2017), several studies suggest
that ROS is required for rodent SSC maintenance
(Morimoto et al. 2013, 2019, 2021). For example,
the addition of ROS inhibitors suppressed SSC self-
renewal, whereas hydrogen peroxide increased cell
proliferation (Morimoto et al. 2013). ROS produced
by NADPHT1 oxidase 1 (NOX1) drives SSC self-
renewal through a ROS-BCL6B-NOX1 feed-forward
loop (Morimoto et al. 2019). Notably, although ROS
may be generated from OXPHOS, the self-renewal
promoting function is likely mediated by ROS from a
process other than mitochondrial respiration in SSCs.
Chemical suppression of mitochondria-derived ROS
or deficiency of mitochondrion-specific topoisomerase
does not affect SSC self-renewal (Morimoto et al. 2021).
Therefore, the requirement of ROS in SSC maintenance
does not necessarily contradict the high glycolysis level
in SSCs. We found that compared to differentiating
spermatogonia, mitochondrial OXPHOS activity was
much lower in SSCs (Chen et al. 2020b). In this case,
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suppressing  OXPHOS or ROS from mitochondrial
respiration will only have a modest effect on the total
ROS pool of SSCs and thus have little impact on SSC
proliferation.

Unlike  SSC  self-renewal or spermatogonial
proliferation, spermatogonial differentiation relies more
on mitochondrial respiration. We show that during
spermatogenesis, energy production is shifted from
glycolysis to OXPHOS to meet the energy demand in
spermatogonial differentiation (Chen et al. 2020b).
Inhibiting enzymatic activities in ETC reduces the
formation of differentiating spermatogonia but has
lesser effects on spermatogonial proliferation (Chen
et al. 2020b). Our data (Chen et al. 2020b), coupled
with other evidence summarized in two recent
reviews (Lord & Nixon 2020, Park & Pang 2021),
further revealed that glycolytic enzymes and hypoxia-
responsive factors are highly expressed in human and
mouse SSCs, while regulators reflecting mitochondrial
biogenesis, activities, and OXPHOS are upregulated
in differentiating progenitors. These findings support
the notion that a metabolic shift from glycolysis to
mitochondrial respiration is required for spermatogonial
differentiation (Fig. 2).

As the process of spermatogenesis advances,
spermatocytes and spermatids at the adluminal
compartment require lactate and pyruvate for survival
(Grootegoed et al. 1984, Bajpai et al. 1998, Courtens
& Ploen 1999). Lactate appears to suppress apoptosis
of spermatocytes and spermatids through activation
of FAS receptor signaling pathways (Erkkila et al.
2002). Recently, Varuzhanyan et al. reported higher
expression of the mitochondrial pyruvate carrier MPC1
in spermatocytes than in spermatogonia, suggesting that
meiotic and post-meiotic spermatocytes may rely heavily
on mitochondrial OXPHOS activity (Varuzhanyan
et al. 2019). In spermatozoa, possibly because ATP-
dependent homologous recombination and meiosis
complete, energy production goes back to glycolysis,
and the expression levels of glycolytic enzymes
including  hexokinase, glyceraldehyde-3-phosphate
dehydrogenase, and phosphofructokinase increase
(Westhoff & Kamp 1997, Bunch et al. 1998, Mori et al.
1998). Despite a long-standing debate on whether
glycolysis is the primary energy production source for
sperm, it is generally agreed that sperm exhibit great
versatility in their metabolic preference and functional
demand. Sperm can survive purely on glycolytic
energy (Peterson & Freund 1970, Storey & Kayne 1978,
Nascimento et al. 2008), but they do require OXPHOS
for mobility and fertilization (Auger et al. 1989, Ruiz-
Pesini et al. 1998, Ford 2006, Tourmente et al. 2015).

Germ cell-specific mitochondrial regulators

Multiple germ cell-specific variants of glycolytic enzymes
have been reported, such as HK1S (Mori et al. 1993),
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PGK2 (Robinson et al. 1989), and GPAT2 (Wang et al.
2007). These enzymes appear to have unique structural
or functional properties to support specific metabolic
requirements during spermatogenesis (Ramalho-Santos
et al. 2009). Similarly, mitochondria also have germ
cell-specific regulators. For example, the expression of
testicular cytochrome c isoform (C;) increases during
the zygotene-to-pachytene transition and becomes
the predominant form in sperm (Hess et al. 1993).
Compared to somatic cytochrome ¢, C; has a higher
catalytic potential for ROS destruction and stronger pro-
apoptotic activity (Liu et al. 2006), suggesting a unique
functional mechanism that protects sperm from ROS-
induced oxidation and eliminates those with damaged
DNA due to oxidative stress. An isoform of COX subunit
VI has also been reported in sperm, which implicates
germ cell-specific regulation in energy production
(Huttemann et al. 2003).

