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Abstract 

Environmental flows (e-flows) are powerful tools for sustaining freshwater bio- 

diversity and ecosystem services, but their widespread implementation faces 

numerous social, political, and economic barriers. These barriers are amplified 

in water-limited systems where strong trade-offs exist between human water 

needs and freshwater ecosystem protection. We synthesize the complex, multi- 

disciplinary challenges that exist in these systems to help identify targeted solu- 

tions to accelerate the adoption and implementation of environmental flows 

initiatives. We present case studies from three water-limited systems in North 

America and synthesize the major barriers to implementing environmental 
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flows. We identify four common barriers: (a) lack of authority to implement 

e-flows in water governance structures, (b) fragmented water governance in 

transboundary water systems, (c) declining water availability and increasing 

variability under climate change, and (d) lack of consideration of non- 

biophysical factors. We then formulate actionable recommendations for 

decision makers facing these barriers when working towards implementing 

environmental flows: (a) modify or establish a water governance framework to 

recognize or allow e-flows, (b) strive for collaboration across political jurisdic- 

tions and social, economic, and environmental sectors, and (c) manage adap- 

tively for climate change in e-flows planning and recommendations. 

This article is categorized under: 

• Water and Life > Conservation, Management, and Awareness 

• Human Water > Water Governance 

• Engineering Water > Planning Water 

 
KEYWO R DS  

climate change, coupled-human natural systems, environmental flows, water-limited 

 
 

 

1 | INTRODUCTION  
 

Many countries recognize that environmental flows (e-flows) should be implemented and/or incorporated into water 

management and policy to ensure water sustainability for both humans and ecosystems. The Brisbane Declaration 

(2007) and the Global Action Agenda on Environmental Flows (2018), which set a common direction and synthesis for 

international e-flows implementation, were endorsed by 57 countries (Arthington, Bhaduri, et al., 2018; Brisbane 

Declaration, 2007). Additionally, member states of the United Nations have agreed to work towards simultaneously 

meeting two freshwater-related Sustainable Development Goal targets (SDG's) by 2030: “Increase water-use efficiency 

across all sectors and ensure sustainable withdrawals and supply of freshwater…” (section 6.4), and “protect and restore 

freshwater ecosystems…” (section 6.6; UN, 2018). Despite this widespread recognition of the need to accelerate the 

implementation of e-flows globally, in practice, implementation faces numerous barriers with only piecemeal examples 

of success (Harwood et al., 2018; Kiernan et al., 2012; Le Quesne et al., 2010; Tickner et al., 2020; Twardek et al., 2021). 

In water-limited regions of the world, these barriers can grow and intensify because of the trade-offs between human 

water security and freshwater ecosystem protection (Kennen et al., 2018). 

Worldwide, freshwater biodiversity and ecosystem function has rapidly declined and deteriorated (He et al., 2019; 

Tickner et al., 2020; Vörösmarty et al., 2010). Damming rivers for human water security and water extraction for socie - 

tal uses are the primary impacts that alter freshwater ecosystem structure and function (Mirchi et al., 2014). Conse- 

quently, there is increasing pressure to find sustainable approaches to balance the complex trade-offs between human 

and environmental water needs. The most widely used approach to sustain both human water security and freshwater 

ecosystems is to establish e-flows—defined as “the quantity, timing, and quality of freshwater flows and levels necessary 

to sustain aquatic ecosystems which, in turn, support human cultures, economies, sustainable livelihoods, and well - 

being” (Arthington, Bhaduri, et al., 2018). While there are many frameworks and methodologies that practitioners use 

to estimate e-flows (Tennant, 1976; Richter et al., 1996; Poff et al., 1997; Hughes & Hannart, 2003; Poff & 

Zimmerman, 2010; Richter & Thomas, 2007; Acreman et al., 2014; Yarnell et al., 2015; see Poff et al., 2017 for full 

review of methodologies), there are two main challenges that each approach faces: (a) The assumption of stationarity in 

flow regimes (i.e., targeting reference conditions for restoration when climate change and human factors are changing 

flow regimes), and (b) conflicting water needs between ecosystems and human societal uses (Marston et al., 2020; Milly 

et al., 2008; Poff, 2018). 

Hydrologic modification through damming has been shown to homogenize flow regimes and change flow seasonal- 

ity, altering the magnitude, frequency, and variability of discharge, which can decrease peak flows and flood pulses and 

increase base flows (Poff et al., 2007). As a result, e-flows implementation often seeks to either restore flow regimes to a 
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References Challenges listed 

Hirji and Davis (2009) Overcoming the misperceptions arising from the term “environmental flows” 

Developing methods for systematically linking biophysical and socioeconomic impacts4 

Incorporating the whole water cycle (surface, groundwater, and estuaries) into the assessments 

Applying environmental flow assessments to land use activities that intercept and exacerbate overland 

flows 

Including climate change in the assessments3 

Integrating environmental flow assessments into strategic, sectoral, and project environmental 

assessments 

Understanding the circumstances in which benefit sharing is a viable approach 

 
 

pre-dam flow regime (Bednarek & Hart, 2005), establish dynamic, characterization-based flows based on river types 

and flow–ecology relationships (Poff & Zimmerman, 2010), or design flows to maximize ecological outcomes (Acreman 

et al., 2014; Chen & Olden, 2017; Poff et al., 2017). These approaches can improve freshwater ecosystem function and 

biodiversity outcomes by addressing the life cycle needs of aquatic and riparian species (Carlisle et al., 2010; Merritt 

et al., 2010; Mims & Olden, 2012; Olden et al., 2014), structuring aquatic communities (Bogan & Lytle, 2011; Tonkin 

et al., 2017), improving water quality (Nilsson & Renöfält, 2008), restoring sediment regimes (Topping et al., 2010), and 

ecosystem goods and services (Gopal, 2016). Thus, e-flows can both support freshwater ecosystem conservation and pro- 

vide many socio-economic benefits to human societies (Gilvear et al., 2017). 

Despite widespread recognition of the benefits and need to establish e-flows, implementation has been slow 

(Tickner et al., 2020), with limited examples of broad, systematic success (Harwood et al., 2018; Kiernan et al., 2012; Le 

 

 

 
TABLE 1 List of challenges to environmental flows implementation and references illustrating how the challenges were synthesized for 

this publication based on current literature and the author's regional expertise in water-limited systems 

Moore (2004) Lack of understanding of socio-economic costs and benefits4 

Political will1,2 

Legal, institutional, and monitoring arrangements1,2 

Effective stakeholder involvement4 

Financial resources 

Expertise, technical support 

Public acceptance4 

Capacity for modeling and scenario development 

Hydrological data 

Other 

Le Quesne et al. (2010) Lack of political will and stakeholder support1,2 

Insufficient resources and capacity 

 
Wineland et al. (2021, this 

paper) 

1. Lack of authority to implement e-flows in water governance structures 

 

2. Fragmented water governance in transboundary water systems 

3. Declining water availability and increasing variability under climate change 

4. Lack of consideration of non-biophysical factors 
 

 

Note: Challenges with numbered superscripts indicate which challenge in the current article the authors synthesized information from. 

