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Abstract. I analyze project continuation decisions where firms may resolve uncertainty
through news about competitors’ research and development (R&D) failures, as well as
through their own results. I examine the tradeoffs and interactions between product-
market competition and technological learning from parallel R&D projects. Leveraging the
biopharmaceutical industry’s unique characteristics to overcome barriers to measuring
project-level responses, I use a difference-in-differences strategy to evaluate how com-
petitor exit news alters a firm’s own project discontinuation decisions. The findings reveal
that technological learning dominates competition effects. Firms are most sensitive to
competitor failure news from within the same market and same technology area—more
than doubling their propensity to terminate drug development projects in the wake of this
type of information. Finally, I explore how levels of competition, uncertainty, and op-
portunities to learn moderate the response to competitor failure news.
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1. Introduction
How should a firm respond to a competitor’s product
development failure? On the one hand, the loss of a
competitor is positive news, leaving greater potential
market share for the remaining players. On the other
hand, a rival’s failure might contain important, cau-
tionary information about technological roadblocks
that limit the likelihood of success. Interpreting these
types of competitor outcomes is a key consideration
for firms making capital-intensive investments in
oligopolistic settings. Yet empirical studies of re-
search and development (R&D) spillovers have not
addressed how competitive and technological pres-
sures influence project investments in the wake of
competitor failure.1

In this paper, I examine project-level spillovers and
tease apart the different types of information con-
tained in a competitor’s project exit: (i) knowledge
spillovers, (ii) product-market competition effects,
and (iii) the combination of both. Empirically, I eval-
uate how biopharmaceutical firms alter their project
investments following competitors’ clinical trial fail-
ures. I measure how different types of competitor
news (same versus different market, same versus
different technology) influence the likelihood that a
firm pulls the plug on its own drug development
project. To overcome barriers to measuring the project-
level response to competitor discontinuation news,

I use unique features of the pharmaceutical R&D
setting, including the observability of development
milestones, the staggered timing of entry and out-
comes, and the separability of product markets and
technologies. I find that, on average, firms are more
responsive to the negative signal of a failed same
technology competitor than to the (positive) signal of
one less same market competitor.
I develop a theoretical framework that adds learning

from competitors’ R&D exits to the investment deci-
sion. To do so, I evaluate R&D investments as real
options, combined with the possibility of both payoff
and knowledge externalities. In this framework, the
extent to which firms update their beliefs following
competitor exits depends on how the focal project
relates to the failed competitor project: same market,
different technology (SM-DT); same market, same tech-
nology (SM-ST); or different market, same technology
(DM-ST). I describe a belief updating process inwhich
the interaction of these two effects need not equal the
sumof the separatemarket and technology responses.
Furthermore, the framework suggests that the proj-
ect’s level of competition and uncertainty should
moderate how firms respond to competitor exits.
Last, the model reveals how competition can make a
project more attractive when the focal and competitor
projects share the same technology. Such competitors
provide additional signals about the technology’s
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underlying quality—effectively lowering the cost of
experimentation.

The choice of an empirical setting is crucial for R&D
spillover analyses. Although innovation scholars
have argued that disclosure and the ability to assimi-
late external information have positive effects on the
rate of innovation (Cockburn and Henderson 1994,
Henderson and Cockburn 1994, Bloom et al. 2013,
Ederer 2013, Boudreau and Lakhani 2015), we have
little evidence of whether and when competitors re-
spond directly to each other’s R&D project outcomes.2

One reason for the scant empirical work is that mak-
ing valid inferences about competitor spillovers re-
quires a special type of setting. The analyst must be
able to observe the market structure and a given
competitor’s entire set of projects, track the timing
of project development and failure events, and follow
the developers’ subsequent choices. Furthermore, a
suitable setting must involve project continuation
decisions with large capital expenditures, so that
the corresponding investments have the potential
to shift firm performance. The timing of failure news
must be surprising and disclosed promptly and pub-
licly, generating well-defined decision points and
learning opportunities (i.e., signals from competing
projects). Perhaps most importantly, the setting must
provide metrics to assess technological and prod-
uct market relatedness between competing projects.
Without these ingredients, one cannot isolate knowl-
edge spillovers and competition effects.

The pharmaceutical drug development setting is
uniquely well suited to fulfill these requirements
because its regulatory structure and disclosure en-
vironment generate observable project-level data in
the context of high-stakes decisions. Project selection
and termination decisions are central to firm per-
formance in drug development. Failure is a frequent
occurrence and interpreting competitor outcomes is a
game played by executives, scientists, journalists and
investors alike.3 In an instant, a failure event can shift
the frontier of technical knowledge as well as the
competitive landscape for the remaining players.
Additionally, drug development provides an ideal
laboratory for studying R&D spillovers because hu-
man trials are typically the last stop in resolving
scientific uncertainty about a compound or thera-
peutic hypothesis. Outside of trial results, common
shocks are rare because of the slow-moving nature of
disease markets and translational science. Finally,
strong intellectual property protection, long devel-
opment timelines, and the high cost of trials creates a
racing environment with substantial capital com-
mitments and very little incentive to wait and see how
competitors fare (Schulze and Ringel 2013).

I use this structured and highly competitive setting
to evaluate how different types of competitor failure

news influence project termination decisions. I con-
struct a data set that comprises all clinical development
projects over the period of 1997–2014, along with each
project’s development milestones. I focus on projects
undergoing phase II clinical trials, which are typically
the first major test of a drug’s effectiveness and safety
(versus a placebo or standard of care). I estimate the
effect of competitor news on project termination
patterns by linking each focal project to its compet-
itors’ project exit events and using a difference-in-
differences survival model approach to control for
the typical life cycle of development projects. I dis-
tinguish between product-market and technological
competitors and take advantage of variation in the
(plausibly exogenous) timing of entry and failure to
identify the effect of competitor failure news on project
exit rates.
Using this setup, I show how the relationship be-

tween competitors across both market and technol-
ogy categories dictates how competitor failure news
affects the focal firm’s decision to abandon R&D
projects. Although the average effect of any type of
competitor failure news is negligible, same technol-
ogy competitor failure news results in a 23% jump in
focal projects’ exit rates. More specifically, the com-
bination of same market and same technology (SM-
ST) competitor failures leads to the largest increase
(more than doubling) in project exit rates, whereas
DM-ST competitor discontinuations results in a smal-
ler (18%) increase in exit rate. This difference between
the two same technology groups suggests that disease-
specific knowledge spillovers dominate the positive
effects of reduced competition. On average, news of
SM-DT competitor failure does not impact project
survival rates.
I test the additional theoretical predictions by eval-

uating key subgroups of competing projects. I find
that only when the level of competition is low does
SM-DT failure decrease other companies’ propensity
to exit. Using focal projects in the final stage of trials, I
show that more advanced projects are less sensitive to
all types of competitor news. Finally, I explore how
having greater technological learning opportunities
(i.e., more ST competitors) influences project invest-
ments and reactions to competitor news. The results
are consistent with firms being more willing to test
more risky (likely to fail) projects when projects have
more same technology competitors. Furthermore,
firms that have more competitor learning opportu-
nities are more likely to continue following SM-DT
news and less likely to exit following DM-ST news.
Overall, the evidence supports a model in which
more ST competitors increase continuation value at
the margin, and firms gain in option value when they
herd into SM-ST R&D races.
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To ensure that the main empirical strategy captures
responses to competitor news, rather than the inde-
pendent failure of competing projects with a shared
fate, I use a variety of robustness checks. Using sub-
samples and alternative variable definitions, these
analyses further isolate competitor information ef-
fects by focusing on projects less likely to have died of
natural causes. Section 5.5 describes these robustness
checks, which together suggest that the results are not
driven by simultaneous and independent competi-
tor exits.

The main results highlight the importance of both
separating and interacting the different dimensions
of R&D competition when evaluating spillovers. More-
over, a simple back of the envelope calculation shows
that turning off the competitor learning channel might
have resulted in 1,683 (3.7%) additional quarters of
active phase II clinical trials—suggesting that the
reallocation of more than two billion dollars in R&D
investments is attributable to competitor learning.

Both the theoretical and empirical analyses focus on
project-level spillovers of competitor exit. By mea-
suring firm-level performance outcomes and cumu-
lative failure experience, prior studies are not able to
capture when rivals’ outcomes directly enter project
investment decisions.4 My approach uses a crucial
distinction between product-market competitors and
technology competitors first applied by Bloom et al.
(2013), who separate the countervailing knowledge
and competition effects at the firm level. This paper
makes a distinct contribution to the R&D spillovers
literature by applying thesemarket and technological
competitor distinctions at the project level, and adds
one additional layer: their interaction effect. By allow-
ing technological spillovers to vary depending on the
particular product-market application, the economet-
ric results illuminate whether different types of project
spillovers are equally informative.

This paper also contributes to the literature studying
real options. Prior work highlights how real options
provides flexibility to experiment and explore more
uncertain paths (Dixit and Pindyck 1994, McGrath
1997, Grenadier 1999, Miller and Folta 2002, McGrath
and Nerkar 2003, Adner and Levinthal 2004, Manso
2011, Nanda and Rhodes-Kropf 2016) but does not
capture cross-competitor learning and spillovers. This
paper shows how competitor news can be an essential
component of real options valuation because competitor
failures resolvebothmarket and technologicaluncertainty.

The paper proceeds as follows. I begin with the
theoretical predictions that combine insights from
real options theory with competition and knowledge
spillovers. Next, I discuss the drug development
setting and how learning from failure plays out in the
pharmaceutical industry. Third, I describe the main
empirical approach and results. By comparing the

competitor responses across projects in different com-
petitive and technological contexts, I test additional
predictions from the theoretical framework and val-
idate robustness. Finally, I discuss the implications of
the results and conclude.

2. Theoretical Framework
2.1. R&D Projects as Real Options
How should firms update R&D investment decisions
in response to changing information about competitors?
I analyze these decisions by adding competitor learning
into a real options framework. This framework builds
on prior work that describes option value of experi-
mentation in entrepreneurship (Nelson 1961, Kerr et al.
2014, Manso 2016, Nanda and Rhodes-Kropf 2016)
while adding the prospect of both payoff and infor-
mation externalities.5 Unlike these prior approaches,
here firms must evaluate uncertainty regarding if and
when competitor informationwill be revealed, aswell
as the relevance of technological or market signals.
Although existing real options models (Dixit and
Pindyck 1994, Grenadier 1999, Kellogg and Charnes
2000, Kellogg 2014, Décaire et al. 2019) recognize that
flexibility is a major source of investment value, they do
not allow competitor outcomes to separately change
beliefs about technical risk (probability of moving on to
the next stage) and expected payoffs (conditional on
technical success).
In addition to drug development, the analysis be-

low is relevant for other industries with high project
uncertainty, large capital commitments, correlated
technological outcomes (i.e., competitors testing re-
lated hypotheses), publicly observable actions and
outcomes, and potential payoff externalities. These
production settings will also have well-established
demand.6 Outside of life science–based businesses,
applicable settings might include the automotive
industry, mineral exploration, energy production,
aerospace technology, venture capital investing, and
medical devices.

