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Space mission planning and spacecraft design are tightly coupled and need to be considered

together for optimal performance; however, this integrated optimization problem results in a

large-scale Mixed-Integer Nonlinear Programming (MINLP) problem, which is challenging to

solve. In response to this challenge, this paper proposes a new solution approach to this problem

based on decomposition-based optimization via augmented Lagrangian coordination. The

proposed approach leverages the unique structure of the problem that enables its decomposition

into a set of coupled subproblems of different types: a Mixed-Integer Quadratic Programming

(MIQP) subproblem for mission planning, and one or more Nonlinear Programming (NLP)

subproblem(s) for spacecraft design. Since specialized MIQP or NLP solvers can be applied

to each subproblem, the proposed approach can efficiently solve the otherwise intractable

integrated MINLP problem. An automatic and effective method to find an initial solution for

this iterative approach is also proposed so that the optimization can be performed without a

user-defined initial guess. The demonstration case study shows that, compared to the state-

of-the-art method, the proposed formulation converges substantially faster and the converged

solution is also at least the same or better given the same computational time limit.

I. Nomenclature

A = Set of arcs

𝒂𝑣𝑖 𝑗𝑡 = Cost coefficient vector of commodity

𝑎′𝑣𝑖 𝑗𝑡 = Cost coefficient of spacecraft

C𝑐 = set of continuous commodity flow variables

C𝑑 = set of discrete commodity flow variables

𝒅𝑖𝑡 = Demand vector

𝒆𝑣 = Spacecraft design variable vector
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F (−) = Spacecraft sizing function

𝑓 = Objective function (subproblem)

𝒈 = Inequality constraint

𝒉 = Equality constraint

𝐻𝑣𝑖 𝑗 = Concurrency matrix

J = Objective function

𝐿 = Number of subsystems in the dry mass

𝑀 = Number of subproblems in a quasi-separable MDO problem

𝑚 = Mass of spacecraft subsystems

𝑚𝑑 = Spacecraft dry mass

𝑚 𝑓 = Spacecraft propellant capacity

𝑚𝑝 = Spacecraft payload capacity

𝑁 = Number of types of spacecraft

N = Set of nodes

𝑛 = Dimension of variables

𝑄𝑣𝑖 𝑗𝑡 = Commodity transformation matrix

T = Set of time steps

𝑡𝑚𝑖𝑠 = Mission length

Δ𝑡𝑖 𝑗 = Time of Flight (ToF)

𝑢𝑣𝑖 𝑗𝑡 = Spacecraft flow variable

V = Set of spacecraft

𝑊𝑖 𝑗 = Launch time window

𝒙𝑣𝑖 𝑗𝑡 = Commodity flow variable

𝒚 = Shared variables

𝒛 = Local variables

𝜁 = Propellant type

𝜙 = Penalty function

Subscipt & Superscript

𝑖 = Node index (departure)

𝑗 = Node index (arrival)

𝑘 = Subproblem index
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𝑙 = Subsystem index

𝑞 = Iteration count

𝑡 = Time index

𝑣 = Vehicle index

II. Introduction

As we pursue sustainable presence in space, a framework to optimize large-scale, long-term space missions

efficiently is imperative. A number of studies on space logistics that incorporate the transportation network

in large-scale space mission design have been developed, including SpaceNet [1], the interplanetary logistics model

[2], and the extensive literature on space logistics optimization frameworks based on the generalized multicommodity

network flow [3–5]. Utilizing the linear nature of such space logistics or transportation network optimization problems,

researchers have developed frameworks that can efficiently optimize the mission design as Mixed-Integer Linear

Programming (MILP) problems [6–9]. However, due to the nonlinear nature of spacecraft design, a naive integration of

spacecraft design into space mission/campaign planning (a transportation scheduling or resource distribution) would

result in a large-scale Mixed-Integer Nonlinear Programming (MINLP) problem. Even though this integration has been

shown to exhibit substantial solution improvement compared to optimizing them individually [10], solving the MINLP

is oftentimes computationally prohibitive. Since the concurrent optimization of space mission planning and spacecraft

design is highly desired in practice, each community took different approaches to bridge these two domains.

In the space logistics community, spacecraft design has been considered as a high-level nonlinear sizing model and

has been integrated into mission planning either by separating the nonlinear part from the mission planning optimization

or by piecewise linearization of the spacecraft model. Taylor [10] developed a parametric spacecraft sizing model which

determines the spacecraft dry mass from its payload capacity and propellant capacity. Based on this model, Simulated

Annealing (SA) or a similar metaheuristic optimization algorithm optimizes the spacecraft design variables, while the

linear programming (LP) or MILP solver evaluates the constraints and determines transportation flow variables. In

this way, the LP or MILP solver is embedded into SA, and thus it was called the embedded optimization methodology.

Using the same spacecraft sizing model, Chen and Ho [6] employed the piecewise linear (PWL) approximation of the

nonlinear model to approximate the entire MINLP problem as a MILP problem that can be solved efficiently. However,

this approach is an approximation model, and the resulting solution is not guaranteed to be feasible nor optimal in

the original nonlinear problem. For a different yet related problem, satellite component selection and operation have

been co-optimized as a mixed-integer programming problem [11, 12]; however, the existing techniques are based on

the specific types of nonlinear relationships in the problem (e.g., power laws) and are not generally applicable to the

integrated logistics problem.
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On the other hand, aerospace vehicle design has been tackled by the Multidisciplinary Design Optimization (MDO)

community. Despite various optimization and sizing methods that can deal with the high-dimensional nonlinear design

of aircraft or spacecraft [13], few studies integrated the mission-level analysis or optimization. One of the few studies that

tackled the integrated mission planning and spacecraft design is Ref. [14] by Beauregard et al., which proposed an MDO

architecture for a lunar lander design with a lunar mission sequence architecture analysis. This architecture connects the

mission planning and spacecraft design problem using a sequential procedure without a feedback structure (i.e., the

mission architecture is first chosen and fixed, then the lunar lander MDO is performed); therefore, the mission and

spacecraft are not simultaneously optimized, and spacecraft design is neglected when selecting the mission architecture.

In addition, the candidates of the mission architectures are given a priori and discrete (combinatory). These two factors

limit the design space and make this approach not suitable for the integrated space mission design.

This paper proposes an efficient decomposition-based optimization scheme for integrated space mission planning

and spacecraft design. The key idea is to decompose the integrated MINLP problem into multiple coupled subproblems

of different types: the Mixed-Integer Quadratic Programming (MIQP) subproblem for space mission planning, and the

Nonlinear Programming (NLP) subproblem(s) for spacecraft design. Since specialized efficient MIQP or NLP optimizers

(e.g., Gurobi [15] for MIQP; IPOPT [16] for NLP) can be utilized to solve each subproblem, the proposed method

can solve the otherwise intractable integrated MINLP problem efficiently. The iterative coordination between each

subproblem can be achieved using an MDO approach [13, 17]. Specifically, the Augmented Lagrangian Coordination

(ALC) approach [18] with the Analytical Target Cascading (ATC) structure [19, 20] is chosen for the proposed method.

This architecture fits our problem well because (1) it allows us to decompose the original complex problem into the

subproblems with different and simpler types (MIQP or NLP), each of which can be efficiently solvable with specialized

solvers; (2) it has a robust convergence property; and (3) it allows the complex hierarchical structure for the spacecraft

design subproblem(s) and can be easily parallelizable (and thus scalable) if needed. Since the nonlinear optimization

solvers generally require a good initial guess, we further develop an automated initial guess generation method based on

PWL approximation to the MINLP problem so that no user-defined initial guess is needed for the optimization. The

demonstration case study shows that, compared to the state-of-the-art method, the proposed new formulation converges

substantially faster and the converged solution is also at least the same or better given the same computational time limit.

