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Abstract

The evolution of dispersal is a classical question in evolutionary biology, and it has been
studied in a wide range of mathematical models. A selection-mutation model, in which the
population is structured by space and a phenotypic trait, with the trait acting directly on
the dispersal (diffusion) rate, was formulated by Perthame and Souganidis [Math. Model.
Nat. Phenom. 11 (2016), 154–166] to study the evolution of random dispersal towards the
evolutionarily stable strategy. For the rare mutation limit, it was shown that the equilibrium
population concentrates on a single trait associated to the smallest dispersal rate. In this
paper, we consider the corresponding evolution equation and characterize the asymptotic
behaviors of the time-dependent solutions in the rare mutation limit, under mild convexity
assumptions on the underlying Hamiltonian function.

AMS Subject Class. [2010]: 35B25, 35F21, 35K57, 92D15
Keywords: Dispersal evolution, Nonlocal pde, Constrained Hamilton-Jacobi equation, Effective
fitness, Principal bundle

1 Introduction

Recently, various mathematical models for evolutionary biology have been developed with the
theories of adaptive dynamics, competition/selection equations, deterministic or stochastic.
Here, we are interested in the specific case of the evolution of dispersal in a bounded domain
and explain, in a continuous setting, the selection of the slowest. We introduce the framework
in a general setting without space before describing the full model.

1.1 Continuous modeling without space

A convenient modeling background, based on nonlocal Lotka-Volterra parabolic equations, is
considered in [3, 28, 34]. It is expressed under the form






ε∂tñε = ε2∆zñε + ñεR(z, ρ̃ε(t)) for z ∈ RN , t > 0,

ρ̃ε(t) =
´

RN ñε(z, t) dz for t > 0,

ñε(z, 0) = ñε,in(z) for z ∈ RN .

(1.1)

The model (1.1) describes the dynamics of a population with density ñε(z, t), which is structured
by a physiological trait z ∈ RN . The population dynamics of (1.1) is driven by both mutation
and selection. The mutation process is modeled by the Laplacian ∆z, and the selection is
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expressed by the dependence of the (sign-changing) growth rate of an individual, given by
R(z, ρ̃ε(t)), on the trait z and the limiting total population ρ̃ε(t). We refer to [10] for a derivation
of this type of equations from individual based stochastic models. A striking property of (1.1)
is that, as ε → 0, the generic solution of this equation concentrates as a moving Dirac mass, i.e.

ñε(t) ≈ ρ̃(t)δ(z − z̄(t)) in distribution, (1.2)

where ρ̃(t) = lim
ε→0

ρ̃ε(t) and the trajectory z̄(t) can be interpreted biologically as the dominant

trait at the time t. Furthermore, the trajectory z̄(t) can be inferred form the total population
ρ̃(t) via the relation

R(z̄(t), ρ̃(t)) = 0 a.e. (1.3)

and the rare mutation limit of the WKB-ansatz ũε(z, t) := −ε log ñε(z, t) and the total popula-
tion ρ̃(t) satisfy, in the viscosity sense, the following Hamilton-Jacobi equation with a constraint.






∂tũ+ |∂zũ|2 +R(z, ρ̃(t)) = 0 for z ∈ RN , t > 0,

infz ũ(·, t) = u(z̄(t), t) = 0 for t > 0,

ũ(z, 0) = ũin(z) for z ∈ RN .

(1.4)

The key to understanding the evolutionary dynamics z̄(t) is thus contained in the question of
uniqueness of solution (ũ, ρ̃) of (1.4), which was investigated in [8, 31, 34].

The model (1.1) enables a rigorous derivation of the so-called canonical equation, which has
been formally proposed in the framework of adaptive dynamics to describe the trait evolution.
See also [12, 23, 28, 34]. In [8], it is further proved that ρ̃(t) is a nondecreasing function. Since
the dominant trait satisfies (1.3), this leads to the conclusion that evolution favors the traits
that can retain the proliferative advantage when the level of the total population is high.

1.2 Discrete modeling with spatial structure

In many biological situations, however, the proliferative advantage is not so directly linked to
the physiological trait in question. This is the case, in particular, in the study of evolution of
dispersal where individuals adopt different dispersal strategies without an apparent proliferative
advantage. An interesting question in this direction is the selection of random dispersal rate
[20]. For K interacting populations with densities ni(x, t), 1 ≤ i ≤ K, competing for a common
resource m(x) and differing only in their dispersal rates αi, their population dynamics can be
described by the following competition system introduced in [16]: for 1 ≤ i ≤ K,

∂tni = αi∆xni + ni



m(x)−
K∑

j=1

nj



+
K∑

j=1

Mijnj for x ∈ D, t > 0. (1.5)

In this context, these K species are (i) subject to a mutation with switching rate Mij from
phenotype j to i; (ii) moving randomly with diffusion rates αi and (iii) competing for a common
resource. The proliferative advantage of an individual is influenced by the way the individual
moves and utilizes resources. For the two-species case without mutation (Mij ≡ 0), a well-
known result due to Dockery et al. [16] says that if m(x) is non-constant, and the populations
are subject to the no-flux boundary conditions, then the species with the smaller dispersal rate
always exclude the faster competitor. The corresponding question for system (1.5) consisting
of three or more species remains open; see [9] for recent progress.