Poff (2018) Non-stationarity3 

Shifting from static to dynamic modeling 

Scaling hydro-ecological relationships in space and time 

Incorporating non-flow environmental factors in e-flows science and assessment4 

Broadening the ecological foundation towards a more predictive e-flows science 
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Quesne et al., 2010). Here, we define implementation as either joining, enforcing, or executing an e-flows policy or pro- 

gram (Arthington, Bhaduri, et al., 2018). Previous studies have identified the many challenges that e-flows implementa- 

tion faces globally (Moore, 2004; Hirji & Davis, 2009; Le Quesne et al., 2010; Poff, 2018; Table 1). Indeed, the lack of 

widespread adoption of e-flows does not result from a lack of biophysical knowledge, rather it stems from complex 

socio-political arrangements and uncertainty about future hydrological conditions (Pahl-Wostl et al., 2013; Poff, 2018). 

Hence, there is a need to better understand the challenges facing e-flows implementation in water-limited systems 

where biophysical aspects of e-flows are well-studied, but barriers and challenges to implementation are less publicized. 

Implementing e-flows can be challenging in water-limited systems because of complex water governance structures and 

a lack of authority for environmental water allocation (Loehman & Charney, 2011; Owen, 2011), extreme spatio - 

temporal hydrologic variability and projected declines in water availability due to climate change (Arthington & 

Balcombe, 2011; Tooth, 2000; Young & Kingsford, 2006; Zamani-Sabzi, Rezapour, et al., 2019; Heidari et al., 2020; 

Larkin et al., 2020), and complex socio-environmental trade-offs resulting from water reallocation or redistribution 

(Anderson et al., 2019; Lankford et al., 2004; Tickner et al., 2017). 

This article synthesizes the major barriers facing e-flows implementation in water limited systems through examin- 

ing several case studies, and identifies recommendations for overcoming these barriers. We use a hybrid approach, com- 

bining a literature review of e-flows implementation challenges with the interdisciplinary, regional expertise of the 

authors. We first synthesize four major barriers to e-flows implementation in water limited systems based on previous 

work (Table 1) and our knowledge of the water-limited systems in our region of focus: (a) lack of authority to imple- 

ment e-flows in water governance structures, (b) fragmented water governance in transboundary water systems, 

(c) declining water availability and increasing variability under climate change, and (d) lack of consideration of non- 

biophysical factors. Our synthesis was derived from two river basins, the Red River basin (RRB), the Rio Grande/Rio 

Bravo River basin (RGB) and one aquifer system, the Edwards aquifer (EA) in the south-central United States (US) and 

northern Mexico. We then identify three priority recommendations for overcoming barriers to e-flows implementation: 

(a) Modify or establish a water governance framework to recognize or allow e-flows, (b) strive for collaboration across 

political jurisdictions and social, economic, and environmental sectors, and (c) manage adaptively for climate change in 

e-flows planning and recommendations. In doing so, we intend not to be policy-prescriptive for e-flows implementation 

planning, rather, we aim to summarize specific actionable measures that could help accelerate and extend e-flows 

implementation planning in water-limited systems. 

 
 

2 | BARRIERS TO ENVIRONMENTAL FLOWS IMPLEMENTATION IN 
WATER-LIMITED SYSTEMS  

 

2.1 | Lack of authority to implement e-flows in water governance structures 
 

Water governance establishes the rules, actors, and structures under which water management operates (Nava, 2018). 

The complexities and challenges of water governance are reflected in its definition by The Global Water Partnership: 

“the range of political, social, economic, and administrative systems that are in place to develop and manage water 

resources, and the delivery of water services, at different levels of society” (Rogers & Hall, 2003, p. 16). Water gover- 

nance and management are inherently multidisciplinary and multidimensional (Pahl-Wostl et al., 2010). Thus, water 

decision makers and managers navigate and operate under increasingly complex political, social, and economic systems 

to ensure human water security (Smidt et al., 2016). As a result, incorporating e-flows into water governance and man- 

agement is often viewed as a disruption to these already challenging human-oriented operations, especially in 

water-limited river basins (Gawne et al., 2018; Poff & Matthews, 2013). 

Water governance can either facilitate or inhibit the development and implementation of e-flows. In the Western 

US, for example, water rights generally follow the prior appropriation or “first in time, first in right” legal doctrine. This 

doctrine, which is based on the principles of priority and beneficial use, is a legacy of gold mining camps in California 

and Colorado that aimed to provide allocation rules in times of water shortages (Tarlock, 2001). Earliest water rights 

holders obtain priority, and subsequent rights holders are appropriated so long as they do not infringe on the water 

allotted for prior rights holders (Getches, 2009). Water rights holders must also use water for a beneficial use, which 

varies from state to state but commonly refers to agricultural, industrial, or municipal uses (Neuman, 1998). Prior 

appropriations rights are separate from land ownership and can thus be sold and transferred, whereas the riparian 

rights doctrine, which is more common in the Eastern US, states that water rights result from land ownership. Prior 
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appropriations are also responsible for allowing states to have sovereignty over their water rights, limiting the federal 

government's role in water governance (Tarrant V. Herrmann, 2013). E-flows are difficult to implement under a prior 

appropriations system because they have historically not been considered a beneficial use of water in many states. 

Many states in the western US (e.g., Arizona, California, Colorado, Montana, Nebraska, New Mexico, Oregon, and 

Idaho) have authorized statutes allowing new appropriations and transfers of water rights for e-flows, but some states 

still do not legally consider e-flows a beneficial use (e.g., Oklahoma, Kansas, and Texas; Loehman & Charney, 2011). 

Because of the limited ability for water to be allocated for environmental purposes in water-limited systems, leverag- 

ing the presence of threatened or endangered species or ecosystems often is the only legal and regulatory pathway for 

allocating water for e-flows (Harwood et al., 2018; Richter, 2010). In the US, for example, the Endangered Species Act 

(ESA) is the only authority or mechanism to implement e-flows. Many dams are operated by the US Army Corps of 

Engineers (USACE) for specific purposes enacted by Congress such as flood prevention, water supply, hydropower, nav- 

igation, and recreation (USACE, 1992). Consequently, water releases for e-flows are typically not authorized unless 

dam operations can be modified through federal law like the ESA (Warner et al., 2014). In groundwater aquifer sys- 

tems, however, e-flows are important for stream baseflows and aquifer recharging through sometimes complex 

groundwater–surface water interactions (de Graaf et al., 2019). Groundwater resources used for human societal uses 

like municipal water supplies and irrigation are valuable but are at risk due to overconsumption and lack of aquifer 

recharge (Famiglietti, 2014). As a result, many springs and streams that rely on groundwater for baseflows have lost this 

critical flow resulting in habitat loss and fragmentation for groundwater-dependent species (de Graaf et al., 2019; Fan 

et al., 2013). Because of the intensive reliance on groundwater resources for societal uses and treatment of groundwater 

as private property in some Western US states, the federal ESA is the only tool to regulate groundwater withdrawal and 

implement e-flows for groundwater-dependent springs and streams (Devitt et al., 2019). 

Establishing a legal basis for e-flows is a global challenge. Global biodiversity treaties and conventions like the 

Ramsar Convention on Wetlands (UNESCO, 2020) and Convention on Biological Diversity (United Nations, 2020) can 

provide legal mandates for e-flows. In Australia, for example, these initiatives provided much of the legal grounds for 

establishing e-flows through the 2007 Australian Water Act (Carmody, 2018; Hart & Doolan, 2017) which established 

the Murray-Darling Basin Plan that included measures for implementing e-flows (Pittock & Finlayson, 2011). We high- 

light two examples where the presence of threatened or endangered species resulted in the establishment of e-flows in 

Box 1. Section “Groundwater: Edwards Aquifer” in Box 1 highlights an example of establishing e-flows from groundwa- 

ter springs in the Edwards Plateau region of south-central Texas. Section “Surface water: Rio Grande/Rio Bravo” in 

Box 1 highlights an example of establishing e-flows to support the nearly extinct Rio Grande Silvery Minnow. 