2.2. Structure of the Game
Traditional real options models represent decision
points as prespecified opportunities to reevaluate
an investment that occur at some regular interval
(i.e., monthly valuation, annual planning meeting).
An option is more valuable when the investment has
more opportunities to be reevaluated (more flexibility)
and more volatility between those intervals. I add to
this general framework by considering competitor
news as leading to belief updating in-between those
traditional stages—making all stages (potentially)
more valuable.
I define investments as a single experiment or stage

of an R&D project (e.g., phase II clinical trial) and
consider a firm’s choice to stop or continue any given
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focal project. A simple way to view this choice would
be as the expected value of a gamble involving proba-
bility of success (p), cost (c), and payoff conditional on
success (V0) versus a fixed outside option (V̄). The
firm will then choose to invest if the expected value is
greater than the reservation value:

p V0 − c
( ) − 1 − p

( )
c > V̄. (1)

This simple approach is attractive since the firm only
has to generate predictions for its own projects (based
on historical averages and/or extant experimental
and market data) and wait for the next round of ex-
periments to finish.

Next, I incorporate the possibility of vicarious
learning into the model. The timing in this alternative
setup is as follows. Rather than committing the entire
investment amount c at the start, the focal firm invests
c1 to enter the stage, where c1 + c2 � c. The focal firm
expects to get a failure signal (bad news) from the
competitor with probability g(p0), which is decreas-
ing in p0 because the competitor failure probability is
negatively correlated with the focal project’s success.
If competitor failure occurs, then the focal project
reaches a new intermediate decision point where the
firm can stop and recover V̄, or continue at cost c2 and
face an updated gamble, with a lower probability of
success (pL < p0) and a monopoly payoff (VH).

If competitor failure signals do not arrive, the focal
firm retains the option to stop the project and recover
its opportunity cost of continuation. However, no
signs of competitor failure also result in updating of a
different type, where beliefs about the likelihood of
the success increase (pH > p0) and beliefs about the
level of competition increase, such that expected pay-
offs decrease toVL (whereVL < V0 < VH). It is because
of this decreased payoff expectation (conditional on
technical success) that the firmmaydecide to drop out
after no competitor news.

In a standard model, more (expected) competitors
would have a strictly negative effect on project value
(lower V0). Here, competitor signals introduce a
countervailing force: more competitors increase the
likelihood of receiving competitor news and resolving
uncertainty earlier. In particular, competitor failures
create new decision points—allowing firms to aban-
don their project early and recover V rather than
continuing to spend on a project that was unlikely to
be profitable. For illustration in Figure 1, I consider a
scenario with only two projects competing for the
same market, both of which share the same under-
lying technology (i.e., SM-ST competitors).

To compare this decision tree to the simple valu-
ation in Equation (1), the continuation paths (GO)

must yield an expected value equivalent to the gamble
in Equation (1):

EGO V[ ] � g p0
( ) × pL VH( ) + 1 − g p0

( )[ ]
pH VL( ) − c

� p0 V0( ) − c. (2)
By allowing the termination option (STOP) under this
alternative game structure, the overall investment’s
valuation is given by

E V[ ] � g p0
( )×max pLVH − c

( )− 1−pL
( )

c, V̄− c1
{ }

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Updated Payoff Post Comp. Failure

+ 1−g p0
( )[ ]×max pHVL− c

( )− 1−pH
( )

c, V̄− c1
{ }

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Updated Payoff w/o Comp. Failure

.

(3)
The project is weakly more attractive in Equation (3)
than in Equation (1) because of the option value
generated by competitor learning. Either of the two
scenarios (competitor fails or no competitor fails) has
the potential to be a more attractive bet than the
version with no competitor learning. Meanwhile, if
either scenario generates a less attractive gamble, the
firm can abandon the project early—saving both di-
rect costs (c2) and opportunity costs (V̄). The updating
opportunity from competitors effectively creates an
additional stage of the game and adds flexibility
because of the abandonment option.7

This logic extends to cases with more than one
competitor. Multiple potential competitor failures
create additional intermediate branches in the deci-
sion tree (e.g., competitor A fails then competitor B
fails; competitor A fails but no news from competitor
B; no competitor failure news from competitor A or
competitor B). More ST competitors increase option
value while potentially limiting expected payoffs

Figure 1. Single R&D Stage with Competitor Learning
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(if they also target the same market). When the number
of ST competitors is greater than one, the probability of
competitor failure news becomes g(p0,nST), which is
decreasing in p0 but increasing in nST—that is, the
more ST competitors with risky technological hy-
potheses, the higher the likelihood that one fails. In
Sections 2.3 and 2.4, I explore for how additional
competitors of each type influences the change in
continuation value following competitor news.

2.3. Updating Process
A firm’s expectations about an R&D project’s tech-
nical success (p) reflects its belief that the technology
will succeed in a given product-market application
(the hypothesis). That belief is formed by three com-
ponents: (1) a common (shared) belief based on pub-
lic knowledge about the performance of the project’s
technology for its intended application,8 (2) common
beliefs about the general usefulness of the technology
for any application, and (3) project-specific informa-
tion gained through proprietary experiments with
one’s own intellectual property. The first two com-
ponents combine to form the public signal, whereas
the third represents the private signal.

Competitor failure news (or lack thereof) leads the
firm to update p if the focal and competitor project
share a technology (ST), but more so if the projects
share both amarket application and technology (SM-ST).
In either case, the extent of the updating also depends
on the focal project’s maturity, which I represent as
the baseline level of uncertainty u, where u ∈ (0, 1).9
The level of project uncertainty matters because the
firm puts more weight on its internal signals as it
completes more of its own project-specific tests. With-
out any of its own experimental data, the firmwill rely
solely on public information to form its beliefs but that
reliance erodes as experiments help resolve project-
specific uncertainty. The firm’s belief is represented
as a function of the u, as well as the public and pri-
vate signals:

p � u Public Signal
( ) + 1 − u( ) Private Signal( )

. (4)
The updating response to competitor news acts through
the public components of the belief. After a DM-ST

competitor failure, the PublicSignal value decreases
by b and everything else stays the same. The decrease
in the PublicSignal value is b1 > b if the competitor was
also targeting the same market (SM-ST). Therefore,
the change in probability of success after a single
competitor’s failure (or lack thereof) becomes

pH − p0 � p0 − pL

�
u × b if Competitor Type :

Diff . Market- Same Tech. (DM-ST)
u × b1 if Competitor Type :

Same Market - Same Tech. (SM-ST).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Superscripts H and L correspond to good news and
bad news (high and low), respectively. b1u > bu, where
both are greater than 0 and less than p0.
Similarly, the firm’s initial belief about payoffs

(conditional on success) is based on information about
demand andbaseline competition,V0(n), where n is the
number of expected market competitors. V is unaf-
fected by news about competitor projects aimed at
different market applications (DM). However, when
a competitor project that was targeting the same
market drops out, the expected number of competi-
tors decreases (e.g., n − 1) and the potential payoff
belief increases to VH . Likewise, lack of failure news
from SM competitors leads to decreased payoff ex-
pectations VL.
Themagnitude of payoff updatingΔV (i.e.,VH − V0

or V0 − VL) is represented as a decreasing and convex
function d(n). Because the impact of less competition
on profits is greater as the market approaches mo-
nopoly (Bresnahan and Reiss 1991), the increase in
expected rewards will be greater when the focal
project has fewer competitors at baseline, and the
effect may be negligible if competitors are numerous.
Generalizing to scenarios with multiple competi-

tors (of different types), baseline payoff expecta-
tions are a function of both the number of R&D com-
petitors targeting the same market (i.e., nSMDT and
nSMST) and priors about the probability of success for
those projects (e.g., pSMST, pSMDT′ , pSMDT′′ ). Regardless
of whether the failed competitor shares the same
technology as the focal project, the payoff updating

Figure 2. Updating
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should be the same: increased expected payoff fol-
lowing competitor failure news, VH(n−), and gradu-
ally decreasing expected rewards in the absence of
failure news, VL(n+), where the extent of updating,
d(n), depends on the baseline number of competitors.

Figure 2 summarizes the updating process fol-
lowing a single competitor failure. The 2 × 2’s show
the scenarios with and without a competitor failure
of each type.

2.4. Model Predictions
Applying this framework to the empirical setting of
drug development yields four main propositions.
Proofs are presented in Online Appendix A.

Proposition 1. The two opposing effects, the technological
learning and market competition effects, can each be the
dominant effect for some initial beliefs p0 and V0, updating
parameters b and u, and payoff function d(n).
Corollary 1. Although unobservable to the outside analyst,
the continuation value underlies the decision to continue or
terminate a project. Therefore, one can empirically measure
the relative magnitudes of these two effects by comparing
how each type of competitor failure news changes the like-
lihood of project discontinuation.

The (pure) market effect—the change in continu-
ation value induced by a SM-DT competitor failure—
increases a project’s continuation value because of
higher payoffs under reduced competition. The learn-
ing effect—the change in continuation value following
a DM-ST competitor’s failure—decreases the proba-
bility of success and the continuation value. Although
the direction of each effect is clear (by definition), the
relative magnitude of these opposing effects is not
fixed in the model (i.e., either could dominate). As a
result, the relative size of the two effects is an em-
pirical matter.

Proposition 2. Simultaneous market and technology news
(SM-ST) leads to the largest downward updating on the
likelihood of success, with an effect on the continuation value
that is lower than the sum of the two opposing indepen-
dent effects.

For technological learning, SM-ST news is more
informative than DM-ST news: b1u > bu. SM-ST news
should elicit relatively greater changes in probability
of (focal project) exit than the sum of the separate (and
opposite signed) SM-DT and DM-ST effects.

The intuition for this prediction is that differences
in product-market applications should moderate the
relevance of competitor technology signals. For ex-
ample, doctors might be willing to accept nasty side
effects for some, but not other, diseases and patient
populations (e.g., children versus adults, slow versus
fast progressing diseases). Both safety and efficacy

standardsmay vary across diseases. Therefore, failure
in one market application (disease) does not neces-
sarily rule out the drug for other conditions.10 Em-
pirically, the change in likelihood of project termi-
nation following SM-ST news should be greater than
the sum of the (negative) SM-DT and (positive) DM-
ST independent effects.

Proposition 3. Continuation values change more in re-
sponse to (same market) competitor failures when the baseline
number of same market competitors (n0) is smaller.

High levels of market competition can greatly di-
minish the payoff externalities of competitor failure.
In markets with many existing products and/or in-
tense R&D competition for the next generation prod-
ucts, losing a single pipeline competitor does little to
the expected rewards of success. This prediction fol-
lows from the assumption that payoffs are a decreasing
convex of competition.

Proposition 4. The impact of a same technology competitor
dropping out on project value is increasing in the level of
uncertainty (u).

Competitor signals are most useful for belief up-
datingwhenfirms still have a fair amount of uncertainty
about their own project’s quality. After many stages of
testing and data gathering, firms’ will weight their
internal information about their own projects more
than any public signals about the hypothesis. If the
firm holds strong positive beliefs in these late stages,
then it will likely view DM-ST competitor failures as
idiosyncratic to the failed competitor’s approach,
rather than as a signal about the true quality of its
own technology.

Proposition 5. Continuation value is increasing in the
number of technological learning opportunities (same tech-
nology competitors).