The system (1.5) describes the competition among finitely many phenotypes with different
dispersal rates, denoted by αi. In the next section, we will introduce a mathematical model
with infinitely many phenotypes, parameterized by a one-dimensional trait variable z. Each z
corresponds to a phenotype with dispersal rate α(z), which is a continuous function of z.
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1.3 The continuous model for evolution of dispersal

In this paper, we consider a nonlocal reaction-diffusion equation, introduced in [35], which can
be viewed as the extension of the discrete trait model (1.5) to the continuous trait setting. The
main modeling assumptions are:
(i) the dispersal rate of an individual is a positive function of its phenotypic trait z, that we
denote by α(z);
(ii) a Fisher-type Lotka-Volterra growth rate with spatially heterogeneous carrying capacity
m(x) and limitation by the total population at the same spatial location; and
(iii) rare mutation acting on the phenotypic trait variable and modeled by a diffusion with
covariance

√
2ε.

More precisely, we study the asymptotic behavior, as ε → 0, of the density function nε =
nε(x, z, t) : D × I × [0, T ] → [0,∞), of the nonlocal, nonlinear problem






ε∂tnε = α(z)∆xnε + nε(m(x)− ρε(x, t)) + ε2∂2
znε for x ∈ D, z ∈ I, t > 0,

∂νnε = 0 for x ∈ ∂D, z ∈ I, t > 0,
∂znε = 0 for x ∈ D, z ∈ ∂I, t > 0,
nε(x, z, 0) = nε,0(x, z) for x ∈ D, z ∈ I,

(1.6)

ρε(x, t) :=

ˆ

I
nε(x, z, t) dz, x ∈ D, t > 0. (1.7)

Here D represents a bounded spatial domain in RN with smooth boundary ∂D; ν denotes the
outward unit normal vector on ∂D; ∆x =

∑N
i=1 ∂

2
xi

is the Laplace operator in x variables;
I = (a, b) ⊂ R is a bounded open interval with a < b; ρε(x, t) is the population density of
the entire species at location x and time t. Without loss of generality we assume |D| = 1 and
|I| = 1, i.e., D and I are both of unit Lebesgue measure. The interest of this problem is that
the fitness is controlled by a combination between the dispersal α(z) and the competition for
resources expressed by m(x)− ρε(x, t). It is important that the resource m(x) satisfies

(M) m ∈ Cβ(D̄) for some β ∈ (0, 1), and it is a nonconstant, positive function.

On the one hand, if (M) does not hold, i.e. m(x) is a constant and α(z) = z, then it can
be shown that the constant steady state solution is globally asymptotically stable among all
nonnegative nontrivial solutions [25]. On the other hand, under the assumption (M) and some
mild assumptions, it can be shown that, for all ε sufficiently small, (1.6) has a positive steady
state solution ñε(x, z) concentrated at the trait where α attains the minimum value [26, 35].
Under suitable assumptions, the positive steady state ñε(x, z) is shown to be unique and locally
asymptotically stable [25]. We will enforce hypothesis (M) throughout the rest of the paper.

Our goal is to show that, for the evolution of dispersal, the same concentration effect holds
around the fittest trait z̄(t) as expressed in (1.2).

1.4 Assumptions and Main Results

Definition 1.1 (Invasion exponent).

For each z1, z2 ∈ I, let λ(z1, z2) be the smallest eigenvalue of the linear equation

{
α(z1)∆xφ+ (m− θz2)φ+ λφ = 0 for x ∈ D,
∂νφ = 0 for x ∈ ∂D,

(1.8)

where, for each z ∈ I, θz(x) is the unique positive solution of

{
α(z)∆xθz + (m− θz)θz = 0 for x ∈ D,
∂νθz = 0 for x ∈ ∂D.

(1.9)
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Notice that for z1 = z2 =: z, we have λ(z, z) = 0, which corresponds to φ = θz. Throughout
the paper we impose the following assumptions:

(H1) α : I → R+ is smooth and is chosen such that 0 < infI α ≤ supI α < +∞ and

(∃Kλ > 0) 2Kλ ≤ ∂2
z1λ(z1, z2) ≤

2

Kλ
, for all (z1, z2) ∈ I × I,

and
∂z1λ(a, a) < 0 and ∂z1λ(b, b) > 0,

(H2) Let uε(x, z, t) = −ε log nε(x, z, t), then the initial condition satisfies

∥∥∥∥uε(x, z, 0) − V0(z)−
1

2
ε log ε

∥∥∥∥
C2(D×I)

= O(ε),

where V0(z) ∈ C∞(Ī) is a non-negative function such that for some K0 > 0,

∂2
zV0(z) > 2K0 for z ∈ I and inf

I
V0(z) = V0(z̄0) = 0 ∃ z̄0 ∈ Int I.

Remark 1.2. (H1) ensures that the trajectory of the dominant trait remains continuous for
t ≥ 0. See Section 6 for an explicit example of α so that (H1) can be explicitly verified1. We
leave the general case for future work.

The following uniqueness result, which seems to be of independent interest, plays a critical
role in characterizing the solution trajectories of (1.6). Its proof, which uses the convexity of
λ(·, z2), is presented in Appendix C.

Proposition 1.3 (Constrained Hamilton-Jacobi eq.). Suppose that (H1) - (H2) hold.

(i) There exists a unique viscosity solution (V (z, t), z̄(t)) ∈ W 1,∞(D× [0,∞))×W 1,∞([0,∞))
to the following constrained Hamilton-Jacobi equation:






∂tV + |∂zV |2 − λ(z, z̄(t)) = 0 for z ∈ I, t > 0,
∂zV (z, t) = 0 for z ∈ ∂I, t > 0,
V (z, 0) = V0(z) for z ∈ I,
infz∈I V (z, t) = 0 for t > 0.