Several mitochondrial heat shock proteins are known
to be specifically expressed in germ cells and play critical
roles in spermatogenesis. For example, HSP60 is highly
expressed in spermatogonia and primary spermatocyte
and subsequently diminished as spermatogenesis
advances (Meinhardt et al. 1995, Paranko et al. 1996).
HSP60 reappears in mature and ejaculated spermatozoa
(Asquith et al. 2004, Lachance et al. 2010), supporting
its role in fertilization. Another heat shock protein,
HSPA2 (or HSP70-2), facilitates the assembly of
mitochondrially encoded subunits of the ATP synthase
complex (Herrmann et al. 1994). In addition, HSPA2
is expressed at high levels in pachytene spermatocytes
(Allen et al. 1988, Zakeri et al. 1988). HSPA2 deficiency
causes infertility, probably due to failure in desynapsis
(Dix et al. 1997), arrest of G2/M transition (Zhu et al.
1997), and defects in HSPA2-dependent chromatin
condensation and histone replacement/modification
(Scieglinska & Krawczyk 2015).

Interaction between mitochondria and piRNA
regulators

The main regulators in piRNA biogenesis are PIWI
proteins (Lehtiniemi & Kotaja 2018). They belong to PIW1/
Argonaute (PIWI/AGO) family and are evolutionarily
conserved with the presence of PAZ (Piwi-Argonaute-
Zwille) and PIWI domains (Hutvagner & Simard 2008).
PIWI proteins are predominantly expressed in germ
cells and indispensable for spermatogenesis. Four PIWI
members have been identified in humans, Hiwi, Hili,
Hiwi2, Hili2, and three in mice, Miwi, Mili, Miwi2 (Cox
et al. 1998, Kuramochi-Miyagawa et al. 2001, Deng &
Lin 2002, Sasaki et al. 2003, Carmell et al. 2007). In
addition to PIWI family members, several RNA-binding
proteins also contribute to piRNA biogenesis on the
surface of mitochondria at IMC, including TDRD1
(Huangetal. 2011b), DDX4 (Kuramochi-Miyagawa et al.
2010), and MOV10L1 (Frost et al. 2010, Zheng et al.
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2010). None of these proteins possess mitochondrial
localization signal (MLS), and thus they rely on other
mitochondrion-localized proteins to be recruited or to
functionally communicate with IMC (Fig. 3).

So far, only a few germ cell-specific proteins are
known to be localized directly at mitochondria. Among
those, GASZ (also called ASZ1) protein contains four
Ankyrin repeats, one sterile alpha motif, and one basic
zipper domain (Yan et al. 2002, Ma et al. 2009). GASZ
is localized at the OMM via a c-terminal MLS (Altshuller
etal. 2013, Zhang et al. 2016a). Although Gasz knockout
leads to reduced piRNA biogenesis, to date, there is no
evidence that GASZ proteins interact directly with RNAs.
Instead, GASZ contributes to piRNA production as an
anchorage by recruiting multiple RNA-binding proteins
to IMC, including MILI, MIWI, TDRD1, and MVH
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(Ma et al. 2009, Altshuller et al. 2013, Zhang et al.
2016a). We show that deletion of MLS in GASZ dislocates
it with MILI and MVH from mitochondria to cytoplasm
in germ cells (Zhang et al. 2016a). Consequently, no
IMC is formed, and piRNA expression is dramatically
reduced, with spermatogenesis arrested at pachytene
spermatocytes (Zhang et al. 2016a). These data suggest
that the mitochondrial localization of GASZ is critical
for its role in piRNA biogenesis.

A TUDOR family protein, TDRKH/TDRD2 (TUDOR
and KH domain-containing protein 2) is also localized
at the OMM via an MLS (Saxe et al. 2013). TDRKH plays
a crucial role in primary piRNA biogenesis (Saxe et al.
2013) and recruits MIWI but not MILI to mitochondria
(Chen et al. 2009, Zhang et al. 2017, Ding et al. 2019).
Upon deletion, Tdrkh mutant mice have drastically
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reduced mature piRNAs, leading to germ cell DNA
instability, spermiogenic arrest, and male infertility (Saxe
etal. 2013, Ding et al. 2019).