Learning opportunities effectively speed up ex-
perimentation by resolving some uncertainty earlier.
ST competitor failures provide new decision points
where firms can cut losses and abandon projects.
Because of the increased expectation of competitor
news, the relative amount of belief updating on p
(following competitor ST failure news) increases in
nST for no news and decreases in nST for competitor
failure news.
The higher expected frequency of decision points

increases the value of the project abandonment op-
tion. With no change to the level of market compe-
tition, more DM-ST competitors increase the likeli-
hood of those additional decision points without
changing the expected payoffs. For the marginal
project, the propensity to exit decreases with more
learning opportunities becausefirms expect thatmore
decision-relevant information (competitor failures or
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no news) is coming soon. Thus, continuing is a smaller
commitment with more updating opportunities: more
competition increases the value of the stopping option
since the direct costs incurred are lower the earlier one
drops out (i.e., c1c2 becomes smaller).11

3. Setting
3.1. The Drug Development Process
Drug development is a multistage journey with a
regulatory process consisting of preclinical experi-
mentation and clinical trials. Trials are designed to
test a drug for a particular disease (indication) in
humans, and developers may initiate trials for different
indications (either sequentially or in parallel).12 I study
both small-molecule drugs and large-molecule drugs
(biologics) but exclude vaccines, which undergo a
different regulatory and clinical testing process. Drug
development typically begins with laboratory (in
vitro) and animal testing before drugs reach three
sequential phases of human clinical trials. Online
Appendix B provides more detail about these de-
velopment phases.

The focus of this study is the firm’s decision to stop
development for drugs that have progressed into
phase II trials, which serve as a drug’s first real test of
both safety and efficacy in humans. These trials may
last months or years,13 may involve several hundred
people who have the condition (disease) of interest,
and typically require randomized and blinded as-
signment into a control group treated by a placebo or
the existing standard of care. Data safety monitoring
boards—made up of independent scientific, medical,
and statistical experts—are assigned to review in-
termediate results and stop trials early when they
deem it unsafe and/or unethical to continue. A great
deal of uncertainty remains when starting phase II
trials: about 32% of phase II projects will progress to
phase III, and only 16% will make it to U.S. Food and
DrugAdministration (FDA) approval (Hay et al. 2014).

The competitor signals are rival project failures in
either phase II or phase III trials. In principle, infor-
mation about projects in earlier stages of develop-
ment is not relevant for rival projects that have al-
ready cleared earlier safety and efficacy hurdles. The
analysis focuses on competitor failure events that
happen prior to FDA review. This limitation ensures
that the information conveyed in the discontinuations
does not include any direct signals about the regu-
lator’s level of scrutiny (Blankshain et al. 2013).

Drug development projects fail to reach approval
for a variety of reasons. Safety and efficacy concerns
make up the vast majority of clinical trial project
closures. Cook et al. (2014) studied 142 drug devel-
opment projects at AstraZeneca and investigated
reasons for failure. The study found that about half of
the clinical trial safety failures were related to the

drug’s primary biological target, whereas the other
half of safety failures were attributable to off-target
side effects.
The statistical signals from a project’s own phase II

trial may be noisy and the tradeoffs between safety
and efficacy are not easy to balance. Therefore, even
after a project’s own trial finishes and the results are
unblinded for review, the decision to continue or halt
development can be complicated. Information about
rival projects may be particularly relevant for such
marginal projects.

3.2. Disclosure
Because of disclosure requirements, firms are well
aware of competing projects’ progress. Early entry
is disclosed through a combination of patent filings,
scientific publications, and company documents. These
disclosures usually reveal a drug compound’s key
features, including its molecular mechanism of ac-
tion (if known) and its potential therapeutic uses.
Once the company has completed preclinical inves-
tigations of a drug compound, it must file an inves-
tigational new drug application (IND) with the FDA
before starting human clinical trials. Various policies
also require firms to disclose clinical trial information,
including the drug compound and disease application,
by preregistering in public trial registries like the Na-
tional Library of Medicine’s clinicaltrials.gov.
The decision to halt a drug development project is

one that affects potential consumers, employees, in-
vestors, and competitors. Firms reveal discontinua-
tion news through a variety of mechanisms and with
different degrees of detail. The shutdown decision is
most often reported in company press releases, up-
dated drug development pipeline documents (usually
posted on the firm’s website), and financial filings.
Competitive intelligence services monitor progress
and these discontinuation disclosures—alerting sub-
scribers to new disclosure events.14 These announce-
ments contain statements about the events leading
up to the decision, and only a small fraction of the
discontinuation announcements is preceded by pre-
mature clinical trial terminations. When the rationale
for discontinuation is disclosed, the most commonly
cited reasons for stoppage are (disappointing) efficacy
and safety issues. On a few occasions, termination an-
nouncements citedisappointing results fromcompetitors’
projects as a reason for stoppage (see indoleamine-
pyrrole 2,3-dioxygenase example). Online Appendix B
presents examples of discontinuation disclosure state-
ments that have different levels of transparency.
One empirical concern is that firms of different sizes

or experience have different incentives to publicly
report their trial failures (see Online Appendix B for a
discussion of materiality and Regulation Fair Disclo-
sure). However, I find that official discontinuation rates
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are similar for relatively large and small firms alike.
In the analysis sample, large firms that had ever de-
veloped 10 or more projects officially terminate 33% of
phase II projects versus 29% for smaller firms. I also do
not find much of a difference in firm experience/size
for how often phase II drugs turn into zombie proj-
ects (those never officially discontinued but also
never advanced).

3.3. The Ripple Effects of Trial Failures
Trial failures may have repercussions throughout the
industry. With great uncertainty surrounding cutting-
edge drug trials, competitors anxiously await news
about relevant rival projects. For example, in the long
quest to find an effective Alzheimer’s treatment, a
number of firms have pursued β-secretase (BACE)
inhibitors, aimed at reducing the production of am-
yloid plaques in the brain. InOctober 2016, leading up
to Eli Lilly’s expected announcement of their BACE
inhibitor (solanuzemab) phase III trial, STAT News
described how a late-stage trial success “would go a
long way in validating the idea that amyloid plaques
are integral to disease progression, bolstering the
odds of success for Biogen, Merck, Roche, and others
working in the same [class of drugs].” However, the
article also noted that poor results could “have a
chilling effect on other drug developers targeting
amyloid plaques,” and that a single late-stage failure
could have “ripple effects in other companies,” who
might question the direction of their own drug de-
velopment approach (Garde 2016). In the end, when
Lilly reported that the solanuzemab trial failed, its
stock price dropped 10.5% in a single day. At the time,
the solanuzemab failure was widely regarded as a
negative blow to the BACE inhibitor approach and
bad news for similar efforts at other firms, yet some
research teams held out hope. Most recently, Biogen’s
elenbecestat joined the list of failed BACE inhibitors
in the fall of 2019.

A recent high-profile failure in the burgeoning field
of immono-oncology had a very public influence over
rivals’ investments. In the spring of 2018, pharma-
ceutical company Incyte announced the failure of its
cancer drug, epacodastat, an indoleamine-pyrrole
2,3-dioxygenase (IDO) inhibitor. To map the epaco-
dastat example onto the terminology of this paper:
IDO is the drug’s primary technology, and Incyte was
developing it for a variety of therapeutic markets
(melanoma, glioblastoma, ovarian cancer, and others).
Following the epacodastat failure news, NewLink Ge-
netics stopped a melanoma trial of their own IDO in-
hibitor (i.e., a SM-ST project), explaining that the de-
cision was made “in the context of the failure of a
competitor’s trial of its enzymatic IDO inhibitor in
a similar clinical setting.” Bristol-Myers followed
suit, pulling the plug on three different trials it was

sponsoring using its own IDO inhibitor, which the
company had acquired in a $1.25 billion acquisi-
tion. Bristol-Myers changed the status of its trials on
clinicaltrials.gov and credited the “emerging data on
the IDO pathway” as its motivation for closing trial
registration early.15

Yet, the signal from competitor exits is not always
clear. Interpreting trial results can take months or
years, and rival firms might not have much infor-
mation to work with after the initial disclosure. Sci-
entific publications with the detailed results can pro-
vide more guidance. For example, after a safety failure,
analyzing the trial data might reveal if the drug was
unable to properly interact with a molecular target or if
the safety issues were the result of collateral damage
(off-target effects). However, firms need not publish
their findings (reporting requirements are scant), and
if they do, the publication may not emerge until years
later. In the empirical analyses below, I use the drug
pipeline data to measure when failure news has
ripple effects.

4. Data and Sample Construction
The main goal of the empirical portion of this paper is
to identify whether and when R&D failure news in-
fluences competitors’ project continuation decisions.
Measuring project-level spillovers requires a different
level of granularity than classic studies of R&D spill-
overs.16 For this study, I assemble a comprehensive
data set with project development histories.

4.1. Drug Pipeline Data
The starting point for my sample construction is the
drug development records in Cortellis, which con-
tains development information for 64,067 drugs (as
of May 2016). The Cortellis platform aggregates in-
formation from public records (e.g., patent filings,
company press releases, financial filings, clinical trial
registries, FDA submissions) and uses professional
curators. Cortellis links each milestone event to its
applicable disclosure information (e.g., press release,
company investor literature or pipeline documenta-
tion,financialfilings).Most records also have detailed
data summarizing the drug’s development history
and milestones.
This paper’s analyses use those milestones to con-

struct full drug development histories for each drug
indication (development project). These histories in-
clude which firms were actively developing the drug
and what stage of development (discovery, preclinical,
phase I/II/III clinical trials, registration, approval,
launch) the project was in at any given point in time.
They also include event dates for development dis-
continuation, suspension, and product withdrawal
announcements.
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4.2. Market and Technology Groups
In my analysis of competitor reactions, I separate
drugs according to two different dimensions of re-
latedness: therapeutic indication (market) and mo-
lecular target-actions (technology).17 Characterizing
drug development projects along these two distinct
and nonmutually exclusive dimensions is aligned
with how researchers at major drug developers cat-
egorize projects (Cook et al. 2014, Shih et al. 2018).

4.2.1. Therapeutic Indications (Market). A therapeutic
indication is the medical condition treated by a drug.
Firms may develop a single drug to treat a number of
separate indications—although one is usually the lead
indication. Approximately 28% of all drugs in the
Cortellis data have more than one development in-
dication. Of the drugs that reached phase II clinical
trials, 34% of started phase II trials for more than
one indication. Sharing an indication does not mean
that two drug compounds are similar in structure or
share molecular mechanisms. Figure A.1 in Online
Appendix A shows that merely sharing an indication
tells us very little about any two drugs’ structure.18

Furthermore, drug development for the median in-
dication spans more than 10 molecular mechanisms
(target actions).

