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Abstract

The evolution of dispersal is a classical question in evolutionary biology, and it has been
studied in a wide range of mathematical models. A selection-mutation model, in which the
population is structured by space and a phenotypic trait, with the trait acting directly on
the dispersal (diffusion) rate, was formulated by Perthame and Souganidis [Math. Model.
Nat. Phenom. 11 (2016), 154-166] to study the evolution of random dispersal towards the
evolutionarily stable strategy. For the rare mutation limit, it was shown that the equilibrium
population concentrates on a single trait associated to the smallest dispersal rate. In this
paper, we consider the corresponding evolution equation and characterize the asymptotic
behaviors of the time-dependent solutions in the rare mutation limit, under mild convexity
assumptions on the underlying Hamiltonian function.

AMS Subject Class. [2010]: 35B25, 35F21, 35K57, 92D15
Keywords: Dispersal evolution, Nonlocal pde, Constrained Hamilton-Jacobi equation, Effective
fitness, Principal bundle

1 Introduction

Recently, various mathematical models for evolutionary biology have been developed with the
theories of adaptive dynamics, competition/selection equations, deterministic or stochastic.
Here, we are interested in the specific case of the evolution of dispersal in a bounded domain
and explain, in a continuous setting, the selection of the slowest. We introduce the framework
in a general setting without space before describing the full model.

1.1 Continuous modeling without space

A convenient modeling background, based on nonlocal Lotka-Volterra parabolic equations, is
considered in |3} [28 134]. It is expressed under the form

€One = A0 +ncR(z,pe(t)) for z€ RN ¢ >0,
Pe(t) = [pn Nic(z,t) dz for t > 0, (1.1)
Ne(2,0) = N in(2) for z € RV,

The model (I.T]) describes the dynamics of a population with density n¢(z,t), which is structured
by a physiological trait z € RV, The population dynamics of (L.1) is driven by both mutation
and selection. The mutation process is modeled by the Laplacian A,, and the selection is
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expressed by the dependence of the (sign-changing) growth rate of an individual, given by
R(z, pe(t)), on the trait z and the limiting total population p,(t). We refer to [10] for a derivation
of this type of equations from individual based stochastic models. A striking property of (I.Tl)
is that, as e — 0, the generic solution of this equation concentrates as a moving Dirac mass, i.e.

ne(t) = p(t)o(z — z(t))  in distribution, (1.2)

where p(t) = lin(l) pe(t) and the trajectory zZ(t) can be interpreted biologically as the dominant
€E—

trait at the time ¢. Furthermore, the trajectory zZ(t) can be inferred form the total population

p(t) via the relation
R(z(t),p(t)) =0 a.e. (1.3)

and the rare mutation limit of the WKB-ansatz u.(z,t) := —elogne(z,t) and the total popula-
tion p(t) satisfy, in the viscosity sense, the following Hamilton-Jacobi equation with a constraint.

Oyt + 10,u)? + R(z,p(t)) =0 for z € RN, ¢ >0,
inf, u(-,t) = u(z(t),t) =0 for t > 0, (1.4)
u(z,0) = win(z) for z € RV,

The key to understanding the evolutionary dynamics z(t) is thus contained in the question of
uniqueness of solution (u, p) of (L4)), which was investigated in [8, 31 [34].

The model (II) enables a rigorous derivation of the so-called canonical equation, which has
been formally proposed in the framework of adaptive dynamics to describe the trait evolution.
See also [12, 123, 28] [34]. In [8], it is further proved that p(¢) is a nondecreasing function. Since
the dominant trait satisfies (L3]), this leads to the conclusion that evolution favors the traits
that can retain the proliferative advantage when the level of the total population is high.

1.2 Discrete modeling with spatial structure

In many biological situations, however, the proliferative advantage is not so directly linked to
the physiological trait in question. This is the case, in particular, in the study of evolution of
dispersal where individuals adopt different dispersal strategies without an apparent proliferative
advantage. An interesting question in this direction is the selection of random dispersal rate
[20]. For K interacting populations with densities n;(z,t), 1 <1i < K, competing for a common
resource m(z) and differing only in their dispersal rates «;, their population dynamics can be
described by the following competition system introduced in [16]: for 1 < i < K,

K K
on; = a;Agn; +n; | m(x) — an + Z Mimn; forxe D,t>0. (1.5)
j=1 j=1

In this context, these K species are (i) subject to a mutation with switching rate M;; from
phenotype j to #; (ii) moving randomly with diffusion rates «; and (iii) competing for a common
resource. The proliferative advantage of an individual is influenced by the way the individual
moves and utilizes resources. For the two-species case without mutation (M;; = 0), a well-
known result due to Dockery et al. [16] says that if m(z) is non-constant, and the populations
are subject to the no-flux boundary conditions, then the species with the smaller dispersal rate
always exclude the faster competitor. The corresponding question for system (L5) consisting
of three or more species remains open; see [9] for recent progress.

The system (L.5]) describes the competition among finitely many phenotypes with different
dispersal rates, denoted by ;. In the next section, we will introduce a mathematical model
with infinitely many phenotypes, parameterized by a one-dimensional trait variable z. Each z
corresponds to a phenotype with dispersal rate a(z), which is a continuous function of z.



1.3 The continuous model for evolution of dispersal

In this paper, we consider a nonlocal reaction-diffusion equation, introduced in [35], which can
be viewed as the extension of the discrete trait model (L.5) to the continuous trait setting. The
main modeling assumptions are:

(i) the dispersal rate of an individual is a positive function of its phenotypic trait z, that we
denote by a(z);

(ii) a Fisher-type Lotka-Volterra growth rate with spatially heterogeneous carrying capacity
m(z) and limitation by the total population at the same spatial location; and

(iii) rare mutation acting on the phenotypic trait variable and modeled by a diffusion with
covariance v/ 2e.

More precisely, we study the asymptotic behavior, as ¢ — 0, of the density function n. =
ne(z,z,t) : D x I x [0,T] — [0,00), of the nonlocal, nonlinear problem

eOne = a(2)Agne + ne(m(z) — pe(x,t)) + €20?n. forx € D, z€ I, t >0,

dyn. =0 forx € 0D, z€1,t>0, (1.6)
0.ne=0 forxeD,zedl, t>0, '
ne(x,z,0) = neo(x, 2) forxeD, zel,
pe(x,t) = /ne(az, z,t)dz, x €D, t>0. (1.7)
I

Here D represents a bounded spatial domain in RY with smooth boundary dD; v denotes the
outward unit normal vector on 9D; A, = Zf\; 1 8%, is the Laplace operator in x variables;
I = (a,b) C R is a bounded open interval with a < b; p(x,t) is the population density of
the entire species at location z and time ¢. Without loss of generality we assume |D| = 1 and
|I| =1, i.e., D and I are both of unit Lebesgue measure. The interest of this problem is that
the fitness is controlled by a combination between the dispersal a(z) and the competition for

resources expressed by m(z) — pe(x,t). It is important that the resource m(z) satisfies
(M) m € C?(D) for some § € (0,1), and it is a nonconstant, positive function.

On the one hand, if (M) does not hold, i.e. m(z) is a constant and «(z) = z, then it can
be shown that the constant steady state solution is globally asymptotically stable among all
nonnegative nontrivial solutions [25]. On the other hand, under the assumption (M) and some
mild assumptions, it can be shown that, for all e sufficiently small, (L) has a positive steady
state solution n¢(z, z) concentrated at the trait where « attains the minimum value [26, [35].
Under suitable assumptions, the positive steady state n¢(x, z) is shown to be unique and locally
asymptotically stable [25]. We will enforce hypothesis (M) throughout the rest of the paper.

Our goal is to show that, for the evolution of dispersal, the same concentration effect holds
around the fittest trait z(¢) as expressed in (L.2)).

1.4 Assumptions and Main Results

Definition 1.1 (Invasion exponent).

For each z1, 29 € I, let A(z1, 22) be the smallest eigenvalue of the linear equation

a(z1)Azd+ (m —0.,)0+Ap =0 forxz € D, (1.8)
=0 for x € 0D, '
where, for each z € I, 0,(x) is the unique positive solution of
a(z)A0, +(m—0,)0, =0 forxze D, (1.9)
0,0,=0 for x € 0D. )



Notice that for z; = zo =: z, we have A(z, z) = 0, which corresponds to ¢ = #,. Throughout
the paper we impose the following assumptions:

(H1) a: I — R, is smooth and is chosen such that 0 < inf; o < sup; @ < 400 and
2
3K\ >0) 2K, < aglA(zl,ZQ) < o for all (z1,29) € I x I,

and

0 Na,a) <0 and 9, \(b,b) >0,

(H2) Let uc(z, z,t) = —elogne(z, z,t), then the initial condition satisfies

= O(e),
c2(DxT)

1
’U,E(I',Z,O) - ‘/O(z) - 5610g6

where Vy(z) € C°(I) is a non-negative function such that for some Ko > 0,

O*Vo(2) > 2Ky for z € I and inf Vo(2) = Vo(20) =0 3 Z € Int I.