Unlike the germ cell-specific genes described
above, MitoPLD (PLD6), a member of the mammalian
phospholipase D superfamily, was originally identified
in mammalian somatic cells as a profusogenic factor
at the OMM (Choi et al. 2006). MITOPLD facilitates
mitochondrial fusion by hydrolyzing cardiolipin to
generate phosphatidic acid (PA) (Choi et al. 2006, Huang
et al. 2011a). PA subsequently recruits phosphatase
LIPIN 1, which converts PA to diacylglycerol and
promotes mitochondrial fission (Gao & Frohman 2012,
Baba et al. 2014, Adachi et al. 2016). MITOPLD is
partially colocalized with perinuclear IMC components
and participates in primary piRNA biogenesis (Huang
et al. 2011a, Watanabe et al. 2011, Gao & Frohman
2012, Hong et al. 2021). In Mitopld-deleted pro-
spermatogonia, components from IMC/pi-body (e.g.
MILI and TDRD1) and piP-body (e.g. MIWI2) show
polar aggregation with mitochondria and gamma-
tubulin, a marker for centrosome (Huang et al. 2011a,
Watanabe et al. 2011). In turn, the spermatogenesis in
MitoPLD knockout mice is arrested at the meiotic stage
with diminished IMC formation and decreased piRNA
expression (Huang et al. 2011a, Watanabe et al. 2011).
Similar polar aggregation of piRNA pathway proteins has
been observed in other germ cell-specific gene mutants,
including Mov10/1 (Zheng & Wang 2012) and Tdrkh
(Saxe et al. 2013, Ding et al. 2019) knockout mice.
However, no evidence shows that MITOPLD directly
interacts with these regulators in piRNA biogenesis
(Huangetal. 2011a, Watanabe et al. 2011). Interestingly,
in Drosophila, piRNA biogenesis is dependent on a
Drosophila MITOPLD homolog Zucchini (Zuc) (Pane
et al. 2007). Crystal structural analyses also show that
mouse MITOPLD may act in primary piRNA processing
directly as a nuclease (Ipsaro et al. 2012). It remains
elusive how MITOPLD affects piRNA biogenesis in
mammals. Neither is clear on whether mitochondrial
organization at IMC or subcellular localization regulated
by MITOPLD directly contributes to piRNA biogenesis.

Glycerol-3-phosphate  acyltransferase 2 (GPAT2)
is another example of mitochondrial proteins that
participate in piRNA biogenesis (Nakagawa et al. 2012,
Shiromoto et al. 2013). GPAT2 catalyzes the conversion
of glycerol-3-phosphate and long-chain acyl-CoA
to lysophosphatidic acid in de novo glycerolipid
synthesis(Goossens 2008). The motif IV of GPAT2
anchors this protein to the OMM (Nakagawa et al. 2012,
Shiromoto et al. 2013). Although GPAT2 is detected in
some human cancer lines (Wang et al. 2007, Garcia-
Fabiani et al. 2015), in normal tissues, GPAT2 is mainly
expressed in germ cells starting from embryonic day
13.5 (Shiromoto et al. 2019). GPAT2 has been identified
to be an essential interacting partner of MILI in primary
piRNA biogenesis (Shiromoto et al. 2013). Cpat2
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knockout leads to impaired IMC formation and defective
piRNA production in mice (Shiromoto et al. 2019).
Although both MITOPLD and GPAT2 participate in
mitochondrial phospholipid biosynthesis, it is unknown
whether PA signaling plays a role in IMC formation and
piRNA biogenesis.