 
 

2.2 | Fragmented water governance in transboundary water systems 
 

Transboundary water systems (river basins, lakes, aquifers, wetlands, etc., shared by two or more political entities) are 

complex socio-environmental systems that can exhibit outcomes on a cooperation–conflict spectrum (Munia 

et al., 2016; Zeitoun & Mirumachi, 2008). With approximately 276 transboundary river basins and 273 transboundary 

aquifer systems globally, the need for cooperative water management and conflict avoidance to ensure water sustain- 

ability for both humans and the environment is a significant global challenge (UNECE/UNESCO, 2015). In water - 

limited and climate change-impacted transboundary systems, water conflicts can spark easily and create wicked socio- 

environmental problems (Mianabadi et al., 2020). One of the six statements in the 2018 Brisbane Declaration and 

Global Action Agenda on Environmental Flows states that: “Implementation of environmental flows requires a comple- 

mentary suite of policy, legislative, regulatory, financial, scientific, and cultural measures to ensure effective delivery 

and beneficial outcomes.” This can be challenging in the context of transboundary water systems (Arthington, Bhaduri, 

et al., 2018). In terms of establishing environmental flows in transboundary water systems, coordination can be 

inhibited by two main factors. First, water management and authority are often distributed across many political juris- 

dictions and spatial scales, complicating any coordinated efforts to implement and maintain e-flows initiatives at a 

basin-scale (Brown & King, 2013; Fox & Sneddon, 2007; Porse et al., 2015; van der Zaag, 2007). Second, water resources 

are often fully allocated for societal uses due to scarcity and competition between entities, making it infeasible to 

reallocate or redistribute water for e-flows (Arjoon et al., 2016; Brown & King, 2013; Grey & Sadoff, 2007). 

The challenges facing e-flows implementation in transboundary basins are global in scale. For example, the con- 

struction of the Grand Ethiopian Renaissance Dam on the Blue Nile highlights an emerging water conflict in a trans- 

boundary river basin over e-flows. Negotiations on water delivery to Sudan and Egypt through environmental flow 
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BOX 1 Endangered species as mechanisms of environmental flows implementation 

 

Groundwater: Edwards Aquifer 
 

The Edwards aquifer (EA) system, which covers ~20,000 km2 in south-central Texas, is one of the most 

permeable and prolific carbonate aquifers in the US and a primary source of drinking water for the city 

of San Antonio (Figures 1 and 2). Under the Edwards Aquifer Authority (EAA)'s regulatory jurisdiction, 

there are eight federally listed threatened and endangered species dwelling in the EA and its major 

spring outlets, the Comal and San Marcos springs which include three species of macroinvertebrates, 

the Texas blind and San Marcos salamanders, the Fountain darter, and Texas wild-rice (EARIP- 

HPC, 2012; US Fish and Wildlife Service, 2015). These endangered species are managed by the EAA 

under a 15-year US Fish and Wildlife Service issued Incidental Take Permit (ITP) and an associated 

Habitat Conservation Plan (HCP) expiring in 2028 (US Fish and Wildlife Service, 2015). The HCP con- 

tains spring flow protection measures along with recommended minimum environmental flow rates of 

30 ft3/s (0.85 m3/s) at Comal and San Marcos springs. Additionally, the HCP implements four spring 

flow protection measures aimed at achieving the 30 ft3/s environmental flow threshold including a Vol- 

untary Irrigation Suspension Program Option (VISPO), an Aquifer Storage and Recovery (ASR) program, 

a Regional Water Conservation Program (RWCP), and tiered Critical Period management (CPM) 

pumping restrictions. This is an example of how the presence of endangered species was effectively used 

to implement spring flow protection measures that would not be possible due to Texas state law that 

treats groundwater as private property. 

 
 

Surface water: Rio Grande/Rio Bravo 
 

The Rio Grande silvery minnow is a small-bodied, pelagic broadcast spawning fish once native to the Rio 

Grande/Rio Bravo (RGB) and Pecos Rivers in the US and Mexico. It was listed as endangered under the US 

Endangered Species Act in 1994 after it was only found within 5% of its historical range in one 280 km reach of 

the RGB between Cochiti and Elephant Butte Reservoirs (Figure 3). Pelagic broadcast spawning fish like the sil- 

very minnow require long, undammed stretches of river with consistent flow to complete their life cycle where 

eggs passively drift downstream, and juveniles migrate back upstream (Archdeacon et al., 2018). As a result of 

the intense fragmentation and intermittent flows in the RGB river basin, silvery minnow populations have sig- 

nificantly declined. As part of the recovery plan for the silvery minnow, the US Fish and Wildlife Service 

(USFWS) focuses on population augmentation through hatchery rearing and rescuing and relocating stranded 

fish during times of intermittency and stream drying (Archdeacon, 2016; USFWS, 2010). However, some reser- 

voir releases from Cochiti reservoir have been used to help sustain the species. Supporting pelagic broadcast 

spawning species in water scarce rivers during critical periods like the seasonal spring snowmelt recession 

could greatly improve conservation outcomes for these species. 

 

 

 
 

releases from Ethiopia are still ongoing (Siddig et al., 2020). Another example of the global importance of e-flows in 

transboundary water systems is exhibited in the Hirmand river basin, which is shared among Afghanistan, Iran, and 

Pakistan. There is an ongoing conflict due to the drying of the Lake Hamoun wetland, which was listed as a wetland in 

danger in 1990 under the Montreaux Record of the Ramsar convention on Wetlands. Iran argues that human activ- 

ities in the upstream Hirmand river basin have resulted in failed water delivery below treaty amounts, while 

Afghanistan argues that the flow reduction is attributed to declines in precipitation (Mianabadi et al., 2020). We 

highlight how sharing water resources across boundaries can produce conflict, inhibit coordinated action, compli- 

cate water governance, and inhibit the implementation of e-flows using two case studies in the south-central US 

and northern Mexico (Box 2). Section “The Red River showdown” in Box 2 highlights a supreme court case 

between Texas and Oklahoma that set a precedent for the power of states to maintain sovereignty over rivers that  
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BOX 2 Fragmented water governance in transboundary river basins 

 

The Red River showdown 
 

The Red River Basin (RRB) in the south-central US follows a steep precipitation gradient, rising in intermittent, saline 

waters in New Mexico and the Texas Panhandle, eventually gaining flow in Oklahoma, Texas, Arkansas, and Louisi- 

ana, and emptying into the Mississippi and Atchafalaya rivers (Figures 1 and 4). In 1978, Oklahoma, Texas, Arkansas, 

and Louisiana signed the Red River Compact which divided the river into five reaches to equally apportion water. In 

the early 2000s, following droughts and a significant population growth in the Dallas-Fort Worth suburbs, Tarrant 

Regional Water District (Tarrant) in north Texas repeatedly attempted to purchase water from Oklahoma and the 