(1.10)

(ii) z̄ ∈ C1([0,∞)) and for each t ≥ 0, V (z, t) = 0 if and only if z = z̄(t). Furthermore,

V (z, t) =
1

2
∂2
zV (z̄(t), t)|z − z̄(t)|2 + o(|z − z̄(t)|2)

and for each T > 0 there exists K3 > 0 such that K−1
3 ≤ ∂2

zV (z̄(t), t) ≤ K3 for t ∈ [0, T ].

(iii) z̄(t) satisfies the ODE with coefficient σ(t) := ∂2
zV (z̄(t), t)

d

dt
z̄(t) = −∂z1λ(z̄(t), z̄(t))

σ(t)
, for t > 0, (1.11)

with the initial data z̄(0) = z̄0.

Next, we state our main theorem.

1When convexity assumption fails, then in general the dominant trait has jump discontinuities and belongs to
the class of BV functions for which the uniqueness of the Hamilton-Jacobi equation (1.10) is more subtle; See [8].
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Theorem 1.4 (Dynamics of the fittest trait). Assume (H1) - (H2). For each T > 0, as ε → 0,

nε(x, z, t) → δ0(z − z̄(t))θz̄(t)(x) in distribution sense in D̄ × Ī × (0, T ], (1.12)

where z̄(t) → argminα(z) as t → ∞. In fact, we have

− ε log nε(x, z, t) → V (z, t) in C(D̄ × Ī × [0, T ]), (1.13)

and
ρε(x, t) → θz̄(t)(x) in Cloc(D̄ × (0, T ]), (1.14)

where V (z, t) and z̄(t) are given by Proposition 1.3; and, for z ∈ I, θz(x) is the unique positive
solution of (1.9).

Remark 1.5. One can also replace the hypothesis (H1) - (H2) by

(H1′) Suppose V0(z) and α(z) are chosen such that (1.10) has a unique viscosity solution
(V (z, t), z̄(t)) ∈ W 1,∞(D × (0,∞)) ×W 1,∞(0,∞) such that the conclusions (ii) and (iii)
of Proposition 1.3 hold.

For instance, our conclusion holds for the case α(z) > 0 being periodic in z, and the Neumann
condition being replaced by a periodic condition in z, provided that α has a non-degenerate
minimum attained at ẑ, and such that V0(z) = K(z − z̄0)2, provided |ẑ − z̄0| - 1 and K . 1.

1.5 Biological interpretation

The Darwinian evolution of a quantitative trait is the combined effects of two biological pro-
cesses: (i) mutations generating variations in the trait value; and (ii) selection via relative
reproductive fitness, resulting from ecological interactions between individuals and their envi-
ronment. The framework of adaptive dynamics [14, 18] is based on the assumption of separation
of timescales between the mutation/evolutionary and selection/ecological processes. One im-
portant advance of this theory, due to Dieckmann and Law [13], is the formal derivation of
the so-called canonical equation of adaptive dynamics: An ordinary differential equation that
gives the rate of change over time of the expected trait value in a monomorphic population.
In previous works [15, 28], the canonical equation was rigorously derived in case the ecological
interaction can be described by ODEs, i.e., the fitness function is explicitly given in terms of
the trait z. This is not the case, however, for evolution of dispersal, for which the incorporation
of spatial structure in the model is essential and causes considerable mathematical difficulties.
See [7, 24, 30]. Also, using a continuous trait explains the ’accelerating waves’ which have been
actively studied recently, [4, 5, 6, 21].

In this paper, we define an effective Hamiltonian Hε(z, t) by improving the existing theory
of the principal bundle for parabolic problems. This Hamiltonian can be viewed as a fitness
function of the trait z interacting with the environment at time t (as described bym(x)−ρε(x, t)).
One achievement of this paper is to show rigorously that, in a suitable timescale, the fitness
function Hε(z, t) converges to λ(z, z̄(t)) in the rare mutation limit, where z̄(t) is the fittest trait
at time t (i.e. in the environment at time t) and, in this environment set by the fittest trait,
the function λ(z, z̄(t)) is the relative fitness of trait z and is defined implicitly by an elliptic
linear eigenvalue problem arising from the pairwise ecological interaction between two traits.
The canonical equation (1.11) can then be rigorously derived. It is interesting to note that the
mean trait z̄(t) and the variance ∂zzV (z, t)

∣∣
z=z̄(t)

does not satisfy a closed system of ODEs.

While our previous works [25, 26, 35] characterized the unique evolutionarily stable strategies
(ESS) by solving the steady state problem, our present work on the time-dependent problem
describes the approach of the dominant trait to the ESS in the evolutionary timescale.
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1.6 A heuristic presentation of the analytical approach

The WKB-ansatz defines uε by

nε(x, z, t) = e−
uε(x,z,t)

ε ,

where the rate function uε(x, z, t) satisfies the equation

∂tuε −
α(z)

ε
∆xuε +

α(z)

ε2
|∇xuε|2 − ε∂2

zuε + |∂zuε|2 +m(x)− ρε(x, t) = 0. (1.15)

Whereas the large coefficients of the spatial derivatives suggests that u(z, t) = lim
ε→0

uε(x, z, t)

is constant in x in the limit, the equation (1.15) itself depends non-trivially on the spatial
variables, through the terms m(x)− ρε(x, t).

