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ABSTRACT

Spatiotemporal heterogeneity in soil CO, efflux
(Fs) underlies one of our greatest gaps in under-
standing global carbon (C) cycles. Though scientists
recognize this heterogeneity, Fs sampling schemes
often average across spatial heterogeneity or fail to
capture fine temporal heterogeneity, and many
ecosystem models assume flat terrain. Here, we test
the idea that simple, remotely sensible terrain
variables improve regression models of spatiotem-
poral variation in Fs. We used automatic chambers
that, for the first time, capture Fs in complex
temperate forest terrain at fine temporal resolution
with 177,477 hourly Fs measurements at 8 loca-
tions from ridgetop to valley along planar and
swale hillslopes, across three years ranging from
dry to record wet precipitation. In two of these
years, we measured Fs weekly at 50 additional
locations distributed across the 8-ha catchment.
Growing season Fs estimates were 1.25 times
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greater when sampling hourly versus weekly. At
ridgetops, growing season Fg increased by an
average of 463 gCm 2 180 day ' (75.9%) from
dry to wet years, while valleys decreased by
208 gC m ? 180 day ' (— 20.1%). This bidirec-
tional response to interannual moisture was iden-
tified in distinct Random Forest models of Fs for
convergent (water accumulating) or non-conver-
gent (water shedding) hillslope positions. We
hypothesize that different Fg constraints drive these
opposing responses—water availably to biota limits
Fs from ridgetops while slow oxygen diffusion
limits Fs from wet valleys. Accounting for hillslope
position and shape reduces variance of Fg estimates
in complex terrain, which could improve Fg sam-
pling, C budgets, and modeling.

Key words: topography; soil CO, efflux; soil res-
piration; climate variability; critical zone; complex
terrain.

HiGHLIGHTS

e Simple terrain metrics of hillslope position and
shape reduce variance in Fg estimates

e Ridgetop Fs was highest in a wet year, while
valley floor Fg was highest in a drought
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e Growing season Fg estimated from hourly sam-
pling was about 1.25x greater than from weekly
sampling

INTRODUCTION

Soil CO, efflux (Fs), the release of CO, from soils to
the atmosphere, is the second largest flux in the
global carbon (C) cycle (Friedlingstein and others
2020). An estimated 90 Pg CO,-C diffuse from soils
to the atmosphere each year, roughly 10 times
larger than annual global anthropogenic CO,
emissions (Schlesinger and others 2013), and
potentially increasing at a rate of about
0.1 Pg C year ' (Bond-Lamberty and Thomson
2010; Hashimoto and others 2015). Despite its
importance, the land surface exchange of CO, with
terrestrial ecosystems bears the largest uncertainty
bounds in current global C budgets (Todd-Brown
and others 2013; Friedlingstein and others 2014).
In fact, Fg is often estimated as a residual from
other, better-known variables in the global C
budget (for example, Le Quéré and others 2016).
Spatial heterogeneity contributes to the uncer-
tainty in Fs. Although Fs has been measured
extensively in the past century (Jian and others
2021), these point measurements are scaled to
ecosystem, landscape, or global estimates using
modeling frameworks that assume flat terrain (for
example, Dai and others 2004; Mao and others
2016): an assumption violated by over 50% of the
global land surface (Rotach and others 2014). Areas
of complex terrain can be significant terrestrial
sinks of atmospheric CO,; for example, Reyes and
others (2017) estimate about 15% of C sequestra-
tion in the conterminous US occurs in topograph-
ically complex areas. Complex terrain influences
soil temperature, as well as the lateral distribution
of water, sediments, nutrients, and C, all of which
may influence Fs. Research from the Susquehanna
Shale Hills Critical Zone Observatory (CZO) (where
our field site is located) revealed significant rela-
tionships between topography and soil organic C
storage (Andrews and others 2011), soil pCO,
(Hasenmueller and others 2015; Hodges and others
2019), and aboveground and belowground tree C
storage (Smith and others 2017; Orr 2016). This
complements a growing body of evidence linking
topography to the spatial distribution of C fluxes
(for example, Pacific and others 2011; Shi and
others 2018; Smeglin and others 2020) and the
response of these fluxes to climatic changes (for
example, Riveros-Iregui and McGlynn 2009; Ber-
ryman and others 2015; Reyes and others 2017).

Despite the significance of topography as a
mediator of C cycling, explicit study of Fg in com-
plex terrain remains limited. The only thorough
case studies we are aware of were in the US Rocky
Mountain range (for example, Pacific and others
2008; Riveros-Iregui and McGlynn 2009; Riveros-
Iregui and others 2012; Berryman and others
2015). At these sites, lateral redistribution of soil
water from non-convergent (water shedding) to
convergent (water accumulating) areas led to
bidirectional responses of Fs to interannual pre-
cipitation variability: landscape positions receiving
high drainage had higher cumulative Fs in a
drought year, whereas positions with low drainage
had higher Fs in a non-drought year (Riveros and
others 2012). Although such work has provided a
nascent understanding of mechanisms underpin-
ning Fs variability across climate and topography,
the pervasiveness of complex terrain on the global
land surface calls for expanded exploration beyond
these (sub)alpine ecosystems (Reyes and others
2017). For example, the idea that soil saturation
decreases Fs is well established in laboratory incu-
bations and wetlands (for example, Doran and
others 1991). Yet very few field studies identify
which upland areas may be impacted by this pro-
cess and to what extent. Additionally, many Earth
System Models do not capture the lateral redistri-
bution of water that drives these patterns (Clark
and others 2015).

New understanding of Fg in complex terrain may
be advanced by higher temporal resolution data.
The spatial distribution of soil moisture can change
rapidly in complex terrain as preferential flow
paths redistribute rainwater. For example, at the
Shale Hills CZO, preferential soil water flow paths
cause high moisture following rain events to be
fleeting on ridgetops and planar slopes as water is
drained to convergent landscape positions in swales
and the valley floors (Lin and others 2006). These
rainfall events rapidly alter soil pCO, at Shale Hills
(for example, Hodges and others 2019) and Fs in
other forests in complex terrain (for example,
Riveros-Iregui and others 2008). Thus, rainfall
events can change Fs within sub-weekly time-
scales, with the magnitude and lag time of response
related to topographic positions (Petrakis and oth-
ers 2017; Riveros-Iregui and others 2008). Yet,
with so few high temporal resolution Fs measure-
ments, we lack a generalized understanding of how
topography mediates the Fs response to moisture
change. It is possible that a unit change in soil
moisture produces the same change in Fs at a rid-
getop and a valley floor, but this assumption has
rarely been tested, and it may be wrong for soils
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that remain saturated. For example, extended
anaerobic conditions in convergent areas may lead
to lower Fs at a given soil moisture than non-
convergent areas with brief saturation.