Chickasaw and Choctaw Tribal Nations, all of which were denied because Oklahoma prohibited the sale of out-of- 

state water at the time. In 2009, Oklahoma approved a statute that authorized sale of out-of-state water with some 

restrictions (Taylor, 2013). Tarrant then simultaneously applied for water permits to build a dam and pump water from 

the Kiamichi River, a sub-basin of the RRB entirely within Oklahoma's border and filed suit against Oklahoma antici- 

pating denial. Tarrant settled on this option because transporting and treating water from the Kiamichi would be 

cheaper than treating the highly saline waters above Lake Texoma on the mainstem of the river. Tarrant claimed that 

the Red River Compact allowed signatory states to cross state lines to divert water, while Oklahoma argued that each 

state is entitled to divert its full entitlement within its own boundaries (Johnson, 2013). The suit was taken up by the 

Supreme Court following appeals by Tarrant. The Supreme Court, in a unanimous decision, concluded that the Red 

River Compact did not grant signatory states a right to cross state lines to divert water from Oklahoma (Tarrant 

v. Herrmann, 2013). This decision could inhibit e-flows implementation in the basin because it creates a lack of coordi- 

nated effort between the states and a notion of competition to buy water rights. For example, of the 23 river basins in 

Texas, the RRB is one of four basins that have not adopted e-flows standards under the Texas Instream Flows Program, 

with no formal plans to pursue e-flows adoption in the basin by the state (TCEQ, 2015). 

 
 

Fragmented governance in the Rio Grande/Rio Bravo River basin 
 

The Rio Grande/Rio Bravo River basin (RGB) is a large (557,000 km2) transboundary river basin shared by the 

US and Mexico with a large population (~10 million people). Water governance is distributed over multiple juris- 

dictions and political scales (Figures 1 and 3) There are four water governance frameworks that guide water allo- 

cation and management in the RGB, including two interstate compacts (Rio Grande Compact and Pecos River 

Compact), and two binational agreements (1906 Convention and 1944 Water Treaty). Broadly, water infrastruc- 

ture has altered flow regimes, people view and normalize the river in fragmented reaches rather than a whole, 

and divided governance greatly complicates water management (Alo & Turner, 2005; Koch et al., 2019; 

Nava, 2018; Nava et al., 2016; Sandoval-Solis et al., 2019). This fragmentation across legal, biophysical, and socio- 

cultural systems poses significant implications and challenges for implementing e-flows as it requires interstate, 

binational, and stakeholder cooperation across many political jurisdictions, spatial scales, and use sectors. How- 

ever, there are few examples of isolated successes with implementing e-flows. In 2014, the National Water Com- 

mission (CONAGUA) of Mexico granted water rights for environmental use for the first time to several NGOs for 

application in Cuatro Ciénegas Valley, an important wetland biodiversity hotspot in the Chihuahuan desert 

(Ortega, 2020). In 2019, New Mexico issued the first e-flows water right to the Audubon Society (Tashjian, 2019). 

These actions opened opportunities for private water rights holders to lease or sell their water for e-flows. Despite 

these isolated successes, for any holistic, integrated e-flows initiative to occur basin-wide, there are many physical, 

sociocultural, and legal barriers to overcome. 

 

 

 
flow entirely within their borders, and section “Fragmented governance in the Rio Grande/Rio Bravo River basin” 

in Box 2 highlights the challenges of implementing e-flows in a transboundary river basin between the US and 

Mexico. 
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FIGURE 1 Our case studies cover two major river basins and one large aquifer in the South-Central United States and Northern Mexico 

 
 

 

FIGURE 2 Map showing the major features and case study topics in the Edwards aquifer 

 
 

2.3 | Declining water availability and increasing variability under climate change 
 
Climate change will impact e-flows implementation in water-limited river basins by both decreasing overall 

water availability and increasing the variability and timing of flows. Global temperatures have increased and 

are projected to increase further by the end of the 21st century (Vose et al., 2018). Projected increases in tem- 

perature could result in increased potential evapotranspiration and decreased runoff, surface water flow, aquifer 

recharge, groundwater levels, spring flows, and soil moisture. Decreased soil moisture is particularly detrimen- 

tal to e-flows, as it causes more arid conditions resulting in increasing frequency and intensity of drought con- 

ditions (Collins et al., 2013; Das et al., 2011; Fleming et al., 2018; Walsh et al., 2014) and can also shift the 

rainfall-runoff relationship which is important for regulating the timing and magnitude of e-flows (Saft 

et al., 2016). Projected temperature increases can also increase the amount of moisture required to reach satura- 

tion. As a result, the amount of moisture available for precipitation increases, resulting in an increase in the 
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FIGURE 3 Map showing the major features and case study topics in the Rio Grande/Rio Bravo river basin 

 

 
FIGURE 4 Map showing the major features and case study topics in the Red River basin 

 
 

frequency of heavy rain events (Easterling et al., 2017; Janssen et al., 2014, 2016). Flood events, while related to 

precipitation extremes, are not solely driven by precipitation. As such, the projected changes in flooding under 

climate change are much less certain (Walsh et al., 2014; Wehner et al., 2017). However, the projected changes 
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to temperature also indicate a projected increase in the frequency and severity of droughts across North Amer- 

ica, with increasing variability in precipitation events. This combination of the potential for both 

increased droughts and extreme flooding will impact the variability, timing, and magnitude of water available 

for e-flows. 

Changes to precipitation patterns because of climate change will also impact e-flows. For example, annual precipita- 

tion across the US has increased, but there is significant regional variation to the observed changes in seasonal precipi- 

tation (Easterling et al., 2017). General patterns for changes in precipitation suggest that precipitation across northern 

areas of the US will increase in spring, fall, and winter. In the south-central US, precipitation is projected to decrease 

across all seasons, especially during summer (Easterling et al., 2017). Observed declines in overall snow cover and a pro- 

jected northward shift in the rain/snow transition zone across the US, combined with increasing temperatures that 

result in earlier spring snowmelt will alter the quantity and timing of e-flows in snowmelt-driven rivers (Elias 

et al., 2015; Fleming et al., 2018; Fyfe et al., 2017; Klos et al., 2014; Luce et al., 2014; Rhoades et al., 2017). Together,  

these changes to temperature and precipitation will cause increased variability in the frequency and severity of 

droughts and the quantity and timing of seasonal flows, which could have detrimental impacts on aquatic biota such as 

fish, macroinvertebrates, and freshwater mussels that rely on specific temporal flows for their life histories (Hain 

et al., 2018). Additionally, this increased variation in flows and extremes will cause changes to temperature and dis- 

solved oxygen regimes in rivers and increase salinity in tidewater rivers (Gonzalez et al., 2018; Thompson et al., 2012; 

Zhao et al., 2018). 

Climate change is a global issue that is and will continue to alter the availability and variability of water in river 

basins around the world (Grantham et al., 2019). For example, the Murray Darling Basin of Australia now ceases flow 

to sea at its mouth 40% of the time compared with 1% under previous natural flows and often fails to meet e-flows tar- 

gets due to ongoing climate-driven droughts like the Millennium Drought and 2016–2020 drought (Ryan et al., 2021). 

One of the six statements in the 2018 Brisbane Declaration and Global Action Agenda states that: “Climate change 

increases the risk of aquatic ecosystem degradation and intensifies the urgency for action to implement environmental 

flows,” highlighting the global context and importance of climate impacts on e-flows (Arthington, Bhaduri, et al., 2018). 