To obtain the limiting Hamilton-Jacobi equation (which is supposed to be free of the x-
dependence), the perturbed test function method has been invented in [17] by considering

nε(x, z, t) = Φε(x, z, t)e
− vε(x,z,t)

ε ,

i.e. vε(x, z, t) = uε + ε logΦε(x, z, t). To eliminate the x-dependence in (1.15), we construct the
corrector2 Φε(x, z, t) > 0 as the normalized principle boundle that means to satisfy, for each z,

ε∂tΦε − α(z)∆xΦε =
(
m(x)− ρε(x, t) +Hε(z, t)

)
Φε,

ˆ

D
Φε(x, z, t)dx = 1. (1.16)

We can build (see Appendix B) the normalizing factor t 0→ Hε(z, t) so that Φε(x, z, t) satisfies
the mass 1 constraint (and is bounded in C(D̄ × [0,∞)) thanks to the Harnack inequality).
Denoting ϕε := − logΦε, the equation of vε can be written as

∂tvε − α(z)
ε ∆xvε +

α(z)
ε2 |∇xvε|2 + 2α(z)

ε ∇xvε∇xϕε −ε∂2
zvε + |∂zvε|2 + 2ε∂zvε∂zϕε

= Hε(z, t)− ε2(∂2
zϕε + |∂zϕε|2) for x ∈ D, z ∈ I, t > 0.

(1.17)

Provided that ϕε ∈ L∞ and it has bounded derivatives in the trait variable3, we can show by
comparison that vε(x, z, t) ≈ Ṽε(z, t), where the approximate solution Ṽε(z, t) can be obtained
by solving the following Hamilton-Jacobi equation which is free of x-dependence:

∂tṼε + |∂z Ṽε|2 = Hε(z, t). (1.18)

Therefore, we can approximate for a given time t the dominant trait, which maximizes z 0→
nε(x, z, t), by the value z̄ε(t) where Ṽε attains its minimum. In fact, we can determine this
approximate trajectory z̄ε(t) from Hε(z, t) as well. To this end, use the uniqueness of convex
solutions (Vε(z, t), z̄ε(t)) in the class W 1,∞(I × (0, T ))×W 1,∞(0, T ) of the following Hamilton-
Jacobi equation with a constraint, due to Mirrahimi and Roquejoffre [31] (for the uniqueness in
W 1,∞(I × (0, T )) ×BV (0, T ), see also [8] and Appendix C):






∂tVε + |∂zVε|2 = Hε(z, t) −Hε(z̄ε(t), t) for z ∈ I, t ∈ [0, T ],
infz Vε(·, t) = 0 for t ∈ [0, T ],
Vε(z, 0) = V0(z) for z ∈ I.

(1.19)

2The elliptic eigenfunction and eigenvalues (i.e. by omitting the term ε∂tΦε in (1.16)) are not adopted here.
The reason is that the lack of regularity in time for ρε will then render it quite difficult to estimate ε∂tΦε, which
only goes to zero in some weak, average sense.

3We need to show the terms −ε2(∂2
zϕε + |∂zϕε|2) → 0 uniformly. In general, the Cauchy problem (1.16) does

not guarantee smoothness with respect to z, due to the dependence on initial data and the timescale εt. We
will therefore make a canonical choice of an appropriate eternal solution of (1.16). This requires a priori Hölder
esimates of ρε(x, t), as well as an improvement upon existing theory of principal bundle (Appendix B).
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Hence, we have defined the approximate trajectory z̄ε(t) and effective Hamiltonian Hε(z, t) in
terms of the quantity ρε(x, t).4 Now, having proved that the population has dominant trait at
z̄ε(t), we can further determine that as ε → 0,

∣∣ρε(x, t)− θz̄ε(t)(x)
∣∣→ 0. (1.20)

Since Hε(z, t) depends smoothly in terms of ρε(x, t), (1.20) and the separation of timescales
imply that the effective Hamiltonian Hε(z, t) converges to the invasion exponent in (1.8), i.e.,

|Hε(z, t) − λ(z, z̄ε(t))| → 0.

Since λ(z1, z2) = 0 when z1 = z2, we have in fact

Hε(z, t) −Hε(z̄(t), t) ≈ λ(z, z̄(t))− λ(z̄(t), z̄(t)) = λ(z, z̄(t)). (1.21)

This, in turn, allows us to pass to the limit in the constrained Hamilton-Jacobi equation (1.19),
resulting in (1.10) in Proposition 1.3.

However, for the uniqueness argument to work on (1.19), which is crucial in the definition
of approximate trajectory z̄ε(t), we need

∂2
zHε(z̄(t), t) > 0.

This is indeed the case in a small time interval [0, δ1], as one can show, by the separation of
time-scale between the evolutionary dynamics in z and ecological dynamics of reaching the
spatial equilibrium θz̄0 , that ρε(x, t) does not deviate too much from θz̄0(x) in the time interval
[0, δ1]. This implies the effective Hamiltonian Hε(x, t) is in the proximity of λ(z, z̄0), which has
the relevant convexity in z. This is done in Corollary 4.5. In this way, the argument above is
valid and delivers that

Hε(z, t) → λ(z, z̄(t)) and ρε(x, t) → θz̄(t)(x) for 0 ≤ t ≤ δ1.