The remainder of this paper proceeds as follows. In Section III, the problem definition of the integrated space

mission planning and spacecraft design as an all-in-one optimization problem formulation is described. Section IV

illustrates the solution procedure for the proposed problem based on the decomposition-based method. Section V

introduces a case study of human lunar exploration missions and compares the computational efficiency of the proposed

method against the state-of-the-art method. Finally, Section VI states the conclusion.
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III. Problem Definition: Integrated Space Mission Planning and Spacecraft Design
The goal of this research is to optimize the transportation scheduling (referred to as space mission planning) and

vehicle design (referred to as spacecraft design) for a long-term space campaign that can potentially comprise multiple

missions. This section introduces the formulation for this integrated space mission planning and spacecraft design

problem (referred to as the all-in-one formulation). The idea behind this formulation is to consider space mission

planning as a transportation network optimization problem for which the design of vehicles is also part of the decision

variables. In the network, the nodes correspond to the orbital or surface locations, and the arcs correspond to the

trajectories connecting the nodes. The decision variables include both the commodities that flow over the network and

the design parameters for the vehicles that carry these commodities. The optimization formulation is listed as follows,

and the list of variables and parameters is included in Table 1.

min J =
∑︁
𝑡 ∈T

∑︁
(𝑣,𝑖, 𝑗) ∈A

(𝒂𝑇𝑣𝑖 𝑗𝑡𝒙𝑣𝑖 𝑗𝑡 + 𝑎′𝑇𝑣𝑖 𝑗𝑡𝑚𝑑𝑣𝑢𝑣𝑖 𝑗𝑡 ) (1)

subject to

∑︁
(𝑣, 𝑗):(𝑣,𝑖, 𝑗) ∈A


𝒙𝑣𝑖 𝑗𝑡

𝑚𝑑𝑣𝑢𝑣𝑖 𝑗𝑡

 −
∑︁

(𝑣, 𝑗):(𝑣,𝑖, 𝑗) ∈A
𝑄𝑣 𝑗𝑖𝑡


𝒙𝑣 𝑗𝑖 (𝑡−Δ𝑡 𝑗𝑖)

𝑚𝑑𝑣𝑢𝑣 𝑗𝑖 (𝑡−Δ𝑡 𝑗𝑖)

 ≤ 𝒅𝑖𝑡 ∀𝑡 ∈ T ∀𝑖 ∈ N (2)

𝐻𝑣𝑖 𝑗𝒙𝑣𝑖 𝑗𝑡 ≤ 𝒆𝑣𝑢𝑣𝑖 𝑗𝑡 ∀𝑡 ∈ T ∀(𝑣, 𝑖, 𝑗) ∈ A (3)


𝒙𝑣𝑖 𝑗𝑡 ≥ 0𝑝×1 if 𝑡 ∈ 𝑊𝑖 𝑗

𝒙𝑣𝑖 𝑗𝑡 = 0𝑝×1 otherwise
∀(𝑣, 𝑖, 𝑗) ∈ A ∀𝑡 ∈ T (4)

𝑚𝑑𝑣 = F (𝒆𝑣 , 𝜁𝑣) ∀𝑣 ∈ V (5)

𝒙𝑣𝑖 𝑗𝑡 =



𝑥1

𝑥2

...

𝑥𝑝

𝑣𝑖 𝑗𝑡
,

𝑥𝑛 ∈ R≥0 ∀𝑛 ∈ C𝑐

𝑥𝑛 ∈ Z≥0 ∀𝑛 ∈ C𝑑

∀(𝑣, 𝑖, 𝑗 , 𝑡) ∈ A (6)

𝑢𝑣𝑖 𝑗𝑡 ∈ Z≥0 ∀(𝑣, 𝑖, 𝑗 , 𝑡) ∈ A (7)
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𝒆𝑣 =


𝑚𝑝

𝑚 𝑓

𝑣 , 𝑚𝑝𝑣 , 𝑚 𝑓𝑣 , 𝑚𝑑𝑣 ∈ R≥0, ∀𝑣 ∈ V (8)

Table 1 Variables and parameters used in the space transportation scheduling problem

Name Description
Variables

𝒙𝑣𝑖 𝑗𝑡

Commodity flow variable, or the quantity of the commodity delivered from node
𝑖 to 𝑗 at time 𝑡 by spacecraft 𝑣. 𝒙𝑣𝑖 𝑗𝑡 ≥ 0. Each component of this variable can
contain either continuous variables (C𝑐) or discrete variables (C𝑑). This vector will
be R𝑝 if the total commodity variation is 𝑝.

𝑢𝑣𝑖 𝑗𝑡
Spacecraft flow variable, which indicates the number of spacecraft type 𝑣 moving
from node 𝑖 to 𝑗 at time 𝑡 (∈ R). This variable is integer scalar.

𝒆𝑣
Spacecraft design variables and parameters. In this problem, it includes payload
capacity 𝑚𝑝 and propellant capacity 𝑚 𝑓 (∈ R2).

𝑚𝑑𝑣 Dry mass of spacecraft 𝑣 (∈ R).
Parameters
𝒂𝑣𝑖 𝑗𝑡 Cost coefficient of commodity (∈ R𝑝).
𝑎′𝑣𝑖 𝑗𝑡 Cost coefficient of spacecraft (∈ R).

𝒅𝑖𝑡
Demands/supplies of different commodities and spacecraft at node 𝑖 at time 𝑡

(∈ R𝑝+1).
𝑄𝑣𝑖 𝑗𝑡 Transformation matrix (∈ R(𝑝+1)×(𝑝+1) ).
𝐻𝑣𝑖 𝑗 Concurrency constraint matrix (∈ R2×𝑝).
𝑊𝑖 𝑗 Launch window vector, which indicates the available launch window of spacecraft.

F (−) Spacecraft sizing function. This illustrates the nonlinear relationship of the spacecraft
design variables and design parameters.

Δ𝑡𝑖 𝑗 Time of Flight (ToF) from node 𝑖 to 𝑗 .
𝜁𝑣 Propellant type for each spacecraft (predetermined).
Sets
A(V,N ,N ,T) Set of arcs realized by spacecraft.
C𝑐 Set of continuous commodity flow variables.
C𝑑 Set of discrete commodity flow variables.
N Set of nodes.
T Set of time steps.
V Set of spacecraft (vehicles).

Equation (1) indicates the objective function, which can be the lifecycle cost or launch mass, depending on the

application context. In this research, we set the coefficients 𝒂𝑣𝑖 𝑗𝑡 and 𝑎𝑣𝑖 𝑗𝑡 so that the objective function corresponds to

the sum of initial mass at low-earth orbit (IMLEO), a metric commonly used in the space logistics literature as can be

seen in Ref. [3, 4, 6, 10].

Equations (2)-(4) are the constraints for space mission planning. First, Eq. (2) is the mass balance constraint that

guarantees that the inflow (supply) of the commodity is larger than the sum of the outflow and demand. 𝑄𝑣𝑖 𝑗𝑡 is
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the transformation matrix, which indicates the transformation of the commodity during the spaceflight; for example,

the relationship of impulsive propellant consumption can be illustrated using this constraint. Next, Eq. (3) is the

concurrency constraint. This indicates that the commodity loaded on each spacecraft is constrained by the dimension of

the spacecraft. Specifically, in this paper, the payload and propellant flow is limited: the amount of propellant is lower

than the propellant capacity of the spacecraft, and the sum of other payloads is lower than the payload capacity. Finally,

Eq. (4) is the time window constraints. The commodity flow is allowed only if the time 𝑡 belongs to the launch window

vector 𝑊𝑖 𝑗 , and for the remaining time steps, the commodity flow is conserved to be zero.

Equation (5) indicates an abstract representation of the spacecraft design constraints, which describes the constraints

between the properties of the vehicle. It can take a wide range of complexity, including an explicit or implicit relationship

of the subsystems or design parameters of the spacecraft; when the spacecraft requires multiple disciplines or multiple

subsystems, an MDO problem can be embedded in this constraint.

Along with Table 1, Eqs. (6), (7), and (8) show the definitions and domains of commodity flow variables, spacecraft

flow variables, and spacecraft design variables, respectively.