There are inherent tradeoffs between temporal
and spatial resolution when designing sampling
schemes of Fg in complex terrain (Lovett and others
2005). Explorations of Fgs across topographic gra-
dients often use manual chambers, allowing for
many replicates across space (for example, Riveros-
Iregui and others 2012; Savage and Davidson
2001). However, collecting and processing samples
from manual methods is labor intensive, which
leads to sampling frequencies rarely finer than
weekly (Riveros-Iregui and McGlynn 2009; Riv-
eros-Iregui and others 2012) and, more often, as
low as fortnightly (Berryman and others 2015) or
monthly (Hanson and others 1993; Wang and
others 2019; Jiang and others 2020). Further,
manual sample collection typically excludes
nighttime fluxes (for example, Hanson and others
1993; Riveros-Iregui and McGlynn 2009; Riveros-
Iregui and others 2012; Berryman and others 2015;
Wang and others 2019; Jiang and others 2020).
Thus, while manual methods may capture spatial
heterogeneity in Fg at longer timescales (Savage
and Davidson 2003), they miss the fine temporal
responses.

By contrast, automatic chambers enable contin-
uous Fg observations at hourly or sub-hourly
temporal resolutions that capture nighttime fluxes
and short-term responses to rain (Savage and
Davidson 2003; Ruehr and others 2009; Gorres and
others 2016). While automatic chambers have been
increasingly used to measure Fs, many of these
studies do not explicitly consider topographic
variation (Makita and others 2018; Courtois and
others 2019). Studies that do consider topography
have often been limited in execution, such as one
automatic chamber (Ruehr and others 2010) or one
year of measurement (Liu and others 2006; Ruehr
and others 2010; Tian and others 2019), with
notable exceptions focused on tropical forests or
plantations (Rubio and Detto 2017; Yan and others
2019). Overall, automatic chambers remain an
underutilized tool in identifying the timing of spa-
tial controls on ecosystem-level Fg that may be
necessary for scaling Fs responses to global change.

In this study, we present one of the first multi-
year, continuous datasets of Fs in a temperate
deciduous forest in complex terrain. Within this
dataset, we analyze Fs across three years repre-
senting a gradient from drought to record precipi-
tation. We use these data to ask: how does
topography influence the response of Fs to inter-

annual precipitation variability? We hypothesize
that (1) adding terrain variables to standard soil
temperature and moisture predictors will explain
significantly more variance in estimates of growing
season and daily Fs across climate variability, and
(2) automated chamber methods will provide the
same Fs estimates as manual sampling when
aggregated to the growing season temporal scale
and catchment spatial scale.

METHODS
Site Description

We designed our soil CO, efflux (Fs) sampling
scheme to capture topographic variability (Fig-
ure 1) in the Shale Hills watershed (40°40'N,
77°54'W) of the Susquehanna Shale Hills Critical
Zone Observatory (He 2019). The Shale Hills
watershed is a small (0.08 km?), forested, first-or-
der catchment underlain by Rosehill shale bedrock.
Catchment topography includes steep planar slopes
alternating with areas of convergent flow, known
as swales (Brantley and others 2018). This con-
vergence influences productivity in the mature
oak-dominated (Quercus sp.) deciduous broadleaf
forest, with evidence of greater aboveground car-
bon uptake and storage in swales and valley floors
compared to ridgetops and planar slopes (Smith
and others 2017). Hillslope curvature and position
also drive soil carbon, texture, and depth, with
valley floor positions having deeper and wetter
soils with a greater clay content than the ridgetop
soils (Lin and others 2006; Supplemental Table 1).
We sampled across convergent (swale) and non-
convergent (planar) slopes, as well as positions
along these hillslopes (ridgetop, midslope, and
valley floor, by elevation). Though the landscape
can also be considered a continuous variable (for
example, Riveros-Iregui and McGlynn 2009), we
use these categories as one approach to define
replicates, discuss trends across topography, and
propose a method for upscaling Fs in global models.
Overall, this sampling design enables us to analyze
Fg within nested scales: at the level of chambers, of
landscape positions, and by the presence or absence
of convergent flow.

Shale Hills has a humid continental climate with
a mean annual temperature of 10 °C and mean
annual precipitation of 1050 mm (NOAA 2007).
However, annual precipitation from 2016 to 2018
deviated from this average: 2016 was a drought
year at 719 mm, 2017 was near average at
988 mm, and 2018 was a wet year at 1275 mm
(Xiao and Li 2018). Put in a state historical context,
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Figure 1. Location of soil CO, efflux (Fs) measurements along elevation map of Shale Hills with 2-m topographical
contoured lines. Fs was measured at four landscape positions: ridgetops (yellow), planar midslopes (green), swales (blue),
and valley floors (gray). Measurements were collected using both automatic chambers (where squares represent the soil
collar) and manual methods (where circles represent the 10-m-diameter circular macroplots, within which were three soil

collars averaged to the macroplot scale).

2016 was the second driest year in Pennsylvania in
the last two decades and 2018 was the wettest year
on record (NOAA 2021). We targeted our analyses
across these three years to explore the response of
Fs to rapid and significant change in interannual
water availability.

Automatic Soil CO, Efflux Collection

Fs was measured hourly in two replicates across
four landscape positions (ridgetop, planar midslope,
swale midslope, and valley floor) using an auto-
mated soil respiration instrument, the LI-8100A
Soil CO, Flux System (LI-COR Biosciences Inc.,
Lincoln, NE, USA). Two LI-8100A Flux Systems
were each linked to four opaque long-term soil
respiration chambers (8100-104) fitted to a LI-8150
Multiplexer. These chambers measure Fs by closing
over a soil collar installed to ~ 5 cm depth and
continuously calculating the change in CO, con-
centrations within the chamber over 120 s, allow-
ing 20 s for chamber closure, 30 s as a ““dead band”’
to reach steady mixing immediately after closure,
and 30 s after measurement for air to purge sam-
pling lines of moisture. After completing the mea-
surement, the chamber moves 180° from the soil
collar to preserve the natural CO, gradient between
soils and the atmosphere. Data were downloaded
approximately weekly, at which time we removed
any plant growth within the chambers and debris
that could affect the chamber’s closure. Otherwise,
all new litter inputs were allowed to accumulate in
the collars. Measurements were stopped prior to
forecasted snowfall to avoid damaging the auto-
mated systems. Samples were taken every hour

from July 2015 to December 2018 which, when
accounting for missing data from technical issues
and inclement weather, led to a total of 177,477
observations. This base dataset is publicly available
through COSORE (Bond-Lamberty and others
2020).