By carefully examining the smooth dependence of the effective Hamiltonian Hε and corrector
Φε on z and ρε, we establish a uniform lower bound for the time-step δ1 for which the above
argument can be applied. Iterating step by step in time, we can prove the convergence over the
time interval [0, T ] for all T > 0.

A different mutation-selection model involving a spatial variable in also studied in [24]. In
the setting of that work, the rate function uε can be shown to be uniformly convex in z a priori.
This is not the case in our setting. Also, the quasi-steady state approximation is used in that
paper, i.e., the elliptic eigenvalue problem instead of the parabolic principal bundle problem
(1.16) in choosing the corrector Φε. In our setting ρε does not have enough a priori regularity
in time, so our definition of corrector via the parabolic problem affords the needed additional
time regularity.

A similar kind of result has also been obtained for the corresponding model with age struc-
ture [33], but with a different strategy. Therein the corrector Φε was defined by a couple of
nonlinear mappings and the main analysis was devoted to showing the uniform boundedness
of the corrector Φε. In contrast, here we adopt a relatively direct approach by defining the
corrector Φε directly to be the (bounded) normalized principal Floquet bundle for parabolic
problem (1.16). This is made possible thanks to our new a priori estimates on the quantity
ρε(x, t).

4At this point uε(x, z, t) ≈ vε(x, z, t) ≈ Vε(z, t) +
´ t
0
Hε(z̄ε(s), s) ds. However, by the uniform positive upper

and lower bounds of ‖ρε(·, t)‖L1(D), we deduce that
´ t

0
Hε(z̄ε(s), s) ds → 0 uniformly. Hence, we have vε(x, z, t) ≈

Vε(z, t).
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1.7 Organization of the Paper

In Section 2, we establish some a priori estimates of the solution nε(x, z, t) and its integrated
version ρε(x, t). We first state the global positive upper and lower bounds, for which the
proofs are postponed to Appendix A, and derive the Hölder regularity of ρε and ∂2

xnε in some
appropriately rescaled variables.

In Section 3, we apply the theory of normalized principal Floquet bundle for parabolic prob-
lems with Neumann boundary conditions, as developed in [9] and summarized in Appendix B,
to define the effective Hamiltonian Hε(z, t) and the corrector Φε(x, z, t), as functions of ρε(x, t).
We also state the uniqueness theorem, which allows us to define the approximate trajectory
z̄ε(t) and pheonotypic distribution Vε(z, t) in terms of the effective Hamiltonian Hε(z, t) and
initial distribution V0(z).

In Section 4, we introduce the rate function uε(x, z, t) = −ε log nε(x, z, t) and prove several
technical estimates that enable us to obtain a lower bound δ1 > 0 of the step size in time with
which we can continue the approximate trajectory.

In Section 5, we prove the main result Theorem 1.4.
The three appendices are devoted to the three main ingredients/tools that we develop for

this singularly perturbed problem. In Appendix A, we prove the a priori L∞ estimate of
ρε(x, t). In Appendix B, we state the existence and differentiability of the normalized princi-
pal Floquet bundle, which is used in the construction of effective Hamiltonian and corrector
(Hε(z, t),Φε(x, z, t)). In Appendix C, we prove the existence and uniqueness of solutions to the
constrained Hamilton-Jacobi equations that we need.

2 A priori Estimates

We begin with the following result; see Proposition A.1 for the proof:

Proposition 2.1. Let ρε(x, t) =
´

I nε(x, z, t) dz, where nε is the solution to (1.6). Then there

exists Ĉ1 independent of ε > 0 such that

1

Ĉ1

≤ ρε(x, t) ≤ Ĉ1 for all (x, t) ∈ D × [0,∞).

In the following, we extend nε(x, z, t) evenly and then periodically in z. Due to the Neumann
boundary condition, the extended nε satisfies the same PDE with coefficients similarly extended
to D × R× [0,∞). Next, we rescale nε. Define, for z1 ∈ I and t1 ≥ ε,

Nε(x, y, τ) = Nε(x, y, τ ; z1, t1) := nε(x, z1 + εy, t1 + ετ),

and note that Nε(x, y, τ) satisfies a linear parabolic equation

∂τNε − α(z1 + εy)∆xNε − ∂2
yNε = Nε

(
m(x)− ρε(x, t1 + ετ)

)
. (2.1)

By Proposition 2.1, the above equation has L∞ bounded coefficients, so we may apply local
parabolic Lp estimates to obtain Hölder regularity of Nε, which then allows us to use parabolic
Schauder estimates to estimate ∂2

xN . Here ∂2
xN denotes all second order partial derivatives in

space ∂2
xixj

N .

Lemma 2.2. For β ∈ (0, 1), there exists C > 0 independent of ε such that

‖∂2
xNε(x, y, τ)‖Cβ,β,β/2(D̄×[− 1

2 ,
1
2 ]×[− 1

2 ,0])
≤ C‖Nε‖L1(D×(−1,1)×(−1,0)).

In particular, there exists a constant C independent of t ≥ ε and z ∈ I such that

sup
x∈D

|∂2
xnε(x, z, t)| ≤ C

 t

t−ε

 ε

−ε

ˆ

D
nε(x

′, z + z′, t′) dx′dz′dt′ . (2.2)

Here we use the notation
ffl s2
s1

= 1
s2−s1

´ s2
s1
, for any s1 < s2.
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Proof. By Proposition 2.1, sup
t≥0

‖ρε(·, t)‖C(D̄) ≤ C. Hence, the equation (2.1) has L∞ bounded

coefficients. So we may apply local parabolic Lp estimates to obtain Hölder regularity of Nε.
To this end, define Ω3/5 ⊂ Ω4/5 ⊂ Ω1 by

ΩR := D × (−R,R)× (−R, 0) , for R =
3

5
,
4

5
and 1.