This integrated mission planning and spacecraft design problem results in a constrained MINLP problem, one of the

most challenging optimization problem types to solve. Namely, this problem contains both discrete and continuous

variables as well as both linear and nonlinear constraints. In particular, the discrete variables represent the definition of

the commodity flow and the number of spacecraft on the mission planning side of the problem. The nonlinearity appears

in two ways: (1) the spacecraft design relationship in Eq. (5); (2) the quadratic terms in the mass balance constraint

(Eq. 2) and concurrency constraint (Eq. 3) for mission planning (note: both 𝒆𝑣 and 𝑢𝑣𝑖 𝑗𝑡 are variables). Fortunately, this

second nonlinearity can be converted into an equivalent linear relationship through the big-M method, as explained in

Ref. [6], so that the nonlinearity only exists on the spacecraft design side of the problem. Therefore, as a result, the

problem contains two coupled problems: one for space mission planning which is linear with integer variables, and the

other for spacecraft design which is nonlinear with continuous variables. Our approach leverages this unique structure

of the problem and proposes a new approach to solve this problem efficiently.

IV. Proposed Approach: Decomposition-Based Optimization with Augmented Lagrangian
Coordination

Decomposition-based optimization is often used to decompose an MDO problem in terms of disciplines or

subsystems. Exploiting the unique feature of the integrated space mission planning and spacecraft design problem, we

apply this approach to decompose the large-scale MINLP problem (Fig. 1a) into coupled MIQP and NLP subproblems

(Fig. 1b), each of which is significantly easier to solve with specialized solvers compared to the original MINLP problem.

The space mission planning subproblem can be solved using a MIQP solver, and the spacecraft design subproblem can

be solved using an NLP solver without any integer variables. The coupled subproblems are solved iteratively using the
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ALC-based coordination until convergence is reached. To enable the optimization without a user-defined initial guess,

an automated and effective initial solution generation approach is also proposed.

(a) All-in-one formulation (b) Proposed decomposition-based formulation based on [18]

Fig. 1 Solution strategy for integrated space mission planning and spacecraft design.

A. Derivation of Decomposed Problems with Augmented Lagrangian Coordination

We first start with deriving the formulations of the decomposed problems with ALC. ALC tackles complex MDO

optimization problems that are quasi-separable and thus can be decomposed into a set of coupled subproblems. ALC is

attractive because of (1) its ability to break down our MINLP problem into MIQP and NLP problems; (2) its robust

convergence property; and (3) its flexibility with the hierarchical structure of the problems. For an extensive discussion

on ALC, refer to Ref. [18].

The formulation for the quasi-separable MDO problem with 𝑀 subproblems is given as follows:

min
𝒚,𝒛0 ,...,𝒛𝑀−1

𝑀−1∑︁
𝑘=0

𝑓𝑘 (𝒚, 𝒛𝑘)

subject to 𝒈𝑘 (𝒚, 𝒛𝑘) ≤ 0 𝑘 = 0, . . . , 𝑀 − 1

𝒉𝑘 (𝒚, 𝒛𝑘) = 0 𝑘 = 0, . . . , 𝑀 − 1

(9)

where 𝒚 ∈ R𝑛𝑦 indicates the shared variables, 𝒛𝑘 ∈ R𝑛𝑧
𝑘 indicates the local variables for subproblem 𝑘 . The shared

variables 𝒚 can be common variables over multiple subproblems. 𝑓𝑘 : R𝑛𝑘 ↦→ R indicates the local objective function,

𝒈𝑘 and 𝒉𝑘 indicate the equality and inequality constraints for each subproblem. The dimension of the total design

variable 𝒔 =
[
𝒚𝑇 , 𝒛𝑇0 , . . . , 𝒛

𝑇
𝑀−1

]𝑇 ∈ R𝑛 is 𝑛 = 𝑛𝑦 +∑𝑀−1
𝑘=0 𝑛𝑧

𝑘
. The dimension of the design variable for subproblem 𝑘 is

𝑛𝑘 = 𝑛𝑦 + 𝑛𝑧
𝑘
.

The decomposition-based approach for this problem follows the following steps. First, we introduce the auxiliary
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variables and consistency constraints so that the local constraints, 𝒈𝑘 and 𝒉𝑘 , are only dependent on the auxiliary

variables 𝒚𝑘 and independent of the shared variables 𝒚.

min
𝒚,𝒚0 ,𝒛0 ,...,𝒚𝑀−1 ,𝒛𝑀−1

𝑀−1∑︁
𝑘=0

𝑓𝑘 (𝒚𝑘 , 𝒛𝑘)

subject to 𝒈𝑘 (𝒚𝑘 , 𝒛𝑘) ≤ 0 𝑘 = 0, . . . , 𝑀 − 1

𝒉𝑘 (𝒚𝑘 , 𝒛𝑘) = 0 𝑘 = 0, . . . , 𝑀 − 1

𝒄𝑘 (𝒚, 𝒚𝑘) = 0 𝑘 = 0, . . . , 𝑀 − 1

(10)

With the consistency constraints 𝒄𝑘 , which ensures that the auxiliary variables 𝒚𝑘 are the same as the shared variables 𝒚,

the shared variables are separated from the local variables while representing the same problem as the original one.

Next, the relaxation of the consistency constraints is introduced with the local Lagrangian penalty function:

min
𝒚,𝒚0 ,𝒛0 ,...,𝒚𝑀−1 ,𝒛𝑀−1

𝑀−1∑︁
𝑘=0

𝑓𝑘 (𝒚𝑘 , 𝒛𝑘) +
𝑀−1∑︁
𝑘=0

𝜙𝑘 (𝒄𝑘 (𝒚, 𝒚𝑘))

subject to 𝒈𝑘 (𝒚𝑘 , 𝒛𝑘) ≤ 0 𝑘 = 0, . . . , 𝑀 − 1

𝒉𝑘 (𝒚𝑘 , 𝒛𝑘) = 0 𝑘 = 0, . . . , 𝑀 − 1

(11)

The augmented Lagrangian penalty function for subproblem 𝑘 , 𝜙𝑘 , is defined as follows.

𝜙𝑘 (𝒄𝑘 (𝒚, 𝒚𝑘)) = 𝒗𝑇𝑘 (𝒚 − 𝒚𝑘) + ∥𝒘𝑘 ◦ (𝒚 − 𝒚𝑘)∥2
2 (12)

where 𝒗𝒌 is the vector of Lagrange multiplier estimates, and 𝒘𝒌 is the vector of penalty weights. Here, ◦ represents the

element-wise product of matrices or vectors, also known as the Hadamard product. By moving the consistency constraints

into the local objective functions, the local subproblems can be completely separated. The bi-level decomposition-based

problem is now formulated by establishing the master problem above the subproblems. The master problem minimizes

the penalty function and updates the shared variables 𝒚. Note that even though the bi-level formulation is employed

here, the ALC has the capability to handle multi-level hierarchical formulation as well [20].

(1) Master Problem

min
𝒚

𝑀−1∑︁
𝑘=0

𝜙𝑘 (𝒄𝑘 (𝒚, 𝒚𝑘)) (13)

(2) Subproblem 𝑘

min
𝒚𝑘 ,𝒛𝑘

𝑓𝑘 (𝒚𝑘 , 𝒛𝑘) + 𝜙𝑘 (𝒄𝑘 (𝒚, 𝒚𝑘))

subject to 𝒈𝑘 (𝒚𝑘 , 𝒛𝑘) ≤ 0

𝒉𝑘 (𝒚𝑘 , 𝒛𝑘) = 0

(14)
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Adopting the above approach in our problem of the integrated space mission planning and spacecraft design with

𝑁 vehicle types, Fig. 1b represents the decomposition-based optimization architecture. We have one space mission

planning subproblem (Subproblem 0) and multiple spacecraft design subproblems (Subproblems 1, . . . , 𝑁), where 𝑁 is

the number of spacecraft types; thus, we have 𝑁 + 1 subproblems in total (i.e., 𝑀 = 𝑁 + 1). The shared variables among

them include the vehicle design parameters 𝒚 = [𝒚𝑇1 , . . . , 𝒚
𝑇
𝑁
]𝑇 , where 𝒚𝑣 = [𝑚𝑝𝑣 , 𝑚 𝑓𝑣 , 𝑚𝑑𝑣 ]𝑇 , where 𝑣 is the vehicle

index such that 𝑣 = 1, . . . , 𝑁 . Note that, in the considered problem, the subproblem index 𝑘 and vehicle index 𝑣 match

(i.e., subproblem 𝑘 handles the design problem of spacecraft 𝑣). For each spacecraft 𝑣, 𝑚𝑝𝑣 , 𝑚 𝑓𝑣 , 𝑚𝑑𝑣 respectively

represent the payload capacity, propellant (fuel) capacity, and dry mass.