Mitochondrial dynamics and spermatogenesis

Mitochondria are highly dynamic organelles, undergoing
coordinated cycles of fission and fusion (Bereiter-Hahn
& Voth 1994, Chan 2012). Mitofusion is regulated
primarily by two GTPases, mitofusin (MFN)1 and MFN2
at the OMM (Eura et al. 2003, Chen et al. 2007), and
OPA1 GTPase atthe IMM (Alexander et al. 2000, Delettre
et al. 2000), while fission is mediated by DRP1 GTPase
and several adaptors (e.g. FIST, MFF, and MID49/51),
which bring DRP1 to mitochondria (Frank et al. 2001,
Loson et al. 2013). Emerging evidence suggests that
mitochondrial dynamics alter mitochondrial features
and functions in a developmental stage- and cell type-
specific manner, which in turn impacts cell fate decision.
For example, disrupting mitofusion specifically impairs
the self-renewal of neural stem cells but not the survival
of their committed progenitors (Khacho et al. 2016). By
contrast, inhibition of mitofusion during somatic cell
reprogramming upregulates the formation of induced
PSCs (Zhong et al. 2019).

Mitochondrial dynamics in spermatogenesis also
demonstrate a developmental stage-specific regulation
(Zhang et al. 2016a, Varuzhanyan et al. 2019, Chen
et al. 2020a). MFN1 and MFN2 are upregulated during
spermatogonial differentiation — loss of either destroys
male fertility but leaves undifferentiated spermatogonia
unaffected (Zhang et al. 2016a, Varuzhanyan et al.
2019, Chen et al. 2020a). Using a Ddx4-CRE driver,
we show that conditional deletion of Mfn1 or Mfn2
from pro-spermatogonia in mice causes mitochondrial
dysfunction, increased ROS levels, DNA oxidation, and
apoptosis mostly in differentiating spermatogonia and
spermatocytes, which in turn lead to male infertility
(Chen et al. 2020a, Zhang et al. 2016a). Similarly, other
studies demonstrate that MFNT and/or MFN2 disruption
by Stra8-CRE also cause male infertility, albeit with a
relatively delayed meiotic defect (Varuzhanyan et al.
2019, Wang et al. 2021), possibly due to Stra8-CRE
expression only in a fraction of spermatogonia but not
in every SSC. Notably, at the early stage of Mfn1 or Mfn2
deficiency before puberty, spermatogonia exhibit swollen
and enlarged mitochondria, indicating that reduced
mitofusion leads to decreased fission to compensate for
imbalanced mitochondrial activities (Chen et al. 2020a,
Zhang et al. 2016a). At this stage, impaired mitofusion
in MFNT or MFN2 mutant mice by Ddx4-CRE does not
reduce ATP production (Chen et al. 2020a, Zhang et al.
2016a). Instead, it pathologically elevates ROS level that
causes DNA oxidation and apoptosis in differentiating
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spermatogonia (Chen et al. 2020b). In this case, blocked
spermatogonial differentiation in MFNT or MFN2
mutant mice may not directly result from reduced ATP
production but rather from oxidative stress due to failure
in rebalancing mitofusion and fission. When deficiency
of mitofusion persists, MFN1/2 mutant germ cells
display reduced expression of mitochondrial respiratory
complexes and OXPHOS activity (Varuzhanyan et al.
2019), which in turn compromises mitochondrial
functions and blocks spermatogonial differentiation and
meiosis in adult spermatogenesis.

Data from Drosophila studies supportan indispensable
role of mitochondrial fission in spermatogonial
maintenance (Senos Demarco et al. 2019). Loss
of function of drpl upregulates ROS production,
which increases cell death in germline stem cells and
spermatogonia (Senos Demarco etal.2019). Inmammals,
several studies suggest that defects of mitochondrial
fission severely jeopardize late spermatogenesis.
For example, conditional knockout of Fis1, a DRP1
adaptor, by Stra8-CRE results in early spermatid arrest
with giant multinucleated cells (Varuzhanyan et al.
2021b). In addition, Fis7 mutant spermatids exhibit
an accumulation of dysfunctional mitochondria
with altered ultrastructure and defects in mitophagy
(Varuzhanyan et al. 2021b). Mice with deletion of Mff,
another DRPT adaptor, also have reduced fertility and
sperm count (Varuzhanyan et al. 2021a). The remaining
sperm in Mff mutants display aberrant morphology and
motility with decreased respiratory chain complex IV
activity (Varuzhanyan et al. 2021a).

Although sperm need mitochondrial metabolism
for energy production to support their mobility and
fertilization, the activities of mitochondrial dynamics
in sperm are likely kept minimal to ensure proper
mitochondrial organization at the base of flagellum.
Indeed, low levels of mitofusion and fission in sperm
have been reported (Pham et al. 2012). Therefore,
haploid spermatids likely have high tolerance for
perturbations in mitochondrial dynamics. Indeed, our
recent study revealed that upon conditional deletion
of both Mfn1 and Mfn2 in post-meiotic germ cells by
Prm1-CRE, mice displayed normal male fertility with
functional sperm (Miao et al. 2021).