Then, recalling (2.1), we have

‖Nε‖Cβ,β,β/2(Ω3/5)
≤ C‖Nε||W 2,2,1

p (Ω3/5)
≤ C‖Nε‖Lp(Ω4/5) ≤ C‖Nε‖L1(Ω1), (2.3)

where the first, second and third inequality follows, respectively, from the Sobolev embedding,
parabolic Lp estimate, and (A.5).

Integrating (2.3) over z1 ∈ I, we have, for each t1 ≥ ε,

‖ρε(· , t1 + ε · )‖W 2,1
p (D×[− 3

5 ,0])
≤
ˆ

I
‖Nε(·, 0, · ; t1, z1)‖W 2,1

p (D×[− 3
5 ,0])

dz1

≤
ˆ

I
‖Nε(·, 0, · ; t1, z1)‖L1(D×[−1,0]) dz1

≤ C‖ρε(·, t1 + ε·)‖L1(D×[−1,0]) ≤ C (2.4)

where we used the fact that ρε(x, t1 + εt) =
´

I Nε(x, 0, t; t1, z1) dz1 for the first and third in-
equalities, (2.3) in the second inequality, and Proposition A.1 for the last inequality. Similarly,
for each t1 ≥ ε we have

‖ρε(· , t1 + ε · )‖Cβ,β/2(D×[− 3
5 ,0])

≤
ˆ

I
‖Nε(·, 0, ·; t1, z1)‖Cβ,β/2(D×[− 3

5 ,0])
dz1 ≤ C.

Now that ρε(·, t1 + ε·) is Hölder continuous, we may apply parabolic Schauder estimates to
(2.1) to get

‖∂2
xNε(x, y, τ)‖Cβ,β,β/2(D×[− 1

2 ,−
1
2 ]×[−

1
2 ,0])

≤ C‖Nε‖Cβ,β,β/2(Ω3/5)
. (2.5)

The lemma follows from combining (2.3) and (2.5).

The following result follows from the proof of Lemma 2.2:

Corollary 2.3. (a) For each p > 1, there exists some Ĉp > 0 independent of ε such that

sup
τ0≥1

‖ρ̃ε(·, ·)‖W 2,1
p (D×[τ0,τ0+1]) ≤ Ĉp, where ρ̃ε(x, τ) := ρε(x, ετ).

(b) For each β′ ∈ (0, 1), there exists some Cβ′ > 0 independent of ε such that

‖ρ̃ε‖Cβ′,β′/2(D̄×[1,∞)) ≤ Cβ′ .

In particular, we have sup
t≥ε

‖ρε(·, t)‖Cβ′ (D̄) ≤ Cβ′ .

This result requires an initial delay of order ε so as to take into account the possible initial
layer on ρε. This is responsible for the technical issues on the initial data that we encounter in
the next section.
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3 Approximate Trajectory via the Normalized Principal Flo-

quet Bundle

Our next and fundamental task is to define the corrector ϕε, closely related to logΦε and
effective Hamiltonian Hε in terms of the principal bundle of certain parabolic problem with
potential m − ρε. This, in turn, enables us to define an approximate trajectory z̄ε(t) of the
dominant trait.

Proposition 3.1. For each fixed ε > 0 and z ∈ I, there exists a unique classical solution
(ϕε(x, z, t),Hε(z, t)) to the following linear parabolic problem in D × (−∞,∞):






ε∂tϕε − α(z)∆xϕε + α(z)|∇xϕε|2 +m(x)− ρε(x,max{t, ε})
+Hε(t; z) = 0 x ∈ D, t ∈ R,

∂νϕε = 0 x ∈ ∂D, t ∈ R,
´

D e−ϕε(x,t;z) dx = 1 t ∈ R.

(3.1)

Moreover, the quantities (ϕε(x, t; z),Hε(z, t)) depend smoothly on z ∈ I, i.e., for some constant
C̃0 independent of ε,

max
i=0,1,2,3

‖∂i
zHε(t; z)‖∞ + ‖∇xϕε(x, t; z)‖∞ + max

i=0,1,2
‖∂i

zϕε(x, t; z)‖∞ ≤ C̃0, (3.2)

where ‖ · ‖∞ denotes the L∞ norm over (x, z, t) ∈ D × I × R.

Proof. For x ∈ D and τ ∈ R, define cε(x, τ) := m(x) − ρ̃ε(x,max{τ, 1}), where ρ̃ε(x, τ) =
ρε(x, ετ) as in Corollary 2.3, then ‖cε‖Cβ,β/2(D̄×R) is uniformly bounded in ε thanks to Corol-
lary 2.3(b). By Theorem B.2, we can define the corresponding normalized principal Floquet
bundle

(Φ1(x, τ ; cε, z),H1(τ ; cε, z)) ∈ C2+β,1+β/2(D̄ × R)× Cβ/2(R),

which satisfies





∂τΦ1 − α(z)∆xΦ1 = (m(x)− ρε(x, εmax{τ, 1})Φ1 for x ∈ D, t ∈ R,

∂νΦ1 = 0 for x ∈ ∂D, t ∈ R,

Φ1 > 0 for x ∈ D, t ∈ R, and
´

D Φ1 dx = 1 for t ∈ R.