The space mission planning problem (𝑃0 in Fig. 1b) is different from the all-in-one formulation outlined in Section

III with respect to the following two points: the nonlinear vehicle sizing constraint (Eq. (5)) is not included, and the

quadratic penalty function is added to the objective function as Eq. (15) shows. Due to the quadratic objective function,

this subproblem is a MIQP problem.

min
𝒙𝑣𝑖 𝑗𝑡 ,𝑢𝑣𝑖 𝑗𝑡 ,𝒚0

∑︁
𝑡 ∈T

∑︁
(𝑣,𝑖, 𝑗) ∈A

(𝒂𝑇𝑣𝑖 𝑗𝑡𝒙𝑣𝑖 𝑗𝑡 + 𝑎′𝑇𝑣𝑖 𝑗𝑡𝑚𝑑𝑣𝑢𝑣𝑖 𝑗𝑡 ) + 𝜙0 (𝒄0 (𝒚, 𝒚0))

subject to Eqs. (2)–(4) and (6)–(8)

where 𝒚 = [𝒚𝑇1 , . . . , 𝒚
𝑇
𝑁 ]𝑇 and 𝒚𝑣 = [𝑚𝑝𝑣 , 𝑚 𝑓𝑣 , 𝑚𝑑𝑣 ]𝑇

(15)

In the spacecraft design subproblems (𝑃𝑣 in Fig. 1b), the penalty function is minimized, and the vehicle sizing

constraint (𝑚𝑑𝑣 = F (𝑚𝑝𝑣 , 𝑚 𝑓𝑣 )) is enforced. Note that this subproblem does not optimize the spacecraft design against

its own cost or mass. As the objective of the original problem is to minimize IMLEO, the purpose here is to find a

feasible spacecraft design minimizing the IMLEO value. The spacecraft design contains various interacting subsystems,

and a hierarchical structure can be used to provide detailed subsystem-level design if needed. The subproblem for 𝑣-th

type of vehicle can be expressed as Eq. (16). Due to the nonlinear constraint, the subproblem is an NLP problem and

can be solved by an NLP solver.

min
𝒚𝑣

𝜙𝑣 (𝒄𝑣 (𝒚, 𝒚𝑣))

subject to 𝑚𝑑𝑣 = F (𝑚𝑝𝑣 , 𝑚 𝑓𝑣 )

where 𝒚𝑣 = [𝑚𝑝𝑣 , 𝑚 𝑓𝑣 , 𝑚𝑑𝑣 ]𝑇

(16)

B. Solution Algorithm and Iteration Scheme

This subsection introduces the iterative solution algorithm for the decomposition-based algorithm introduced in

Section IV.A and Ref. [18]. The formulated decomposed optimization problems with ALC can be solved iteratively in

two loops: the outer loop updates the augmented Lagrangian penalty parameters (𝒗, 𝒘), while the inner loop solves the
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master problem and subproblems until the change in the subproblem objective function values is less than a defined

tolerance. The outer loop terminates when two conditions are met simultaneously. First, the maximum consistency

violation must be less than a specified tolerance. It ensures that the solution is feasible in each subproblem within the

tolerance. Second, the maximum consistency violation change from the previous iteration must be smaller than the same

tolerance. It allows for design space exploration and prevents premature convergences. The tolerance value of 10−3 is

used in this study. The penalty parameters are updated in the outer loop based on the inner loop solution’s consistency

violation. Specifically, at 𝑞-th iteration, 𝒗 =
[
𝒗𝑇0 , . . . , 𝒗

𝑇
𝑀−1

]𝑇 is updated as follows:

𝒗𝑞+1 = 𝒗𝑞 + 2𝒘𝑞 ◦ 𝒘𝑞 ◦ 𝒄𝑞 (17)

The 𝑟-th element 𝑤𝑟 of the penalty weight vector 𝒘 =
[
𝒘𝑇

0 , . . . , 𝒘
𝑇
𝑀−1

]𝑇 is updated based on the corresponding

consistency constraint element 𝑐𝑟 as follows:

𝑤
𝑞+1
𝑟 =


𝑤
𝑞
𝑟 if |𝑐𝑞𝑟 | ≤ 𝛾2 |𝑐𝑞−1

𝑟 |

𝛾1𝑤
𝑞
𝑟 if |𝑐𝑞𝑟 | > 𝛾2 |𝑐𝑞−1

𝑟 |
(18)

where 𝛾1 > 1 and 0 < 𝛾2 < 1. In this study, 𝛾1 = 2 and 𝛾2 = 0.5 are used. The initial penalty parameter values can take

𝒗1 = 0 and 𝒘1 ≈ 1.

The updates for the inner loop are performed by alternating between solving the master problem and the subproblems

with the fixed penalty parameters. While each subproblem can be solved using the specialized numerical optimizer for

MIQP or NLP, the master problem can be solved analytically as follows.

𝒚 = argmin
𝒚

𝑁∑︁
𝑘=0

𝜙𝑘 (𝒄𝑘 (𝒚, 𝒚𝑘)) =
∑𝑁

𝑘=0 (𝒘𝑘 ◦ 𝒘𝑘 ◦ 𝒚𝑘) − 1
2
∑𝑁

𝑘=0 𝒗𝑘∑𝑁
𝑘=0 (𝒘𝑘 ◦ 𝒘𝑘)

(19)

For our problem, we make an additional heuristics-based modification to the master problem to facilitate the

convergence. The aforementioned master problem updates all the shared variables at the same time at every iteration,

but this approach does not work effectively in our problem. This is because the space mission planning, with no

knowledge of the constraints behind the spacecraft design, can return an aggressive or infeasible spacecraft design, which

can deteriorate the convergence performance. Therefore, we propose to only update the spacecraft payload capacity

and the propellant capacity in the master problem, while passing the spacecraft dry mass from the spacecraft design

subproblem directly to the next iteration, as shown in Fig. 2. Mathematically, we separate the shared variables 𝒚 into the

regular shared variables 𝜶 = [𝑚𝑝1 , 𝑚 𝑓1 , . . . , 𝑚𝑝𝑁
, 𝑚 𝑓𝑁 ] and the prioritized shared variables 𝜷 = [𝑚𝑑1 , . . . , 𝑚𝑑𝑁

] (i.e.,
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𝒚 = [𝜶, 𝜷]), and only 𝜶 is updated in the master problem.

min
𝜶

𝑁∑︁
𝑘=0

𝜙𝑘 (𝒄𝑘 (𝜶,𝜶𝑘)) (20)

In the space mission planning subproblem, the spacecraft dry mass remains a variable, not a fixed parameter, and

is subject to the penalty function. It indicates that the resultant dry mass 𝛽0 is not used in the entire optimization

architecture but only to facilitate the convergence of the whole optimization problem.

Fig. 2 Proposed decomposition-based optimization architecture with prioritized shared variables.

C. Automatic Initial Solution Generation via Piecewise Linear Approximation

For the above iterative algorithm to perform effectively, a good initial guess of the shared variable is necessary.