Implementing e-flows requires incorporating, allowing, and adapting to variability and non-stationarity in hydrologic 

regimes (Horne et al., 2019; Poff, 2018). Box 3 highlights examples of climate impacts on e-flows in two river basins in 

the south-central and south-western US and northern Mexico. Section “Red River basin” in Box 3 highlights climate 

impacts on water resources in the RRB, and section “Rio Grande/Rio Bravo River basin” in Box 3 highlights climate 

impacts on seasonal snow melt in the RGB. 

 
 

2.4 | Lack of consideration of non-biophysical factors 
 

Humans and freshwater ecosystems have complex, interdependent relationships, and e-flows research continues to 

advance our understanding of these complex socio-hydrological systems (Anderson et al., 2019; Wesselink et al., 2017). 

Implementing e-flows effectively requires considering the social, political, and economic factors (i.e., local/cultural 

water use, knowledge, and traditions; public and political support; funding, etc.) in concert with traditional biophysical 

aspects (i.e., hydrographs, flow-ecology relationships, etc.; Arthington, Kennen, et al., 2018; Jackson et al., 2015). How- 

ever, despite this recognition of the need to incorporate social, political, and economic factors in e-flows frameworks, 

integration is still lacking (Anderson et al., 2019; Chappell et al., 2020). In water-limited systems, the challenge of 

addressing these factors is exacerbated because it involves balancing complex trade-offs between supporting freshwater 

ecosystem function through e-flows while not disrupting societal water needs. These trade-offs can drive a pervasive 

notion of conflict among the public, stakeholders, and water managers driven by water scarcity, which can create a sep- 

aration of social and environmental factors. This separation is also reinforced by water governance frameworks that 

delineate environmental water uses as separate from water with a “beneficial” or “productive” use (see Section 2.1), fur- 

ther inhibiting socio-hydrological integration (Davies et al., 2014; Koch et al., 2019; Tickner et al., 2017; Wineland, 

Fovargue, York, et al., 2021). 

Just as water scarcity drives conflict among competing water users, e-flows are often viewed as a rival water “user” 
to societal water uses in water-limited systems because e-flows approaches that seek to redistribute water or re-operate 

water infrastructure effectively construct the environment as another water “user” (Meza & Scott, 2016; O'Donnell & 

Talbot-Jones, 2018; Parker & Oates, 2016). While these approaches often are the only mechanism to implement e-flows 

due to the limitations of water governance frameworks (i.e., labeling e-flows as a beneficial or productive use, 
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BOX 3 Climate impacts on environmental flows 

 

Red River basin 
 

The impacts of climate change on water resources have been studied extensively in the Red River basin 

(RRB). Downscaled climate projections indicate considerable spatial variation in climate outcomes 

across future scenarios. While there is significant uncertainty in climate projections across different sce- 

narios, some consistent patterns suggest that eastern portions of the basin in Oklahoma, Arkansas, and 

Louisiana could see an increase in mean daily precipitation, while western portions of the basin in 

Texas and Oklahoma could see a 15% decline by 2100 (Bertrand & McPherson, 2018, 2019; Xue 

et al., 2016). Additionally, across future climate scenarios, mean daily minimum temperature is expected 

to increase by as much as 6oC–7oC by 2100. These potentially hotter and drier conditions across the 

basin will likely increase the frequency and severity of droughts and significantly complicate water 

resources management. For example, under current estimates of water availability, a 21% reduction in 

societal (i.e., agricultural, industrial, and municipal) uses is necessary to allocate sufficient water to e- 

flows (Zamani-Sabzi, Rezapour, et al., 2019). A growing population in the basin also highlights 

increased areas of water demand and water stress across different future climate scenarios (Zamani- 

Sabzi, Moreno, et al., 2019). Despite these challenges though, it can be feasible to implement e-flows at 

a subset of locations across the basin under future climate uncertainty if biodiversity conservation is a 

priority objective (Wineland, Fovargue, Gill, et al., 2021). Additionally, by jointly considering how water 

scarcity and future climate uncertainty vary independently by location, sites can be prioritized for strate- 

gic water investments to boost water availability (Fovargue et al., 2021). By incorporating climate uncer- 

tainty into e-flows planning and conservation prioritization frameworks, feasible targets can be 

identified as a preamble to broader-scale e-flows adoption approaches. 

 
 

Rio Grande/Rio Bravo River basin 
 

The upper branch of the Rio Grande/Rio Bravo River basin (RGB) largely depends on seasonal snowmelt from 

the Sangre de Cristo mountains in southern Colorado and northern New Mexico and contributes over 60% of 

flows to the Rio Grande. Climate change has already significantly impacted e-flows in the Rio Grande. 

Decreased streamflow trends were observed from 1980 to 2015 because of decreased snow accumulation in the 

Rio Grande headwaters (Rumsey et al., 2020, Figure 3). Future projections indicate that this declining trend will 

continue through the end of the century. While there is significant variability and uncertainty in climate projec- 

tions, most projections indicate declining annual streamflow in the upper Rio Grande, with some estimates 

showing up to a 72% reduction relative to historical baselines (Elias et al., 2015; Townsend & Gutzler, 2020). 

Similarly, in the middle Rio Grande (south-eastern New Mexico and west Texas), streamflow projections indi- 

cate significant uncertainty, including wet and dry extremes (Samimi et al., 2020). However, decreasing water 

quantity is only one factor. The timing of 7-day peak runoff is estimated to be 14–24 days earlier under future 

climate scenarios (Elias et al., 2015). Since some aquatic biota depend on the timing of seasonal events like peak 

runoff, earlier and lower magnitude e-flows could significantly impact these species. Overall, climate change 

has already decreased overall flows in the Rio Grande where increasing water demand will continue to stress 

aquatic ecosystems. 

 

 

 
 

Section 2.1), they reinforce competition between societal and environmental water needs. In most water-limited sys- 

tems, water scarcity/supply drives trade-offs between societal water uses and e-flows (Batchelor et al., 2014; Pittock & 

Lankford, 2010; Porse et al., 2015; Zamani-Sabzi, Rezapour, et al., 2019), but in some contexts, establishing e-flows has 

been shown to rarely encroach on societal water uses (Chen & Olden, 2017; Owusu et al., 2021). Ultimately, e-flows 

approaches should seek to integrate social, political, economic, and environmental factors to benefit both freshwater 
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ecosystems and societal water users in a manner that does not separate social factors or construct e-flows as just 

another water user. This need is reflected in two of the six statements in the renewed 2018 Brisbane Declaration and 

Global Action Agenda: “Implementation of environmental flows requires a complementary suite of policy, legislative, 

regulatory, financial, scientific, and cultural measures to ensure effective delivery and beneficial outcomes.” and “Local 

knowledge and customary water management practices can strengthen environmental flow planning, implementation, 

and sustainable outcomes” (Arthington, Bhaduri, et al., 2018). 