Fs was estimated using SoilFluxPro software
(version 4, LI-COR Biosciences). Fs was calculated
as both an exponential and linear regression of CO,
concentration in the chamber over time. The best-
fitting model was determined by comparing the
regression coefficient (R?) and the normalized sums
of the squares of the residuals for both fits. All
calculations discarded the first 30 s of the CO,
concentration curves to account for disturbances of
soil surface pressure from the chamber movement
(Courtois and others 2019).

Fg estimates from the base dataset were removed
using the following quality control pipeline: (1)
incomplete entries (n = 1506); (2) fluxes that had a
best-fitting regression between time and CO, con-
centration with an R? < 0.90 (1 = 13,394) as per
literature precedent (Courtois and others 2019;
Savage and others 2014); (3) entries with known
problematic data according to the field technician
error log (n = 1264); and (4) entries with physically
implausible  values  (fluxes < —1 or > 50
pmol m~2 s~y (1 = 34). Additionally, fluxes that
were £ 5 pmol m 2 s~' from adjacent observa-
tions were flagged as ‘“‘spikes”” (Rubio and Detto
2017). The regression between time and CO, con-
centration for each ‘“‘spike”” was individually re-
viewed and removed if there was evidence of
measurement errors (n = 479), such as implausibly
high starting CO, concentrations (suggesting that
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not enough time elapsed between chamber closings
to preserve the CO, concentration gradient) or er-
ratic concentrations (suggesting an improper seal
between the chamber and soil collar). After fol-
lowing these criteria, 90.6% of original flux mea-
surements were retained (Figure 2).

Manual Soil CO, Efflux Collection

Fs was manually measured weekly to biweekly in
2016-2017 between 0900 and 1400 h because
prior research suggested this time window may
minimize diel effects (Davidson and others 1998).
Measurements were collected at 50 macroplot sites
(Figure 1) spanning ridgetops (# = 7), planar mid-
slopes (n =21), swale midslopes (7 =13), and
valley floors (n = 9). Within these 10-m diameter
circular macroplots, Fs was measured at three soil
collars with the same LI-COR 8100 analyzer used
for continuous observations. At each sampling
time, soil collar Fs was averaged to the macroplot
scale to account for spatial autocorrelation. Spatial
measurements were checked for quality, such that
values indicating a malfunction (that is, unrea-
sonable chamber temperature, initial CO,, or
pressure, etc.) were removed. We calculated
growing season estimates as a linear interpolation
between daily observations (for example, Pacific
and others 2008), which were summed for the
180 days between May 9 to October 15 (the earliest
and latest sampling dates found in both years).

Co-located Timeseries and Geospatial
Data

To understand controls on Fs, we leveraged co-lo-
cated time series data available from the Shale Hills
CZO (https://czo-archive.criticalzone.org/shale-hill
s/data/datasets/). For climate variables, this in-
cluded hourly precipitation from an OTT Pluvio
weighing rain gauge gap-filled with data from the
National Atmospheric Deposition Program (Xiao
and Li 2018). Hourly air temperature was mea-
sured in the automated chambers and gap-filled
with regional Daymet climate data (Thornton and
others 2020) adjusted for our study site using the R
“daymetr” package (version 1.6) (Hufkens and
others 2018). For metrics of plant productivity, an
indicator of autotrophic respiration, we used 90th
percentile daily green chromatic coordinate (GCC),
an estimate of canopy greenness from PhenoCam
imagery (Richardson and others 2018). For bio-
physical controls on heterotrophic respiration, we
monitored soil moisture using ECH20 EC-5 or GS1
(Decagon, METER Group Inc, Pullman, WA, USA)

sensors and soil temperature using 8150-203 soil
temperature probes (LI-COR) at 5-cm soil depth co-
located with each chamber. However, the sensors
often failed or recorded physically impossible data.
Instead, we modeled hourly soil moisture and
temperature at a 5-cm depth using the Penn State
Integrated Hydrologic Model with a surface heat
flux module (Flux-PIHM; Shi and others 2013).
Flux-PIHM is a physically based, spatially dis-
tributed, land surface hydrologic model that simu-
lates lateral water flows (Shi and others 2013),
which are critical to capturing heterogenous Fs in
complex topography (Riveros-Iregui and others
2012). In the Shale Hills watershed, Shi and others
(2015) have found that Flux-PIHM simulates the
dynamic and spatial structure of observed soil
moisture. Specifically, the Shale Hills watershed
model domain was decomposed into a triangular
network of 532 grids. Flux-PIHM simulations used
a surface elevation map from lidar measurements
(Guo 2019), a soil map and soil hydraulic proper-
ties from an extensive soil survey (Lin and others
2006), and a vegetation map from a survey of more
than 2000 trees (Eissenstat and others 2013). The
meteorological forcing data for Phase 2 of the North
American Land Data Assimilation system (NLDAS-
2; Xia and others 2012) were used for the model
simulation. The model was calibrated using dis-
charge, groundwater level, soil moisture, soil tem-
perature, and surface heat flux measurements.
Model-predicted spatial patterns of soil moisture at
a 5-cm depth have been validated using field
measurements (Shi and others 2015), which
showed that the model is able to capture the ob-
served macro-spatial pattern of soil moisture at
Shale Hills. We used the modeled soil temperature
and soil moisture as liquid water of the topsoil layer
(0-10 cm) at the corresponding grids where auto-
mated chambers were located. Note that soil
moisture, here, is the volume of liquid water,
which excludes the frozen soil moisture content.
Additionally, we gathered static (or slow chang-
ing) variables using soil samples and remote sens-
ing products (Supplemental Table 1). In June 2020,
we collected two soil cores within 1 m of each
chamber to a 15-cm depth using a 5.08-cm-diam-
eter split corer. Each soil core was split into two
layers for uniform processing: ‘‘surface’”” mineral
soils from 0 to 5 cm, and ‘““deeper’”” mineral soils
from 5 to 15 cm. We collected O horizons within a
24-cm ring centered around each core. Samples
were placed on ice and transported back to the
laboratory where they remained at 4 °C until pro-
cessing. Soils were dried to constant mass to
determine water content gravimetrically. Soil bulk
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Figure 2. Time series of soil CO, efflux across three years of measurement. Black lines indicate quality controlled
observations, while gray lines represent gap-filling through a regression model with modeled 5-cm soil temperature and
volumetric soil water content (see Eq. 2). Year tick marks correspond to January 1.
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Table 1. Growing Season Fg Mean =+ Standard Error (g C m~ 2 180 day ') by Landscape Position and

Sampling Method

Growing season Fs (g C m™> 180 days™ ')