Thus, there is a need to develop an automatic and effective method that does not require a user-defined initial guess. To

this end, we propose to approximate the nonlinear spacecraft model as a PWL model with chosen breakpoints so that an

approximate initial solution to the original MINLP problem can be obtained using MILP [6]. Since MILP problems

can be solved using a specialized solver, this approximate solution can be generated efficiently. Although the PWL

approximation does not necessarily return an optimal or even feasible solution to the original MINLP problem, the

returned shared variables can be used as a good initial guess for the iterative approach. Another advantage is that the

MILP problem can be solved to the global optimum for the approximated nonlinear model. Thus, the MILP-based

initial guess is not only automatically generated but also likely to be close to the nonlinear global optimum.

Specifically, in our problem, nonlinearity exists in the spacecraft sizing constraint. To generate the PWL functions of

the nonlinear constraints, we choose a series of equally-spaced "mesh" points over the feasible ranges of the independent

spacecraft design variables and use them as breakpoints for the PWL function generation. Since the dry mass is an
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(implicit) function of the payload capacity and propellant capacity, we only use the latter two for breakpoint generation.

The breakpoint increment (or the number of breakpoints) is a key hyperparameter; a smaller increment (or more

breakpoints) would lead to a more accurate initial guess, but it will also require a longer computational time. The

method used in this study to model PWL functions as MILP problems is presented in Ref. [21].

V. Case Study: Human Lunar Exploration Campaign
To demonstrate the effectiveness of the proposed approach, we perform several case study instances and compare

our approach with the state-of-the-art method. We first introduce the case study settings, followed by the results and the

computational performance analysis.

A. Case Study Settings

1. Specifications of Human Lunar Exploration Campaign

A human lunar exploration with two missions is considered here for the case study. The mission network model,

parameters, commodity demand and supply used in this case study are presented in Fig. 3, Table 2, and Table 3,

respectively. We call this case study the default instance, and seven additional instances with different parameters are

also studied. Their specifications are given in Table 4. The parameters not listed in Table 4 are the same as those in the

default instance (Instance 1). In some instances, the supply and demand (i.e., mission payload) are increased, as shown

in Table 3. Note that sizing models for only one kind of spacecraft, which is a single-stage lunar lander, are considered

for simplicity. Hence, the designed lander is also used as other kinds of spacecraft, such as in-space transfer vehicles. As

landers are typically heavier than other spacecraft due to their landing structure, the optimization result might represent

a conservative design. For this reason, a so-called aggressive vehicle model with a lower structural mass estimation is

used in some instances. In contrast, we refer to the original model as the conservative model. The sizing models are

discussed in detail in the next section (V.A.2). For each case study instance, the computational time is measured on a

platform with Intel Core i7-10700 (8 Core at 2.9 GHz). In the proposed decomposition-based method, Gurobi 9.1 solver

[15] is used for the initial MILP problem and MIQP subproblem, and IPOPT [16] is chosen for the NLP subproblems.

Fig. 3 Lunar campaign network model [6].
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Table 2 Parameters used in the default instance (Instance 1) of the case study

Parameters Assumed values
Spacecraft Propellant type LH2/LOX
Propellant 𝐼𝑠𝑝 , s 420
Propellant density 𝜌 𝑓 , kg/m3 360
Spacecraft miscellaneous mass fraction 𝑐𝑚𝑖𝑠𝑐 (see Eq. (21)) 0.05
Spacecraft payload capacity range, kg [500, 10000]
Spacecraft propellant capacity range, kg [1000, 100000]
Type(s) of spacecraft designed 1
Number of vehicles for each type 6
Crew mass (including space suit), kg/person 100
Crew consumption, kg/day/person 8.655
Spacecraft maintenance, structure mass/flight 1%

Table 3 Lunar campaign commodity demand and supply

Payload Type Node Date Supply/Demand (increased instance)
Outbound to the Moon

Crew Earth 0, 365 4
Habitat, Equipment, and Propellant, kg Earth 0, 365 ∞

Crew Moon 5, 370 -4
Habitat & Equipment, kg Moon 5, 370 -2000 (-3000)

Inbound to the Earth
Crew Moon 8, 373 4

Returned mass, kg Moon 8, 373 1000 (1500)
Crew Earth 13, 378 -4

Returned mass, kg Earth 13, 378 -1000 (-1500)

Table 4 Case study instances specifications

Instance index
Type(s) of SC

desinged
Number of SC

per type
SC sizing model Mission payload

1 (default) 1 6 conservative default
2 2 3 conservative default
3 6 1 conservative default
4 2 3 conservative increased
5 1 6 aggressive default
6 2 3 aggressive default
7 6 1 aggressive default
8 2 3 aggressive increased
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2. Spacecraft Sizing Model

The subsystem-level spacecraft model used as the spacecraft design constraint in Eq. (5) is developed by the least

square curve fitting to the data from the lunar lander design database in Ref. [22, 23]. The following set of equations

shows the spacecraft model used in the case study.

𝑚𝑑 =
∑︁

𝑚𝑠𝑢𝑏 = 𝑚𝑠𝑡𝑟 + 𝑚𝑝𝑟𝑜𝑝 + 𝑚𝑝𝑜𝑤𝑒𝑟 + 𝑚𝑎𝑣𝑖 + 𝑚𝐸𝐶𝐿𝑆𝑆 + 𝑚𝑚𝑖𝑠𝑐

where

𝑚𝑠𝑡𝑟 = 𝑛𝑠𝑡𝑔
−0.6705 (0.3238𝑚𝑑 + 693.7𝑚𝑝

0.04590)

𝑚𝑝𝑟𝑜𝑝 = 0.1648 (𝑚𝑑 + 𝑚𝑝) + 20.26
(
𝑚 𝑓

𝜌 𝑓

)
𝑚𝑝𝑜𝑤𝑒𝑟 = 7.277 · 10−8 𝑚𝑑

2.443 + 137.0

𝑚𝑎𝑣𝑖 = 1.014𝑚𝑝𝑜𝑤𝑒𝑟
0.8423 + 22.33 𝑡𝑚𝑖𝑠

𝑚𝐸𝐶𝐿𝑆𝑆 = 0.004190 𝑛𝑐𝑟𝑒𝑤 𝑡𝑚𝑖𝑠 𝑚𝑑
0.9061 𝑛𝑠𝑡𝑔

0.7359 + 434.7

𝑚𝑚𝑖𝑠𝑐 = 𝑐𝑚𝑖𝑠𝑐 𝑚𝑑

(21)

Beyond the payload capacity and propellant capacity, there are some additional parameters in these equations: 𝑛𝑠𝑡𝑔

is the number of stages (either 1 or 2), 𝜌 𝑓 is the propellant density in kg/m3, 𝑡𝑚𝑖𝑠 is the surface time of the lunar mission

in days, 𝑛𝑐𝑟𝑒𝑤 is the number of crew, 𝑐𝑚𝑖𝑠𝑐 is the miscellaneous mass fraction. The miscellaneous mass fraction 𝑐𝑚𝑖𝑠𝑐

represents how much of the dry mass is categorized as the miscellaneous mass. It can range from 0 to 0.15, meaning 0%

to 15% of the dry mass is the miscellaneous mass. The higher 𝑐𝑚𝑖𝑠𝑐, the heavier and more conservative the vehicle

design becomes. All mass properties are defined in kg.

As shown in Eq. (21), the model captures the subsystem-level interactions to return the relationship between the

payload capacity, propellant capacity, and dry mass of the spacecraft. Particularly, the subsystem interactions are

captured through the dry mass. For instance, an increase in any subsystem mass will raise the dry mass. Since each

subsystem mass is dependent on the dry mass, their mass should increase as well, which will further raise the dry mass.

The ’balanced’ dry mass with such subsystem circular references can be found by solving Eq. (21) for the dry mass, 𝑚𝑑 .

More details on this model can be found in Appendix A.

