
An Explicit Level-Set Formula to Approximate Geometries

Jason E. Hicken∗ and Sharanjeet Kaur†

Rensselaer Polytechnic Institute, Troy, New York, 12180

We present a smooth, differentiable formula that can be used to approximate an existing

geometry as a level-set function. The formula uses data from a finite number of points on the

surface and does not require solving a linear or nonlinear system, i.e. the formula is explicit.

The baseline method is a smooth analog of a piecewise linear approximation to the surface, but a

quadratic correction can be constructed using curvature information. Numerical experiments

explore the accuracy of the level-set formula and the influence of its free parameters. For

smooth geometries, the results show that the linear and quadratic versions of the method are

second- and third-order accurate, respectively. For non-smooth geometries, the infinity norm

of the error converges at a first-order rate.

I. Introduction
Level-set methods [1] use an implicit function to define domains, boundaries, and interfaces. For example, a domain

Ω ⊂ R� and its boundary Γ can be defined as

Ω = {x ∈ R� | q(x) > 0}, and Γ = {x ∈ R� | q(x) = 0}, (1)

where q : R� → R is the level-set function (LSF). Level-set methods have been successfully applied to a wide range of

applications, including moving boundaries/interfaces [1, 2], image segmentation [3], and topology optimization [4–7].

Our interest in level-set methods stems from an esoteric problem that arises in cut-cell finite-volume [8–10] and

finite-element methods [11–13]. Cut-cell methods use grids that consist of regular elements and “cut” elements

that intersect with the domain boundary; see Figure 1b. To evaluate the finite-element weak form, cut-cell methods

require specialized integration rules for the irregularly-shaped cut elements. To address this, Saye [14] proposed and

implemented an algorithm that constructs high-order quadrature rules for hypercubes that are “cut” by the zero contour

of a LSF.

Saye’s algorithm relies on an expansion of the LSF in a first-order Taylor series with a bounded remainder, which

places limitations on the form that the function q can take. In particular, commonly used non-smooth functions, such

as max and min, cannot be employed, and conditional statements must be avoided. Instead, q must be composed of

common mathematical operations, such as powers, logarithms, and trigonometric functions.

In order to use Saye’s algorithm for cut-cell finite-element discretizations, we need smooth LSF approximations of

complex geometries. This provides the motivation and objective behind the current work:

For a target geometry, Γ, find a smooth level set function q such that the set of points that satisfy q(x) = 0

is a sufficiently accurate approximation of Γ. Furthermore, q(x) should be computationally inexpensive to

evaluate.

Several methods have been developed to construct a level-set for an existing geometry, but they are not well suited to

our intended application. For instance, the LSF can be represented using the same piecewise polynomial space as the

finite-element method [14]; however, polynomials yield poor approximations of sharp corners, which are ubiquitous in

practice (e.g. the trailing edge of an airfoil). Radial-basis functions (RBFs) can be used to reconstruct an LSF from a

given point cloud [15, 16], but the RBF approach requires the solution of a large, possibly dense, linear system. We

would prefer to avoid this additional cost, because the LSF may need to change many times during an optimization or

unsteady flow simulation. An example of a fast-to-evaluate LSF is the ! ? distance function [17], which uses an explicit

formula for the signed distance function; unfortunately, our experiments (not reported here) found that the discrete ! ?

distance function produces poor approximations of Γ.

The approach we propose herein adapts constraint aggregation techniques — specifically, an induced aggregate [18]

— to construct an explicit formula for the LSF. For an arbitrary point x, the formula approximates the signed distance

∗Associate Professor, Mechanical, Aerospace, and Nuclear Engineering, AIAA Associate Fellow.
†Graduate Student, Mechanical, Aerospace, and Nuclear Engineering, AIAA Student Member.

1

D
o
w

n
lo

ad
ed

 b
y
 J

as
o
n
 H

ic
k
en

 o
n
 M

ar
ch

 7
,
2
0
2
3
 |

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 |
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
2
-1

8
6
2

 AIAA SCITECH 2022 Forum

 January 3-7, 2022, San Diego, CA & Virtual

 10.2514/6.2022-1862

 Copyright © 2022 by Jason Hicken and Sharanjeet Kaur. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

 AIAA SciTech Forum

Thus, we arrive at our proposed level-set function:

q(x) =
∑=Γ

8=1
38 (x)4−dΔ8 (x)

∑=Γ
9=1

4−dΔ 9 (x)
, (5)

where d > 0 now, since we have introduced a minus sign in the argument of the exponentials.