2016 2017 2018

Automatic Manual Automatic Manual Automatic
Ridgetop 610 + 63 513 £+ 29 748 + 34 719 + 44 1073 £ 8
Planar midslope 926 £ 17 598 + 36 838 £ 2 761 £ 50 1350 £ 139
Swale midslope 908 + 204 655 + 40 1068 £+ 291 846 + 60 1070 £ 295
Valley 1036 + 240 664 + 36 876 + 109 880 + 54 828 + 113
Annual precipitation (mm) 719 988 1275

Growing season Fs from automatic chambers (n = 2 chambers per landscape position) was calculated as the sum of all gap-filled hourly observations for the 180 days between
May 9 and Oct 15 of each year. Growing season Fs from manual sampling (n = 7 to 21 chambers per landscape position) was estimated as a linear interpolation between daily
observations (for example, Pacific and others 2008), which were summed between May 9 to Oct 15. Manual data were not collected in 2018.

density was calculated both with and without rock
volume (Throop and others 2012). O horizon
samples were ground to 1 mm using a Wiley Mill,
and mineral soils were sieved at 2 mm. Soil texture
was determined using the rapid method from Ket-
tler and others (2001). Soils were analyzed for total
C at Penn State Agricultural Analytical Laboratories
using the combustion method (Nelson and Som-
mers 1996).

We estimated topographic variables in ArcGIS
Pro using a 3-m Digital Elevation Model (Guo
2019). Soil depth was calculated as elevation minus
bedrock elevation, determined from ground pene-
trating radar (Lin 2019). Three types of curvature
were calculated using the Curvature function:
profile, or curvature parallel to the slope, which
relates to rates of erosion and deposition; planform,
or curvature perpendicular to the slope, which re-
lates to flow convergence; and standard, which
combines both types of curvature into a standard
value. Lastly, topographic wetness index (TWI), an
indicator of the influence of local topography on
water movement and accumulation, was calculated
using the equation:

TWI = In(ar/tanf) (1)

where o is the upslope contributing area calculated
using a D-infinity algorithm (Tarboton 1997) and
is the slope angle (Beven and Kirkby 1979).

Estimating Automatic Growing Season
Efflux

To sum continuous Fs across time, we gap-filled
our observations using a regression model from
Sullivan and others (2010) based upon modeled
soil temperature and water content:

In(Fs) = Bo + BT + B0 + B50° (2)

where Fjs is soil CO, efflux (umol m™2s™ '), B, is a
parameter coefficient, T'is soil temperature at 5 cm,
and 0 is volumetric soil water content at 5 cm
(m®> m™>). We attempted to fit simpler equations,
but we determined Eq. (2) was the preferred
method to gap-fill based on Akaike’s Information
Criterion (Akaike 1974), adjusted R-squared, root
mean square error, and mean absolute error. Final
model performances found all variables to be sig-
nificant (p-value < 0.001); and across all cham-
bers and years, the fraction of Fs from gap-filling
averaged 29.0% in the growing season and 30.4%
in total (Supplemental Table 2). Gap-filled data are
displayed in Figure 2. Once the dataset was gap-
filled, we calculated growing season fluxes from
automatic chambers by summing all hourly fluxes
between May 9 and Oct 15 of each year (Table 1),
as well as annual fluxes summed for the calendar
year (Supplemental Table 3). We also simulated
annual estimates from manual sampling for 2016-
2018 by randomly choosing one observation from
the automatic gap-filled dataset each week be-
tween 0900 and 1200 h in hours without rain,
linearly interpolating between daily observations,
and summing for the calendar year (Supplemental
Figure 1).

We focused our statistical analyses on growing
season estimates to align automatic measurements
with manual measurements. Further, we ensured
that our analyses were robust to gap-filling meth-
ods by calculating growing season Fs using three
additional methods (Supplemental Figure 1) from
the R package ““FluxGapsR’ (version 0.1.0) (Zhao
and others 2020). One method, singular spectrum
analysis, is independent of soil moisture and tem-
perature (Zhao and others 2020), which ensures Fg
estimates are not an artifact of the Flux-PIHM
model.
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Data Analysis

We first assessed the impact of topographic posi-
tions, climatic variability, and sampling methods on
growing season Fs through total least squares (TLS)
regression and repeated measures analysis of vari-
ance (ANOVA). We regressed manual and auto-
matic growing season Fg from all gap-filling
methods using TLS regression, which accounts for
variability within both estimates. Further, we ex-
plored the impact of landscape position and sam-
pling method across 2016 and 2017 growing season
Fs using a three-way repeated measures ANOVA.
Significant interaction effects were explored sepa-
rately for manual methods and automatic methods
in post-hoc two-way and one-way repeated mea-
sures ANOVAs.

However, these statistical approaches have
weaknesses that we overcame using a Random
Forest (RF) model to explore controls on daily Fs
predictions. RF is a supervised machine learning
algorithm wused for classification and regression
(Breiman 2001). A detailed description is available
in Hoffman and others (2018). Briefly, RF is built
upon the concept of recursive partitioning, a non-
parametric method that creates decision trees by
recursively splitting response variables at a series of
nodes into clusters of similar observations. This
method is ideal for both our time series and
geospatial data, because it is relatively free of
assumptions regarding the distribution of variables
and regarding the relationships between predictor
and response variables. However, individual deci-
sion trees are sensitive to the training data and
prone to overfitting. RF offers more robust predic-
tions by constructing many independent regression
trees and generating the mean prediction across all
trees. An ensemble of trees is grown using boot-
strapped samples of observations split at a user-
defined number of randomly chosen predictor
variables. From this ensemble, RF algorithms pro-
vide several useful outputs, two of which we dis-
play: variable importance score, which ranks
predictor variables based on the contribution of
each variable to overall model accuracy, and partial
dependence plots, which explore the relationship
between one predictor (or two interacting predic-
tors) and the response averaged across all obser-
vations (Strobl and others 2007).