The aforementioned aggressive sizing model has a lower structural mass estimation shown in Eq. (22). The only

difference from Eq. (21) is the lowered coefficient of 𝑚𝑑 , and the other subsystem mass relations remain the same. In

the ranges of payload capacity and propellant capacity specified in Table 2, both models are non-convex.
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𝑚𝑠𝑡𝑟 = 𝑛𝑠𝑡𝑔
−0.6705 (0.2694𝑚𝑑 + 693.7𝑚𝑝

0.04590) (22)

B. Optimization Results of the Proposed Decomposition-Based Formulation

This subsection introduces the optimization results of the proposed decomposition-based formulation. Since the

performance of the proposed method is dependent on the breakpoint increment (or the number of breakpoints) for the

PWL approximation of the MILP-based initial solution generation, five different increments are tested for Instance 1 ∗.

The results are shown in Table 5; note that the PWL-based initial solutions are not necessarily feasible, and so their

IMLEOs are only reported for information purposes.

Table 5 Instance 1 optimization results by the proposed decomposition-based formulation

PWL
increment, kg

PWL
mesh points

Optimization time, s IMLEO, kg
PLW-based Decomposition-based

Total
PWL-based Final

initial solution iterations initial solution solution
10,000 13 3.461 20.02 23.48 741,115 724,776
5,000 36 4.769 13.47 18.24 700,684 694,224
2,500 120 4.754 11.98 16.73 677,035 676,862
1,250 425 28.09 13.83 41.92 677,343 677,204
625 1,595 465.5 13.18 478.7 677,315 677,072

Although the optimizer’s computational time involves some randomness depending on the individual problems,

some general trends can be observed. First, when the increment is too large (too few breakpoints, e.g., 10,000 kg

increment with 13 mesh points), the initial solution quality is poor, and thus the final solution IMLEO is also poor.

Second, the computational time to solve the initial MILP problem rapidly increases when the increment is too small

(too many breakpoints, e.g., 625 kg increment with 1,595 mesh points), resulting in a long total computational time.

In summary, we can observe the expected trend that a smaller increment (more breakpoints) leads to a better initial

guess at the cost of computational time. Theoretically speaking, if we reduce the increment to zero (an infinite number

of breakpoints), the solution would match with the global optimum; however, this is impractical as it requires infinite

computational time. Thus, the most efficient strategy is to use an increment that can generate a reasonably accurate

initial solution and leave the rest to the proposed decomposition-based optimization. Although this hyperparameter

needs to be chosen for the proposed algorithm, it is worth noting that the computational performance is not very sensitive

to the choice of its value except for the extreme cases. In our case study and spacecraft sizing model, the 2,500 kg

increment is chosen as the default increment for the remainder of the case study.

With the chosen default increment, the other seven instances are also tested. The results are summarized in Table 6.
∗We have tested the integrated formulation (as a black box) with MINLP solvers including Outer Approximation [24], LP/NLP based

Branch-and-Bound [25], and Extended Cutting Plane [26]; however, they failed to produce a feasible solution due to the non-convex sizing constraints.
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In all instances, the proposed method can solve the problem with a reasonable amount of computational time and solution

improvement from the initial guess. Note that the final IMLEO is not necessarily lower than that of the PWL-based

initial solution because the original nonlinear problem might be infeasible with the initial guess spacecraft design (i.e.,

𝑦0
𝑣 = [𝑚0

𝑝𝑣
, 𝑚0

𝑓𝑣
, F (𝑚0

𝑝𝑣
, 𝑚0

𝑓𝑣
)]𝑇 for 𝑣-th vehicle).

Table 6 Decomposition-based optimization results with 2,500 kg increment for all instances

Optimization time, s IMLEO, kg
Instance PWL-based Decomposition-based

Total
PWL-based Final

initial solution iterations initial solution solution
1 (default) 4.754 11.98 16.73 677,035 676,862

2 38.66 10.70 49.35 401,191 401,093
3 38.66 61.57 100.2 386,257 387,535
4 10.53 22.63 33.16 470,788 470,406
5 75.35 94.06 154.7 442,596 442,605
6 24.09 14.30 38.39 293,095 293,095
7 100.1 44.02 144.1 286,154 302,041
8 31.50 14.47 45.97 344,397 344,423

Overall, the proposed decomposition-based formulation can take the reasonable approximate solution by the PWL

formulation and offer a better computational efficiency to achieve a high-quality solution.

C. Benchmark Formulation: Modified Embedded Optimization

While our formulation of the integrated mission planning and subsystem-level spacecraft design has not been

directly tackled in the literature, we can extend a state-of-the-art approach for a similar problem straightforwardly as a

benchmark to evaluate our newly proposed method. The identified approach is the embedded optimization method by

Taylor [10], which was demonstrated to be more efficient than directly solving the original integrated MINLP problem

using a global optimizer. In this paper, the method is modified to solve the case study problem more efficiently.

In the original formulation of the embedded optimization, all spacecraft variables are separated from the problem

and determined by a metaheuristics algorithm. However, in our problem, the spacecraft dry mass is constrained and can

be uniquely determined by the payload and propellant capacity. Hence, we let the metaheuristics algorithm pick only the

payload and propellant capacity of 𝑁 types of vehicles, and calculate the corresponding spacecraft dry mass by the

spacecraft sizing constraint. This process reduces the number of variables from 3𝑁 to 2𝑁 and turns the constrained

problem into an unconstrained one. After obtaining the feasible vehicle design, these values are fed to the space mission

planning problem, which is solved by the specialized MILP optimizer. Unlike the all-in-one formulation, the vehicle

parameters are fixed within the mission planning part. Then, the corresponding objective function value (i.e., IMLEO)

is returned to the metaheuristic optimizer for the evaluation for the next iteration. As a result, the metaheuristics only
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handles an unconstrained optimization problem with 2𝑁 variables (i.e., the payload capacity and propellant capacity for

𝑁 spacecraft), where the evaluation of the constraints and the determination of the remaining variables are handled

by the embedded MILP solver. When the problem is infeasible with the chosen spacecraft design, a predetermined

large positive number is returned as the objective function value, following the death-penalty constraint handling [27];

this method is chosen because the large number of constraints in the problem makes other methods (e.g., repair-based

methods) challenging or inapplicable. The problem to be optimized by the metaheuristic solver is expressed as Eq. (23).

min
𝜶

IMLEO(𝜶, F (𝜶))

where 𝜶 = [𝑚𝑝1 , 𝑚 𝑓1 , . . . , 𝑚𝑝𝑁
, 𝑚 𝑓𝑁 ], 𝜶 ∈ R2𝑁

(23)

In accordance with the proposed decomposition-based method, the PWL MILP initial guess is given to the

initial population. Since such an initial guess is not provided in the original method, this modification should lead

to performance improvement. For the same reason as the proposed method, a reasonable increment for the PWL

approximation is desired. The effect of the PWL increment value is examined (see Section V.D.1).

Since the performance of the embedded optimization would depend on the choice of the metaheuristics algorithm,

three different metaheuristics algorithms are tested: the extended Ant Colony Optimization (ACO) [28], the Genetic

Algorithm (GA) [29], and the Particle Swarm Optimization (PSO) [30]. The population size is 10 for all, and other

specific parameters to each algorithm are provided in Appendix B. The optimization is terminated when a predefined

number of generations are populated; progress at different generation numbers are examined for each algorithm to

explore the tradeoff between the computational time and accuracy. Due to the random nature of the metaheuristic

optimizers, the optimization is run 10 times with the same setting.

D. Performance Comparison of the Proposed Formulation with Modified Embedded Optimization

In this section, the proposed formulation results are compared with the modified embedded optimization results,

which depend on several factors, including the PWL increment (i.e., initial guess quality), algorithm, and problem to be

solved. We first compare their performance with various increments and algorithms, then study the results of all case

study instances. A set of sample results are shown in this section to discuss the findings; the complete dataset for every

instance and algorithm is presented in Appendix B.