The level-set function (5) can be interpreted as a generalized linear model with a spatially-varying coefficient. That

is, we can rewrite the function as a sum of weighted basis functions, where each basis function is associated with a

x8 ∈ Γℎ:

q(x) =
=Γ∑

8=1

38 (x)k8 (x), (6)

where the 8th basis function is given by

k8 (x) =
4−dΔ8 (x)

∑=Γ
9=1

4−dΔ 9 (x)
. (7)

Some comments on these basis functions are warranted.

• The basis functions form a partition of unity, since
∑=Γ

8=1
k8 (x) = 1.

• The basis functions are strictly positive and bounded above by one: 0 < k8 (x) < 1.

• In the limit as d → ∞, the basis function k8 (x) tends toward the discontinuous function

lim
d→∞

k8 (x) =
{

1, if min 9 Δ 9 (x) = Δ8 (x),
0, otherwise.

We conclude this section by remarking on the close similarity between the proposed LSF and the partition of unity

networks described in [19]. The primary distinction is that partition of unity networks are general-purpose surrogates

whereas (5) can be viewed as a specialized surrogate that is tailored to the approximation of boundaries.

C. Quadratic approximation using curvature information

The approximation (5) is based on a planar representation of the surface. However, if we have local curvature

information at each x8 ∈ Γℎ , then we can introduce higher-order corrections that improve the approximation accuracy.

In this section we describe such corrections for the two-dimensional case. The three-dimensional extension is

straightforward and is summarized in the next section.

To find the curvature correction terms, we replace the planar approximation at x8 with one based on the osculating

circle. We assume that the osculating circle has curvature ^8 at x8 , or, equivalently, that it has a radius of curvature of

'8 = 1/^8 . The curvature here is the signed curvature, i.e. it can be negative. The sign convention we follow is that

^8 > 0 if the curve turns away from n̂8 while moving in the positive sense along the curve’s parameterization. Recall

that the vector n̂8 denotes outward-pointing normal to Γ at the point x8 .

The coordinates of the center of the osculating circle corresponding to x8 ∈ Γℎ are given by c8 = x8 − '8 n̂8 . Note

that, since '8 = 1/^8 is signed, the center of the circle can be on either side of Γ; however, for the moment, assume

'8 > 0. Then the distance from an arbitrary point x to the osculating circle is given by

38 (x) = ‖x − c8 ‖ − '8 = ‖x − x8 + '8 n̂8 ‖ − '8 .

Assuming the curvature is sufficiently small, the above expression simplifies as shown below. Note that, to distinguish

between the linear and quadratric approximations to the signed distance function in the following, we use X⊥,8 (x) ≡
(x − x8)) n̂8 to denote the linear approximation. Furthermore, we drop the dependence of Δ8 (x) and X8 (x) on x to

simplify the presentation.

38 (x) = '8 ‖^8 (x − x8) + n̂8 ‖ − '8

= '8

√
^2
8
Δ

2
8
+ 2^8X⊥,8 + 1 − '8

= '8

[
1 + 1

2

(
2^8X⊥,8 + ^2

8 Δ
2
8

)
− 1

8

(
2^8X⊥,8 + ^2

8 Δ
2
8

)2

+ O(^3)
]
− '8

= X⊥,8 +
^8

2
(Δ2

8 − X2
⊥,8) + O(^2

8).

4

D
o
w

n
lo

ad
ed

 b
y
 J

as
o
n
 H

ic
k
en

 o
n
 M

ar
ch

 7
,
2
0
2
3
 |

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 |
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
2
-1

8
6
2

Substituting Δ
2
8 = ‖x − x8 ‖2 and X⊥,8 = (x − x8)) n̂8 , we arrive at

38 (x) = (x − x8)) n̂8 +
^8

2
(x − x8))

(
I − n̂8 n̂

)
8

)
(x − x8) + O(^2

8). (8)

Thus, the quadratic correction consists of the squared distance from x8 to x that is parallel to the planar approximation,

scaled by half the curvature. A careful bookkeeping of signs shows that (8) also applies when ^8 < 0.