Remark 1.2. (H1) ensures that the trajectory of the dominant trait remains continuous for
t > 0. See Section [6] for an explicit example of « so that (H1) can be explicitly verified]. We
leave the general case for future work.

The following uniqueness result, which seems to be of independent interest, plays a critical
role in characterizing the solution trajectories of (1.6). Its proof, which uses the convexity of
A(+, 22), is presented in Appendix [Cl

Proposition 1.3 (Constrained Hamilton-Jacobi eq.). Suppose that (H1) - (H2) hold.

(i) There exists a unique viscosity solution (V (z,t),2(t)) € WL (D x [0,00)) x W1([0, c0))
to the following constrained Hamilton-Jacobi equation:

hV +10. V]2 =Xz, 2(t)) =0 forzel,t>0,

0.V (z,t) =0 for z € 0I, t >0, (1.10)
V(z,0) = V(2) forzel, '
inf,er V(z,t) =0 fort > 0.

(ii) z € CY([0,00)) and for each t >0, V(z,t) = 0 if and only if z = 2(t). Furthermore,
V(z,t) = %33‘/(5(75),75”2 —Z(t)* + o]z — 2(1)*)

and for each T > 0 there exists K3 > 0 such that K3' < 92V (2(t),t) < K3 fort € [0,T].

(iii) z(t) satisfies the ODE with coefficient o(t) := 02V (2(t),t)
fort >0, (1.11)

with the initial data Z(0) = Zy.

Next, we state our main theorem.

!"When convexity assumption fails, then in general the dominant trait has jump discontinuities and belongs to
the class of BV functions for which the uniqueness of the Hamilton-Jacobi equation (I.I0) is more subtle; See [8].



Theorem 1.4 (Dynamics of the fittest trait). Assume (H1) - (H2). For each T > 0, ase — 0,
ne(x, z,t) = do(z — 2(t))0:)(x)  in distribution sense in D x I x (0,1, (1.12)

where Z(t) — argmina(z) as t — oo. In fact, we have
—elogne(z,2,t) = V(z,t) inC(Dx I x1[0,T]), (1.13)

and
pe(x,t) = Oz (x) in Cioe(D x (0,T7), (1.14)

where V(z,t) and zZ(t) are given by Proposition [L3]: and, for z € I, 0,(x) is the unique positive
solution of (1.9)).

Remark 1.5. One can also replace the hypothesis (H1) - (H2) by

(H1') Suppose Vy(z) and «a(z) are chosen such that (LI0) has a unique viscosity solution
(V(2,t),2(t)) € Wh(D x (0,00)) x W*(0, 00) such that the conclusions (ii) and (iii)
of Proposition [1.3| hold.

For instance, our conclusion holds for the case a(z) > 0 being periodic in z, and the Neumann
condition being replaced by a periodic condition in z, provided that o has a non-degenerate
minimum attained at 2, and such that Vp(z) = K(z — )2, provided |2 — | < 1 and K > 1.

1.5 Biological interpretation

The Darwinian evolution of a quantitative trait is the combined effects of two biological pro-
cesses: (i) mutations generating variations in the trait value; and (ii) selection via relative
reproductive fitness, resulting from ecological interactions between individuals and their envi-
ronment. The framework of adaptive dynamics [14] 18] is based on the assumption of separation
of timescales between the mutation/evolutionary and selection/ecological processes. One im-
portant advance of this theory, due to Dieckmann and Law [13], is the formal derivation of
the so-called canonical equation of adaptive dynamics: An ordinary differential equation that
gives the rate of change over time of the expected trait value in a monomorphic population.
In previous works [15], 28], the canonical equation was rigorously derived in case the ecological
interaction can be described by ODEs, i.e., the fitness function is explicitly given in terms of
the trait z. This is not the case, however, for evolution of dispersal, for which the incorporation
of spatial structure in the model is essential and causes considerable mathematical difficulties.
See [7, 241 130]. Also, using a continuous trait explains the ’accelerating waves’ which have been
actively studied recently, [4], 5 6, 21].

In this paper, we define an effective Hamiltonian H.(z,¢) by improving the existing theory
of the principal bundle for parabolic problems. This Hamiltonian can be viewed as a fitness
function of the trait z interacting with the environment at time ¢ (as described by m(z)—pc(z,t)).
One achievement of this paper is to show rigorously that, in a suitable timescale, the fitness
function H¢(z,t) converges to A(z, Z(t)) in the rare mutation limit, where z(¢) is the fittest trait
at time ¢ (i.e. in the environment at time t) and, in this environment set by the fittest trait,
the function A(z, z(t)) is the relative fitness of trait z and is defined implicitly by an elliptic
linear eigenvalue problem arising from the pairwise ecological interaction between two traits.
The canonical equation (L.11)) can then be rigorously derived. It is interesting to note that the
mean trait z(¢) and the variance 0.,V (z, t)‘z:,é(t) does not satisfy a closed system of ODEs.

While our previous works [25) 26, [35] characterized the unique evolutionarily stable strategies
(ESS) by solving the steady state problem, our present work on the time-dependent problem
describes the approach of the dominant trait to the ESS in the evolutionary timescale.



1.6 A heuristic presentation of the analytical approach

The WKB-ansatz defines u,. by
ue(x,2,t)
ne(x,z,t) =e ~ <
where the rate function u.(z, z,t) satisfies the equation

a(z)

€2

Ague + |V aoue? — €d%uc + |0.uc* +m(z) — pe(x,t) = 0. (1.15)

oy, — )
€

Whereas the large coefficients of the spatial derivatives suggests that u(z,t) = lin% ue(x, z,t)
€E—

is constant in x in the limit, the equation (L.15) itself depends non-trivially on the spatial
variables, through the terms m(x) — p(z,t).

To obtain the limiting Hamilton-Jacobi equation (which is supposed to be free of the z-
dependence), the perturbed test function method has been invented in [17] by considering

_ ve(x,z,t)

ne(xa Z? t) = ¢€(x? Z? t)e € )

ie. ve(z,z,t) = uc+ €elog @ (z, z,t). To eliminate the x-dependence in (1.15)), we construct the
correcto O (z,z,t) > 0 as the normalized principle boundle that means to satisfy, for each z,

0P — a(2) Ay ®c = (m(x) — pe(w,t) + He(z, 1)) P, / O (z,2,t)dx = 1. (1.16)
D
We can build (see Appendix [B) the normalizing factor ¢ — H(z,t) so that ®.(z,z,t) satisfies

the mass 1 constraint (and is bounded in C(D x [0,00)) thanks to the Harnack inequality).
Denoting ¢, := — log ®., the equation of v, can be written as

Oyve — YA o + %|vae|2 + Q@vaevmwe —€0?v + 00| + 2€0,v.0. 0

¢ (1.17)
= H.(2,t) — €2(0%¢c + |0.0|%) forx e D,z € I,t> 0.

Provided that ¢ € L™ and it has bounded derivatives in the trait Valjableﬁ, we can show by

comparison that ve(zx, z,t) &~ V.(z,t), where the approximate solution V;(z,t) can be obtained

by solving the following Hamilton-Jacobi equation which is free of z-dependence:

Ve + 0. Ve|? = H(z,1). (1.18)

Therefore, we can approximate for a given time ¢ the dominant trait, which maximizes z —
ne(z, z,t), by the value zZ.(t) where V. attains its minimum. In fact, we can determine this
approximate trajectory Zze(t) from H(z,t) as well. To this end, use the uniqueness of convex
solutions (V.(z,t), Z(t)) in the class W1°(I x (0,T)) x W1°(0,T) of the following Hamilton-
Jacobi equation with a constraint, due to Mirrahimi and Roquejofire [31] (for the uniqueness in
Whoo(T x (0,T)) x BV(0,T), see also [8] and Appendix [C):

OV +10.Ve|> = He(z,t) — H(Z(t),t) for z€I,t€[0,T],
inf, Ve(-,t) =0 for ¢ € [0, 7], (1.19)
Ve(2,0) = Vo(2) for z € I.

2The elliptic eigenfunction and eigenvalues (i.e. by omitting the term ¢9;®. in (LI6)) are not adopted here.
The reason is that the lack of regularity in time for pe will then render it quite difficult to estimate e0:®., which
only goes to zero in some weak, average sense.

$We need to show the terms —e?(92¢c + |0-p¢|*) — 0 uniformly. In general, the Cauchy problem (LI6) does
not guarantee smoothness with respect to z, due to the dependence on initial data and the timescale et. We
will therefore make a canonical choice of an appropriate eternal solution of (I.I6). This requires a priori Holder
esimates of pc(z,t), as well as an improvement upon existing theory of principal bundle (Appendix [B)).