1. Performance Comparison with Various PWL Increments

First, we examine the results for the default instance with different increments. Table 7 shows how the three

metaheuristics algorithms compare with the proposed method at 10 generations for various PWL increments. A

generation number as low as 10 is used to match the time scale of the proposed method. Note that the optimization time

in Table 7 does not include the initial guess generation time because it is the same as long as the increment is the same.
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Table 7 Instance 1 results comparison with different PWL increments at 10 generations

PWL increment, kg Algorithm Average opt. time, s Best IMLEO, kg Worst IMLEO, kg

10,000

ACO 66.93 707,882 724,776
GA 72.81 684,755 724,776
PSO 69.06 696,625 724,776

Proposed 20.02 724,776 -

5,000

ACO 65.99 694,224 694,224
GA 71.27 681,842 694,224
PSO 67.98 694,224 694,224

Proposed 13.47 694,224 -

2,500

ACO 72.27 705,550 infeasible
GA 80.58 759,326 infeasible
PSO 74.57 700,227 infeasible

Proposed 11.98 676,862 -

1,250

ACO 65.93 677,303 677,303
GA 70.16 677,303 677,303
PSO 69.00 677,303 677,303

Proposed 13.83 677,204 -

625

ACO 67.21 677,283 677,283
GA 69.42 677,283 677,283
PSO 68.33 677,283 677,283

Proposed 13.18 677,072 -

There are several key findings. Most importantly, the proposed method converges substantially faster than any

metaheuristics algorithms, even if the number of generations for metaheuristics is limited to 10. In most cases, the

converged solution of the proposed method is better than even the best case (out of the 10 runs) for the modified

embedded optimization. Note that it is not surprising that metaheuristics can occasionally perform better than the

proposed method because it can stochastically escape from the local minima; however, it is worth stressing that, due to

the stochasticity, the performance of the embedded optimization can vary significantly and possibly return infeasible

solution in the worst case; this is true for the increment of 2,500 kg, where the initial PWL-based solution is not feasible

and the embedded optimization is not able to lead it to a feasible one in the worst case of the 10 runs. In contrast, the

performance of the proposed method is robust and repeatable due to its deterministic nature; it can find a nonlinear

(local) solution regardless of the initial guess feasibility even though it might not always improve significantly from the

initial guess.

2. Performance Comparison in Different Problem Instances

Next, we select PSO as our default algorithm and compare the results for all eight instances. The results by PSO for

all instances are shown in Table 8. A similar trend is observed for all cases: the results at 10 generations suggest that
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there is a robust trend that the proposed method can achieve a better solution given a similar amount of time. In fact,

note that in all cases, the computational time of the proposed method is substantially shorter than any other methods.

It is of interest to observe the performance of the metaheuristic methods with a higher number of generations. Thus,

the 100-generation case is also shown in Table 8. In this case, we can see that there are (rare) cases where PSO can find

a better solution than the proposed method in the best case (e.g., Instance 7); however, as mentioned previously, the

stochastic nature of the metaheuristics algorithms makes their performance highly variable; for all cases tested, the

proposed method reached the same or better solutions than those from the worst-case metaheuristics method even after

100 generations and with a substantially shorter computational time.

E. Advantages and Limitations of the Proposed Formulation

One advantage of the proposed method is its potential to integrate more complicated spacecraft design problems,

such as models with more constraints or even MDO problems. Oftentimes, MDO problems require external and

Table 8 PSO embedded opt. results comparison: 2,500 kg PWL increment, all instances, 10 and 100 generations

Instance Algorithm Number of generations Average opt. time, s Best IMLEO, kg Worst IMLEO, kg

1 (default)
PSO

10 74.57 700,227 infeasible
100 765.3 680,234 710,650

Proposed - 11.98 676,862 -

2
PSO

10 84.70 436,363 infeasible
100 881.6 402,976 412,622

Proposed - 10.70 401,093 -

3
PSO

10 153.0 423,873 infeasible
100 1620 408,388 421,829

Proposed - 61.57 387,535 -

4
PSO

10 82.52 470,538 470,538
100 842.3 470,538 470,538

Proposed - 22.63 470,406 -

5
PSO

10 75.36 451,269 470,869
100 748.6 445,230 450,841

Proposed - 94.06 442,605 -

6
PSO

10 96.64 305,457 337,105
100 949.7 298,414 306,893

Proposed - 14.30 293,095 -

7
PSO

10 172.3 302,791 358,768
100 1772 298,361 310,755

Proposed - 44.02 302,041 -

8
PSO

10 94.21 355,767 395,748
100 934.3 348,585 359,040

Proposed - 14.47 344,423 -
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black-box analysis tools for specific disciplines where the analytical formulation or constraints might not be known by

the user. As the ALC formulation is intended for such MDO problems, integration of disciplinary analysis tools should

not be an issue. The method we employ to model PWL functions as MILP problems can handle black-box functions as

well [21]. Furthermore, if a hierarchical MDO subproblem is considered, a multi-level hierarchical variation of the

ALC formulation can be utilized [20]. When there are a large number of subproblems involved, parallel computation

might further reduce the computational cost.

The proposed method has several limitations as well, which can lead to future work. First, the objective function of

the space mission planning problem must be linear or quadratic. Otherwise, the subproblem itself becomes a MINLP

problem and negates the advantage of the proposed decomposition formulation. This limitation excludes general

nonlinear objective functions. In a similar manner, the spacecraft design constraints can only have continuous variables

although integer variables such as the number of engines and number of propellant tanks may be needed for high-fidelity

spacecraft design. One approach to these cases is to revise the decomposition structure of the problem, which is left for

future work. Finally, even though the proposed PWL solution can provide a near-optimal initial guess, the gradient-based

NLP solver in the proposed method can still lead to a local optimum. Thus, embedded optimization may be preferred in

certain contexts when the goal is to achieve a global optimum without any constraint on the available computational

resources.

Overall, the case study demonstrates the high computational performance of the proposed method. The proposed

formulation can achieve a high-quality solution robustly in a shorter computational time than the state-of-the-art modified

embedded optimization method. It is also illustrated that the computational efficiency is not impaired by infeasible

initial solutions.

VI. Conclusion
This paper tackles the challenging problem of integrated space mission planning and spacecraft design. The

all-in-one formulation is presented as an MINLP problem, and an efficient solution approach is developed leveraging

the unique structure of the problem and following the philosophy of MDO. Namely, the all-in-one MINLP problem is

decomposed into the space mission planning subproblem (MIQP) and the spacecraft design subproblem(s) (NLP) so

that they can be solved iteratively using the ALC approach to find the optimal solution for the original MINLP problem.

Furthermore, an automatic and effective approach for finding an initial solution for this iterative process is proposed

leveraging a piecewise linear (PWL) approximation of the nonlinear vehicle model, so that no user-defined initial guess

is needed. In the case study, the computational efficiency of the proposed method is studied with several problem

settings. The results demonstrate that, compared to the state-of-the-art method, the proposed formulation converges

significantly faster, and the converged solution is also at least the same or better in the same computational time limit,

even when started from the same PWL-based initial solution. The combination of the unique problem structure, the
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iterative algorithms for shared variables, and the efficient initial solution generation method leads to this computational

efficiency. The parallelizable nature of the algorithm can potentially make the proposed method even more effective

for large-scale problems. Due to the flexibility of the ALC method, the proposed formulation can also integrate more

complex vehicle design models, which is left for future work.

Appendix A: Spacecraft Design Model
This appendix provides more details on the parametric sizing model for the spacecraft used in the case study. In the

considered model, the subsystems of single-stage landers and their relations to the dry mass are defined as Eq. (24).

𝑚𝑑 =
∑︁

𝑚𝑠𝑢𝑏 = 𝑚𝑠𝑡𝑟 + 𝑚𝑝𝑟𝑜𝑝 + 𝑚𝑝𝑜𝑤𝑒𝑟 + 𝑚𝑎𝑣𝑖 + 𝑚𝐸𝐶𝐿𝑆𝑆 + 𝑚𝑚𝑖𝑠𝑐 (24)

where 𝑚𝑠𝑢𝑏 indicates the mass of each subsystem. 𝑚𝑠𝑡𝑟 indicates the structure and thermal protection system (TPS),

which includes all subsystems that are attached to support or connect other components. This includes landing legs and

truss, TPS for the reentry to the earth, and a docking mechanism. 𝑚𝑝𝑟𝑜𝑝 is the propulsion system, such as propellant

tanks, reaction control system (RCS), and hardware of engines. 𝑚𝑝𝑜𝑤𝑒𝑟 is the power system, which contains batteries,

fuel cells, solar panels, or other electrical systems. 𝑚𝑎𝑣𝑖 indicates the avionics, and 𝑚𝐸𝐶𝐿𝑆𝑆 indicates the environmental

and life control system (ECLSS) that supports the crew’s lives such as consumables (food, water, air) or related piping

and tankage. Finally, we also consider other miscellaneous required components, expressed as 𝑚𝑚𝑖𝑠𝑐. Through the dry

mass, each subsystem interacts with every other subsystem, and this relation is visualized in Fig. 4 as an N2 diagram.