Cortellis indication names are usually quite specific
(e.g., dry age-related macular degeneration) but also
include some more vague categories (e.g., joint pain,
stomach pain). In some cases, two or more distinct
Cortellis indication categories actually refer to the
same or highly similar conditions. For example, a
drug treating liver disease is likely in competition
with drugs treating liver cirrhosis. To account for
these category issues, I map Cortellis indications to
their International Statistical Classification of Dis-
eases and Related Health Problems ICD-9 condition
codes, and use these ICD-9 groups to delineate dif-
ferent therapeutic markets.19

4.2.2. Target-Actions (Technology). A biological tar-
get is a molecule in the body on which a drug acts and
influences its function. For example, a drug may bind
to and inhibit the function of a specific receptor (e.g.,
tropomyosin kinase receptor inhibitors), or a drug
might function as an agonist by activating and in-
creasing function in a protein (e.g., andrenoreceptor
agonists). In these cases, the target is defined by the
biological pathway, and the action is determined by
the functional change (e.g., inhibitor, agonist, an-
tagonist). Roughly 65% of Cortellis drug candidate
records (70% of projects in this paper’s analysis sam-
ple) contain information about the drug’s primary
(and secondary, if applicable) biological mechanisms
of action. Although two drugs may differ in their com-
pounds’molecular structures or delivery mechanism,

by attempting to treat a condition through the same
target action, the drugs are essentially testing the same
hypothesis about how altering a biological process
influences a clinically desirable outcome. Drugs may
also have off-target effects, which represent the col-
lateral damage incurred to other biological functions in
the process of trying to act on the intended target.
Often, these off-target effects are the source of drug
safety/toxicity issues. Many target actions are useful
formore than onemedical condition. Sometimes, those
medical conditions are naturally related through over-
lapping biological causes and symptoms. For example,
the drug Humira (adalimumab) is a tumor necrosis
factor-alpha inhibitor used to treat a range of inflam-
matory and autoimmune conditions such as rheuma-
toid arthritis, psoriasis, Crohn’s disease, and ulcerative
colitis. In other cases, experimentation (or serendip-
ity) reveals that a biological target action may have
multiple, seemingly unrelated disease applications.
Angiogenesis inhibitors such as Genetech’s drug
Avastin (bevacizumab) were originally explored as
cancer drugs, but scientists realized (and later proved)
that by blocking the formation of new blood vessels,
the target action was also promising for treating age-
related macular degeneration. Fifty-nine percent of tar-
get actions in Cortellis have development activity for
more than one medical condition, with a mean of 4.2
indications per target action (median, 2). A single drug
compound may also act on multiple known targets.
In the set of Cortellis drug records that have at least
one target, approximately one of five has more than
one primary target action (with a maximum of 13).
Same technology (target action) drugs are not only

similar in their therapeutic pathways, they are also
more likely to be similar in their chemical structure.
Using chemical informatics techniques, Krieger et al.
(2019) show that small-molecule drug candidates
within the same target-action group aremore likely to
be structurally similar. Similar compounds will, on
average, behave similarly in the human body (see
Online Appendix C for more detail); however, small
differences can lead to drastically different efficacy or
adverse effects. Furthermore, the failure to effectively
treat one disease does not necessarily rule that drug
(or similar drugs) out for different diseases. A failure
within a certain market and technology is certainly
not good news for other disease applications, but the
extent of any competitor learning is not (ex ante)
obvious: different patient populations might respond
better to a drug or tolerate certain side effects better.
I apply the chemical similarity techniques to the

competitor pairs inmy analysis sample and report the
results in Online Appendix C. Drugs that share a
target action have greater average similarity than
drugs thatmerely share a therapeuticmarket.However,
the distributions show that ST pairs are rarely clones
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and that ST compounds still have plenty of chemical
diversity. Therefore, although trial outcomes signal the
validity of the target action’s treatment hypothesis,
competing drugs’ idiosyncratic features make their
signals imperfect substitutes for any drug’s own
trial results.

4.3. Sample Inclusion Criteria
To estimate the project-level response to competitor
failure news, one needs data that capture competitor
failure disclosures and their timing. The first step is to
use the development history events to create a full
panel data set of drug indication dates for all drugs.
Drug projects are eligible for inclusion in the final
analysis data set starting with the earliest date after
entering phase II clinical trials until they exit or begin
phase III trials. I use phase II development projects
because phase II trials are the first real test of a drug’s
efficacy in humans, require major capital investments,20

and have levels of uncertainty much higher than
phase III projects.21

Next, I focus on failure disclosures that are po-
tentially relevant to competitors. I identify the po-
tential set of treating failures by defining frontier
discontinuations. Frontier project discontinuations are
those occurring after phase II trials began and before
any drug projects within the given indication and
target-action combination have reached approval and
market launch.22 This frontier criteria is important,
because it excludes early (e.g., preclinical, phase I)
failures that are unlikely to influence decisions for
later stage projects and failures in technology areas
that are already validated through the regulatory
process and in the product market.

To establish competitor failure news events, I merge
the frontier discontinuation dates with the full set of
phase II development histories. A phase II project
experiences a competitor failure if it meets the follow-
ing three conditions: it shares either a market or tech-
nology with the failing frontier competitor, the focal
project was active in phase II for at least one quarter at
the time of the competitor news, and the focal and
competitor projects entered phase II within 10 years of
one another.23 A frontier discontinuation event may
only treat competitor projects if its discontinuation
date was before the discontinuation of the competi-
tor project.24

The analysis data are 1997–2014. Project-quarter
observations are censored out of the panel once the
project was discontinued, graduated to phase III, or
after 32 quarters elapsed since the project entered
phase II. Some projects are never officially discontinued
and continue to be listed as though they continue in
phase II despite no development reported for long
periods of time. These zombie projects account for many

of projects that persist in the panel for 32 quarters before
I censor out their subsequent project-quarters. Sec-
tion 5.6 summarizes the analyses using this more
liberal definition of project discontinuation and re-
ports similar overall results.

4.4. Analysis Data
The final analysis data set contains 6,183 drugs and
325 ICD-9 indications (markets), which combine to
form 10,639 drug-indications (projects). Projects may
experience relevant competitor failure events in three
different ways: (1) SM-DT, (2) SM-ST, and (3) DM-ST.
Ninety-five percent of the projects eventually expe-
rience at least one competitor failure within the same
market, 11% experience a competitor failure within
the same market and same technology, and 43% expe-
rience a competitor failure within a different market
but same technology.
I generate a set of variables for the number of times a

given phase II project has experienced a competitor
failure within each category, as of any given date.
Next, I create treatment window indicator variables
that equal one when a project is within a defined time
range (one, two, or three quarters) following the
competitor failure news. Tables 1 and2 summarize the
descriptive statistics for the analysis sample.
The average likelihood of a project being discon-

tinued in a given quarter is 1.2% (conditional on
surviving up until that point). Thirty-seven percent
of the projects that were not right-censored by the
end of the analysis period (i.e., had the opportunity
to complete 32 quarters in phase II, exit, or gradu-
ate to phase III before the third quarter of 2014)
are actively discontinued during the sample pe-
riod, whereas 20% of those projects graduated to
phase III development.

5. Results
This section evaluates how competitors’ failures im-
pact project exit decisions in clinical trials. I first de-
scribe the overall project exit patterns in Section 5.1.
Section 5.2 explains the econometric strategy to identify
the responses to competitor failure news. Section 5.3
then reports the results of themain regressions, which
correspond to Propositions 1 and 2 from the model.
Section 5.4 analyzes heterogeneous effects as they
relate to Propositions 3–5.
Next, I test the robustness of the empirical results

with a number of alternative specifications and sam-
ple splits (Section 5.5), as well as different project
death definitions (Section 5.6). Finally, Section 5.7
describes a series of back-the-envelope calculations to
quantify the magnitude of the overall competitor
learning effects.
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5.1. Overall Exit Rates
The econometric approach that follows isolates the
impact of competitor failure news on firms’ continua-
tion decisions. However, as a first step, I establish the
typical life cycle for projects in phase II. Figure 3(a)
shows the cumulative hazard rate of projects by
the number of quarters spent in phase II (up to 32
quarters). Intuitively, this figure represents the average
project death rate for a given project age, conditional on
surviving until that point in time or later. The curve has a
slight S shape—indicating that the rate of project death
starts slowly but increases through roughly 15
quarters into phase II. After that point, the death rate
slows for the projects that remain in phase II (without
exiting or graduating to phase III) after four years.

Figure 3(b) shows the average quarterly project
survival rate in phase II. This figure distinguishes
between projects that are proximate (in time) to SM-
ST competitor failure news, and projects that have not
recently experienced such news. The figure shows
that the survival is almost always lower for projects in
the time window after a SM-ST failure news events.

5.2. Empirical Strategy: Measuring Project Updating
After Competitor Failure

Themain analyses evaluate project-level response to a
competitor’s project termination. Other studies address
how cumulative failures within the firm or industry

affect the likelihood of a project or firm’s success.25

However, these prior analyses either do not leverage
the timing of disclosure announcements, assert strong
assumptions about the decaying value of competitor
news over time, or are limited to cross-sectional cor-
relations. My method focuses on the dynamics of
updating project investments after competitor news.
Here, the timing of both competitor exits and the focal
project’s termination are key to identifying the role
of vicarious learning in decision-making.26

The baseline specification is a panel difference-in-
differences proportional hazard model. The main re-
gression coefficients are reported in Figure 4. The de-
pendent variable is an indicator for whether the focal
project was terminated as of a given period. Using
hazard models on panel data helps account for nat-
ural death rates at different project ages.27 Variation
in the timing of the information shocks (competitor
discontinuation events) allows for the not-yet-treated
observations to serve as a plausible control group for
the treated groups. Furthermore, by stratifying the
baseline hazard rate by therapeutic market, I estimate
treatment effects relative to the most relevant coun-
terfactual exit rates. In other words, the survival
model framework allows one to ask the following:
How does recently learning of a competitor failure
influence the propensity to exit compared with un-
treated projects of the same stage, age, and market?

Table 1. Descriptive Statistics, Phase II Projects That Experienced Competitor Failures

Count Mean Standard deviation

Discontinued in first 32 quarters of phase II 10,637 0.24 0.43
Ever experience competitor failure in the Same Market, Different Technology 10,637 0.95 0.21
Ever experience competitor failure in the Same Market, Same Technology 10,637 0.10 0.31
Ever experience competitor failure in the Different Market, Same Technology 10.637 0.43 0.49
Active quarters in phase II 10,637 21.91 9.01

Notes. The analysis data set contains 10,637 phase II drug indications (projects) that entered phase II between 1997 and 2014. The projects consist
of 6,182 drugs, and 325 therapeutic markets (ICD-9 codes). Approximately 28% of all drugs in the Cortellis data list more than one development
market (34% of drugs that reached phase II clinical trials undergo phase II trials formore than one indication). Seventy-two percent of drugs have
at least one technology (target action) assigned in the Cortellis database. A phase II project experiences a competitor discontinuation if it shares
either a market or technology with the failing competitor, if the pair of projects were ever simultaneously active for at least one quarter, and if
they entered phase II within 10 years of one another. A project can only experience a competitor discontinuation event if the competitor’s
discontinuation date was before the discontinuation of the focal project.

Table 2. Descriptive Statistics, Phase II Project-Quarter Panel

Count Mean Standard deviation

Within two quarters of competitor failure in the SameMarket, Different Technology 254,069 0.54 0.50
Within two quarters of competitor failure in the Same Market, Same Technology 254,069 0.02 0.14
Within two quarters of competitor failure in theDifferentMarket, Same Technology 254,069 0.13 0.34
Sponsor firm’s number of development projects to date 251,077 164.32 304.26

Notes. The panel data of phase II projects consists of 254,069 project-quarters. Table 1 presents descriptive statistics at the project (drug in-
dication) level, and Table 2 displays information about the drug-indication-quarter panel data set. In Table 2, the sponsor firm is assigned using
the drug development history data by company.Whenmultiple firms are involved in developing a drug during a given quarter, the larger of the
companies, as determined by total development projects to date, is assigned. In 1% of observations, the sponsor company was ambiguous and
therefore not assigned.
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This approach requires three identification as-
sumptions. The first is the no-anticipation assumption
(Abbring and Berg 2003), which is satisfied in the
clinical trials setting because firms believe that their
rivals are unlikely to invest in high-stakes clinical
trials with the expectation of failure. Any public (or
insider) information aboutdisappointing trial outcomes
that circulates before discontinuation announcements
should bias the treatment coefficients toward zero. To
the extent that any such leakage occurs, one might
consider the information effects in this approach as
conservative estimates of competitor response to fail-
ure news. I also test this assumption empirically,
by assessing the extent of any pretrends leading up
to competitor discontinuation events (column 4 of
Table 3; Figure 5).