We built the RF model using the R package
“randomForest”” (version 4.7-1.1) (Breiman and
Cutler 2018). We trained the RF model to predict
observed daily Fs using days without any gap-filled
hours (n =3966) using 16 predictor variables:
mean daily soil water content (m’ m™’); mean

daily soil temperature (°C); cumulative 3-week
precipitation (mm); mean daily air temperature
(°C); planform curvature; profile curvature; stan-
dard curvature; elevation (m); total soil depth (m);
topographic wetness index; 90th percentile daily
green chromatic coordinate; percent soil carbon in
the O Horizon, 0-5 ¢m, and 5-15 c¢m; and percent
clay at 0-5 cm and 5-15 cm. Hourly values were
aggregated to mean daily values for soil moisture
and soil temperature, because green chromatic
coordinate data were not reliable at all hourly
timesteps (for example, photographs cannot be
collected at night). Precipitation and air tempera-
ture were aggregated to the timestep with the lar-
gest Spearman rank correlation coefficient
(Benjamini-Hoberg-adjusted p-value < 0.001)
(Spearman 1904; Benjamini and Hochberg 1995).
We optimized the number of trees (#4c.) and the
number of predictor variables considered at each
node for splitting (1), such that 7. = 1000 and
myy = 5. Alter optimization, the RF model was re-
trained on two subsets of the data: swales and
valley floors, which we call convergent (n = 1851),
and planar midslopes and ridgetops, which we call
non-convergent (n = 2115). These datasets were
randomly split into 70% for model training and
30% for model validation. We repeated this split 10
times to estimate the uncertainty of variable
importance scores from subsampling the training
data (as in Saha and others 2021). We assessed
model performance through percent variance ex-
plained and ordinary least squares linear regression
between observed and predicted daily Fs for the
validation dataset. All statistical analyses were
performed in R (version 4.1) software (R Core
Team 2018), and code for the Random Forest
model is available via GitHub (https://github.com/
MWZKopp/Ecosystems2022).

REsuLTs

Growing Season Soil CO, Efflux
from Continuous Measurements

Our first hypothesis was that adding terrain vari-
ables to standard soil temperature and moisture
predictors would explain significantly more vari-
ance in estimates of growing season and daily Fs
across climate wvariability. We first tested this
hypothesis through repeated measures ANOVA of
growing season Fg from continuous measurements
across landscape positions (Supplemental Table 4).
Growing season Fg from automatic chambers ran-
ged from 610 4 63 to 1350 & 139 g C m > 180
day ' across all topography and years (Table 1).
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However, measurements within a landscape posi-
tion varied widely—and, for ridgetop and valley
floors, significantly—across years. Two-way re-
peated measures ANOVA found support for a sig-
nificant effect of year on growing season Fs (F
value = 14.539, p value = 0.009) and a significant
interaction effect between year and landscape
position (F value = 8.643, p value = 0.012). These
significant effects seem to be driven by two trends:
(1) Fs from ridgetop and valley floors show a
bidirectional response to interannual climate vari-
ability, and (2) Fs from non-convergent flow paths
varied more across years. Specifically, growing
season Fg from ridgetops increased by 463 g C m™
2180 day ' between average estimates from the
driest year (2016) to wettest year (2018), while
valley floors decreased by an average of
208 ¢ C m 2 180 day ! (Table 1). Though this re-
sponse is less clear for midslopes, planar midslopes
(non-convergent) also showed the highest growing
season Fs in the wettest year, with an increase of
424 ¢ C m 2180 day ' relative to the driest year
(Table 1). Convergent flow paths varied widely
within years (evidenced by relatively high standard
errors in Table 1), which may have masked re-
sponses across years for swale midslopes. In short,
data from automatic chambers support capturing
topography as a significant interactive predictor of
interannual growing season Fg in the Shale Hills
catchment.

Random Forest Modeling of Daily Soil
CO, Efflux

Our next test of the first hypothesis was to explore
the predictive power of topographic, soil, and cli-
mate variables in modeling daily Fs from automatic
chambers using a Random Forest (RF) approach.
We trained a RF model to predict daily Fg using 16
variables from days without any missing (that is,
gap-filled) hours of automatic data. Using all data,
the overall final RF model explained 77.8%
(£ 0.02) of the variation in the data using 13
variables. Topographic wetness index (TWI), stan-
dard curvature, and green chromatic coordinate
(GCC) were removed from the final model, because
other variables accounted for these mechanisms.
For example, standard curvature is a combination
of planform and profile curvature, and GCC was
highly correlated with air temperature. To compare
predictors of Fs and their interactions across
topography, we retrained this model on two subsets
of the overall data: convergent (swales and valleys)
and non-convergent areas (planar midslopes and
ridgetops). These models explained 76.92%

(£ 0.03) of the variation in data from convergent
areas and 79.87% (% 0.02) of the variation from
non-convergent areas.

We compared predictions from the final RF
models with observations in our validation dataset
to assess model performance. Pearson correlations
between predicted and observed daily Fs showed
strong positive correlation from convergent
(r=0.82, p value < 0.001) and non-convergent
areas (r = 0.89, p value < 0.001). Ordinary least
squares linear regression between observations and
predictions vyielded an average slope of 1.00
(£ 0.00) and 1.02 (£ 0.02) for convergent and
non-convergent areas, respectively. As such, we
consider model performance to be robust.

To understand the variables driving RF model
predictions, we calculated wvariable importance
scores and partial dependence plots. Variable
importance scores are a metric that ranks predictors
based on the relative contribution of each variable
to overall model accuracy. For convergent flow
areas, the most important variables influencing Fs
were 5-cm soil temperature and mean daily air
temperature, which showed a median percent in-
crease in mean square errors across models of
71.07 £ 0.10 and 54.26 £ 0.10, respectively (Fig-
ure 3). For non-convergent areas, the most
important variable was also soil temperature
(68.89 + 0.15); however, this was closely followed
by 3-week antecedent precipitation (64.29 + 0.19)
and 5-cm  volumetric soil water content
(64.15 £ 0.22). Whereas variable importance
scores explore the relationship between all predic-
tors, partial dependence plots explore the rela-
tionship between one predictor (here, soil
moisture) or the interaction of two predictors
(here, soil moisture and temperature) and the re-
sponse averaged across all observations. For non-
convergent areas, soil moisture and daily Fs dis-
played a monotonically increasing relationship
with a greater amplitude of change in Fs (Fig-
ure 4a). For convergent areas, soil moisture and
daily Fs displayed a parabolic relationship (Fig-
ure 4b). These relationships remain even when
accounting for the interactive effects of soil tem-
perature (Figure 4c and Figure 4d). Overall, RF
models suggest that accounting for convergent flow
may change the relative importance of and rela-
tionship between dominant predictors and daily Fs.

Comparing Growing Seasons Estimates
Across Automatic and Manual Methods

Our second hypothesis was that automated cham-
ber methods will provide the same Fs estimates as
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Figure 3. Variable importance scores from Random Forest models for daily soil CO, efflux (Fs) predictions trained on only
observed data from (A) non-convergent areas (ridgetops and planar midslopes) and (B) convergent areas (swales and
valley floors). Variables are ranked by relative importance for predicting Fs, where a greater percent increase in mean
square error indicates greater importance in the model. Ten variable importance scores were calculated by a Random
Forest model built on ten separate random subsamples of training data. These ten variable importance scores are
represented as a box plot corresponding to each variable to estimate uncertainty. Random Forest models were trained on
observation only (that is, not gap-filled) data from automated flux chambers.

manual sampling when aggregated to the growing
season temporal scale and catchment spatial scale.
However, three-way repeated measures ANOVA
(Supplemental Table 4) found a significant effect of
method (F value = 7.280, p value = 0.021) on
growing season Fg estimates, as well as a significant
interaction effect between year (2016-2017) and
method (F value = 7.866, p value = 0.019).