Hence, we have defined the approximate trajectory z¢(¢) and effective Hamiltonian H(z,t) in
terms of the quantity p.(z,t)[1 Now, having proved that the population has dominant trait at
Ze(t), we can further determine that as ¢ — 0,

|pe(,t) = 05,4y (z)| = 0. (1.20)

Since H(z,t) depends smoothly in terms of p.(z,t), (1.20) and the separation of timescales
imply that the effective Hamiltonian H¢(z,t) converges to the invasion exponent in (LS]), i.e.,

|He(z,t) — Az, 2:(t))| — 0.
Since A(z1, 22) = 0 when 21 = 29, we have in fact
H(z,t) — H(2(t),t) = Az, 2(t)) — MZ(t), 2(t)) = Mz, 2(t)). (1.21)

This, in turn, allows us to pass to the limit in the constrained Hamilton-Jacobi equation (L.19),
resulting in (I0) in Proposition L3

However, for the uniqueness argument to work on (LLI9]), which is crucial in the definition
of approximate trajectory Zz.(t), we need

O*H(2(t),t) > 0.

This is indeed the case in a small time interval [0, 1], as one can show, by the separation of
time-scale between the evolutionary dynamics in z and ecological dynamics of reaching the
spatial equilibrium 0z,, that p.(x,t) does not deviate too much from 6z, (x) in the time interval
[0,61]. This implies the effective Hamiltonian H(z,t) is in the proximity of A(z, Zp), which has
the relevant convexity in z. This is done in Corollary In this way, the argument above is
valid and delivers that

He(z,t) = AMz,2(t))  and  pe(w,t) = Oz (x) for 0 <t < 4y.

By carefully examining the smooth dependence of the effective Hamiltonian H, and corrector
®,. on z and p., we establish a uniform lower bound for the time-step d; for which the above
argument can be applied. Iterating step by step in time, we can prove the convergence over the
time interval [0, 7] for all T > 0.

A different mutation-selection model involving a spatial variable in also studied in [24]. In
the setting of that work, the rate function u. can be shown to be uniformly convex in z a priori.
This is not the case in our setting. Also, the quasi-steady state approximation is used in that
paper, i.e., the elliptic eigenvalue problem instead of the parabolic principal bundle problem
(L.16)) in choosing the corrector ®.. In our setting p. does not have enough a priori regularity
in time, so our definition of corrector via the parabolic problem affords the needed additional
time regularity.

A similar kind of result has also been obtained for the corresponding model with age struc-
ture [33], but with a different strategy. Therein the corrector ®. was defined by a couple of
nonlinear mappings and the main analysis was devoted to showing the uniform boundedness
of the corrector ®.. In contrast, here we adopt a relatively direct approach by defining the
corrector ®. directly to be the (bounded) normalized principal Floquet bundle for parabolic
problem (LI6). This is made possible thanks to our new a priori estimates on the quantity

pe(z,1).

1At this point uc(x, z,t) ~ ve(z, 2z,t) ~ Vi(z,t) + fg H.(zc(s),s)ds. However, by the uniform positive upper
and lower bounds of [|pe(-,t)||11(p), we deduce that fot Hc(Z2:(s), s) ds — 0 uniformly. Hence, we have v(z, z,t) ~
Ve(z,t).



1.7 Organization of the Paper

In Section [2) we establish some a priori estimates of the solution n.(z, z,t) and its integrated
version pc(z,t). We first state the global positive upper and lower bounds, for which the
proofs are postponed to Appendix [A] and derive the Holder regularity of p. and d2n. in some
appropriately rescaled variables.

In Section 3] we apply the theory of normalized principal Floquet bundle for parabolic prob-
lems with Neumann boundary conditions, as developed in [9] and summarized in Appendix [Bl
to define the effective Hamiltonian H,(z,t) and the corrector ®.(z, z,t), as functions of p.(x,t).
We also state the uniqueness theorem, which allows us to define the approximate trajectory
Z¢(t) and pheonotypic distribution V.(z,t) in terms of the effective Hamiltonian H(z,t) and
initial distribution Vj(z).

In Section 4} we introduce the rate function uc(x, z,t) = —elogn.(x, z,t) and prove several
technical estimates that enable us to obtain a lower bound §; > 0 of the step size in time with
which we can continue the approximate trajectory.

In Section [5) we prove the main result Theorem [1.4]

The three appendices are devoted to the three main ingredients/tools that we develop for
this singularly perturbed problem. In Appendix [A, we prove the a priori L> estimate of
pe(z,t). In Appendix Bl we state the existence and differentiability of the normalized princi-
pal Floquet bundle, which is used in the construction of effective Hamiltonian and corrector
(He(z,t), ®c(x, 2,t)). In Appendix[Cl we prove the existence and uniqueness of solutions to the
constrained Hamilton-Jacobi equations that we need.

2 A priori Estimates

We begin with the following result; see Proposition [A.1] for the proof:
Proposition 2.1. Let pc(z,t) = [;ne(z,z,t) dz, where ne is the solution to (LG). Then there
exists 61 independent of € > 0 such that
1 ~
7 < pe(z,t) <Cy forall (z,t) € D x [0,00).
1
In the following, we extend n(z, z, t) evenly and then periodically in z. Due to the Neumann
boundary condition, the extended n. satisfies the same PDE with coefficients similarly extended
to D x R x [0,00). Next, we rescale n.. Define, for z; € I and t; > ¢,
Ne(x’ Y, T) = Ne(x’ Y, 7 Zlatl) = ne(x, z1 + €y, t1+ 67—)’
and note that N¢(x,y,7) satisfies a linear parabolic equation
O0rNe — (21 + ey) Az Ne — 8§Ne = Ne(m(z) — pe(z, t1 + €7)). (2.1)

By Proposition 1], the above equation has L° bounded coefficients, so we may apply local
parabolic L? estimates to obtain Holder regularity of N, which then allows us to use parabolic
Schauder estimates to estimate 92N. Here 92N denotes all second order partial derivatives in
space Bgij

Lemma 2.2. For € (0,1), there exists C' > 0 independent of € such that
1OZ Ny, 7)o m5r2 (-3, 1px =20y < CINell L1 px (1,1 (- 1,0))-

In particular, there exists a constant C' independent of t > € and z € I such that

sup|82n€xzt|<C][ ][ /nex z+ 2 ) da'd dt’ . (2.2)
t—e J —e

xzeD

Here we use the notation f f81 for any s1 < s9.

_32 s1

8



Proof. By Proposition 211 sup [|pe(-,?)||¢(py < C. Hence, the equation (ZI) has L> bounded
>0

coefficients. So we may appl_y local parabolic LP estimates to obtain Holder regularity of N..
To this end, define Q3,5 C /5 C 1 by

3 4
Qpi= D x (~R,R) x (<R.0), for R=%,= and 1.
Then, recalling (2.1I), we have
HNEHCB,B,B/z(m) < C”Nsﬂwgﬂvl(gw) < ClINellLr(9,5) < ClINellLr () (2.3)

where the first, second and third inequality follows, respectively, from the Sobolev embedding,
parabolic L? estimate, and (A.3]).
Integrating (2.3) over z; € I, we have, for each t; > e,

e+t € lhggtong-goly < f IV 031020 .

§£W$QWMMMWHWM
< Cllpe(5t1 +€)llpypx=1,0) < C (2.4)

where we used the fact that pc(z,t; + €t) = f[ Ne(z,0,t;t1,21)dz for the first and third in-
equalities, (2.3) in the second inequality, and Proposition [A.1] for the last inequality. Similarly,
for each t; > € we have

loe(- s t1 + € - )Hcﬁ’ﬁ/2(ﬁx[7% o)) < / HNE(-,O,.;t1,2'1)HCB,;a/2(5X[_§ 0})d21 < C.
b I 57

Now that pc(-,t; + €-) is Holder continuous, we may apply parabolic Schauder estimates to

(2.1) to get

IOZNe(, 5, Tl eo.5.r2(Bx -1, 1)x[-1.0]) < ClINellosos2@s)- (2.5)
The lemma follows from combining (2.3) and (2.5). O
The following result follows from the proof of Lemma

Corollary 2.3. (a) For each p > 1, there exists some ép > 0 independent of € such that

D e Mgzt (pfr sy < O where pula ) := pela,er).
0=

(b) For each ' € (0,1), there exists some Cg > 0 independent of € such that
Hﬁencﬁ/ﬂ’/?(Dx[Loo)) < Cgr.
In particular, we have sup ||pe(-,t)ll oy < Cr-
t>e
This result requires an initial delay of order € so as to take into account the possible initial

layer on pe. This is responsible for the technical issues on the initial data that we encounter in
the next section.



3 Approximate Trajectory via the Normalized Principal Flo-
quet Bundle

Our next and fundamental task is to define the corrector ., closely related to log ®. and

effective Hamiltonian H. in terms of the principal bundle of certain parabolic problem with

potential m — p.. This, in turn, enables us to define an approximate trajectory Zz.(t) of the
dominant trait.

Proposition 3.1. For each fized € > 0 and z € I, there exists a unique classical solution
(pe(x,2,t), He(2, 1)) to the following linear parabolic problem in D X (—o00,00):

cOipe — a(2)Agpe + a(2)|Vope” + m(x) — pe(x, max{t, c})

+H(t;2) =0 x € D,teR, (3.1)
8. = 0 z€dD,t €R, :
fD e~ Pe@tiz) dp = 1 teR.