The second identification assumption is that firms
do not delay their trials in order to free ride on com-
petitors’ results. As previously mentioned, these types
of wait and see strategies are costly because of wast-
ing patent protection time. Nonetheless, I empirically
test for differential responses for competing projects
that entered later (follower projects; Figure A.6 in
Online Appendix A).

Third, this approach assumes no unobserved com-
mon opportunity shocks. Other studies of R&D spill-
overs (Bloomet al. 2013, Schnitzer andWatzinger 2017,
Lucking et al. 2018) instrument for R&D spending
(using state tax credits) to address a classic reflection

problem (Manski 1993). In measuring continuous
flows of R&D activity (at the firm level), those studies
aim to measure how rivals’ patent production influ-
ences the focal firm’s output and performance. Ide-
ally, an instrument provides an exogenous change in
the level of rivals’R&Dactivity, so that the analyst can
distinguish true firm spillovers from outcomes driven
by common external shocks.
An important feature of this study’s analysis sample

is that such common opportunity shocks are highly
unlikely. By the time a project reaches clinical trials,
typically many years have passed since the pio-
neering scientific work that led to the drug (e.g., drug
target identified by an academic laboratory). To reach
phase II clinical trials, the compounds have already
gone through rigorous preclinical laboratory (in vitro)
and animal studies and phase I testing in humans.
At that point, remaining scientific uncertainty will be
determined after relevant trial results are unblinded.
Moreover, by limiting the project sample to frontier
drug development projects (in trials), I minimize the
risk of unobserved common signals coming from reg-
ulators and marketed drugs.28 It is unlikely that reg-
ulators send any common signals that would kill a
newdrug class before trial results play out. Any general
macroeconomic shocks should impact different drug
development areas equally and are captured in the
calendar time fixed effects in the regressions.

Figure 3. (Color online) Project Death Rates in Phase II

Notes. Each panel represents a different way of tracking the overall rates of project exit throughout. (a) Cumulative hazard rate of project
discontinuation by number of quarters since entering phase II. The intuition for the cumulative hazard rate is that it represents the project death
rate for a given project age given that the project survived until that point or later. (b) Probability of surviving a given quarter, conditional on
entering that quarter (e.g., the likelihood that a project that enters its eighth quarter of phase II clinical trials is not officially discontinued during
that period). The hashed line is the average survival rate for project-quarter observations that are within two quarters since a samemarket, same
technology competitor disclosed project discontinuation. The solid line is the average survival rate for projects that are not within this window
since the close competitor failure event.
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Unlike other product development areas with trends
in consumer preferences (e.g., software, self-driving
cars, food and beverage), disease markets stay rela-
tively stable and predictable over time. One exception is
infectious diseases, where the market for vaccines can
skyrocket with an outbreak (e.g., Ebola, Zika). Out-
breaks should not impact the analyses because I remove
vaccines from the analysis sample. Moreover, phar-
maceutical demand shocks are quite rare and negative
demand shocks even rarer.29 In contrast to other R&D
activities, clinical trial outcomes are distinct and
discontinuous events (i.e., failure disclosures) at the
product level. Firms have little control over the timing
of their trial outcome news, and the information
content does not depend on the previous stock of
R&D activity.

Mymain specification is analogous to hazardmodels
in Gans et al. (2008), Rao and Dutta (2012), and Aral
and Walker (2012), where the timing of both treatment
and response is of central importance in interpreting
the results. In practice, I use a Cox proportional hazard
model specification, usingdrug-market-quarter level data:

hi,q,k t,X( )
� h0k×exp β1 SAMEMKT,([

DIFFTECHNEWS)k,−q,t
+β2 SAMEMKT, SAME TECHNEWS( )k,q,t
+β3 DIFFMKT,( SAMETECH NEWS)−k,q,t+γt].

In this specification h0k is the baseline hazard rate
of project exit, stratified by therapeutic market, and
γt represents calendar time (quarter) fixed effects;

Table 3. Competitor Failure News Impact on Hazard Rate of Exit

Treatment window: Within two quarters
since competitor failure news (1) (2) (3) (4) (5) (6)

Competitor failure type
Any Competitor 0.014

(0.050)
Same Market Competitor −0.014

(0.050)
Same Technology Competitor 0.274**

(0.052)
Same Market, Different Technology −0.048 −0.029 −0.046 −0.040

(0.050) (0.051) (0.050) (0.051)
Same Market, Same Technology 0.739** 0.613** 0.790** 0.686**

(0.100) (0.126) (0.101) (0.102)
Different Market, Same Technology 0.158** 0.159* 0.259** 0.220**

(0.056) (0.066) (0.060) (0.061)
Three-quarter window before competitor
news
Same Market, Different Technology −0.054

(0.051)
Same Market, Same Technology 0.042

(0.142)
Different Market, Same Technology −0.007

(0.068)
Controls
Number of each competitor type 3 3

Firm characteristics 3

No. of drug indications 10,639 10,639 10,639 10,639 10,639 10,274
No. of drugs 6,183 6,183 6,183 6,183 6,183 6,002
No. of observations 213,302 213,302 213,302 213,302 213,302 202,080
Log likelihood −10,527 −10,514 −10,496 −8,013 −10,487 −9,902

Notes. Estimates stem from Cox proportional hazard model specifications using panel data on drug
projects by quarter. The outcome event is the focal project’s discontinuation. All models include a full set
of year indicator variables and stratify the estimates by therapeutic indication. The competitor failure
news variables are indicator variables that take on the value of one when the focal project is within two
financial quarters since the given type of competitor failure event. Column 4 tests the no-anticipation
assumption by including indicator variables for the three quarters leading up to each type of competitor
failure event. Column 5 includes control variables with the number of competitor drug projects of each
type that were active in clinical trials. Column 6 further includes control variables for firm size and
experience. The check marks in Columns 5 and 6 indicate additional sets of control variables (number of
each competitor type and firm characteristics) used in those regression specifications. Coefficients may
be interpreted as an increase in the log hazard rate. Standard errors in parentheses.

†p < 0.10; *p < 0.05; **p < 0.01.
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i represents the focal drug project, k represents the
therapeutic indication (market), and q represents the
drug target-actions (technology) of the focal project.
β1, β2, and β3 are the coefficients on the three different
types of competitor project discontinuation news:
(1) SM-DT, (2) SM-ST, and (3) DM-ST.

In the main specifications (Table 3), the competitor
discontinuation (treatment) variables are equal to one
if the focal observation iswithin two quarters since the
competitor failure news—allowing for treatment to
turn on and off for multiple treatment spells. I also
consider specifications where competitor discontin-
uation news is an absorbing state (that is, where the
variable takes on the value of one after the first
competitor discontinuation event in that category) or
varies by treatment intensity (cumulative number of
competitor failure events in each category since the
focal project entered phase II). Table A.1 in Online
Appendix A displays those modified specifications.
In addition, I evaluate a dynamic version, where each
competitor failure event type is interacted with in-
dicator variables for number of quarters until the
competitor news event (Figure 5). Online Appendix D
also outlines alternative regression approaches. The
alternativemodels and data structures produce the same
overall patterns of response to competitor exit news.

5.3. Impact of Failure News Results
I describe the paper’s main empirical results on re-
sponses to competitor failure of each type. Using the
survival model approach described previously, these
results speak directly to Propositions 1 and 2. The
primary goal of these analyses is to compare the
magnitude of responses to each type of failure news
(SM-DT, SM-ST, DM-ST).

Table 3 presents the estimates from the main re-
gression specifications for project exit rates—all using
the treatment window that takes on a value of onewithin
two quarters after each type of competitor failure news.
Column 1 reports the results of a naive specification,
grouping competitor discontinuation news events into a
single type. Under this grouped competitor news vari-
able, the results show no significant change in the pro-
pensity of project exit following competitor discontinu-
ation. However, the story shifts once I separate different
types of competitor discontinuation news.

Separating competitor news into the (not mutually
exclusive) SM and ST groups reveals that recent
competitor failures do, in fact, significantly increase
exit rates when the competitors share a technology
(column 2). The coefficient (0.274) implies a 23% in-
crease in the likelihood of exit in the window fol-
lowing a ST competitor failure. This effect was hidden
in the column 1 version because the number of SM
competitor failure news events far outweighs the
effect of ST failure events (Table 1). The two-category

version is the (binary) analog to the similarity mea-
sures used in Bloom et al. (2013) and Lucking et al.
(2018). However, this two-way split still does not
capture the full picture of competitor responses.
Columns 3–6 in Table 3 further divide the com-

petitor news into the three competitor news types:
SM-DT, SM-ST, and DM-ST. Column 4 additionally
tests the no-anticipation assumption by including in-
dicator variables for the window before each type of
treatment and shows that no competitor failure news
has any significant impact on discontinuation rates
before the announcement period. Columns 5 and 6
add control variables for the number of each type of
competitor and firm characteristics.
The impact of each type of failure news is quite

similar across these preferred models (columns 3–6).30

On average, competitor news from the SM-DT group
yields no significant change in hazard rate of project
exit, with magnitudes close to zero.
SM-ST competitor discontinuations lead to large and

highly significant (p < 0.01) increases in the hazard
rate of project exit, whereas DM-ST discontinuation
news leads to a smaller but still statistically signifi-
cant increase in the probability of project exit. Wald
tests confirm that the SM-ST coefficient is signifi-
cantly larger than the DM-ST coefficient in each
model (p < 0.01). Focusing on column 3, the SM-ST
coefficient represents a 0.739 increase in the log
hazard (109% increase in probability) of project exit
following a closely related competitor’s project dis-
continuation, and the DM-ST coefficient implies a
0.158 increase in the log hazard (17% increase in
probability) of project exit following a technological
competitor’s discontinuation disclosure in a different
therapeutic area. The coefficients from column 3 are
also depicted as bars in Figure 4.
Figure 5 shows the event study of experiencing a

competitor discontinuation event, by interacting the
treatment event status with indicator variables for
time before (or after) the project’s earliest treatment
event using six-month increments. The same general
pattern of relative treatment magnitude holds. Al-
though the pretreatment estimates do not appear
perfectly flat around zero, they do not reveal any clear
trends as the first competitor discontinuation date
approaches. The SM-ST effect seems to occur exclu-
sively in the six-month window after the competitor
news, whereas the DM-ST effect lingers a bit longer,
despite being smaller.
Although the DM-ST effect lasts longer, one cannot

simply add up the significant six-month coefficients
in Figure 5 and compare them to the first posttreat-
ment SM-ST coefficient. Because the coefficients re-
late to the exit rate, earlier increases to the hazard
rate of exit have more of an impact than later
increases—because a compounding effect kicks in
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over time and the base of active projects is smaller in
later periods.31

At first look, the different magnitudes of the two ST
coefficients may seem surprising. How can the SM-ST
news have a greater impact on exit rates if it also
triggers the benefits from reduced competition? The
first explanation is consistent with Proposition 2 from
the theoretical model. Market-specific factors (e.g.,
side effects) produce greater belief updating follow-
ing SM-ST news than after DM-ST news (b1 > b). That
greater belief updating translates to a downward shift
in continuation value and a higher propensity to exit.
Furthermore, when SM-DT effects are weak (on av-
erage), then reduced competition does not produce a
formidable opposing force.