To test the magnitude of the method effect, and its
interaction with year, we compared growing season
Fs estimates from both methods using total least
squares linear regression. We found growing season
Fg estimates from automatic methods to be 1.25
(£ 0.08) times greater than manual estimates across
all landscape positions and both years (Figure 5). This
effect tended to be greaterin a dry year (1.45 &+ 0.06)
than an average year (1.11 4 0.06) and greater in
convergent (1.27 £ 0.11) than non-convergent
(1.21 £ 0.10) areas (Supplemental Table 5).

We ensured that this difference was not an arti-
fact of gap-filling automatic estimates by repeating
regressions with three other gap-filling methods,
both across and within years; regardless of treat-

ment of automatic data, estimates from automatic
chambers were consistently greater than from
manual methods (regression slope with a 95%
confidence interval > 1 in Supplemental Table 5).
Although manual data were only collected in 2016
and 2017, simulating annual Fg estimates for
manual methods by randomly drawing from the
automated chamber dataset across 2016-2018 also
found consistently lower estimates than automatic
methods (Supplemental Figure 1).

DiscussioN

We present one of the first multi-year continuous
soil CO, efflux (Fs) datasets to capture the inter-
actions of both complex terrain and significant
precipitation variability in a temperate deciduous
forest. Leveraging this dataset, we found a bidi-
rectional response of Fs across the catchment to
increasing interannual water availability. We dis-
cuss the mechanisms driving this response as well
as their implications for predicting and monitoring
Fs in complex terrain.
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Figure 4. Partial dependence plots of dominant predictors on daily Fs from Random Forest models. Partial dependence
plots show the average relationship between modeled 5-cm soil moisture and daily Fs across a non-convergent areas
(ridgetops and planar midslopes) and b convergent areas (swales and valley floors). Multipredictor partial dependence
plots show the average interactive effect of modeled 5-cm soil moisture and temperature on daily Fs across ¢ non-
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used to train the Random Forest model. Random Forest models were trained on observation only (that is, not gap-filled)
data.
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Figure 5. Regression between estimated growing season Fg (g C m~2 180 days™!) from manual and automatic chamber
methods. The red dashed line indicates a theoretical 1:1 line. The black line indicates the total least squares linear
regression between methods (slope = 1.25) with a 95% confidence interval shaded in gray. Regression coefficients are
similar regardless of gap-filling methods for automatic methods (see Supplemental Table 5). Vertical standard error lines
are greater (that is, more variability along the y axis), because automatic chambers have fewer replicates (n = 2) relative to
manual sampling (# = 7 to 21, depending on landscape position).

Using Automated Chambers to Estimate
Fs Responses Across Topography
and Climate

The significance of complex terrain for C storage
and fluxes has generated a pressing need to
understand and predict the response of Fs to cli-
mate variability across topographic gradients (for
example, Rotach and others 2014; Senar and others
2018). Yet maximizing spatial coverage in moni-
toring Fg has relied on manual sampling methods
(for example, Riveros-Iregui and others 2012;
Savage and Davidson 2001), which limit sampling
frequencies to coarse timescales (for example,
Hanson and others 1993) that may miss significant
short-term (sub-daily) responses to climatic dis-
turbances. Automatic chambers offer an opportu-
nity to monitor Fs at a fine temporal resolution;
however, their cost limits spatial replication. With a
sampling design that explicitly accounts for terrain,
we find that hillslope position is a significant con-
trol on interannual Fs (Supplemental Table 4) be-

yond what can be captured by instantaneous soil
moisture and temperature.

A key finding is that terrain position determines
the direction of response to traditionally measured
soil and climatic predictors of Fs. Specifically,
growing season Fs from ridgetops at Shale Hills
increased with increasing interannual water avail-
ability, while valley floors showed decreasing an-
nual Fs in increasingly wet years (Table 1). These
results not only corroborate previous research that
interannual precipitation variability leads to a
bidirectional response of Fs in complex terrain
(Riveros-Iregui and others 2012; Berryman and
others 2015), but expand this exploration from
drought/non-drought comparisons in semiarid and
(sub)alpine forests to record annual precipitation in
a humid temperate forest. While we found a con-
siderable range in both hourly Fg (0.00 g C m 2 h™
'to 1.78gCm ?h™!) and growing season Fj
(610 + 6310 1350 & 139 g C m 2 180 day '), this
range is comparable to other Fg observations in
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temperate forests (Giasson and others 2013).
Moreover, these estimates are comparable to
observations from forests in complex terrain (Ber-
ryman and others 2015; Riveros-Iregui and McG-
lynn 2009) and modeled estimates for our study
site (Shi and others 2018). In short, continuously
monitoring a few key positions in complex terrain
identified a bidirectional response of Fs to inter-
annual climate variability within comparable ran-
ges to manual monitoring across an order of
magnitude more spatial replicates (for example,
Riveros-Iregui and others 2009; Primka 2021).

Untangling Mechanisms of the Bidirectional
Response: Moisture-Versus Diffusion-
Limited Fg

Our work advances Fg research by showing that
monitoring soil moisture and temperature variation
is not enough to estimate and predict Fs—land-
scape context is critical for knowing how soil
moisture affects Fs. We hypothesize that the bidi-
rectional response of Fs to interannual water
availability hinges on the spatial distribution of
mechanisms dominantly limiting Fs: diffusion
limitations in areas receiving convergent flows, and
water limitations to biological activity in non-con-
vergent areas.