The corrected LSF uses 38 (x) given by the first two terms on the right-hand side of (8) in place of the planar

approximation in the expression (5). The results in Section III demonstrate that (8) produces an approximation error

that converges to zero at a cubic rate in ℎ for smooth Γ.

D. Approximating three-dimensional geometries

The level-set function for three-dimensional geometries has the same form as two-dimensional geometries, namely

Equation (5) or (6). The partition-of-unity basis functions remain the same — see Equation 7 — with Δ8 (x) now the

Cartesian distance in R3. Furthermore, the linear signed-distance functions also remain the same in three-dimensions,

since the projection formula (x − x8)) n̂8 is dimension independent. Thus, only the quadratic distance function needs to

be generalized in the three-dimensional case.

For points near x8 , the local (quadratic) distance function in three dimensions is

38 (x) ≡ (x − x8)) n̂8 +
^1,8

2
(x − x8)) t̂1,8 t̂)1,8 (x − x8) +

^2,8

2
(x − x8)) t̂2,8 t̂)2,8 (x − x8). (9)

As in the two-dimensional case, n̂8 is a unit normal at x8 that is oriented outward with respect to Ω. The (signed) scalars

^1,8 and ^2,8 denote the principal curvatures at x8 , and the unit (tangent) vectors t̂1,8 and t̂2,8 are the corresponding

principal directions. Together, the set {n̂8 , t̂1,8 , t̂2,8} constitutes an orthonormal basis, or frame, for the surface at x8 .

The method of computing the normal, tangents, and principal curvatures will depend on the underlying geometry we

have access to. If we have an explicit parameterization (e.g. from a CAD model), then we can query the model to find

the necessary data at each x8 . If we only have a point cloud, then the data can be reconstructed using methods from the

computer graphics and CAD literature; see, for example, [20].

III. Numerical Experiments and Results
This section includes several numerical experiments to help quantify the accuracy of the LSF (5). The experiments

are also used to explore, qualitatively, the role of the parameter d and the number of surface nodes, =Γ. However, before

presenting the results, we begin with some details regarding our particular implementation.

A. Implementation

The partition-of-unity LSF was implemented in Julia [21] as the package LevelSets.jl†. We highlight three

important changes to the LSF expression (5) as implemented in the package.

The Euclidean distance is replaced with the following regularized version:

Δ8 (x) ≡
√
(x − x8)) (x − x8) + n,

where n = 10−10. This change was made to avoid numerical issues when computing the gradient of q(x) when ‖x − x8 ‖
is small; the gradient of ‖x − x8 ‖ is not defined at x8 , whereas the gradient of Δ8 (x), as defined above, is well defined

for all x ∈ R3. Note that the value of n is based on the geometries considered herein, and, more generally, this parameter

should be scaled appropriately depending on the typical length scale of the geometry.

The exponential terms in the partition-of-unity basis functions can also lead to numerical issues, particularly when

d ≥ 10. For instance, for x sufficiently far from the surface points in Γℎ, the denominator in (5) can become zero

to working precision, leading to division by zero. The solution, which is standard in similar constraint aggregation

functions, is to scale the top and bottom of (5) by 4dΔmin , where Δmin = min8=1,2,...,=Γ Δ8 (x):

q(x) =
4dΔmin

∑=Γ
8=1

38 (x)4−dΔ8 (x)

4dΔmin
∑=Γ

8=1
4−dΔ8 (x)

=

∑=Γ
8=1

38 (x)4−d(Δ8 (x)−Δmin)
∑=Γ

8=1
4−d(Δ8 (x)−Δmin)

.

†https://github.com/jehicken/LevelSets.jl

5

D
o
w

n
lo

ad
ed

 b
y
 J

as
o
n
 H

ic
k
en

 o
n
 M

ar
ch

 7
,
2
0
2
3
 |

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 |
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
2
-1

8
6
2

For the term 8 corresponding to Δ8 (x) = Δmin in the sums on the right, we have 4−d(Δ8 (x)−Δmin) = 1, so there is no risk of

division by zero.

The last implementation detail worth highlighting is our use of a :-d tree to accelerate the evaluation of (5). The

cost of computing the partition-of-unity LSF can become intolerable for large numbers of surface points (=Γ ≥ 1000),

which are often necessary for three-dimensional geometries. Unless otherwise stated, we limit the sums in (5) to the ten

closest points as determined by a standard :-d tree implementation [22]. The choice of ten works well in practice based

on our experience, but a more systematic analysis should be undertaken.