Moreover, the quantities (pe(z,t;2), He(2,t)) depend smoothly on z € I, i.e., for some constant
Cy independent of €,

max [ 0LH(t;2) oo + [ Vape(@, t; 2)lloc + max [[0pe(z, 8 2) o0 < Co, (3.2)
i=0,1.2,3 i=0,1,2
where || - ||oo denotes the L™ norm over (x,z,t) € D x I x R.

Proof. For x € D and 7 € R, define c.(z,7) := m(z) — pe(x,max{r,1}), where p(z,7) =
pe(z,er) as in Corollary 2.3] then |[cc||cs.6/2(pxry is uniformly bounded in € thanks to Corol-
lary [2.3[(b). By Theorem [B.2, we can define the corresponding normalized principal Floquet
bundle

(1(x, 75 ¢c, 2), Hi (T3 ¢e, 2)) € CHPIHB2(D x R) x CPF2(R),

which satisfies
0:P1 — a(2)A, @1 = (m(x) — pe(x, emax{r,1})®; forz e D, t € R,
0,01 =0 for x € 0D, t € R,
® >0 forzeD,teR, and [,Pdz=1 forteR.

Setting
Ye(x, z,t) := —log ®1(x,t/€;cc,z) and  He(z,t) := Hi(t/e;ce, 2),

we obtain (., H) satisfying (3.1). The smoothness follows from Proposition [B.3. O

We define the approximate trajectory by solving a constrained Hamilton-Jacobi equation
by making use of uniqueness results under convexity assumption [31]. The proof is contained
in Appendix [Cl

Proposition 3.2. Suppose, for some T > 0, it holds that

liminf | inf 0?H(z,t)| > 0. (3.3)
e—=0 | Ix[2v/€,T]

Then for all € > 0 small, there exists a unique viscosity solution (Ve(z,t), z:(t)) to the following
Hamilton-Jacobi equation with a constraint:

Ve + |0.Ve|? — He(z,t) + Ho(Z:(t),t) =0  fort € [2¢/€,T], z € I,

0. Ve=0 fort € [2\/e,T], z € 01, (3.4)
Z(2v/€) = Zo, and Vi(z,2/€) =Vy(z) forzel, '
inf,er Ve(z,t) =0 fort € [24/€,T7.
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Moreover,

Ve(Ze(t),t) =0, and Vi(z,t) >0  for z # Z(1),
and there exists a constant C > 0 independent of € such that
1Ze(llcoa 2yer) < C- (3.5)

Remark 3.3. Thanks to (3.3) and the convexity of the initial data, V and z(t) satisfy (3.4)),
except for the Neumann boundary condition, in the classical sense. The Neumann boundary
condition has to be understood in the classical sense [2].

4 WKB Ansatz and Some Technical Lemmas

The rate function ue(x, z,t) = —elogn.(z, z,t) satisfies the equation

Orue — a(j) Azue + a€(2Z) Vot — edZue + |0uc* + m(z) — pe(z,t) =0
zeD,zelt>0,

Oyue =0 x€dD,zcI,t>0, (4.1)
O ue =0 x€eD,zedl,t >0,
Ue(x, 2,0) = ueo(z, 2) := —elogneo(z, 2) x€D,zel.

Let @(z,2,t) be given in Proposition [3.1. Using the perturbed test function method, we
define the function v(z, z,t) := uc(z, z,t) — epc(z, z,t), which satisfies

Opve — @Amve + @|vae|2 + Q@vae Ve — €020 +|00)? + 20,00, 0,
= H.(z,t) — €2(0%20c + |0,0c|*)+pe(w,t) — pe(w, max{t,e}) forxz € D,z€I,t>0,

Oyve =0 forx € 0D,z € I,t >0,
0,0 = —€d,p. = Ofe) forxe D,ze dl,t >0,
ve(x, 2,0) = ueo(x, 2) forze D,z eI

(4.2)

Remark 4.1. The right hand side of (£.2) is essentially the Hamiltonian H(z,t) + O(e), since
the term pc(z,t) — pe(x, max{t,e}) is identically zero except for t € [0, €].

By (3:2) we have
llue — UEHLOO(DXIX(O,OO)) = €[|ell oo (Dx1x(0,00)) = O(€),

thus upper and lower estimates of u. and v. are the same, up to an error of O(e). In the
following, we shall construct super- and sub-solutions of v..

Proposition 4.2. Suppose for somet =1, >¢, 2 €1, Vy € C*(I) and 1 > 0, such that
Vi(z) >0, Vi(z)=0iffz=2%, 0*Vi(z)>m >0 forz—m<z<i+m (4.3)
and it holds that
sup lue(z,2,t) = Vi(2)lcpxry # 0 ase—0.
i—e<t<i
Then there exists C' > 0 independent of t and 2 € I such that for each small § > 0,

< O3, (4.4)
(D)

limsup sup
=0 §<t<i+26

/(z — 2)02n(-, 2, 1) dz
I

11



Proof. Note that, similar to the argument in Step 3 of the proof of Proposition [A.1] a lower
solution for (AI) can be constructed as:

U(zt) = Vi2) = Ca(pe +t = (E =€) = % {lb= -Vl +la+tve-zi}, (45

where a = inf I, b = sup I, and

He = SUpP ]ug(ﬂv,z,f— 6) - Vl(z)‘
zeD,zel

is a constant tending to zero as € — 0, and that C1 = C1(||m(x) — pellc(px[o,00)))- By comparison
in D x I x[t—e¢ +00), we have

ue(x,z,t) > sup Vi — Cr(pe + |t —t4€¢)) +O(Ve) for |z—2]>0 and t >t —¢,
|z—2>8

where

52 - -
ue(:n,z,t)>mT for |z — 2 >0 and f—e<t<t+ 6%
which means
77152 A - - 3
ne(z, z,t) < exp 3 for |z —2| >0 and t—e<t<t+46°. (4.6)
€

Now, for t; € [t,f + 6°],

H /1(21 — 2)02ne(-, 21, t1) dz o) = /1 21 = 2 [|2ne(, 21, 00) || oy A

t1 €
§/|zl—2| [][ ][ /ne(:c,z—l—zl,t)d:vdzdt} dz
I t1—eJ—edJ D
2420 t1 €
< 05/ [][ ][ / ne(x,z + z1,t) dxdzdt] dz1
z2—20 t1—eJ—eJ D
t1 €
+C [][ ][ /ne(x,z—l—zl,t)dxdzdt] dzy
Zl:‘Z172|>25 t1—eJ—eJD

€ t1 2426 77152
< 05][ [][ / ne(x, z + z1,t) dﬂ:dzldt} dz + exp <— )
—€ t1—e J2-25 D 3e

/ ‘ 77152
<O | sup oot Moy | dz+exp (L),
—€ |t—e<t<t

3e

where we used (2.2) in Lemma [2.2] in the second inequality, and we switched the order of
integration and used (4.4) to obtain the fourth inequality. By fixing § to be small enough, we
see that (4.4) holds for all € sufficiently small. This completes the proof. O

Lemma 4.3. Consider the equation

€dip — a(21(t))Aap = p(m(x) — p) + F(z,t)  for x €D, ty <t <ty
Oyp =0 for x € 9D, t1 <t <ts.
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Suppose, for some fized constant M > 1,
z7(t)el, || <M for t; <t <ty
Then for each p > 1, there exists C = C(p, M) > 1 such that for t € [t1,t2],

Hp('7 t) - 6z1(t)()HI[)/p(D)

< C Hp('7t1) - 9z1(t1)(')Hip(l))e_(t_tl)/(ﬁcp) + sup HF('at,)leP(D) +el.
i <t'<t

Proof. For each t, set a1(t) := a(z1(t)) and let O, (x) = 0., (;)(v) denote the unique positive
solution of
a1(t)Az0 +6(m—0)=0 inD, 9,0=0 ondD.