In convergent areas, such as swales and valley
floors, Fs responds based on a parabolic relation-
ship with soil water content (Riveros-Iregui and
others 2012). Generally, Fs peaks at intermediate
soil moisture conditions (Doran and others 1991),
which we confirm for our site in Random Forest
models (Figure 4b, d). In topographic positions
with wetter soils, such as the deep, clay-rich valley
floors at Shale Hills (Lin and others 2006), persis-
tent high soil moisture reduces diffusivity, and
oxygen availability limits aerobic respiration
(Hodges and others 2019). However, these wet sites
could dry under reduced hydrologic connectivity,
such as during a summer drought, which could
promote a large release of CO, from enhanced
microbial and root respiration (Davidson and oth-
ers 1998; Senar and others 2018). This is one likely
explanation for the flush of Fs from the valley floor
in 2016. Under the dry conditions of 2016, valley
floor soils may have dried enough to increase
oxygen diffusion into the soil surface, increasing
aerobic respiration. A concurrent study at Shale
Hills measured soil pO, at nearby valley floor
position and found a marked increase in %O, at all
soil depths in the drought summer of 2016 relative
to the summer of 2017 (Hodges and others 2019).
This increase in soil pO, may have allowed for the

breakdown of available C substrates. Alternatively,
increased diffusivity in 2016 may have allowed
accumulated soil pCO, to move from soil storage
into the atmosphere (Hassenmueller and others
2015). In contrast, increased precipitation in 2018
may have led to soils that were too wet for maxi-
mum Fs. Under saturated conditions, there is lim-
ited diffusion of pO, for aerobic respiration; and,
even when microbial communities switch to
anaerobic respiration (evidenced by redox features
in Lin and others 2006, and direct measurements of
pCO,/pO, in Hodges and others 2019), limited
diffusion leads to a build-up of pCO, rather than a
flush of Fg (Hassenmueller and others 2015). This
may explain the decrease in Fs from convergent
areas at high volumetric soil water content (Fig-
ure 4b). In short, shifts in biological activity and
diffusivity may explain interannual Fg variability in
valley floor positions at Shale Hills, leading to large
fluxes in drought years and lower fluxes in wet
years.

By contrast, interannual variability in Fg from
non-convergent areas, such as ridgetops and planar
midslopes, may reflect water limitation to biological
activity rather than limitation by low O, or slow
CO, diffusion. Whereas convergent areas display a
parabolic relationship with soil moisture, daily Fg
from non-convergent areas monotonically in-
creased with increasing soil moisture (Figure 4a).
Ridgetops at Shale Hills have thinner, sandier soils
that drain quickly (Lin and others 2006). In a dry
year, water in soil pores may be disconnected,
limiting dissolved organic carbon (DOC) supply for
microbial activity and lowering heterotrophic res-
piration (Papendick and Campbell 1981). Similarly,
drought stress on trees could limit photosynthesis
or C allocation to new or maintained root growth,
lowering autotrophic respiration (Bryla and others
1997, Wang and others 2014). Supporting this
hypothesis, minirhizotron data from the same
spatially distributed sites in this study showed de-
creased root tip production in drier years relative to
wetter years in 2016-2018 (Primka IV and others
2022). In a wet year, water in soil pores is con-
nected, which allows water and DOC to reach
microbial communities, increasing heterotrophic
respiration. Additionally, tree roots may also access
shallow water near the soil surface, upon which
most trees at Shale Hills depend for water uptake
(Gaines and others 2015), such that growth and
maintenance root respiration are not water limited.
Together, these sources contribute to an increase in
Fs in wet years such that ridgetop Fs equals or
exceeds Fs from valley floors (Table 1; Supple-
mental Table 3), despite valley floor soils having
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greater C storage (Andrews and others 2011) and
soil pCO, (Hassenmueller and others 2015; Hodges
and others 2019). Overall, contrasting limiting
factors on Fs across convergent and non-conver-
gent areas lead to opposing responses of Fs across
interannual climatic variability.

Implications for Predictions: Random
Forest Models Unveil Topography-
Mediated Interactions with Soil Moisture

Random Forest (RF) models are among the ma-
chine learning tools rapidly improving predictions
of soil greenhouse gas emissions (for example, Saha
and others 2021). For example, Lu and others
(2021) found RF models outperformed ten com-
mon process-based terrestrial ecosystem models for
global Fs predictions. As such, coupling automatic
chamber data with RF models offers one of the best
methods to model complex interactions among
drivers of Fs at fine temporal scales (Lu and others
2021). Our RF models found soil temperature, soil
moisture, and climate variables were dominant
predictors of Fs, but their relative importance
(Figure 3) and relationship with daily Fs (Figure 4)
differed between areas receiving convergent flow
or not.

We expected that soil temperature would have
great predictive power, because soil temperature is
the most common predictor used to model Fs (for
example, Arrhenius 1889; van’t Hoff 1898; Lloyd
and Taylor 1994). While soil temperature did have
high importance values in RF models across the
landscape, soil moisture and 3-week antecedent
precipitation were nearly as important for predict-
ing daily Fs from non-convergent areas (Figure 3).
Other topographic (elevation and curvature) and
soil (texture, C, and total depth) characteristics had
low importance values in non-convergent areas
(Figure 3a). By contrast, daily Fs from convergent
areas had higher importance values for soil and air
temperature, with moderate predictive power from
moisture variables (soil and 3-week precipitation)
and some predictive power from curvature, surface
and O horizon soil C, and total soil depth (Fig-
ure 3b). If further studies find that these results
hold true in other ecosystems, then simple and
remotely sensed terrain metrics may improve
which predictors we choose to scale Fs from small
but topographically complex catchments to larger
scale models.

Relative to soil temperature, the relationship
between Fs and soil moisture varies widely across
studies, which has hampered the development of
empirical equations translating soil moisture

parameters into reliable Fg predictions (Lou and
others 2006). Generally, optimum Fs is predicted to
occur at intermediate soil moisture, whether in
statistical correlations (for example, Doran and
others 1991) or more complex mechanistic models
(for example, Davidson and others 2011). Beneath
some soil moisture threshold, Fg is most limited by
slow diffusion of soluble C substrates into extra-
cellular enzymes and by microbes involved in
decomposition (Papendick and Campbell 1981),
which can lead to dormancy in microbes and
diminish heterotrophic respiration (Fierer and
Schimel 2002). Similarly, drought conditions can
decrease photosynthesis, which decreases translo-
cation of photosynthates to the rhizosphere for root
respiration (Ruehr and others 2009). Under these
dry soil conditions, Fs has a positive—sometimes
even linear (Jassal and others 2008)—relationship
with soil water availability yet has little response to
soil temperature (Suseela and others 2012).
However, we suggest that some non-convergent
areas may never reach or remain at volumetric soil
water contents above this intermediate optimum
long enough to decrease Fs, leading to a relation-
ship which appears monotonically increasing ra-
ther than parabolic (Figure 4a), even when
accounting for interactive effects with soil temper-
ature (Figure 4c). Despite training RF models with
data from 2018, the wettest year on record in the
state of our study site, Fg from non-convergent
areas does not display the decrease expected by
limited diffusion of soluble-C and O,. Overall, the
flush of Fs from water-limited non-convergent soils
in a wet year may suggest a shift in the topographic
positions dominantly contributing to catchment-
level Fg at Shale Hills as the climate transitions
toward wetter conditions (Ning and others 2012).