Setting
ϕε(x, z, t) := − logΦ1(x, t/ε; cε, z) and Hε(z, t) := H1(t/ε; cε, z),

we obtain (ϕε,Hε) satisfying (3.1). The smoothness follows from Proposition B.3.

We define the approximate trajectory by solving a constrained Hamilton-Jacobi equation
by making use of uniqueness results under convexity assumption [31]. The proof is contained
in Appendix C.

Proposition 3.2. Suppose, for some T > 0, it holds that

lim inf
ε→0

[
inf

I×[2
√
ε,T ]

∂2
zHε(z, t)

]
> 0. (3.3)

Then for all ε > 0 small, there exists a unique viscosity solution (Vε(z, t), z̄ε(t)) to the following
Hamilton-Jacobi equation with a constraint:






∂tVε + |∂zVε|2 −Hε(z, t) +Hε(z̄ε(t), t) = 0 for t ∈ [2
√
ε, T ], z ∈ I,

∂zVε = 0 for t ∈ [2
√
ε, T ], z ∈ ∂I,

z̄ε(2
√
ε) = z̄0, and Vε(z, 2

√
ε) = V0(z) for z ∈ I,

infz∈I Vε(z, t) = 0 for t ∈ [2
√
ε, T ].

(3.4)
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Moreover,
Vε(z̄ε(t), t) = 0, and Vε(z, t) > 0 for z 2= z̄ε(t),

and there exists a constant C > 0 independent of ε such that

‖z̄ε(·)‖C0,1([2
√
ε,T ]) ≤ C. (3.5)

Remark 3.3. Thanks to (3.3) and the convexity of the initial data, Vε and z̄ε(t) satisfy (3.4),
except for the Neumann boundary condition, in the classical sense. The Neumann boundary
condition has to be understood in the classical sense [2].

4 WKB Ansatz and Some Technical Lemmas

The rate function uε(x, z, t) = −ε log nε(x, z, t) satisfies the equation






∂tuε − α(z)
ε ∆xuε +

α(z)
ε2 |∇xuε|2 − ε∂2

zuε + |∂zuε|2 + m(x)− ρε(x, t) = 0
x ∈ D, z ∈ I, t > 0,

∂νuε = 0 x ∈ ∂D, z ∈ I, t > 0,
∂zuε = 0 x ∈ D, z ∈ ∂I, t > 0,
uε(x, z, 0) = uε,0(x, z) := −ε log nε,0(x, z) x ∈ D, z ∈ I.

(4.1)

Let ϕε(x, z, t) be given in Proposition 3.1. Using the perturbed test function method, we
define the function vε(x, z, t) := uε(x, z, t) − εϕε(x, z, t), which satisfies






∂tvε − α(z)
ε ∆xvε +

α(z)
ε2 |∇xvε|2 + 2α(z)

ε ∇xvε ·∇xϕε − ε∂2
zvε +|∂zvε|2 + 2ε∂zvε∂zϕε

= Hε(z, t)− ε2(∂2
zϕε + |∂zϕε|2)+ρε(x, t)− ρε(x,max{t, ε}) for x ∈ D, z ∈ I, t > 0,

∂νvε = 0 for x ∈ ∂D, z ∈ I, t > 0,
∂zvε = −ε∂zϕε = O(ε) for x ∈ D, z ∈ ∂I, t > 0,
vε(x, z, 0) = uε,0(x, z) for x ∈ D, z ∈ I.

(4.2)

Remark 4.1. The right hand side of (4.2) is essentially the Hamiltonian Hε(z, t) + O(ε), since
the term ρε(x, t)− ρε(x,max{t, ε}) is identically zero except for t ∈ [0, ε].

By (3.2) we have

‖uε − vε‖L∞(D×I×(0,∞)) = ε‖ϕε‖L∞(D×I×(0,∞)) = O(ε),

thus upper and lower estimates of uε and vε are the same, up to an error of O(ε). In the
following, we shall construct super- and sub-solutions of vε.

Proposition 4.2. Suppose for some t̂ = t̂ε ≥ ε, ẑ ∈ I, V1 ∈ C2(Ī) and η1 > 0, such that

V1(z) ≥ 0, V1(z) = 0 iff z = ẑ, ∂2
zV1(z) > η1 > 0 for ẑ − η1 ≤ z ≤ ẑ + η1 (4.3)

and it holds that
sup

t̂−ε≤t≤t̂

‖uε(x, z, t) − V1(z)‖C(D̄×Ī) → 0 as ε → 0.

Then there exists C > 0 independent of t̂ and ẑ ∈ Ī such that for each small δ > 0,

lim sup
ε→0

sup
t̂≤t≤t̂+2δ

∥∥∥∥

ˆ

I
(z − ẑ)∂2

xnε(·, z, t) dz

∥∥∥∥
C(D̄)

≤ Cδ1/3. (4.4)
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Proof. Note that, similar to the argument in Step 3 of the proof of Proposition A.1, a lower
solution for (4.1) can be constructed as:

U(z, t) = V1(z)− C1(µε + t− (t̂− ε))− C

ε

{
[z − (b−

√
ε)]3+ + [a+

√
ε− z]3+

}
, (4.5)

where a = inf I, b = sup I, and

µε = sup
x∈D,z∈I

|uε(x, z, t̂ − ε)− V1(z)|

is a constant tending to zero as ε → 0, and that C1 = C1(‖m(x)−ρε‖C(D̄×[0,∞))). By comparison

in D × I × [t̂− ε,+∞), we have

uε(x, z, t) ≥ sup
|z−ẑ|≥δ

V1 − C1(µε + |t− t̂+ ε|) +O(
√
ε) for |z − ẑ| ≥ δ and t > t̂− ε,

where

sup
|z−ẑ|≥δ

V1 ≥
η1δ2

2
for 0 < δ - 1.