B. Investigation into the role of d and =Γ
For the first set of experiments, we are interested in understanding how the parameter d and number of elements in

Γℎ impact the accuracy of the proposed LSF. To this end, we use the LSF (5) to approximate an ellipse with a semi-major

axis of four units and a semi-minor axis of one unit. While we are ultimately concerned with approximating complex

engineering geometries, these geometries do not admit an analytical level-set representation, in general, whereas the

ellipse does.

Figure 3 displays several LSF approximations to the ellipse using different parameters. The rows of sub-figures

correspond to increasing numbers of surface approximation points, specifically =Γ ∈ {8, 16, 32, 64}. The two columns

correspond to two different values of the parameter d in terms of the ratio d/=Γ.

We study the ratio d/=Γ, rather than d itself, because the parameter d should be proportional to the reciprocal

of the spacing of points in Γℎ, in order to ensure convergence of the level-set q(x) = 0 to Γ; this is evident in

the convergence-study results presented in the next section. Thus, we need d ∝ 1/ℎ and, since 1/ℎ ∝ =Γ for the

two-dimensional domains considered here, the ratio d/=Γ should be a constant for convergence. For this reason, Figure

3 considers two values for the ratio d/=Γ, namely one and ten.

The relationship between the LSF (5) and the piecewise linear LSF (2) is most obvious from the first row in Figure 3.

In particular, for d/=Γ = 10 (second column), we see a close correspondence with the contours in Figure 2.

With only =Γ = 8 points in Γℎ , it is clear that the zero contour of (5) is a poor approximation to the ellipse. However,

the approximation converges well as =Γ increases; again, this convergence is quantified in the next section. We also note

that the differences between d/=Γ = 1 and d/=Γ = 10 becomes less (visually) obvious as the number of the surface

points increases.

The results in Figure 3 are based on the planar approximation to the surface. By contrast, Figure 4 presents results

for the LSF (5) using the quadratic correction in (8). Compared with the linear/planar approximation using the same =Γ,

the quadratic approximation is clearly superior. Indeed, the contour q(x) = 0 based on the quadratic correction with

=Γ = 8 is similar in appearance to the linear approximations using four to eight times as many points.

C. Rate of convergence for smooth boundaries

We conducted a convergence study to quantify the accuracy of the LSF (5). The target geometry was, again, an

ellipse with semi-major axis of four units and semi-minor axis of one unit. To quantify the error in the zero contour of

q(x), we sampled =samp = 1024 points along the contour of the ellipse and computed the root-mean-squared (RMS)

error:

RMS Error(=Γ, d) =

√√√∑=samp

9=1

��q(x 9)
��2

=samp

, (10)

where the sample points are given by

x 9 =

[
4 cos(\ 9), sin(\ 9)

])
, \ 9 = 2c(9 − 1)/=samp, 9 ∈ {1, 2, . . . , =samp}.

The unit normals required by (5), namely {n̂8}=Γ8=1
, were computed analytically. For the quadratic correction, the curvature

was also computed analytically.

The convergence study considered =Γ ∈ {10, 20, 40, 80, 160} to ensure the asymptotic convergence behavior would

be clear. Note that the largest number of surface points, =Γ = 160, is still 6.4 times smaller than the number of sample

points used to define the RMS error. We also chose d/=Γ ∈ {0.1, 1, 10} to explore the impact of the parameter d, with

values spanning two orders of magnitude.

Figure 5 plots the RMS error as a function of =Γ for both the linear and quadratic approximations. We make the

following conclusions regarding the accuracy of the LSF (5) in the context of the ellipse.

6

D
o
w

n
lo

ad
ed

 b
y
 J

as
o
n
 H

ic
k
en

 o
n
 M

ar
ch

 7
,
2
0
2
3
 |

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 |
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
2
-1

8
6
2

F. Three-dimensional analytical geometries

Next, we apply the partition-of-unity LSF to three-dimensional surfaces with simple parametric equations. As

with the ellipse in two-dimensions, these analytical geometries give us more control over where we sample, as well as

providing explicit curvature information, if needed.