Regardless of whether water supply/consumption or distribution/management drive e-flows trade-offs in water lim- 

ited basins, there remain significant social, political, and economic barriers to implementing e-flows (Hirji & 

Davis, 2009; Le Quesne et al., 2010; Moore, 2004; Poff et al., 2017). For example, in the Red River basin, a lack of under- 

standing of what e-flows are, their benefits to society, funding, and communication, and pervasive views that societal 

water needs should take priority over environmental water needs among the public, water users, and water managers 

were all identified as barriers to implementing e-flows (Wineland, Fovargue, York, et al., 2021). Similar e-flows barriers 

related to social, political, and economic factors were identified in previous efforts (Harwood et al., 2018; Horne 

et al., 2017; Le Quesne et al., 2010; Moore, 2004). These barriers include a lack of communication, coordination, and 

public support; the absence of political will; insufficient funds, capacity, and expertise; multijurisdictional complica- 

tions; complicated regulatory frameworks; and institutional and regulatory mandates that can create conflicts of inter- 

est and shared resource conflicts (Hirji & Davis, 2009; Horne et al., 2017; Moore, 2004; Opperman et al., 2018). 

Ultimately, barriers to e-flows implementation are context-specific, dependent on the social, political, and economic set- 

ting of the system of interest (Harwood et al., 2018). 

For water-limited systems, the social, political, and economic challenges facing e-flows implementation can also 

intensify due to shared resource conflicts driven by increasing populations and water demand. While supply augmenta- 

tion strategies and river engineering through infrastructure and diversion projects has allowed populations to thrive in 

water-limited systems, the long-term sustainability of these river systems and the populations that depend on them is 

uncertain (Kibaroglu et al., 2017; Mekonnen & Hoekstra, 2016). For example, the states of Texas and Oklahoma expect 

an overall 22% and 33% increase in water demand under an expected 82% and 32% increase in population by 2060, 

respectively (Oklahoma Water Resources Board, 2012; Texas Water Development Board, 2012). In Mexico, the popula- 

tion living in the RGB basin is expected to increase by 12% by 2030. This means reducing renewable water availability 

per capita from 1019 m3/year to 894 m3/year, putting the population of the basin under water scarcity conditions 

(Estadísticas del agua en México, 2018). Because of these large increases in water demand driven by population growth, 

it is likely that less water will be allocated or available for e-flows based on existing water shortages. While there are 

many other factors that contribute to the feasibility of implementing e-flows, water availability can largely drive con- 

flicts. Box 4 highlights how a failure to consider non-biophysical factors can drive complex social perceptions of rivers 

and drive water conflicts. Section “Compact cognition in the Rio Grande/Rio Bravo basin” in Box 4 displays how differ- 

ent models of the social perceptions of water issues can be used to conceptualize complex socio-environmental water 

systems in the RGB basin. Section “Tribal water settlement in the Red River basin” in Box 4 discusses a water conflict 

in the RRB between the State of Oklahoma and several Tribal Nations to highlight the complexities of shared resource 

conflicts in water-limited systems and the cultural importance of e-flows. 

 
 

3 | ACTIONABLE RECOMMENDATIONS  
 

We developed three actionable recommendations for implementing e-flows in water-limited systems following our syn- 

thesis and building on previous work: (1) Modify or establish a water governance framework to recognize or allow e-flows. 

This is a necessary step to secure water rights or allocations for e-flows or ensure that e-flows can be considered a bene- 

ficial or productive use of water. (2) Strive for collaboration across political jurisdictions and social, economic, and envi- 

ronmental sectors. This is essential because e-flows initiatives that fail to involve all relevant parties or gain sufficient 

support risk being perceived as illegitimate by those who were side-lined. (3) Manage adaptively for climate change in e- 

flows planning and recommendations. This is necessary to ensure that e-flows implementation can successfully adapt to 

changing water availability under future climate conditions. These recommendations are actionable steps that decision 

makers, conservation practitioners, stakeholders, and policymakers can incorporate into e-flows assessments and imple- 

mentation plans. 
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BOX 4 Environmental flows in complex socio-environmental systems 

 

Compact cognition in the Rio Grande/Rio Bravo basin 
 

Because of the complexity of water management challenges like implementing e-flows, conceptualizing how 

social and environmental components link in these systems can help better understand the challenges and 

opportunities facing social–environmental systems. Koch et al. (2019) developed a conceptual model and an 

integrative geodatabase (Plassin et al., 2020) for the Rio Grande/Rio Bravo basin (RGB) to document and con- 

textualize “the social” in the RGB socio-environmental system. Through extensive ethnographic fieldwork, 

Koch et al. (2019) found that human perceptions of water issues in the RGB largely followed “compact 

cognition,” where individuals tend to ascribe water issues to water governance frameworks rather than the col- 

lective impacts of agricultural practices. Their work also highlights a conceptualization of the river as highly 

fragmented segments between major dams, which has important implications for understanding the context 

and complexity of water issues in the RGB. Overall, their work is an important first step in developing further 

socio-environmental models of the RGB and has important implications for implementing e-flows through 

gaining a better understanding of how humans conceptualize water governance and fragmentation of the RGB 

socio-environmental system. For example, an implementation approach might try to focus on hotspots for agri- 

cultural water use along specific river segments rather than a basin-scale approach due to perceptions of frag- 

mentation and tendency to attribute water issues to governance frameworks rather than the collective actions 

of agricultural water users. 

 
 

Tribal water settlement in the Red River basin 
 

The Oklahoma City metropolitan area's (OKC) growing population and water demand is highlighted 

through its complex water footprint across seven reservoirs and two pipelines spanning the Canadian and 

Red River basins. Aiming to increase its water security, OKC sought to tap water from an eighth reservoir, 

Sardis, on the Kiamichi River in Southeast Oklahoma (Figure 4). In 2011, the Chickasaw and Choctaw 

Tribal Nations filed a federal lawsuit against this proposed pipeline citing their treaty rights to control and 

sustainably manage the water within their boundaries. After years of conflict and litigation, all parties 

(OKC, State of Oklahoma, Chickasaw Nation, and Choctaw Nation) came to an agreement in 2016. The 

overall outcomes under the agreement follow that the State of Oklahoma was granted the administrative 

and statutory authority over water in south-eastern Oklahoma, and in return agreed that the Chickasaw 

and Choctaw Nations have preferential water rights and management protections. These standards include 

measures regarding water conservation, lake levels, and e-flows to sustain streams of significant cultural, 

ecological, and recreational values (Oklahoma Water Unity Settlement, 2016). The agreement was 

described as an “acceptable compromise,” but it does highlight a historic and successful resolution to a 

long-standing water conflict that preserves the cultural and ecological importance of e-flows for the Chick- 

asaw and Choctaw Nations. Most of all, the agreement highlights successful cooperation between parties 

that have been at odds for many years. 

 
 

3.1 | Modify or establish a water governance framework to recognize or allow e-flows 
 

Understanding the types of water policy instruments available for implementing e-flows is key for addressing the bar- 

riers and facilitating factors to their implementation. There are four types of water policy instruments. The first is com- 

mand and control, where a national regulator enforces control over water resources. This water policy is currently 

implemented in Israel, where water scarcity has largely driven this institutional arrangement (Marin et al., 2017). The 

second is water markets (Coase, 1960), where water rights are privatized and can be transferred, leased, and traded. 