A related explanation is that SM-ST news is more
salient, even if not more valuable, than DM-ST news.
The additional time it takes for DM-ST news to affect
decisions (Figure 5) suggests that salience might
play a role in the differential responses. Both stories
highlight the importance of identifying the separate
forces and the interaction effects of market and techno-
logical similarity.

5.4. Heterogeneous Effects and Testing
Theoretical Predictions

The average response to competitor failure news in
the main results (Table 3) substantiates that competitors

indeed learn from one another, as well as the impor-
tance of separating the three different types of spill-
overs. In the clinical trials setting, the technological
learning effects (on average) dominate market com-
petition effects (Proposition 1), and firms appear to
update more on SM-ST news than on DM-ST news
(i.e., b1 > b as in Proposition 2). The theoretical frame-
work also highlights key moderating factors: compe-
tition, uncertainty, and remaining learning opportu-
nities. I explore each of these areas using project-level
variation in the phase II project analysis data.

5.4.1. Level of Competition. Grouping projects by the
level of competition and evaluating each group’s
response to competitor failure puts Proposition 3 to
the test. If competitor failure responses depend on
the number of competitors, then the treatment ef-
fects will differ across competition groups. First, I
compare the bottom half (low) versus top half (high)
of projects in terms of the number of potential mar-
ket competitors in active development. This split
reveals that the SM-DT effect is negative and signif-
icant when the level of market competition is low
(first bar in Figure 6(a)).32 In other words, when po-
tential competition is low,firms are significantlymore
likely to continue after a SM-DT competitor failure.
For the high-competition group, the SM-DT negative
effect is statistically insignificant (despite a similar

Figure 4. (Color online) Competitor Failure News and Propensity to Exit

Notes. The bars display the coefficients of interest from the main Cox proportional hazard model specification, which stratifies the sample by
market and contains indicator variables for calendar time. The analysis sample includes 215,142 project-quarter observations (discontinued
projects are censored out after exit). Themagnitude of each bar represents the change in hazard rate of project exit when a focal project is within a
two-quarter window after a competitor failure. The left bar displays this coefficient for same market, different technology competitor dis-
continuations; the middle bar shows the same market, same technology coefficient; and the right bar represents the different market, same
technology effect. The capped spikes cover the 95% confidence intervals for each regression coefficient.
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number of observations), with a much smaller and
noisier coefficient.

Next, I evaluate the subset of phase II projects in
therapeutic markets with low versus high levels of
previously approved drugs. Similar to the result for
development market competitors, the projects below
the median in the number of on-the-market com-
petitors are significantly less likely to terminate fol-
lowing a SM-DT competitor failure event. Figures A.3
and A.4 in Online Appendix A show the event study
versions of these regressions for the low and high
competition subgroups, respectively.

The competition findings confirm the theoretical
intuition (Proposition 3) that facing fewer competi-
tors will influence decision making under certain
market structures. Themagnitude of the negative SM-
DT coefficient is greater when the baseline level of
market competition is smaller (across both definitions
of number of competitors). This result supports the

notion that payoffs have a nonlinear relationship
with the number of competitors (Bresnahan and Reiss
1991). The potential for monopoly or duopoly profits,
if the drug development project reaches the market, is
more likely with few product development or market
competitors. That said, low levels of competition do
not seem to matter as much in moderating the tech-
nological learning effects in the ST news scenarios.

5.4.2. Project Stage, Uncertainty, and Relevance of
Signal. Proposition 4 highlights the role that project
uncertainty might play in continuation choices and
updating after competitor failures. Using alternative
definitions of which failures provide relevant news
(and to whom), I evaluate this hypothesis in the trials
setting. I operationalize project uncertainty as ma-
turity in the development process (phase of devel-
opment). In drug development, those uncertainty
milestones are discrete phase transitions, rather than

Figure 5. Dynamics of Response to Competitor Failure

Notes. The points in the plots correspond to coefficient estimates stemming from the Cox proportional hazard model, where the variable
for treatment status is interacted with the time (in six-month increments) since the first competitor failure event (of each type). The six months
before the first competitor termination event is the omitted variable. The 95% confidence intervals (corresponding to robust standard errors) are
plotted with capped spikes.
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continuous changes; nevertheless, they are useful
approximations for different levels of internal knowl-
edge of the focal project’s feasibility.

An implicit assumption of the main empirical ap-
proach is that competitor outcomes are only relevant
when the competing project is in the same or a more
advanced stage of development. According to this
approach, projects that significantly lag in develop-
ment are irrelevant to the decision-making process.
Furthermore, more advanced focal projects should
have already resolved enough uncertainty on their own
and can ignore earlier stage competitors (Proposition 4
in the theoretical model). To test this prediction, I
evaluate whether phase III projects are more or less
likely to exit following news of a phase II competitor’s
failure. This analysis sample contains 3,195 phase III
projects that are ever treated by phase II failure news.
The breakdown across competitor news types is quite
similar to the main analysis: 92% experience SM-DT
news, 9% SM-ST news, and 43% DM-ST news.

In Figure A.5 in Online Appendix A, I present the
event studies. For each competitor news type, the
trends are fairly flat, and none of the coefficients are
significantly different from zero. Phase III project
investments do not appear to respond to phase II
competitor failures, regardless of the market and
technology relationships.33 The lack of response seen
in Figure A.5 in Online Appendix A implies that
developers only update their expectations about R&D
success when their own project uncertainty is high.
These results are in line with Proposition 4: when
developers have already cleared certain development

hurdles, they do not update beliefs based on earlier
stage projects.

5.4.3. Learning Opportunities and Response to Com-
petitor Failure. To explore whether competitor re-
sponses are smaller with more remaining learning
opportunities (Proposition 5), I interact each of the
three treatment types with an indicator for whether
the focal project had relatively low or high ST learning
opportunities. I define low versus high learning op-
portunities as below or above the median number of
ST competitors (five projects).
When the information environment is relatively

rich with competitor learning opportunities, firms
advance weaker projects into phase II testing. Table 4
reports the coefficients from the survival models. The
correlation between high learning opportunities and
the hazard rate of exit is positive and significant—
implying that having above-the-median ST compet-
itors is associated with a 24% higher (column 2) rel-
ative probabilityof terminationatanypoint inphase II.34

The presence of competitors that have correlated
technology signals may initially strengthen the firm’s
belief in their own project through stronger public
signals about the technology while also effectively
reducing the cost of exploration through the promise
of additional relevant trial outcomes.
Table 4 also reports coefficients for each type of

competitor failure news interacted with the remain-
ing ST learning opportunities. The SM-DT coefficients
show that having more ST competitors corresponds
with being more likely to forge ahead following a

Figure 6. (Color online) Level of Competition and Response to Competitor Failure

Notes. The bars display the coefficients of interest from the main Cox proportional hazard model specification, split the median number of
competitors, defined in two different ways. (a) Level of competition is defined as the number of development projects working on the same
therapeutic indication. (b) Competition split is based off the number of previously approved drugs within the same therapeutic indication. The
95% confidence intervals are plotted with capped spikes.
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pure market competitor failure. I find no significant
differences between the high and low learning op-
portunity groups following SM-ST competitor news.
The DM-ST effect almost disappears for projects with
high remaining technology competitor learning op-
portunities. Essentially, the exits driving the overall
DM-ST effect (Table 3) disproportionately involve
low remaining learning opportunities. Projects with
more learning opportunities were more likely to
continue following DM-ST competitor news.

These findings are consistent with the updating
process and Proposition 5 in the theoretical frame-
work. Firms are more likely to advance risky projects
when similar competitors will provide learning op-
portunities in the form of correlated (public) signals.
Those learning opportunities increase the attractive-
ness of continuing with the focal project. A developer’s
belief about a project’s probability of success is likely
unchanged after a SM-DT failure. Therefore, if the
project has zero or very few same technology com-
petitors remaining, then the forward-looking devel-
oper does not expect to gain any more relevant tech-
nology insight from rivals. However, a larger number

of remaining technology competitors means extra in-
formation as competitors’ experiments complete over
time. After a SM-DT competitor failure, the combi-
nation of a more attractive competitive environment
(one less potential market rival) and many potential
learning opportunities remaining makes the contin-
uation option even more attractive than before.
A similar logic helps explain the DM-ST results,

where the existence of more remaining competitors
using the same target-action diminishes the exit re-
sponse to DM-ST failures news. Here, developers
might be more hesitant to pull the plug quickly if they
believe more competitor signals may arrive in the
near future—down-weighting any one given com-
petitor failure while other peers remain. Observing
that other ST competitors remain committed to their
projects might also lead to positive feedback loops,
such that developers believe their investment or clini-
cal hypothesis is validated by others (i.e., the public
signal remains quite high). Notably, I did not find
any significant difference across learning opportu-
nity levels following SM-ST competitor news. The
information shock of these most similar competitor

Table 4. Competitor Failure News Impact on Exit Rates by Remaining Technological
Learning Opportunities

(1) (2)

Technological learning opportunities high (above median) 0.143† 0.212**
(0.080) (0.081)

Competitor failure type (within two-quarter treatment window)
Same Market, Different Technology × Low Learning Opportunity 0.002 −0.025

(0.087) (0.088)
Same Market, Different Technology × High Learning Opportunity −0.119† −0.127†

(0.068) (0.068)
Same Market, Same Technology × Low Learning Opportunity 0.803** 0.805**

(0.227) (0.226)
Same Market, Same Technology × High Learning Opportunity 0.687** 0.736**

(0.110) (0.111)
Different Market, Same Technology × Low Learning Opportunity 0.616** 0.629**

(0.162) (0.162)
Different Market, Same Technology × High Learning Opportunity 0.066 0.151*

(0.063) (0.065)
Controls: Number of each competitor type 3

No. of drug indications 8,069 8,069
No. of drugs 4,448 4,448
No. of treating-treated quarter observations 158,817 158,817

Notes. Estimates stem from Cox proportional hazard model specifications using panel data of
drug projects by quarter. The outcome of interest is the focal project’s discontinuation. The
sample excludes all projects without a primary mechanism of action (target action) assigned
in the Cortellis data. The regressions include a full set of year indicator variables and stratify
the estimates by therapeutic indication. The high/low learning opportunity splits are based
on the median number (5) of same technology competitor projects remaining in phase II or phase III
trials. The competitor failure news variables are indicator variables that take on the value of one
when the focal project is within two financial quarters since the given type of competitor failure
event. Coefficients may be interpreted as an increase in the log hazard rate. Standard errors in
parentheses.

†p < 0.10; *p < 0.05; **p < 0.01.
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failures appears to overpower any secondary effects
of remaining competitor outcomes (i.e., downward
updating on p the outweighs remaining option value).