The first surface we consider is an ellipsoid with parametric representation

x(D, E) =
[
0 cos(D) sin(E) 1 sin(D) sin(E) −2 cos(E)

])
,

where (D, E) ∈ {0 ≤ D ≤ 2c, 0 ≤ E ≤ c}, and the axes lengths are 0 = 2, 1 = 1/2, and 2 = 1. The LSF points in Γℎ are

generated by uniformly sampling the parameters D and E:

x8 = x(D 9 , E:), where D 9 = 2c(9 − 0.5)/=, E: = c(: − 0.5)/=, and 8(9 , :) = =(9 − 1) + :. (11)

Note that we deliberately avoid the ends of the E range, since these would produce non-unique samples. The total

number of samples used in the LSF is given by =Γ = =2. The hyperparameter d = 10=, which makes it proportional to

the reciprocal of the mesh spacing in (D, E) space.

The normal, tangents, and curvatures are evaluated using standard formulae from differential geometry; see, for

example, [23, Chap. 3]. In particular, the tangents and curvatures for (9) are found by computing the first- and

second-partial derivatives of x(D, E) with respect to D and E, and then using the first- and second-fundamental forms to

find the principal curvatures and directions.

In order to visualize the approximate level set, we sample the parametric representation at a higher resolution and

“project” the exact surface points to the level set. In all cases we use 1200 × 1200 = 1.44 × 106 points, uniformly

sampled in (D, E) space to visualize the shapes. The projection is obtained by applying Newton’s method to q(x) = 0

with the exact surface point used as the initial estimate. This approach is robust, even without line searches or other

safe-guarding mechanisms. On the other hand, the resulting visualization points are not necessarily the closest points on

q(x) = 0 to the initial estimates.

Figure 9 visualizes the ellipsoid LSF for =Γ = 20 × 20 = 400 and =Γ = 40 × 40 = 1600 points in Γℎ. Results are

shown for both linear and quadratic versions of 38 (x). Ridges between the points x8 are evident in the coarsest Γℎ,

shown in Figures 9a and 9b, and take on Voronoi-like patterns.

The plots in Figure 9 demonstrate the value of including curvature in three-dimensional LSF approximations.

Quantitative evidence for this is provided in Figure 10, which plots the RMS error in the LSF functions for a range of√
=Γ = = values and two d/= ratios. The RMS error is computed using Equation (10), with =samp = 1.44 × 106; the

RMS points are defined using (11), but with = = 1200 to obtain a finer resolution. While we use the same number of

RMS sample points as visualization samples, we emphasize that these points are different, since the former are not

“snapped” onto the LSF.

Figure 10 shows that the error in the ellipsoid LSF behaves much as it did for the ellipse. In particular, the error

converges at second- and third-order for the linear and quadratic distance functions, respectively.

In addition to the ellipsoid, we also exercised the LSF approximation on the following geometry, which exhibits a

larger range of curvature values:

x(D, E) =


cos(E) [6 − (5/4 + sin(3D)) sin(D − 3E)]
sin(E) [6 − (5/4 + sin(3D)) sin(D − 3E)]

− cos(D − 3E) [5/4 + sin(3D)]



,

where (D, E) ∈ {0 ≤ D ≤ 2c, 0 ≤ E ≤ 2c}. We will refer to this geometry as the “wreath.” The points Γℎ for the wreath

were computed using a formula similar to (11), but with the range for E: updated appropriately. As with the ellipsoid,

we used d = 10=. We also used the same method for visualization.

Two LSF approximations of the wreath are shown in Figure 11. We considered only the quadratic version of the

local distance function, 38 (x), for this shape, since the linear approximation was poor for the values of =Γ considered

(=Γ = 1600 and =Γ = 6400). The high curvature is largely responsible for the poor performance of the linear

approximation. Using =Γ = 6400 samples for Γℎ , the wreath’s principal curvatures vary from 1.36 × 10−4 to 1.03 × 102

in absolute value. By contrast, the principal curvatures of the ellipsoid range from 1.25 × 10−1 to 1.60 × 101 only, for

the same =Γ = 6400.

12

D
o
w

n
lo

ad
ed

 b
y
 J

as
o
n
 H

ic
k
en

 o
n
 M

ar
ch

 7
,
2
0
2
3
 |

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 |
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
2
-1

8
6
2

Numerical experiments demonstrated that the LSF converges at second- and third-order rates in the point spacing for

smooth geometries. For geometries with corners, the approximation converges at a three-halves rate in the RMS error

and a first-order rate in the max error.