Set W (x,t) := p(x,t)/0:(x) — 1, it satisfies the Neumann boundary condition in z, i.e.,
OW(x,t)=0 fort>0,z€dD,
and, for p > 1, the equation

4(p—1)
p2

]ant(ef\ww) — a1 () - (B2 + s (t) 02|V, WP22 4 p2[W [P

— FO,WW|P2 — c0,0,0,W [W]P~2 — ¢ (1 - %) 0,00, WP,
from which we derive the differential inequality
SOGRIWP) = s (0)V - (GHIW IV W) o pl WP
< WP F| + Coedy| 040, (1 + [WP)

1 A _ 1
— 02 WIP 4+ (3C)P 107 P|FP + — 02 WP + Ce
301 3Cl

<

for 0 < € < 1, where C is given in Proposition 2.1, and (after enlarging C' if necessary) we may
assume that the constant C' is independent of € and that

1
c <O(x) <C forxeD, and supllbtflc2p) < C.
zel
Integrating in x € D, we obtain
€d 9 1 9
—— | WP de+— | 6 \W|Pde <C |F(z,t)]P de +¢€) .
pdt Jp 3C, Jp D
Let M(t) := [, 07|W|P dz, we integrate the above in ¢ € [t1, 5] to get
M(ty) < M(ty)e” “rl2-/e 4 [ sup ||F ()75 +e} :
t1 <t<ta

The lemma follows because of the uniform boundedness of 6; from the above and below. O

Proposition 4.4. Given T > 0 and let ||Ze(t)||co ey be uniformly bounded in 0 < e < 1.
For each n > 0, there exists v = v(n) > 0 such that if

limsup sup [[pe(-,1) — 0z, ()ll 20y < v, (4.7)
e—=0  [\/eT]
then
limsup  sup |[Ho(-,t) = AC, Z(0)llea gy < - (4.8)
e—=0  [2\/e,T—\/€]
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Proof. By Proposition[B.3/in Appendix[Bl, the principal bundle depends smoothly on the weight
function and z € I, i.e. the mapping

{H1 : CP/2B(R x D) x T — CP/2(R)
(c(z,t),z) — Hyi(T)

is smooth. Recall also the fact, when c(x,t) = m(z) — 0;(z)
Hy(r) = Hi(t;m —03,2) = A(2,2) and is constant in 7 € R.
Therefore, for each n > 0 there exists v/ > 0 such that if
[e(x, 7) — (m(x) — 0:(2)) | cs.802(Dxr) < v/ for some 2 € I, (4.9)
then the corresponding principal bundle Hy(7;¢, z) satisfies

[1H1(05¢,) = A, 2)llezry < Sup [H1(75¢,-) = ACs 2)llo2(ry < - (4.10)

Now, fix 8’ € (8,1), and choose by interpolation the constant v > 0 such that if

e, ) = b(e) = 0s(@ )l s 02 my < o+ 10:(2) = M@l i)
Supye lle(w,7) = [m(@) — 0s(2)] 2y < 20,

then (£9) and thus (4I0) holds. (Note that v > 0 depends on the uniform bound C’gf in
Corollary 23] but is independent of €, 2.)

We claim that if (4£7) holds for the constant v we just specified, then (£8]) holds. Suppose
not, then there exist sequences ¢ = ¢; — 0 and t; € [2,/€;,T — ,/¢;] such that Z,(t;) — 2 and

Jim) S, 1pe; (1) = Oz iy Ol 22Dy < v i
i [, 113) = Ao, (D ey = iy 1, (4 69) = AC ey 2 0.
Let (pe(x, z,t), He(z,t)) be the function given by Proposition [3.1, and define
O;(z,2,7) = e P @HTGT) and  Hj(z,7) = He, (z,t; +¢;7).

Passing to a subsequence if necessary, we deduce that

®j(x,2,7) = O(x,2,7) in Cpe(D x I xR), and H;(z,7) — H(z,7) in Cpe(I x R),
where the limit (®(z, z,7), H(7)) is a pair of the normalized Floquet principal bundle, i.e.

(®(x,2,7),H(z,7)) = (®1(2, 73 ¢, 2), Hi (2,73 ¢, 2)),

for some

élx, ) = ejiglo(pej (x,tj + €7) —m(x)).

By the first statement of (4.12)), we deduce that the weight ¢ satisfies (4.11), and hence the
limit H of H, (in the Ci,.(R) topology) satisfies (4.10). Moreover, recalling (3.2), we have

sup | H;(+, 0)|lcs(ny=sup [[He; (- )|l cs(ry < C,
j J
we deduce that H;(-,0) — H(-,0) in C%(I). Hence
Jim (| He; (5 15) = AC 2l ez = IH(-,0) = A )l o2y < s
J

where the last inequality holds since H satisfies (4.10). This contradicts the second statement

of (4.12). O
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Corollary 4.5. For each ng > 0, there exists 51 > 0 independent of 2 and t such that Vy(z)
satisfies the condition (L3) of Proposition X2, and if

sup [ue(z, 2,t) = Vi(2)llepxpy — 0 ase—0, (4.13)
t—3\/e<t<i—2./€
then
liminf inf 02, H(z,t) > & > 0. (4.14)
e—0 IX[tAf-i-(Sl}

Proof. Apply Proposition 4.2], then ([£I3) implies

limsup  sup ||/ 2)0%ne(z, 2,1) dz|r2(py < C|6,1/3
=0 [{—2\/e,i+261]

for each ¢; > 0 small. Applying Lemma [4.3] we again obtain C’ independent of € and d; such
that for each é; > 0 small,

limsup — sup  [lpe(-,t) = 0:()lr2(py < C'l61 ]2,
=0 f fe<t<i+26;

By choosing ¢; small, Proposition [4.4] says that

1
sup ”azlzl ( ) 331,21 ( t)HC(U <§ fAZlZl?
[tt+51}

since by (H1) the last term is a fixed positive constant. Hence, by reducing §; > 0 if necessary,

(4.14) holds. O

5 Proof of Theorem [1.4]

Define

T = T : liminf inf 02 H .
sup{T" >0 imin I><[12I\1/E,T} 07, He(z,t) > 0}

Our purpose is to prove that T* = oo, which comes with the desired convergence results.
Applying Proposition [3.2 the two quantities z.(t) and V,(z,t) are well-defined in the time
interval [24/€,T*], for all sufficiently small e. We will also define for convenience

Ve(z,t) = Vo(2), and ZzZ(t) =2y forzel,te[0,2\¢.

Step 1. In this step, we show that T™ > d;, where 47 is as given in Corollary
By constructing super- and sub-solutions of the form

1 1
Vo) - gellond £ C{(t+ 9+ 1 (- (0= VAL + o+ vE—af2) |,
it follows by comparison using (4.2) that

sup |lue(z, 2,t) = Vo(2)lc(pxr) — 0. (5.1)
0<t<3/e

Based on (j5.1), one can apply Corollary [4.5] to yield T > 6.
Step 2. In this step, we show that as € — 0,

sup  |ue(z, z,t) — Ve(z,t)] — 0. (5.2)
DxIx[0,T]
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(Note that the convergence in the time interval [0,3,/€] has been done in Step 1.)
Next, we show

sup
DXIX[2/€,T*]

ue(z, 2, t) (z,1) / H( ) ds| — 0. (5.3)

To this end, define

UG = Vel 4 [ H(s),9) do e+ S (G I R ER NG 3

and, with 1, = [|uc(z, 2, 2v/8) = Vo(2) lon) = 0(L);

t

Ueot) = Vilort) [ H(aels)5) ds =g = “lla+vo -2~ - 0 VOl

and (5.3)) follows by comparison using (4.2).

We now claim that .

H(z(s),s) ds
2,/e

sup
2,/e<t<T*

Indeed,

[ty [| o (-4250) 1

1 Vlzt) f2t\/2 H.(Zc(s),s)ds + o(1)
= \/E//DXIexp< ; + ; dzdzx.

Since Vi(z,t) = —c(t)(z — Z(t))? + O(|]z — z.(t)|?), we have

. t) )
0 < liminf — // exp ( > dzdr < limsup — // exp ( > dzdx < 400
e—0 /e J/pxr e—0 Ve pxr

and (5.4) follows from this, and % < [p pe(x,t) de < C (from Proposition 2T]).
Combining (1)), (53) and ([&4), we deduce (52).

Step 3. In this step, we show that

\/EsgliIg)T* | pe(- ) — er(t)HC(D) —0 ase—0. (5.5)

First, we deduce from (5.2]) and Proposition that

— 0.
C(D)

sup
[e, 7]

/I(z — Z(1)02n(-, 2, t) dz

Then by taking t; = € and t9 € [\/e,T*] in Lemma .3, we deduce

\/gs;gw Hpe(-,t) —0z.1) HLQ(D) — 0. (5.6)

The estimate (5.5) follows by interpolating (5.6]) with the uniform estimate

\/ESSI?S)T* pr('7t) - ng(t)HC*B(D) <G

which follows from Corollary [2.3[(b) and that ||Z.(-)||con. < C (by Proposition [3.2)).
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Step 4. By (5.5) and Proposition d.4] we have
sup |He(z,t) — Mz, Ze(t))| — 0. (5.7)
IX[2\/27T*7\/E}

Since (V¢ (z,t), Z.(t)) is the unique viscosity solution of ([B.4), we may apply the stability theorem
for viscosity solution, to deduce that, as € — 0, (Vc(z,t), Ze(t)) must converge to the unique
viscosity solution (V(z,t),z(t)) of (ILI0), i.e.
sup  |Ve(z,t) =V (z,t)] -0 and sup |z(t)) — z(t)] — 0. (5.8)
Ix[2/€T~] (2v/e,T7]

Step 5. We claim that T* = +o00. Suppose not, then T* < 4+00. But then the above argument
would allow us to extend the approximate trajectory by a fixed time-step d; > 0. This would
yield a contradiction which proves that T% = +o0.