Implications for Methods: Targeting
Control Points of Between-Method
Variability

A current hypothesis in Fg research is that manual
and automatic chamber methods, although imbued
with different biases (Yao and others 2009), bal-
ance a spatial and temporal tradeoff that produce
similar estimates, particularly when scaling up
across time (Savage and Davidson 2003). While
both methods capture interannual variability in
growing season Fs across the Shale Hills watershed,
the choice of method significantly affected the
magnitude of estimates (Supplemental Table 4).
Estimates from automatic chambers averaged
1.25 £ 0.08 times greater than from manual
methods (Figure 5). Underpinning this variability is
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an interactive effect between methods, climate, and
landscape positions. We find the difference be-
tween methods was most pronounced in a dry year
(2016) and in areas receiving convergent flow
(swales and valley floors) (Supplemental Table 5).
Specifically, we find estimates from automatic
chambers in a dry year to be 1.45 £ 0.06 greater
than from manual estimates across the catchment,
which is significantly more than in an average year
(1.11 & 0.06). These findings caution that the
assumption of consistent Fg estimates across sam-
pling methods may hold true under average cli-
matic conditions in well-drained landscapes but
may be violated in areas receiving convergent flow.

There are several explanations for differences
between methods at this site. First, automatic
chambers may be biased by aspect. Shale Hills is a
V-shaped catchment with a north- and south-fac-
ing slope. Although manual methods captured
variability across aspect, automatic chambers were
located on the south-facing slope, which may have
greater Fs from relatively greater SOC storage
(Andrews and others 2011) and more solar radia-
tion leading to warmer soils. As such, automatic
chambers may overrepresent, and thus overesti-
mate, the ““hot spots”” in the catchment. However, a
more likely explanation is that manual methods
may be biased by an underestimation of diurnal
variation. A growing body of research finds that
accounting for nighttime fluxes leads to higher Fg
estimates from automatic chambers, whether from
lags in response to physical and biological changes
(Makita and others 2018; Phillips and others 2011)
or from measurement bias (Braendholt and others
2017). At Shale Hills, there is preliminary evidence
of pronounced diurnal variation (Kopp, unpub-
lished data), which automatic chambers more
accurately capture (Yao and others 2009). This
explanation is further supported by our simulated
manual sampling, which found notably lower an-
nual Fg estimates from all automatic chambers
when excluding nighttime observations (Supple-
mental Figure 1). These findings support previous
suggestions that the fine temporal resolution of
automatic chambers combined with the spatial
distribution of manual methods complement
landscape-scale monitoring of greenhouse gas
emissions (Savage and others 2014). In complex
terrain, we further refine this suggestion to strate-
gically place automatic chambers at ecosystem
control points (Bernhardt and others 2017) dis-
proportionately responsive to climatic variability,
such as valley floors (activated in dry years) and
ridgetops (activated in wet years).

Though such ecosystem control points may be
relatively rare on the landscape, their pronounced
variability for between-method variation has
implications for scaling Fs across space. To consider
these implications, we performed a simple spatial
scaling exercise to estimate average catchment-
scale growing season Fs. We weighted the average
growing season Fs from convergent or non-con-
vergent flow paths by their relative area within
Shale Hills (that is, 22% of total catchment area is
convergent, while 78% is non-convergent, as in
Smith and others 2017). In 2016 (a dry year), we
estimate average catchment-scale growing season
Fs to be 813 and 578 ¢ C m 2180 day ' from
automatic and manual methods, respectively. In
2017 (an average year), we estimate average
catchment-scale Fs to be 824 and 760 g C m™
2180 day_1 from automatic and manual methods,
respectively. These estimates are consistent with
our within-year regressions between methods and
emphasize that the choice of method could lead to
similar catchment-scale estimates in an average
growing season or to about 28.9% error when
failing to capture ‘““hot moments,” such as from
convergent areas in a dry year or at night. This
error may be substantial even when hot moments
are relegated to patches representative of a small
fraction of the total catchment area. In short, Fg
monitoring designs in complex terrain may need to
account for significant interactive effects between
methods and landscape positions, particularly as
interannual climatic conditions become increas-
ingly variable.

CONCLUSIONS

We use one of the first multi-year Fs sampling
schemes that captures both fine spatial and tem-
poral heterogeneity to demonstrate that hillslope
position and shape can explain variance of daily,
seasonal, and interannual Fg estimates from a
temperate deciduous forest in complex terrain. By
capturing fine spatial heterogeneity, we find that
landscape context is critical for understanding how
Fs (bidirectionally) responds to soil moisture. We
hypothesize this response hinges on the spatial
distribution of limiting factors on Fs—slow diffu-
sion limits Fs from areas receiving convergent
flows, and water availability for biota limits Fs from
non-convergent areas. Although soil saturation
limitations on Fg are well known in wetland and
laboratory soil incubations, our work contributes to
an understanding of when and where this process
occurs in upland soils and the factors that govern its
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spatial distributions. Even in upland soils, our re-
sults show that accounting for convergent flow
paths can change the relative importance and
relationship of predictors of daily Fs. Further, by
capturing fine temporal heterogeneity, we find that
the choice of sampling frequency has a significant
effect on growing season Fg estimates.

Moreover, our findings could have implications
for scaling Fs to global predictions in Earth System
Models (ESM) by demonstrating how sub-grid
topographic heterogeneity can lead to significant
spatiotemporal variability of Fg within less than 1-
km?. In a review of 16 ESMs, Todd-Brown and
others (2013) found that most ESMs could not
reproduced grid-scale spatial heterogeneity of soil C
or its decomposition. The authors posited that this
poor performance was due, in part, to inadequate
representations of topographic and soil moisture
interactions, with some models assuming all soil C
decomposition has a monotonically increasing
relationship with soil moisture regardless of land-
scape position (Todd-Brown and others 2013). Our
research suggests that sub-grid Fs may display a
parabolic relationship with soil moisture depending
on lateral redistribution of water, yet this redistri-
bution is rarely included in ESM land models
(Clark and others 2015). Clark and others (2015)
recommend using ESMs that capture sub-grid soil
moisture heterogeneity, such as the Catchment
model (Koster and others 2000) or the tiled
hydrology implementation of the LM3 model
(Subin and others 2014), to resolve uncertainties in
land-atmosphere fluxes. We further suggest that, if
our results hold true elsewhere, ESMs could
incorporate simple and remotely sensed terrain
metrics to partition the parabolic relationship be-
tween sub-grid soil moisture and Fs into the full
range (that is, decreasing Fs at high soil moisture
for convergent areas) or a range drier than the
inflection point (that is, monotonically increasing
Fs for non-convergent areas). Future work should
test how this approach might improve current
uncertainty in spatial patterns of soil C and its
decomposition across global ecosystems.
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