We have not conducted a formal computational complexity analysis, nor have we presented CPU times for the

examples. Nevertheless, we do not anticipate practical limitations due to computational cost, provided the number

of points in the formula is reduced to the O(10) closest points and these points are found using an efficient search

algorithm, e.g., a :-d tree.

There are several directions for future work. We are currently using the proposed LSF together with Saye’s

algorithm [14] to discretize a cut-cell finite-element method. To this end, we are developing bounds for the LSF

and its gradient that are needed by the algorithm in [14]. Another direction for future work is to extend the method

beyond quadratic. Given the efficiency of the quadratic 38 (x) relative to the linear 38 (x), we expect that higher-order

approximations to the local distance field will offer additional efficiency gains. Finally, we plan to investigate how the

LSF can be used in the context of aerodynamic shape optimization.

Acknowledgments
S. Kaur was supported by, and J. Hicken was partially supported by, the National Science Foundation under Grant

No. 1825991. The authors gratefully acknowledge this support.

The authors sincerely thank Tucker Babcock, Garo Bedonian, and Luiz Cagliari for their comments and feedback

during the preparation of this paper.

The bulk of the results in this paper were obtained using software written in Julia [21]. The two dimensional

plots were generated using Matplotlib [24], and the three dimensional plots were created using Paraview [25]. The

WriteVTK.jl Julia package [26] was used to generate the VTK files needed by Paraview.

References
[1] Osher, S., and Sethian, J. A., “Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi

formulations,” Journal of Computational Physics, Vol. 79, No. 1, 1988, pp. 12–49. doi:10.1016/0021-9991(88)90002-2.

[2] Sussman, M., Smereka, P., and Osher, S., “A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow,”

Journal of Computational Physics, Vol. 114, No. 1, 1994, pp. 146–159. doi:10.1006/jcph.1994.1155.

[3] Malladi, R., Sethian, J., and Vemuri, B., “Shape modeling with front propagation: a level set approach,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 17, No. 2, 1995, pp. 158–175. doi:10.1109/34.368173.

[4] Haber, R., and Bendsoe, M., “Problem formulation, solution procedures and geometric modeling-Key issues in variable-

topology optimization,” 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 1998.

doi:10.2514/6.1998-4948.

[5] Sethian, J., and Wiegmann, A., “Structural Boundary Design via Level Set and Immersed Interface Methods,” Journal of

Computational Physics, Vol. 163, No. 2, 2000, pp. 489–528. doi:10.1006/jcph.2000.6581.

[6] De Ruiter, M., and Van Keulen, F., “Topology optimization using a topology description function,” Structural and Multidisci-

plinary Optimization, Vol. 26, No. 6, 2004, pp. 406–416. doi:10.1007/s00158-003-0375-7.

[7] van Dijk, N. P., Maute, K., Langelaar, M., and van Keulen, F., “Level-set methods for structural topology optimization: a

review,” Vol. 48, No. 3, 2013, pp. 437–472. doi:10.1007/s00158-013-0912-y.

[8] Berger, M., and Leveque, R., “An adaptive Cartesian mesh algorithm for the Euler equations in arbitrary geometries,” 9th

Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, 1989. doi:10.2514/6.1989-

1930.

[9] Aftosmis, M. J., “Lecture notes for the 28th computational fluid dynamics lecture series: solution adaptive Cartesian grid methods

for aerodynamic flows with complex geometries,” Tech. rep., von Kármán Institute for Fluid Dynamics, Rhode-Saint-Genèse,

Belgium, Mar. 1997.

[10] Aftosmis, M. J., Berger, M. J., and Melton, J. E., “Robust and efficient Cartesian mesh generation for component-based

geometry,” AIAA journal, Vol. 36, No. 6, 1998, pp. 952–960.

16

D
o
w

n
lo

ad
ed

 b
y
 J

as
o
n
 H

ic
k
en

 o
n
 M

ar
ch

 7
,
2
0
2
3
 |

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 |
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
2
-1

8
6
2

[11] Fidkowski, K. J., and Darmofal, D. L., “A triangular cut-cell adaptive method for high-order discretizations of the compressible

Navier-Stokes equations,” Journal of Computational Physics, Vol. 225, 2007, pp. 1653–1672.