Step 6. To conclude, it remains to show (LI2) - (LI4). Indeed, (ILI4) follows from p¢(x,t) —
0zt () (by (8.5)) and z(t) — 2(t) (by (5.8)). Next, (L.13) follows from

sup  |ue(w,z,t) — Ve(z,t)] = 0
DxIx[0,T%]

(by (52)) and Vi(z,t) — V(z,t) (by (5.8))). Finally, Proposition [[3] says for each t, z — V(z, 1)

has a unique minimum point at z(¢), so that

Ve(z,t) +0(1)

ne(xa Zat) = €Xp <_
€

) ~ b0l — (t))pela, 1), (5.9)

where the function pe(z,t) = [ 1 ne(x, z,t) dz appeared since the above needs to be consistent
upon integration over z € I. Combining (.14 and (5.9]), we deduce (L.12).

6 Discussions and Generalizations

In Subsection [6.1I] we discuss a special feature of the effective Hamiltonian A that arises from
evolution of random dispersal, as modeled by Laplacian in the spatial variable, which is the fact
that z; — A(z1, 22) has the same monotonicity of «, regardless of choice of a and z3. Subsection
[6.2] gives a concrete example of a(z) where (H1) can be verified. Subsection [6.3] discusses the
generalization to multi-dimensional traits, as motivated by the evolution of conditional dispersal,
where the optimal trait is not necessarily the slowest dispersal rate anymore.

6.1 Monotonicity of the effective Hamiltonian
The effective Hamiltonian can be written as

Az1,22) = Aa(z1), a(z2)), (6.1)

where A(aq, as) is the smallest eigenvalue of

AP + (m(z) — On,(2))® + AP =0 for z € D,
0,9 =0 for x € 0D,

where O,(z) is the unique positive solution to
aAO + (m(z) —©)® =0 in D, and 9,0 =0 on 9D. (6.3)

Then it is well-known that A is smooth in Ry x Ry, and that du, Aoy, as) > 0 [1,[16] [32]. We
may conclude the following immediately.

sgn(\;, (21, 22)) = /(21)  for all 21, 29.

Next, we observe that when a(z) satisfies (H1), it is necessarily U-shaped and has a unique
minimum point, which is where the dominant trait eventually converges.
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Lemma 6.1. Suppose a(z) is chosen such that (H1) holds, then there ezists zmin € Int I such
that
d(z) <0 inla,zmin);, & (Zmn) =0 and ' (2)>0 in (2min,b); (6.4)

and that z1 — (21, z2) has the same minimum point zmyy for each zo € [a,b),
0 M\ (2,22) <0 infa,zmin), OnA(Zmin,22) =0 and 0, A (z,22)>0  in (Zmin, b]. (6.5)

Proof. Differentiating (G.I) with respect to z1, evaluating at (z1,22) = (a,a), and using (H1),
we have

0> d,,Ma,a) = 0, Aa(a), afa))d (a).

Using also that d,, A > 0, we conclude that o/(a) < 0 and similarly o/(b) > 0. Thus « has at
least one interior minimum point. Moreover, for each fixed zo, the mapping

21 = A(z1,22) = Aa(z1), a(22))

is convex in z1, it has the desired monotonicity property in z;. This proves the second statement.
Still because J,, A > 0, we deduce that « also has the desired monotonicity as well. O

6.2 An explicit example of «(z)

We can construct explicitly some U-shaped dispersion a(z), so that the associated A(z1, 22)
satisfies the convexity assumption (H1). For any given interval Iy = [ag, a9+ Lo] with g, Lo >
0, define

1 z
a(z):a0+k—/ tanz' dz’  for 2 € [—2zn5 2]
0.J0

2 A
| a1A| and z)s € (0,7/2) is the unique number such that [ tan zdz =

where kg := sup
(a1,2)€lp x I

koLo. With this choice of «, the associated A\(z1, 22) = A(a(z1), a(z2)) satisfies

@l

+0,, MF201, 22) = £0a0, Ala(F20r), a22)) (£2p1) > 0,
and, thanks to the definition of kg, we compute

92 A(21,22) = (Oay M) (21) — |02, Al(e (21))?

o aoqA / 1 |a§qA| 2
= he [(tan z1) — Y |tan z1 |
Oy A

>

1.
T [(tan z1)" — [tan 2’1’2} Zk_ Iérxlflo Oay A > 0.

0

6.3 Evolution of conditional dispersal

A limitation in our present study comes from the use of convexity to obtain various regularity
results, in particular for the solutions of the constrained Hamilton-Jacobi equation. Here we
present an example which motivates to look for more general methods. We have in mind
the following model considering evolution of conditional dispersal, see [19] and the references
therein.

€One = a(2)Agu — B(2)V - e Vm(z)] + ne(z)(m(z) — pe(z,t)) + €0%n, (6.6)

for x € D, z € I and t > 0, with appropriate boundary conditions. Here « is the rate of
unconditional dispersal, whereas (3 is the rate of the directed movement up the gradient of the
prescribed function m(x). One or both «, 5 can be dependent on the trait variable z.
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The effective Hamiltonian is again given by the invasion exponent A(z1,z2) and can be
similarly defined. Assuming m(z) = z, a(z) = z and = ¢ for some small constant ¢, it can be
shown that (6.6) possesses at least one positive equilibrium solution ., which tends to a Dirac
measure supported at two distinct points on the trait interval. In particular, the corresponding
effective Hamiltonian is nonconvex. We conjecture that the time dependent problem supports
moving Dirac-concentrations supported at two points (z1(t), Z2(¢)), which then converges to
their equilibrium position.
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A A priori Estimates

Proposition A.1. There exists Ci > 1, depending on Vy(2), m(z), o, @, D but independent of e,

such that )
— < pez,t)<C, for z €D, t>0.

C

Proof. We prove the proposition in six steps.
Step 1. There exists C' such that sup,> [[pe(-, ?)|[L1(py < C.
Integrate (L6) over (z,z) € D x I, and use the Cauchy Schwarz inequality, we obtain

d
e pe(:v t) de = /Dpe(x,t)(m(x) — pe(z,t)) do < / pe dz(m ~ D / pe dz) (A1)

where m* = supp m. Hence we deduce from the differential inequality that

/ pe(z,t) der < max {/ pe(z,0) d:v,m*|D|} for all ¢t > 0. (A.2)
D D

It remains to estimate the initial total population [, pe(z,0) dz by (H2):

/pexO dm—//exp xzo))dzdx
Ry

Thus Step 1 is a direct consequence of (A.2).
Step 2. There exists C such that sup Hpe(-,t)HC(D) <C.
t>e

It suffices to show the following assertion:

Claim A.2. There exists C1 such that for any t; > €,

sup pe(x,t1) < Cyp  sup / pe(z,t) dz.
x€D tefti—e,t1] /D

To prove the claim, we first extend n.(z, z,t) in the z variable by reflection across z = b,
and then periodically in z to D x R x [0, 00).
Consider, for each (z1,t1) € I X [€,00), the rescaled function

Ne(z,y, 73 21,t1) = ne(w, 21 + €y, t1 + €7), (A.3)
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then N, satisfies, with z = 21 + ey,

{ O Ne — a(2)AyNe — 02N = Ne(m — po) <mNe in D xR x [~1,00), (A4)

OyNe(z,y,7) =0 on 9D x R x [—1,00).

Since N, is a subsolution of a linear, parabolic equation with L> bounded Coefﬁcient, we can
apply the local maximum principle [27, Theorem 7.36] (see also [IT, Section 6.2]), to obtain a
constant C independent of € > 0, z; € I and t; > € such that

[Ne(,y, T)|| Lo (Dx (—a/5,4/5)x (~4/5,0)) < C1lINe(@, 4, T L1 (Dx(=1,1)x (=1,0))- (A.5)

(Note that the spatial domain on both sides of the inequality can be taken to be the same, as
a consequence of the Neumann boundary condition across 0D.) Next, we write

pex,t1) = /ne(x,zl,tl) dz1 = /Ne(x,0,0;zl,tl) dz.
I I

Taking supremum in x € D, it follows that
ot < [ IV, 0.021,0) e oy
< /1 [Ne(@,y, 73 21, t1) | Loo (Dx (=1/2,1/2) x (—1/2,0)) 421

< C/IHNe(%yJ; Zlatl)HLl(Dx(fl,l)x(fl,O)) dz

0
< C/ / / ne(x, z,t; + €1) dzdrdr
—1JD J(a—ebte)

0
< C/ / /ng(x,z,tl + e7) dzdzdr
-1JpJ1

<C sup /pg(m,t) dz,
D

tE[tlfe,tﬂ

where we used the periodicity of n. in the second to last inequalities. This proves Claim [A.2]
Finally, we take supremum over t; > € on both sides of the conclusion of Claim [A.2] we
deduce

sgp”pg(-,tl)HLm(D) < Cj sup [ sup / pe(z,t) dm] < sup/ pe(-,t)dx < C.
t>e D D

t12e | te[ti—e,ti] t>0

This completes Step 2.
Step 3. There exists C' > 1 such that C~! < p.(z,t) < C for z € D and t € [0, €.
Based on (H2) we construct the following lower solution of (£.I):

U(,1) 1= Volz) — gellogel ~ Calt + ) = = {[z — (b — VI + [a+ ve— I3},

where C' is chosen large such that U, (b,t) <0 < U,(a,t), and then Cj is chosen large enough
so that
U(z,0) < ue(z,2,0) forxzeD,zel,

5Note that the term —p. is dropped.
6Since the differential inequality (@1), after dropping the —p. term, is independent of —pc, the constant Co
can be chosen independent of supy<;<. [|0e(-;t)llc(p)-
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and the appropriate differential inequality (4.]]) is satisfied in D x I x (0, 00). Hence for 0 < ¢ <,
1 1
ue(x, z,t) > Ulz,t) > §v0(z) — 56’ log e| + O(e),

where the last inequality follows from the fact that V(z) > 0 and is bounded below by a positive
constant near z = a, b, so that

Vo)~ {2 = (b~ VO +lat Ve 2L} 20

Integrating in z, we find
/ex < +O()> dz<C forxze D,tel0e.