Fig. 4 Relationship of domains in a single-stage lunar lander.

For the defined subsystems, mass estimation relationships (MERs) are developed as functions of payload capacity,

propellant capacity, propellant type 𝜁 , and some other known parameters. If the propellant type is fixed, the subsystems

MERs and dry mass are dependent on the payload capacity and propellant capacity only, and thus serve as the vehicle

sizing constraints (Eq. (5), 𝑚𝑑 = F (𝑚𝑝 , 𝑚 𝑓 )). Each subsystem MER is developed by the least square curve fitting to

the data from the lunar lander design database in Ref. [22, 23], which includes both existing and elaborated conceptual
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design. The form of each subsystem’s MER is manually determined to be a sufficiently simple yet accurate form. The

resultant MERs are shown in Eq. (21).

Table 9 summarizes the independent variables, 𝑅2 values for curve fitting, number of data points used for curve

fitting (𝑁𝑑𝑎𝑡𝑎), average errors against the data points, and the maximum errors. Note that only a small number of data

points are used for the propulsion system MER since two-stage lander data are excluded as their propulsion systems with

staging are too distinct from those of single-stage ones. One may also see that relatively poor correlations are obtained

for the power systems and avionics mass as they simply might not be strong functions of the dry mass or vehicle size.

However, since they typically account for small portions of the dry mass, the poor correlation does not have a significant

effect on the validation process.

The limitation of this sizing model should also be noted. Because the MERs are developed from the existing data

points, a solution for vehicles that are significantly heavier than the ones in the database would either be a low-fidelity

model or infeasible. In other words, 𝑚𝑑 that satisfies Eq. (24) might not exist for certain weight classes. Specifically,

the upper bound of the dry mass is approximately 23,000 kg. When 𝑡𝑚𝑖𝑠 is 3 days, 𝑛𝑐𝑟𝑒𝑤 is 4, 𝑐𝑚𝑖𝑠𝑐 is 0.05, and the

propellant is LH2/LOX, the upper bound are found at 500 kg payload and 75,500 kg propellant, or at 10,000 kg payload

and 45,500 kg propellant.

Table 9 Summary of subsystem MERs

Subsystem Notation Independent Variables 𝑅2 𝑁𝑑𝑎𝑡𝑎 Avg. Error Max. Error
Structure + TPS 𝑚𝑠𝑡𝑟 𝑚𝑑 , 𝑛𝑠𝑡𝑔, 𝑚𝑝 0.9254 17 7.379% 24.31%
Propulsion System 𝑚𝑝𝑟𝑜𝑝 𝑚𝑑 , 𝑚𝑝 , 𝜌𝑝 0.9279 8 7.429% 11.16%
Power System 𝑚𝑝𝑜𝑤𝑒𝑟 𝑚𝑑 0.7182 13 16.24% 36.68%
Avionics 𝑚𝑎𝑣𝑖 𝑚𝑝𝑜𝑤𝑒𝑟 (𝑚𝑑), 𝑡𝑚𝑖𝑠 0.6204 22 36.42% 75.94%
ECLSS 𝑚𝐸𝐶𝐿𝑆𝑆 𝑚𝑑 , 𝑛𝑐𝑟𝑒𝑤 , 𝑛𝑠𝑡𝑔, 𝑡𝑚𝑖𝑠 0.9293 12 11.93% 38.09%
Miscellaneous 𝑚𝑚𝑖𝑠𝑐 𝑚𝑑 - - - -

Appendix B: Summary of the Embedded Optimization Results
Table 10, 11, and 12 show the modified embedded optimization results by ACO, GA, and PSO, respectively. The

initial guess increment is 2,500 kg for all cases. The algorithm implementations by pygmo [31], a scientific Python

library, are used to generate the data. The parameters used for each algorithm are as follows.

For ACO, the kernel size, convergence speed parameter, oracle parameter, accuracy parameter, threshold parameter,

and focus parameter are 10, 1, 109, 0, 7, 0, respectively. GA uses the exponential crossover [32] with 0.9 probability,

polynomial mutation [33] with 0.02 probability, and tournament selection with size 2. For PSO, the inertia weight,

social component, cognitive component, and maximum particle velocities are 0.7298, 1.05, 2.05, and 0.5, respectively.
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Table 10 ACO embedded optimization results with 2,500 kg PWL increment

Instance Number of generations Optimization time, s Best IMLEO, kg Worst IMLEO, kg
10 72.27 705,550 infeasible

1 50 360.9 705,550 830,350
100 721.2 685,146 783,343
10 91.37 461,323 831,125

2 50 452.4 420,662 631,469
100 904.0 420,662 541,799
10 147.0 460,524 infeasible

3 50 732.0 459,157 565,537
100 1466 426,322 508,066
10 80.68 470,538 470,538

4 50 403.6 470,538 470,538
100 804.6 470,538 470,538
10 74.45 454,849 484,095

5 50 371.3 453,073 466,563
100 740.9 445,776 461,279
10 95.43 321,152 359,303

6 50 476.7 299,690 336,976
100 952.5 299,690 330,914
10 171.8 323,436 348,874

7 50 858.8 315,515 326,136
100 1716 313,764 323,436
10 94.14 375,746 425,749

8 50 468.6 359,239 401,878
100 934.7 351,292 394,226
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Table 11 GA embedded optimization results with 2,500 kg PWL increment

Instance Number of generations Optimization time, s Best IMLEO, kg Worst IMLEO, kg
10 80.58 759,326 infeasible

1 50 413.1 712,515 infeasible
100 814.8 712,515 infeasible
10 98.80 437,974 infeasible

2 50 511.9 437,275 infeasible
100 1010 414,034 infeasible
10 158.7 427,682 infeasible

3 50 840.4 419,610 infeasible
100 1686 398,507 infeasible
10 85.71 470,538 470,538

4 50 434.4 470,538 470,538
100 872.8 470,538 470,538
10 84.28 455,676 484,630

5 50 406.7 455,676 479,622
100 806.1 455,676 476,852
10 106.2 306,077 359,839

6 50 512.0 297,363 329,513
100 1020 297,183 316,152
10 178.5 304,792 345,599

7 50 866.8 296,631 323,739
100 1708 291,836 305,488
10 111.7 358,082 513,027

8 50 518.8 353,113 388,664
100 998.2 349,502 371,646
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Table 12 PSO embedded optimization results with 2,500 kg PWL increment

Instance Number of generations Optimization time, s Best IMLEO, kg Worst IMLEO, kg
10 74.57 700,227 infeasible

1 50 381.7 680,234 731,419
100 765.3 680,234 710,650
10 84.70 436,363 infeasible

2 50 440.0 403,448 439,154
100 881.6 402,976 412,622
10 153.0 423,873 infeasible

3 50 794.1 421,689 436,608
100 1620 408,388 421,829
10 82.52 470,538 470,538

4 50 419.9 470,538 470,538
100 842.3 470,538 470,538
10 75.36 451,269 470,869

5 50 373.9 445,230 458,624
100 748.6 445,230 450,841
10 96.64 305,457 337,105

6 50 476.7 301,583 314,667
100 949.7 298,414 306,893
10 172.3 302,791 358,768

7 50 881.8 298,361 313,493
100 1772 298,361 310,755
10 94.21 355,767 395,748

8 50 466.1 350,294 363,609
100 934.3 348,585 359,040
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