[12] Lew, A. J., and Buscaglia, G. C., “A discontinuous-Galerkin-based immersed boundary method,” International Journal for

Numerical Methods in Engineering, Vol. 76, No. 4, 2008, pp. 427–454. doi:10.1002/nme.2312.

[13] Burman, E., Claus, S., Hansbo, P., Larson, M. G., and Massing, A., “CutFEM: Discretizing geometry and partial differential

equations,” International Journal for Numerical Methods in Engineering, Vol. 104, No. 7, 2015, pp. 472–501. doi:

10.1002/nme.4823.

[14] Saye, R. I., “High-Order Quadrature Methods for Implicitly Defined Surfaces and Volumes in Hyperrectangles,” SIAM Journal

on Scientific Computing, Vol. 37, No. 2, 2015, pp. A993–A1019. doi:10.1137/140966290.

[15] Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B. C., and Evans, T. R., “Reconstruction and

representation of 3D objects with radial basis functions,” Proceedings of the 28th annual conference on Computer graphics and

interactive techniques, 2001, pp. 67–76.

[16] Dinh, H. Q., Turk, G., and Slabaugh, G., “Reconstructing surfaces using anisotropic basis functions,” Proceedings Eighth IEEE

International Conference on Computer Vision. ICCV 2001, Vol. 2, IEEE, 2001, pp. 606–613.

[17] Belyaev, A., Fayolle, P.-A., and Pasko, A., “Signed Lp-distance fields,” Computer-Aided Design, Vol. 45, No. 2, 2013, pp.

523–528.

[18] Kennedy, G. J., and Hicken, J. E., “Improved constraint-aggregation methods,” Computer Methods in Applied Mechanics and

Engineering, Vol. 289, 2015, pp. 332–354. doi:10.1016/j.cma.2015.02.017.

[19] Lee, K., Trask, N. A., Patel, R. G., Gulian, M. A., and Cyr, E. C., “Partition of unity networks: deep hp-approximation,” arXiv

preprint arXiv:2101.11256, 2021.

[20] OuYang, D., and Feng, H.-Y., “On the normal vector estimation for point cloud data from smooth surfaces,” Computer-Aided

Design, Vol. 37, No. 10, 2005, pp. 1071–1079. doi:10.1016/j.cad.2004.11.005.

[21] Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B., “Julia: A Fresh Approach to Numerical Computing,” SIAM Review,

Vol. 59, No. 1, 2017, pp. 65–98. doi:10.1137/141000671.

[22] Carlsson, K., Karrasch, D., Bauer, N., Kelman, T., Schmerling, E., Hoffimann, J., Visser, M., San-Jose, P., Christie,

J., Ferris, A., Blaom, A., Pasquier, B., Foster, C., Saba, E., Goretkin, G., Orson, I., Samuel, O., Choudhury, S., and

Nagy, T., “KristofferC/NearestNeighbors.jl:v0.4.9,” https://github.com/KristofferC/NearestNeighbors.jl, 2021.

doi:10.5281/zenodo.4943232.

[23] Patrikalakis, N. M., and Maekawa, T., Shape interrogation for computer aided design and manufacturing, Vol. 15, Springer,

2002.

[24] Hunter, J. D., “Matplotlib: A 2D graphics environment,” Computing In Science & Engineering, Vol. 9, No. 3, 2007, pp. 90–95.

[25] Ahrens, J., Geveci, B., and Law, C., “Paraview: An end-user tool for large data visualization,” The Visualization Handbook, Vol.

717, No. 8, 2005.

[26] Polanco, J. I., “WriteVTK.jl: a Julia package for writing VTK XML files (1.10.1),” https://github.com/jipolanco/

WriteVTK.jl, 2021. doi:10.5281/zenodo.5634113.

17

D
o
w

n
lo

ad
ed

 b
y
 J

as
o
n
 H

ic
k
en

 o
n
 M

ar
ch

 7
,
2
0
2
3
 |

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 |
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
2
-1

8
6
2

	Introduction
	Proposed Level-Set Function
	Inspiration from the signed distance function
	Addressing non-smoothness with aggregation
	Quadratic approximation using curvature information
	Approximating three-dimensional geometries

	Numerical Experiments and Results
	Implementation
	Investigation into the role of and n
	Rate of convergence for smooth boundaries
	Rate of convergence for non-smooth boundaries
	Application to an airfoil
	Three-dimensional analytical geometries
	Application to the space shuttle

	Conclusions