This proves the upper bound of Step 3. The lower bound can then be similarly proved, by using
the upper bound and considering the upper solutionﬁ

— 1
T(x,t) = Va(2) — el log el + Calt +¢)

Notice that, here, the term in curly bracket appearing in the definition of U is not needed, as
Vo(2) has positive outer derivatives at z € 9I. This completes the proof of Step 3.
Step 4. There exists Co such that sup,> [|pe(-,t)[lc(py < Co-
Step 4 is an immediate consequence of Steps 2 and 3.
Step 5. There exists C' such that inf;>q [, pe(z,t) de > 1/C.

We may assume that
CO lnfD m

Ogge/DpE(x,t) dx > e 2C,

where Cj is given in Step 4, and (Y is given in Claim[A.2l Indeed, by Step 3, such an inequality
holds if we increase Cy when necessary. Next, we assume to the contrary that there exist t; > e

such that > J
_c,infpm
/ng(m,tl) dx = e ©0 2C1 and E/ Pe dx‘t:tl <0. (A.6)

By Step 4 and (A.L), the function A(t) := [, pe(x,t) dx satisfies the differential inequality
d A(t) > —CoA(t), so that for t € [t; — e,tl],

€t

oo o—Co infpm infpm

A(t) < eCo(tl—t)/eA(tl) 50 = o
1 1

By Claim [A.2] we deduce that

infpm infpm
e opy <C1 sup Alt) <C =
[[pe(+s t1) [ Lo () 1t€[t1£m (t)<Cq 20, 5

Hence, by (A1),

d infpm
€ pe dac‘t o= /D(m—pe)pe dw|t:tl > 5 A(ty) > 0,

which is a contradiction to (A.6). This proves Step 5.
Step 6. There exists C such that pc(z,t) > 1/C for z € D and t > 0.

"Here the constant C3 depends on the quantity suPp<;<c lpe(, t)|lc(py, which has just been proved to be
uniformly bounded.
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For 0 < t < ¢, the lower bound is proved in Step 3. For t > €, one first notice that
N(7,x,y;t1, 21) satisfies a parabolic equation with L> bounded coefficients, and thus satisfies
a weak Harnack inequality [27, Theorem 7.37] (see also [I1] Section 6.5]). One then prove that
pe(z,t) also satisfies such a weak Harnack inequality, so that for each t; > e,

t1—6/2
pel,tr) > C [ pulat) daat
D

t1—e

where the last term is bounded from below, as proved in Step 5. This proves Step 6. Finally,
the proposition follows from combining Steps 4 and 6. U

B Differentiability of the Principal Bundle

The notion of a normalized principal Floquet bundle (see [36]) is a generalization to evolution
problems of the notion of principal eigenfunction of an elliptic, or periodic-parabolic operator.
Its smooth dependence on parameters is recently established in [9].

B.1 The normalized principal bundle

Let D € RY be a smooth bounded domain. Given o > 0 and ¢ € C##/2(D x R), we say that
the positive function ¢ (z,t) is the corresponding principal Floquet bundle if it satisfies

Orp1 — zA¢1 — c(x,t)p1 = Hi(t)p1 forz € D, t €R,
Oyp(x,t) =0 for x € 0D, t € R,
é1(z,t) >0 forx € D, t €R.

The existence and uniqueness is proved in [29], which is based on the abstract result of [36].
To formulate the smooth dependence on parameters, we need the notion of a normalized
principal Floquet bundle.

Definition B.1. Given z > 0 and ¢ € C?#/2(D x R), we say that the pair (®1(z,t), Hy(t)) is
the corresponding normalized principal Floquet bundle if it satisfies

0;®1 — zAP — c(m,t)q)l = Hl(t)‘l)l forx € D, t € R,

0y ®1(z,t) =0 forz € 0D, t € R, (B.1)
Jo @i(z,t)dr =1 for t € R, '
Py (z,t) >0 forx € D, t € R.

Theorem B.2. For each z > 0 and c € 05’5/2(1_7 x R), there exists a unique pair
(®1(z,1), Hy () € CHAMHB2(D x R) x CPI2(R)
satisfying (B.1) in classical sense.

Proof. The existence and uniqueness of (®1, H;(t)) follows from the existence of the principal
Floquet bundle ¢(z,t), by noting that H;(t) arises from the normalization [, ®1(z,t)dz = 1;
See [9, Theorem A.1] for detail. O

We need the smooth dependence of the normalized principal Floquet bundle, which is re-
cently established proved in [9].
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Proposition B.3. The normalized principal Floquet bundle, as a mapping
_(Z,C) = ((blaHl) .
Ry x CPB2Q X R) — CZAIHA/2(Q x R) x CP/2(R)

is smooth. In particular, there exists a constant C = C (M) which is independent of z € [ﬁ, M]
and HCHcﬁ,B/z(DxR) < M such that

[0:®1llos + | max [10:®1]loo < C,

where || - || is the L norm over (z,z,t) € D x [1;,M] x R, and

1
6§<I>1(3:,t)§0 in D x R.

Proof. The smooth dependence is proved in [9, Proposition A.4]. It remains to prove the positive
upper and lower bounds on ®;. For this purpose, we recall the uniform Harnack inequality [22),
Theorem 2.5, which says that there exists some positive constant C' = C' (M) such that

1
Di(-,t) < Cinf ®(-,t) f — M|, teR.
S%p 1(-,1) < ind (+,t) orZE[M, ], €
Thanks to the normalization fQ ®, dr =1, we obtain

1 1 C
< —up®y(-.t) < D < Cinf ®q(- 1) < —.
cia] S ot 1) < @aa,t) < Cin 1(,t)_‘ |

This completes the proof. ]

C Uniqueness for the Constrained Hamilton Jacobi Equation

We now establish the uniqueness of solutions to a constrained Hamilton-Jacobi equation in an
open, bounded one-dimensional interval I under some monotonicity assumption. We begin with
a proposition that does not assume convexity of the Hamiltonian and initial data on the trait
variable .

Proposition C.1. Fori=1, 2, let (V;,z;) € Wh*°(I' x [0,T]) x BV([0,T]) be a solution to

OV + 10, V|2 + R(z,2(t),t) =0 forz€ I', t € [0,T], (1)
9.V (z,t) =0 for z€ I, t € [0,T] '
in the viscosity sense, and which verifies the initial data and the constraint
V(z,0) = Vu(2) forze ', (C.2)
inf,ep V(z,t) =0 forte[0,T] ’
in the classical sense. Suppose that R is C? in all variables, and
zt)eIntI'  for i=1,2,t€][0,T], (C.3)
R(z1,29,t) =0 if and only if (z1,22,t) €T (C.4)
and
0., R(z,2,t) >0 in T or 0,R(z2,1t) <0 inT, (C.5)

where T := {(21,29,t) € I' x I' x [0,T] : 21 = 22}. Then
(Vi(z,t),21(t)) = (Va(z,t), 22(t))  for z € I' and t € [0, T).

We postpone the proof of this proposition and conclude the proofs of Propositions [1.3
and [3.2
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C.1 Proofs of Propositions [1.3 and [3.2

Proof of Proposition [L.3. Since assertions (ii) and (iii), and the existence part of assertion (i)
are proved in [28| [31], we prove the uniqueness part of assertion (i) in the following.