This water policy is currently implemented in Australia, Chile, and other countries (Bauer, 2004; Docker & 

Robinson, 2014). The third is water pricing (Pigou & Aslanbeigui, 2017), where water extractions are taxed to minimize 
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negative environmental externalities. This water policy instrument is currently implemented in the European Water 

Framework Directive (Albiac et al., 2020). The fourth is collective action based on stakeholder cooperation, where rules 

and enforcement mechanisms are designed by stakeholders (Ostrom, 2010). When water is managed as a common 

good, stakeholders' cooperation seems to be the inescapable driver for achieving the collective action of implementing 

e-flows in basins, where command and control and economic instruments could be only ancillary tools for more sus- 

tainable water management. To achieve this “institutional” cooperation, Ostrom (2010) provides several design princi- 

ples that enhance collective action outcomes. Four of these design principles seem essential for the sustainable 

management of e-flows: user and resource boundaries, user monitoring, system-wide monitoring, and minimum rights 

for local self-organization (Ma'Mun et al., 2020). 

Reflecting the recommendation of Harwood et al. (2018) to “Enact clear and effective legislation and regulation…” to 
facilitate e-flows implementation, we suggest that e-flows planners seek to identify, modify, or establish a water governance 

framework to recognize or allow e-flows. In water-limited systems, water governance frameworks often inhibit e-flows 

implementation through priority given to human uses, lack of a legal basis to allocate water for the environment, and insti- 

tutional and regulatory mandates that prevent dam re-operations or the purchase of water for e-flows (Opperman 

et al., 2019; Pahl-Wostl et al., 2013). To facilitate e-flows implementation, e-flows planners should work with stakeholders 

and policymakers to modify or establish water governance frameworks to facilitate e-flows allocations. A clear mandate 

within the water governance framework or goals for a target program could provide practitioners with the structures and 

tools to successfully implement e-flows. In our focal region, a water market or collective action-based approach could be 

most feasible to achieve wider e-flows implementation. For example, water markets exist in Texas in the EA, where perma- 

nent transfers and lease markets exist and in the Texas portion of the RGB, where this market has facilitated a shift from 

low to high-value crops (Debaere & Li, 2020; Montginoul et al., 2016). However, water purchases for environmental flows 

are not considered in these markets. In the Red River basin, collective action might be the most feasible approach to achiev- 

ing e-flows implementation because of the complex socio-political factors that have inhibited progress towards e-flows imple- 

mentation (Boxes 2 and 4, Ostrom, 2010; Wineland, Fovargue, York, et al., 2021). Ultimately, the barriers, challenges, and 

implementation success of e-flows will depend on the unique social, political, economic, and environmental context of each 

system—there is no catch-all approach (Harwood et al., 2018; Le Quesne et al., 2010). 

While attempting to legitimize e-flows in water governance frameworks is difficult and challenging, there are 

few examples of successes and hardships highlighting the difficulties of this implementation route. In all three of 

our case studies, a clear lack of authority or legitimacy to establish e-flows was/is present. In the RRB, for exam- 

ple, there remains no authority to implement e-flows except for base flow requirements at one reservoir sparked by 

the Oklahoma Water Unity Agreement (Box 4). Here, failure to legitimize e-flows can be traced to the legacy of 

the prior appropriations water doctrine, and socio-political views that water for humans is more important than 

water for the environment (Wineland, Fovargue, York, et al., 2021). However, in Oklahoma, a senate bill was 

recently introduced that calls for studies to establish e-flows in a select few rivers and streams in the eastern por- 

tion of the state to “maintain the functions and resilience of freshwater stream systems and the needs of communi- 

ties that depend on the healthy ecosystems” (SB109, 2021). This bill shows promise for the possibility of 

establishing e-flows in the basin, and even calls for voluntary and incentive-based mechanisms to facilitate water 

re-allocation from water rights holders. However, an older version of this bill died in the state legislature in 2019, 

highlighting the socio-political hurdles e-flows implementation faces in this river basin (H.B. 1403, 2019). In the 

RGB, e-flows legitimacy emerged through several different routes. For example, in the Mexican portion of the 

basin, e-flows authority emerged from modifying the role of CONAGUA, Mexico's National Water Commission 

(Box 2). In New Mexico, the legislature enacted the Strategic Water Reserve (SWR) which “allows water or water 

rights to be designated for public purposes” (New Mexico Office of the State Engineer, 2020). As of January 2018, 

three leases were signed and four purchase agreements were executed for a total of 1,355,595 cubic-meters of water 

above Elephant Butte and 1,952,599 cubic-meter for the Pecos River, largely to protect endangered species like the 

Rio Grande Silvery Minnow discussed in Box 2 and the Pecos Bluntnose Shiner (New Mexico Office of the State 

Engineer, 2018). In the EA, low flows from springs resulted in “take” of listed species under the federal Endan- 

gered Species Act. This sparked the transition from “rule of capture” water law, where groundwater can be with- 

drawn infinitely by property owners, to a hybrid permit system governed by the Edwards Aquifer Authority 

(Box 1; Votteler, 2001). However, this water law transition faced significant legal hurdles, first by Sierra Club 

v. Babbitt (1993), and then through the last-minute creation of the Edwards Aquifer Authority by the Texas Legis- 

lature to avoid federal intervention (EAA Enabling Act, 1993). 

14 of 24 WINELAND ET AL. 

2
0

4
9

1
9

4
8
, 2

0
2

2
, 1

, D
o

w
n

lo
ad

ed
 fro

m
 h

ttp
s://w

ires.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/w

at2
.1

5
6
5

 b
y

 O
k
lah

o
m

a S
tate U

n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [0

7
/0

3
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le

 C
reativ

e C
o

m
m

o
n

s L
icen

se 



 

3.2 | Strive for collaboration across political jurisdictions and social, economic, and 
environmental sectors 

 
Implementing e-flows requires collaboration among all relevant parties—policymakers, water managers, water users, 

natural resource managers, scientists, and populations—and across political jurisdictions and spatial scales 

(Arthington, Bhaduri, et al., 2018; Pahl-Wostl et al., 2013). Indeed, previous work has identified a lack of communica- 

tion and collaboration among stakeholders as a major barrier (Hirji & Davis, 2009; Le Quesne et al., 2010; 

Moore, 2004), and collaboration and leadership as a critical enabling factor that supports successful e-flows implemen- 

tation (Harwood et al., 2018). Water management in water-limited systems can be fragmented among entities that fail 

to communicate and collaborate effectively. As a result, basin-scale approaches that cross jurisdictional boundaries will 

require stakeholder and interagency collaboration or non-governmental organizations that can bridge these coordina- 

tion barriers (Opperman et al., 2019). For other types of conservation actions (e.g., terrestrial preserve design and dam 

removal), large-scale coordination of investments has been shown to be dramatically more cost-effective than local- 

scale, piecemeal decision-making (Kark et al., 2009; Neeson et al., 2015; Roy et al., 2018). At times, local conservation 

organizations can even receive the greatest benefit within their region by allocating resources beyond their focal area 

(Milt et al., 2017). These examples underscore the potential economic and environmental benefits of large-scale coordi- 

nation of investments in e-flows. 