5.5. Robustness Checks
Online Appendix C details alternative regression
specifications. The same qualitative patterns persist
in the alternative specifications, although the mag-
nitudes differ depending on the level of analysis and
treatment definition. I summarize key checks of the
main identification strategy and the informational
content of failure news events. OnlineAppendix E pro-
vides additional details on these robustness checks.

5.5.1. Identification Assumptions. First, one might be
concerned about how entry order affects the results.
In drug development, the looming patent expirations
create a sense of urgency for development. Wait and
see strategies may be too slow, given that develop-
ment periods are long and expensive. However, firms
might still choose particular entry timing in order to
capitalize on information, regulatory, or first-mover
advantages. For example, firms might engage in me-
too or copycat innovation, sacrificing first-mover ad-
vantage in exchange for reduced risk and allowing the
leaders to establish regulatory and marketing pathways
(Stern 2016).

To test whether entry order influences the results, I
interact each competitor failure type with the focal
(treated) firm’s phase II entry position relative to its
first treating project: follower, neck-and-neck, leader.
Figure A.6 in Online Appendix A displays the results
of this regression as a bar graph. The relative mag-
nitudes of the competitor failure news coefficients
are quite similar for followers, leaders, and projects
that are neck-and-neck (entering phase II within a
year of one another). The magnitudes of the SM-ST
and DM-ST coefficients are actually greatest among
the leader group.

A related concern is that independent simultaneous
failure might be driving the main effects for SM-ST
and DM-ST news. Under this logic, ST projects have a
shared fate and may learn about their own disap-
pointing results around the same time. To address
this concern, I limit the analysis sample to smaller
project age ranges (e.g., the first 6/8/10/12/16 quarters
in phase II, 4–12 quarters into phase II) and apply
the primary regression specification. These regres-
sions yield competitor news coefficients with mag-
nitudes very similar to the primary regression spec-
ifications.35 The median phase II trial in Cortellis lasts
for more than two years (10 quarters), so the treated
projects in these age-limited samples were unlikely to
have completed their first phase II trials, let alone
completed their entire battery of phase II investiga-
tions (usually involving multiple trials)—implying

that simultaneous bad news is not likely to be driving
the results.
I further restrict the analysis sample to ensure that

the competitor responses are not driven by common
shocks to related approved drugs. Table A.3 in Online
Appendix A reports the results of the main specifi-
cation applied to more limited samples that remove
projects which share target-actions with any previ-
ously approved drugs. The restricted sample results
are very similar to themain analysis—confirming that
ST common signals from postapproval drugs are not
influencing the results.
Additionally, the results do not significantly differ

when I compare discontinuation signals accompa-
nied by a press release to thosewithout press releases,
and when I exclude the set of treated projects that
were proximate in time to their own trial end dates.
These analyses help to rule out the possibility that
competitors are independently failing within a few
quarters of each other, and that more-publicized
events drive competitor response.

5.5.2. Competitor Signal Strength. I use three different
tests of how the strength of the competitor failure
signals moderate the focal projects’ responses. These
regressions help test issues of network interference
and confirm the intuition that firms pay greater at-
tention to stronger DM-ST signals. First, I find no sig-
nificant differences when comparing the focal project’s
response to the first treatment versus subsequent
failure news (Figure A.7A in Online Appendix A).
Similarly, I compare solo treatment events (a single
competitor exit) to clusters of treatment for each type
of failure news (Figure A.7B in Online Appendix A)
and events wherein the competitor drug’s failure news
involved only one discontinued indication versus
multiple discontinued indications (Figure A.8 in Online
Appendix A). In both of those additional splits, DM-
ST responses are significantly stronger (p < 0.01) fol-
lowing the stronger competitor signals. Together,
these results suggest that firms have a higher bar for
reacting to DM-ST news. Developing their drug for
different conditions, these rival projects appear less
sensitive to any one project termination. In contrast, a
single SM-ST competitive failure may be enough
reason to reconsider one’s own related investments.

5.6. Alternative Definitions of Project Death and
Technological Similarity

5.6.1. More Inclusive Project Death. The main survival
models use a conservative definition of project exit:
when firms officially announce project stoppage or
when Cortellis codes a discontinuation event.36 That
definition does not account for obviously stagnant
projects that continue on paper although the firm
does not commit any further resources to the project
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(e.g., no additional trials). One might call such cases
zombie projects. If firms use competitor events as
an excuse to officially cancel such already-defunct
projects, the mischaracterization of stoppage would
threaten this paper’s empirical results. To evalu-
ate this possibility, I construct an alternative project
death variable that includes projects that never report
any additional development (e.g., no new trials and
no progression) as discontinued observations. Under
thismore inclusive project discontinuation definition,
the average likelihood of a project being discontinued
in a given quarter is 4% (conditional on surviving up
until that point), and 51% of the non–right-censored
projects are discontinued during my phase II sample
period). Table A.2 in Online Appendix A presents
these regression results. These hazard models yield
results very similar to the main results in Table 3.

5.6.2. Chemical Similarity as Technological Distance.
Online Appendix C uses the same discontinuation
definition as the main analyses but uses compounds’
structural overlap as an alternative measure of techno-
logical similarity. I use the similarity measure devel-
oped in Krieger et al. (2019) to quantify chemical
distance between project pairs. I interact compound
similarity with different types of competitor discon-
tinuation news.

Table A.4 in Online Appendix A shows that project
exit rates are significantly increasing in the structural
similarity to discontinuing competitors (column 1).
However, when comparing the compound similar-
ity effect across different types of competitor news
(columns 2 and 3), that relationship partially breaks
down because sharing a biological target actions is
correlatedwith the pair havinghigher chemical structure
similarity. Overall, structurally similar compounds
have greater exit responses, but those relationships are
secondary to sharing the same target-action technol-
ogy. Thus, in addition to adding a layer of granularity,
these results supply further justification for using the
same/different technology categories as the primary
groupings for knowledge spillovers.

5.7. Overall Impact of Competitor Learning
A series of back-of-the-envelope calculations helps il-
lustrate the overall magnitude of the competitor learn-
ing effects. I use the regression results to predict the
overall rate of project terminations, with and without
the two significant learning channels (SM-ST and DM-
ST). Because entry behavior would also change in a
regimewith no competitor disclosure, this exercise can
only represent a crude characterization of a counter-
factual zero disclosure regime.

Figure A.9 in Online Appendix A displays the
learning channel’s magnitude. The figure graphs the
predicted probability of project discontinuation by

project age (quarters in phase II), compared with the
hypothetical discontinuation rate—if one was to turn
off the ability to learn from competitors (e.g., if firms
were not required to disclose trial starts and proj-
ect terminations). The predicted discontinuation is
based off the main econometric specification’s aver-
age predicted discontinuation value (corresponding
to Table 3, column 3) for observations treated by
SM-ST or DM-ST news. This exercise shows that the
discontinuation rates would be roughly 25% lower if
one were to shut off the ability to learn from any
technological competitor news.
Another way to think about the magnitude of

learning is to ask the following question: How many
terminations might have occurred without learning
from competitor disclosures? In the analysis sample
of 10,637 projects, 2,550 projects exited in the first 32
quarters of phase II, 1,658 project terminations oc-
curred within two quarters of any type of competitor
exit, and 463 discontinuations happened after a ST
competitor exit. Assuming the same level of entry, I
use the regression results to generate a back-of-the-
envelope prediction of the exit rate but without com-
petitor learning. Many projects would eventually
exit in both scenarios but might be terminated sooner
with competitor learning. Without a full structural
model, one cannot estimate a true counterfactual
here. Again, the no-learning scenario ignores how
entry and continuation decisions might also change
in a regime without competitor failure disclosures.
For the sake of illustrating the role of learning on exit
decisions, the back-of-the-envelope estimates hold
entry and the number of competitors constant.
I find that turning off the learning channel results

in 5.1% (129) fewer overall project exits. Simulating
the predicted timing of project exits yielded 1,683
(3.7%) additional active project-quarters in the ver-
sion without competitor learning. This estimate is
from the average results of 1,000 iterations of a Monte
Carlo simulation, in which the main regression esti-
mates predict the timing of each project termination,
both with and after shutting off the competitor learn-
ing coefficients. Although these estimates cannot re-
veal whether additional terminations are wise choices,
they illustrate how the disclosure channel has a po-
tentially large impact on R&D investment decisions
and the fate of R&D project teams. Even with a
conservative estimate of trial costs, they suggest that
competitor learning accounts for more than $2 billion
in reallocated R&D funds.37

6. Conclusion
The ability to assimilate external knowledge and
update effectively is of central importance to R&D
managers (Cohen and Levinthal 1990, Cockburn et al.
2000). Developing new technologies is an inherently

5544
Krieger: Trials and Terminations: Learning from Competitors’ R&D Failures

Management Science, 2021, vol. 67, no. 9, pp. 5525–5548, © 2021 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

68
.1

22
.3

4.
19

3]
 o

n 
24

 F
eb

ru
ar

y 
20

23
, a

t 0
8:

42
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



uncertain process and requires judgments about both
the expected value of the innovation and the potential
of a givenR&D investment to reduce uncertainty. This
paper analyzes R&D project investments through the
lens of real options with competitor learning. This
framework highlights how competitor news provides
additional decision points for reevaluating project
investments. Competitor failure news can have payoff
externalities, knowledge spillovers, or both. Further-
more, having more same technology competitors might
actually increase a risky project’s attractiveness by
serving as an additional signals of technology quality.

The empirical results demonstrate that competitor
outcomes directly enter project selection decisions. I
exploit the unique features of pharmaceutical R&D,
where competing projects are developed in-parallel
and have distinct market and technology categories. I
find that competitor discontinuations influence the
probability of focal project exit, but the nature of this
response depends on project relatedness. This re-
sponse to competitor failure is also sensitive to the
competitive environment and project characteristics.
I find that market competition effects are stronger
when competition is low. However, market compe-
tition considerations are subordinate to technologi-
cal learning effects from highly similar competitors.
Additionally, I find that project-specific uncertainty
and the potential for future competitor learning both
influence the magnitude of responses to competitor
failure news.