Let (Vi(z,t),%;(t)) be two solutions such that the common initial data Vy(z) is convex,
smooth, and attains a unique minimum at some zy € Int I.
Step 1.  Due to the differential equation (L.11), and the fact that A(z, z) = 0, exactly one of
the following cases holds:

(Z) 21 (t) = Zz(t) = 20, (’LZ) <%Zl (t)) <%22(t)> >0 forallte [O,T]

In case (i), the conclusion follows from standard uniqueness of viscosity solution to Neumann
problem. We henceforth consider case (ii). In fact, by (LL11) we can assume without loss of
generality that

Ezi(t) >0 and 0, A(%(t),z(t)) <0 for ¢e€]0,7] and i=1,2. (C.6)
Step 2.  We choose I’ to be slightly larger than [2p, max;—1 2 % (7)] = U2_,%([0,T]), then
(C.3) and (C.4) hold.
Step 3.  (Vi(z,t),z1(t)) and (Va(z,t), Z2(t)) are viscosity solutions to the same constrained
Hamilton-Jacobi equation (with Neumann boundary conditions) on the restricted domain I’ x
[0,T7]:

HV + |0, V|2 =Nz, 2(t)) =0 forzeI',t€0,T],

9. V(z,t)=0 for z € 9I', t € [0, T, )
V(z,0) = Vu(2) for z e I, ‘
inf,ep V(z,t) =0 for t € [0,T1.

(The initial data and constraint are satisfied in the classical sense.) This step is valid since
z + Vi(2,t) is convex, and the unique minimum point z;(¢) € Int I’ for all .

Step 4.  We can now apply Propositon [C.1 to conclude that z;(t) = z2(t) a.e. in [0,7T].
Then we can use the variational characterization to deduce that V; = V5 in the original domain

I x [0,T] (not just in the smaller domain I’ x [0,T]). O
Proof of Proposition[3.2. Fix € > 0 and let R(z1,22,t) := —H(z1,t) + He(22,t). Once again,

the existence of a viscosity solution (Vc(z,t), Z¢(t)) holds. Since Vj(2) and —R(z, Z,t) are convex
in z, it follows that V,(z,t) is strictly convex in z for each ¢, and satisfies the differential equation

d 1

%Ze(t) = W@IR(;@),@(QJ). (C.8)

To show uniqueness, it suffices to repeat the proof of Proposition [LL3l We omit the details. [

C.2 Proof of Proposition [C.1

Suppose two sets of solutions (V;, z;), i = 1,2, are given. First, extend the problem by reflection
to the domain [2inf I’ —sup I, sup I'] x [0, T'| and then extend it periodically so that it is defined
in R x [0,T]. We use the variational characterization:

v =t {298 - re.z0.0] srweon) )

with the understanding that Vj(z) is also being extended evenly and periodically so that it is
defined for all z € R.
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Lemma C.2. Assume (C.3), (C.4) and the first alternative of (C.5). Let (V(z,t),2(t)) €
WL(R x [0,T]) x BV([0,T]) be a solution of (C.1) and (C.2). Then, at possible discontinuity
points we have

zZ(t—) < Z(t+) and N(t) C [2(t—), Z2(t+)] (C.10)
where N'(t) = {z € I' : V(2,t) = 0}.
Proof. By (C.4) and the first alternative of (C.5]), we have
sgn(R(z1,22,t)) = sgn(z1 — 22). (C.11)
Fix (z,t) such that V(z,t) = 0, it suffices to show that z(t—) < z < zZ(t+). To show the first
inequality, choose a minizing curve ~(¢) for (C.9) such that v(¢) = 2z and

t |2 s 2
0="V(z,t) = /0 # — R(y(s),z(s),s)ds + Vo (7(0)). (C.12)

In fact, for any h € (0,t), the dynamic programming principle says that

= (s
OSV(V(t—h),t—h):/O [‘7(4)

‘ 2

R(y(s),2(s),s)| ds+ Vo(~(0)).

Subtracting, we have

t $(5)[2 t
0< — /t_h [% - R(y(s),z(s),s)] ds < - R(v(s),2(s),s)ds for all s € (0,t).

Dividing by A and letting h N\, 0, we deduce that

By (C.11)), we have z(t—) < z.
Next, we fix as above z,¢,7(+), and define v, : [0,¢ + 1] — R by

[ q(s) for0<s <,
71(8)_{ z for s > t.

Then by (C.9]), we have for 0 < h < 1,

t+h |« 2
0<V(t+hyn(t+h)< / L(j)'
0

Subtracting (C.12]) from the above, we have

— R(71(5), 2(s), ) ds + Vo(~(0)).

0<— /t+h R(z,2(s),s)ds. (C.14)

Divide by h, and let h — 0, then R(z, Z(t+), s) < 0. By (C.11)), we have z(t+) > . O

Remark C.3. From the above proof, for each to > 0 and zy € N (to), it follows from (C.14) that

to+h
/ R(Zp, 2(s),s)ds <0 for all sufficiently small h > 0.
to

Lemma C.4. Assume (C.3), (C.4) and the first alternative of (C.5). Let (V(z,t),z(t)) €
WH(R x [0,T]) x BV([0,T]) be a solution of (C.1) and (C.2), then z is non-decreasing.
Furthermore, we have

t£%1+ [sup N (t)] = sup N (0), (C.15)
and, still with N'(t) = {z € I' : V(2,t) = 0}, we have
Z(t+) = sup N (1). (C.16)
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Proof. Again, without loss of generality, we choose the right-continuous representative of Zz.
Now, assume to the contrary that z is not non-decreasing. i.e. z(t;) > Z(t2) for some ¢, < t.
Since Z is right-continuous, we have z(t1) > Z(t2+), i.e. there exists t3 > to such that z(¢1) > z(t)
for all t € [tz,tg]. Let tg = sup{t S [tl,tg) : E(t) > E(tl)}. Then tg < to < t3, and

(t) < Z(tl) (to ) for t € (to,tg). (C.l?)

In particular, we deduce that z(to+) < z(to—). By (C.10), it follows that z(to+) = z(tp—), and
that N (o) consists of a single element, which we denote by Z.
By the first alternative of (C.5)), there exists a small §; > 0 such that

R(Eo,z,t) >0 forze (20 - 51,20), te [to - 51,t0]. (0.18)

Then choose h € (0,91) small enough so that z(s) € (Zp — 1, zp) for all s € (tg,to + h) (which
is guaranteed by z(tp+) = zZ(top—) = 2o and (C.17)). We deduce from (C.18) that

to+h
/ R(Zz0,2(s),s)ds > 0,

to

where the last inequality follows from z(s) < zo (by (C.17)). We obtain a contradiction to
Remark [C.3l
Next, we observe that (C.15]) follows directly from the upper-semicontinuity of N, i.e.

limsup NV (¢') € N(t). (C.19)

t'—t+

It remains to show (C.16). It follows from (C.10) (proved in Lemma [C.2) that z(t4) >
sup N (t). Moreover, (C.10) and the monotonicity of z imply that

Z(t+) < z('=) < inf N(¢') < supN (') for each t' > t.
Using (C.19)), we may let ¢ — t+ to deduce z(t+) < sup N (¢). This proves (C.16]). O

Proof of Proposition [C 1l For i = 1,2, let (V;(z,t), z(t)) € WH(R x [0, T]) x BV[0,T] be two
solutions of (C.1)) and (C.2). It suffices to show that z; (¢) = 22(t) a.e. in [0, T]. Without loss of
generality, one can reduce to the case that for each ¢ > 0, Z; # Z5 in a set of positive measure
n (0,¢). Furthermore, by considering 2’ = —z if necessary, we can assume the first alternative
of (C.5) to hold.

To apply [8, Section 3, Remark 3], it remains to verify (U1)-(U3). Now, observe that the
Hamiltonian function in (C.I) is smooth and satisfies H(z,t,2,p) = |p|*> + R(z,Zz,t), so that
L(z,2,t,v) = |v|?/4 — R(z, 2,t). This verifies (U1). The condition (U2) also holds, as V;(z,t)
admits the variational characterization (C.9).

It suffices to check (U3). Define

S —supNi(t),  where  Ni(t) = {z € I : Vi(x8) = O},

and let 7¢ € AC|0,¢] be the minimizing path corresponding to the value V;(z{,t) = 0. We need
to verify the following three conditions:

(i) [fim 2 = 20 := sup{z € I : Vi(2) = 0},

(ii) 01n£18 R(thr0n+[( —0)z1(t) + 6z2(t)], 20,0) < 0,

(iif) limsup |4 oo (0,0 < +o0.
t—0-+
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To verify condition (i), we apply (C.15) and (C.16) to get

lim z(t) = lim Z(t) = lim 2z} = Z. 2
Mg 0= g 20 = D =2 (20

To verify condition (ii), observe that (C.4) and the first alternative of (C.5) imply that
9., R(Z0, 20,0) = —0,, R(Z0, Z0,0) < 0. Using (C.20), we can then compute

sup 0., R( lim [(1 — 0)21(t) + 022(t)], Z0,0) = 0., R(Z0, Z0,0) < 0.
0<6<1 =0+

For condition (iii), we observe that the initial data g and the Lagrangian function % —
R(I,t,x) are periodic in z, so the minimizing paths 7! (corresponding to (2!,¢)) exists and is
uniformly bounded in L>. One can derive the regularity of 4! by repeating the arguments in
[8) Section2].

Having verified (U1)-(U3), one can then invoke [8 Section 3, Remark 3] to yield a contra-
diction. This proves that z;(tf) = Z2(t) a.e. in [0,7]. That Vi(z,t) = Va(z,t) follows from the

standard uniqueness results. ]
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