Indeed, existing partnerships illustrate how cross-sector collaboration can facilitate e-flows implementation. For 

example, the EA's Habitat Conservation Plan highlighted in Box 2 was a collaborative effort among three cities, two 

water management agencies, and a stakeholder group representing 23 public, private, and non-profit interests. With 

growing interest and recognition of the need to implement e-flows, overcoming coordination challenges is necessary to 

facilitate this shift in water management. Another example of collaboration among public and private institutions is the 

Sustainable Rivers Program (SRP), a partnership between The Nature Conservancy and the US Army Corps of Engi- 

neers (USACE). The SRP is arguably the largest cooperative e-flows program in the US, with e-flows successfully 

implemented at 24 federal dams in 13 rivers as of 2020, and 71 additional sites advancing through the program's process 

(John Hickey, personal communication, April 23, 2021). These include two advancing proposed sites (Pecos River in 

New Mexico, Kiamichi River in Oklahoma) and one incorporated site (Big Cypress Bayou/Caddo Lake) within our focal 

region (TNC, 2019). The SRP focuses on identifying flow requirements and modifying USACE dam operations proce- 

dures to implement e-flows. Despite USACE dams having strict federal mandates authorized by the US Congress 

(i.e., flood prevention, water storage, hydropower, etc.), with limited ability to re-allocate water, the SRP has been suc- 

cessful at implementing e-flows across river basins in the US within the operational flexibility of each dam (Warner 

et al., 2014). In Mexico, the Rio Bravo Basin Council (RBBC), which started in 1999 as a public venue for discussing 

water management challenges in the Mexican portion of the RGB, is a central entity for guiding e-flows adoption. The 

RBBC is comprised of many stakeholders across many sectors and is now currently planning to incorporate e-flows in a 

new water allocation framework for Mexican water users (Sandoval-Solis et al., 2019b). However, stakeholder inclusion 

is not always successful, and can be difficult to garner adequate support and achieve equitable outcomes. For example, 

in the RGB, because water demand often exceeds supply and intended water deliveries can face uncertainty, there is 

low motivation among stakeholders to support e-flows. Indeed, the International Boundary and Water Commission 

(IBWC), which applies the boundary and water treaties of the US and Mexico, notes that stakeholder perspectives dras- 

tically differ between the US and Mexico. Stakeholders in the US, particularly those in Texas, argue that the timing and 

uncertainty of Mexico's water delivery has resulted in ineffective use and management of water, whereas Mexican 

stakeholders argue that they are complying with the cycle provided for in the 1944 Water Treaty (CRS, 2018). These 

divergent perspectives have perpetuated notions of conflict and inequity, inhibiting coordination on e-flows. 

 
 

3.3 | Manage adaptively for climate change in e-flows planning and recommendations 
 

Climate change uncertainty and variability greatly complicates water management planning and hinders e-flows imple- 

mentation. An additional dimension of this challenge involves planning for uncertainty and non-stationarity in climate 

conditions, hydrologic flow regimes, and socio-economic conditions (Cosgrove & Loucks, 2015; Poff, 2018; Riahi 

et al., 2017; Rissman & Wardropper, 2021). Previous work has identified an overreliance in water policy and decision 

making on assumptions of stationary reference hydrologic or climate conditions that are no longer relevant (Kopf 

et al., 2015; Milly et al., 2008; Radeloff et al., 2015). Reflecting the recommendations of Harwood et al. (2018) to 
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“Monitor ecological, social and economic outcomes of e-flow implementation and manage adaptively”, and Arthington, 

Bhaduri, et al. (2018) to “…adapt existing approaches to maintain/restore ecological resilience and societal benefits”, we 

recommend e-flows planners manage adaptively for climate change as they seek to expand and accelerate e-flows 

implementation. Balancing the trade-offs between human water security and e-flows under climate uncertainty and 

non-stationarity is a significant challenge (Crespo et al., 2019). However, these risks can be minimized by taking an 

adaptive management approach to e-flows (Sordo-Ward et al., 2019; Watts et al., 2020; Webb et al., 2018). Adaptive 

management allows practitioners to be inclusive of climate and, subsequently, water resources uncertainty and respond 

to these changes in resource availability (Webb et al., 2017). Broadly, adaptive management follows a cyclical process 

consisting of four steps: plan, do, monitor, and learn (Allan & Watts, 2018). However, implementing an adaptive man- 

agement plan that adequately incorporates climate change and minimizes political risks can be a significant challenge,  

as Australia's Murray-Darling Basin Plan exemplifies. Here, water and public policy professionals indicate that hostile 

climate politics, particularly climate change denialism and overstating uncertainty, shaped water policy options that 

were adopted (Alexandra, 2020). Ultimately, this contributed to the Basin Plan relying on assumptions of stationarity 

that fails to appropriately address future climate risks (Alexandra, 2018). 

With the considerable impacts and uncertainties associated with water management in the case studies presented 

here and across water-limited systems, e-flows assessments, and adaptive management plans could ultimately reveal 

that it might not be feasible to implement e-flows at large spatial scales across water-limited systems (Zamani-Sabzi, 

Rezapour, et al., 2019). Rather, smaller-scale projects that target specific river reaches or catchments with high conser- 

vation priority like those in TNC's Sustainable Rivers Program or other dam re-operation projects might be more appro- 

priate and feasible to implement (Opperman et al., 2019; Warner et al., 2014; Wineland, Fovargue, Gill, et al., 2021). 

Further, adaptive management approaches could reveal trade-offs between short-term agreements and long-term eco- 

system protection. For example, if adaptive management creates short-term agreements based on projections of water 

availability, this could potentially break down some socio-political barriers because involved parties are not locked into 

long-term agreements. However, these short-term agreements could threaten long-term conservation goals if climate 

change alters water availability or consumptive demand increases due to population growth. With few studies on how 

climate change and adaptive management influences the successful implementation, monitoring, and management of 

e-flows, future research should seek to study these factors and the trade-offs presented by adaptive management. 

 
 

4 | CONCLUSION 
 

The recommendations and examples across the presented case studies highlight both the importance and challenge of 

implementing e-flows in water-limited systems. Many intersecting social, political, economic, and environmental factors act 

as significant barriers to e-flows implementation. Trade-offs between human water security and freshwater biodiversity will 

be a persistent challenge in water-limited systems with growing populations and decreasing water availability. While our 

case studies present few examples of successful implementation through piecemeal, ad hoc approaches, these small successes 

highlight a growing interest and recognition of the importance of e-flows while displaying the importance of self- 

organization for finding sustainable management strategies. Transitioning to larger-scale strategic conservation frameworks 

is necessary to slow the dramatic decline of freshwater biodiversity, but conservation practitioners must also consider the 

contexts in which environmental flow recommendations are being made by considering the trade-offs between human and 

environmental water needs and where it is most feasible to implement e-flows. Accordingly, we reflect and build on existing 

work to provide three recommendations for conservation practitioners and policymakers aiming to implement e-flows initia- 

tives in water-limited systems around the world. These recommendations draw from lessons in three water-limited systems 

but can be scaled up to water-limited systems globally as they face similar challenges. 

 
ACKNOWLEDGMENTS  

The authors would like to thank the South-Central Climate Adaptation Science Center for facilitating this work 

through the Water Resources Community of Practice. 

 
CONFLICT OF INTEREST  

The author has declared no conflicts of interest for this article. 

16 of 24 WINELAND ET AL. 

2
0

4
9

1
9

4
8
, 2

0
2

2
, 1

, D
o

w
n

lo
ad

ed
 fro

m
 h

ttp
s://w

ires.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/w

at2
.1

5
6
5

 b
y

 O
k
lah

o
m

a S
tate U

n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [0

7
/0

3
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le

 C
reativ

e C
o

m
m

o
n

s L
icen

se 



 
 

AUTHOR CONTRIBUTIONS 

Sean Wineland: Conceptualization (equal); funding acquisition (equal); investigation (equal); methodology (equal); 

project administration (equal); resources (equal); supervision (equal); visualization (lead); writing – original draft 
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