The findings contribute to the literatures on real
options and R&D spillovers. Failure disclosures are
distinct learning opportunities and may function as
additional experimental stages. To value real options
with competitor learning, the analyst can include the
possibility of these extra game tree branches and
quantify the additional option value from competitor
information. On the spillovers side, the analysis re-
veals that the interaction of product market and
knowledge externalities is not simply the sum of the
two component effects. Managers and innovation
scholars should account for this interaction, in ad-
dition to the two separate effects. Finally, the results
suggest that learning spillovers might encourage (ra-
tional) herding both into and away from an R&D
subfield. This type of herding may be privately op-
timal but result in an overall lack of diversity in
R&D (Dixit 1989, Acemoglu 2011) as firms priori-
tize information opportunities and industry trends
over society’s optimal mix of experiments. Policy-
makers can counteract such clustering by offering
subsidies aimed specifically at differentiated or novel
research lines. Contrary to traditional competitive
strategy, firms and policy makers might even want to
encourage rivals to join in entering such new tech-
nology areas in parallel—enabling the industry to

explore more uncertain frontiers in a richer infor-
mation environment.
Although drug development lends itself well to

the study of R&D failure, the findings here are not
limited to the life sciences. Any R&D setting where
competitors test related technologies and target the
same markets might use the same theoretical and
empirical frameworks to value competitor informa-
tion. However, other industries pose more difficul-
ties for tracking R&D efforts and pinpointing and
decoding failure events. Future studies might ad-
dress how variation in observability of competitor
projects, disclosure regimes, and product complexity
impacts competitor learning. When R&D failures are
less public, might alternative signals (e.g., patent
filings, hiring, rumors) substitute as effective sources
of competitor learning? How informative are R&D
failures when products involve complex combina-
tions of numerous technologies (e.g., smart phones,
self-driving cars, satellites, supersonic jets)? How
do different R&D portfolio strategies improve or
hinder firms’ ability to interpret and act on compet-
itor failures?
Furthermore, future analyses need not be limited to

failure events, because firms also learn from their
rivals’ successes. The challenge in studying R&D
successes is that firms may not disclose good out-
comes in a single news event, but rather over the
course of multiple announcements. Although this
paper’s analysis is limited to publicly available knowl-
edge, R&D organizations have finer-grained infor-
mation about their own projects and competitors. The
flow of information about competitor projects com-
bined with the deluge of internal data (e.g., experi-
mental results and forecasts) should allow the mod-
ern R&D organization to continuously update the
valuation of its portfolio projects.
Although the nature of the information and dis-

closure may vary, reacting to competitor outcomes
is of principal importance in industries where firms
are juggling uncertain projects and information ex-
ternalities. In these settings, novel information may
drastically change the direction of investments. How
firms vary in their response to external signals con-
tinues to be an exciting question for scholars ex-
amining firm performance and the supply of new
technologies.
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Endnotes
1 See Griliches (1991), Bloom et al. (2013), Schnitzer and Watzinger
(2017), Manresa (2016), Colino (2017), and Lucking et al. (2018) for
examples of how R&D successes create spillovers at the firm level.
2Economists have studied how events like bankruptcies and product
recalls influence stock market valuations of competitor firms (Lang
and Stultz 1992, Ahmed et al. 2002), or sales performance of related
products (Freedman et al. 2010). However, these studies focus on
third-party valuations and market demand rather than competitors’
own investment decisions. Closer to the setting of this study,
Magazzini et al. (2012) evaluate how subsequent drug developers
build off the knowledge generated by previously failed versus suc-
cessful drug candidates by comparing citations to patents associated
with those drug candidates.
3Tracking rival projects has grown into its own profitable business
with considerable resources and time spent on external competitive
intelligence databases and pipeline consultants.
4Bennett and Snyder (2017) demonstrate how focusing on cumulative
success and cumulative failure leads to biased estimates of learning.
Two recent working papers apply variants of measuring cumulative
(failure and success) experience within the context of drug devel-
opment (Garzon-Vico 2012, Rao 2018). However, their focus is not on
the temporal dynamics of failure entering competitors’ decisions or
separating market and technological forces. This paper focuses on
how the most recent failure events impact organizational actions
rather than probability of success.
5This approach also relates to models of strategic experimentation
(Malueg and Tsutsui1997, Keller et al. 2004, Akcigit and Liu 2016,
Bonatti andHörner 2017, Bryan and Lemus 2017, Awaya andKrishna
2020) and the analysis of static auctions with correlated signals
(Dasgupta and Maskin 1987, Kagel et al. 1987, Hendricks and Porter
1988). In contrast to prior work, I do not assume that no news (about a
rival’s project) is bad news. In the clinical trials setting, no newsmight
actually be a positive sign (about the underlying technologies), be-
cause failures are hard to hide.
6 If a product is the first of its kind, then failure signals may include
information about demand, as well as information about the tech-
nology and competition. For example, when Google discontinued
sales of its controversial wearable device Google Glass, the failure
might have conveyed as much about consumer preferences and
marketing as the technology itself.
7All else equal, firms prefer cheaper experimentation and more in-
formation about their technology’s potential—all of which they ef-
fectively get from technologically similar competitor news. That
preference also implies more entry (herding) into more crowded
technological areas, on the margin. Such entry would be privately

optimal for the firm but might not be socially optimal if it reduces the
diversity of technological experimentation.
8For example, scientific publications on the role of pathway X for
causing disease Y or consensus beliefs about the strength of material Z
at high temperatures.
9To approximate u, one might estimate oneminus the percentage of a
project’s experiments are complete. Project uncertainty is highest
before the first experiment and decreases as the firm gathers more
proprietary data.
10The same could be true in other contexts. For example, the reli-
ability and stress tolerance needs of materials are different for
aerospace than in bicycle manufacturing. Therefore, failure of a new
material to meet the standards in one area does not preclude the
introduction of this technology for other uses.
11 Similar to anAmerican put option on a stock, the investor getsmore
option value when volatility is higher, and the investor can sell early
when the expected value of the asset decreases.
12 I refer to the development of a compound for a given indication as a
drug project.
13The length of a trial depends on the disease and endpoint (e.g.,
mortality, blood pressure, tumor growth) of interest. Some diseases
might take longer to progress and require years of monitoring to
infer a therapy’s efficacy. The median time spent in phase II trials is
2.5 years.
14This paper’s primary data source, Cortellis, tracks these disclosures
and links them to drug development projects (drug indications)
identifiers and company information.
15 See https://endpts.com/bristol-myers-dumps-late-stage-ido-studies
-in-wake-of-incytes-pivotal-implosion-in-yet-another-setback and https://
www.fiercebiotech.com/biotech/bristol-myers-drops-phase-3-trials
-800m-ido-drug.
16Patent data are most commonly used to study innovation spillovers
and measure the relatedness of R&D projects (Griliches 1991, Lerner
and Seru 2017). However, their effectiveness in capturing project
spillovers is limited because patents are not matched one-to-one with
development projects, their scope and citations often reflect legal or
patent office idiosyncracies, and their snapshot-like content lacks
information about project investments or progress.
17Bloom et al. (2013) looks at market and technology at the firm level,
using industry codes for product markets and patent classes for
technologies.
18The drug similarity measure is detailed in Online Appendix C.
19Assigning ICD-9 codes to the Cortellis indication names is a
challenge that requires knowledge about both the medical conditions
and how healthcare providers classify those conditions. A profes-
sional medical biller coded the concordance between Cortellis indi-
cations and ICD-9 codes in the fall of 2015. ICD-9 codes have different
levels of granularity, where each number represents a different
medical condition with subcategories denoted by decimals. The
medical biller assigned codes to integer categories (e.g., an indication
with ICD-9 of 202.5 is categorized as 202). I am grateful to Manuel
Hermosilla for providing the mapping from Cortellis indication
names to ICD-9 codes.
20Cost estimates vary, with average phase II trial cost reported as
anywhere from $13 million to $80 million, whereas phase I cost es-
timates range from $4 to $8 million (Adams and Brantner 2006;
https://aspe.hhs.gov/report/examination-clinical-trial-costs-and
-barriers-drug-development; https://lifescivc.com/2014/11/a-billion
-here-a-billion-there-the-cost-of-making-a-drug-revisited/).
21 Sixteen percent of phase II and 50% of phase III projects eventually
reach approval, according to Hay et al. (2014).
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22The main findings are robust to further excluding observations
where the treating and treated drugs share at least one known target
action (even if not an indication) with a previously launched
(i.e., FDA-approved) drug. See Table A.3 in Online Appendix A.
23Although 10 years may seem like a long window, the median time
in phase II is 2.5 years, and the 90th percentile is greater than 6 years.
Themedian length of a phase III trial is 4 years (90th percentile over 10
years). Therefore, a relevant frontier competitor project may still be
under development 10 years after starting its own phase II trials.
24Because the analysis panel is at the quarter level, some treating and
treated projects share a discontinuation quarter but only if the
treating project disclosed failure at an earlier date within the quarter.
25 For example, Ingram and Baum (1998), Haunschild and Sullivan
(2002), Baum and Dahlin (2007), Kim and Miner (2007), Madsen and
Desai (2010), and Rao (2018).
26Overall experience with failures within an industry, firm, or de-
partment may result in organizational changes and learning. How-
ever, long-term failure experience may also correlate with strategic
choices regardingmarket entry and risk tolerance, as well as scientific
or technical evolution. To link specific competitor news events to
project-level decisions, it is important that my econometric frame-
work accounts to timing of exogenous (surprising) events and the
changing market environment.
27The hazard models here are similar to a discrete time logistic re-
gression specification. Running the equivalent logit model (with
controls for therapeutic indication and project age) yields nearly
identical results.
28 See Table A.3 in Online Appendix A for robustness checks using
more restricted analysis samples, in which no drugs that share the
same technology have reached the market.
29Prescription drug spending in the United States (as a percentage of
gross domestic product) has risen consistently since the late 1970s,
with only a slight dip following the 2008 recession (see https://
www.brookings.edu/blog/up-front/2017/04/26/the-hutchins
-center-explains-prescription-drug-spending/). Policies expand-
ing insurance coverage for prescription drugs have created occa-
sional positive demand shocks (e.g., the 2006 enactment of Medicare
Part D).
30Testing the proportional-hazards assumption yields nonsignificant
results (i.e., the proportionality assumption holds.)
31Using a two-period difference-in-differences model, where treat-
ment is binary for postcompetitor news (absorbing state version), I
still find that the SM-ST coefficient is significantly larger than the DM-
ST effect (Table A.1 in Online Appendix A). In general, as more time
elapses after the initial competitor news treatment event, the more
likely other news or own project results are to confound the com-
petitor effects. Concerns of shared fate for similar technologies also
come into play when one extends the treatment window. Therefore,
the comparison of information effects across news types is best
identified when the treatment window is smallest. For that reason,
the main specification focuses on the first few quarters after com-
petitor news.
32 Figure A.2 in Online Appendix A shows the bottom versus top
quartile split. The patterns are similar but with an even greater
negative effect for the low competition SM-DT response.
33The primary analyses use both phase II and phase III failure news as
relevant signals for phase II projects. I also tested whether competitor
failure news originating from only phase III competitor had a dif-
ferent effect than the same type of news stemming from a phase II
competitor. This comparison produced no statistically significant
differences.
34By comparison, Budish et al. (2015) find that a 10-percentage-point
decrease in trial length (five-year survival rate) is associated with an
8.7% increase in trial entry. Both Budish et al. (2015) and the results

here suggest that decreases in the cost of experimentation allow for
project investments that otherwise might not happen.
35For brevity, results not shown. In the smaller samples limited to the
first 6, 8, 10, or 12 quarters of phase II, the DM-ST coefficientswere not
significant, despite having magnitudes quite similar to the main
specification (0.17, 0.10, 0.12, and 0.15, respectively). The SM-ST
coefficient remains significant in all these samples, with a magni-
tude between 0.7 and 0.8.
36 In addition to official announcements triggering the change to
discontinued status, Cortellis also records exits based on the removal
of a project from the firm’s active pipeline information on its website
or in investor documents.
37The U.S. Department of Health & Human Services has estimated
an average phase II trial cost of $10–16 million. See https://
aspe.hhs.gov/report/examination-clinical-trial-costs-and-barriers
-drug-development. Using the average of these cost approxima-
tions ($13 million), an average trial length of 10 quarters, and the
estimate of 1,683 additional active project-quarters, yields a total of
$2.2 billion in investments reallocated (or canceled) because of
competitor learning.
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