The common machinery for mitochondrial dynamics
has been largely elucidated, but the mechanisms of
its cell-specific regulation remain elusive. In addition,
although MFN1 and MFN2 share more than 80%
homology in their protein sequences, the cellular
reliance on MFNT vs MFN2 and their exact functional
mechanisms vary by cell type. In germ cells, MFN2
regulates mitochondrial ~ functions through both
mitofusion and ER homeostasis (Chen et al. 2020a),
whereas MFN1 predominantly contributes to mitofusion
(Chen et al. 2020a). In our study, both MFN and MFN2
interact with GASZ, a germ cell-specific IMC protein at
the OMM (Zhang et al. 2016a). Interestingly, enhanced
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GASZ expression in germ cells promotes MFN1/2
dependent mitochondrial aggregation and fusion (Zhang
et al. 2016a), indicating a germ cell-specific regulation
of mitochondrial functions. New evidence also shows
that MFN2 interacts with several germ cell-specific
proteins including a translation regulator MSY2 (YBX2)
to regulate piRNA biogenesis and control mRNA fate
indirectly during spermatogenesis (Wang et al. 2021).

Conclusion and perspectives

In this review, we discussed three key aspects of
mitochondrial regulation in postnatal germ cell
development. First, as the cellular machinery for
the TCA cycle, OXPHOS, and ATP production,
mitochondria features, activities, and functions need
to be precisely regulated in a germ cell developmental
stage-specific manner to support critical transitions
during spermatogenesis. To this end, current research
focuses on how oxygen accessibility, energy demands,
and substrate availability affect energy preference across
different germ cell developmental stages. It however
remains unclear how altered mitochondrial metabolism
drives germ cell fate decisions via epigenetic regulation,
signaling pathways, or other post-transcriptional
modulation.

Secondly, mitochondriaplay acritical role inregulating
germ cell-specific functions such as piRNA biogenesis.
The unique subcellular mitochondrial organization and
mitochondrial localization of germ cell-specific proteins
are likely vital to this function. Although contributions
of classic mitochondrial regulators (e.g. MITOPLD
and GPAT2) to piRNA biogenesis have been reported,
it remains elusive how these regulators modulate
mitochondrial localization or organization to affect
piRNA biogenesis. Neither is clear if other mechanisms,
for example PA signaling or microtubule-dependent
organelle trafficking, are involved.

Thirdly, during spermatogenesis, the dynamic changes
in mitochondrial features, activities, and functions are
exquisitely regulated by both germ cell-specific factors
and known mitochondrial regulators that are shared with
somatic cells. Recent findings show that mitochondrial
features and activities are tailored by germline factors to
adapt for germ cell development. In addition, emerging
evidence reveals critical interactions between germ
cell-specific factors and classic mitochondrial regulators
(e.g. MFNs). This represents a promising research
topic to dissect the underlying mechanisms of how
such interactions enable mitochondria to participate
in germ cell-specific biological processes and
prompt  mitochondrial ~ responses  to  various
developmental cues, metabolic needs, and physiological
or pathological stress.

This line of basic research also bears clinical
significance. Infertility affects ~48.5 million couples
worldwide, half of which is due to male factors (Agarwal
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et al. 2015). Strong evidence links mitochondrial
dysfunction (e.g. low mtDNA copy number, high
mtDNA mutation load, and swollen mitochondria) to
reduced male fertility in humans (Folgero et al. 1993,
Kao et al. 1995, Mundy et al. 1995, Carra et al. 2004,
Sousa et al. 2011, Amaral et al. 2013, Hamada et al.
2013, Demain et al. 2017, Wu et al. 2019, Vertika et al.
2020). Low MFN2 expression was also reported in
human asthenozoospermia (Fang et al. 2018). However,
the mechanisms of these phenomena and whether
correcting mitochondrial defects may remedy certain
cases of male infertility remain unknown. Studies on
mitochondrial regulations of spermatogenesis will fill
in these critical knowledge gaps, by revealing novel
mechanistic controls of mammalian spermatogenesis
and mitochondrial determinants of male reproduction,
and may eventually lead to new strategies to improve
male reproductive health.
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