Therefore, for each fixed δ small, by choosing ε sufficiently small,

uε(x, z, t) ≥
η1δ2

3
for |z − ẑ| > δ and t̂− ε ≤ t ≤ t̂+ δ3,

which means

nε(x, z, t) ≤ exp

(
−η1δ2

3ε

)
for |z − ẑ| > δ and t̂− ε ≤ t ≤ t̂+ δ3. (4.6)

Now, for t1 ∈ [t̂, t̂+ δ3],

∥∥∥
ˆ

I
(z1 − ẑ)∂2

xnε(·, z1, t1) dz1
∥∥∥
C(D̄)

≤
ˆ

I
|z1 − ẑ|

∥∥∂2
xnε(·, z1, t1)

∥∥
C(D̄)

dz1

≤
ˆ

I
|z1 − ẑ|

[
 t1

t1−ε

 ε

−ε

ˆ

D
nε(x, z + z1, t) dxdzdt

]
dz1

≤ Cδ

ˆ ẑ+2δ

ẑ−2δ

[
 t1

t1−ε

 ε

−ε

ˆ

D
nε(x, z + z1, t) dxdzdt

]
dz1

+ C

ˆ

z1:|z1−ẑ|>2δ

[
 t1

t1−ε

 ε

−ε

ˆ

D
nε(x, z + z1, t) dxdzdt

]
dz1

≤ Cδ

 ε

−ε

[
 t1

t1−ε

ˆ ẑ+2δ

ẑ−2δ

ˆ

D
nε(x, z + z1, t) dxdz1dt

]
dz + exp

(
−η1δ2

3ε

)

≤ C ′δ

 ε

−ε

[

sup
t̂−ε<t<t̂

‖ρε(t, ·)‖L1(D)

]

dz + exp

(
−η1δ2

3ε

)
,

where we used (2.2) in Lemma 2.2 in the second inequality, and we switched the order of
integration and used (4.4) to obtain the fourth inequality. By fixing δ to be small enough, we
see that (4.4) holds for all ε sufficiently small. This completes the proof.

Lemma 4.3. Consider the equation

{
ε∂tρ− α(z1(t))∆xρ = ρ(m(x)− ρ) + F (x, t) for x ∈ D, t1 ≤ t ≤ t2,
∂νρ = 0 for x ∈ ∂D, t1 ≤ t ≤ t2.
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Suppose, for some fixed constant M > 1,

z1(t) ∈ I, |z′1(t)| ≤ M for t1 ≤ t ≤ t2.

Then for each p > 1, there exists C = C(p,M) > 1 such that for t ∈ [t1, t2],

‖ρ(·, t) − θz1(t)(·)‖
p
Lp(D)

≤ C

[

‖ρ(·, t1)− θz1(t1)(·)‖
p
Lp(D)e

−(t−t1)/(εCp) + sup
t1≤t′≤t

‖F (·, t′)‖pLp(D) + ε

]

.

Proof. For each t, set α1(t) := α(z1(t)) and let θt(x) = θz1(t)(x) denote the unique positive
solution of

α1(t)∆xθ + θ(m− θ) = 0 in D, ∂νθ = 0 on ∂D.

Set W (x, t) := ρ(x, t)/θt(x)− 1, it satisfies the Neumann boundary condition in x, i.e.,

∂νW (x, t) = 0 for t ≥ 0, x ∈ ∂D,

and, for p > 1, the equation

ε

p
∂t(θ

2
t |W |p)− α1(t)∇x ·

(
θ2t |W |p−1∇xW

)
+ α1(t)

4(p − 1)

p2
θ2t |∇xW

p/2|2 + ρθ2t |W |p

= FθtW |W |p−2 − εθt∂tθtW |W |p−2 − ε

(
1− 2

p

)
θt∂tθt|W |p,

from which we derive the differential inequality

ε

p
∂t(θ

2
t |W |p)− α1(t)∇x ·

(
θ2t |W |p−1∇xW

)
+ ρθ2t |W |p

≤ θt|W |p−1|F |+ Ĉ0εθt|∂tθt|(1 + |W |p)

≤ 1

3Ĉ1

θ2t |W |p + (3Ĉ1)
p−1θ2−p

t |F |p + 1

3Ĉ1

θ2t |W |p + Cε

for 0 < ε - 1, where Ĉ1 is given in Proposition 2.1, and (after enlarging C if necessary) we may
assume that the constant C is independent of ε and that

1

C
≤ θt(x) ≤ C for x ∈ D, and sup

z∈Ī
‖θt‖C2(D̄) ≤ C.

Integrating in x ∈ D, we obtain

ε

p

d

dt

ˆ

D
θ2t |W |p dx+

1

3C̃1

ˆ

D
θ2t |W |p dx ≤ C

(
ˆ

D
|F (x, t)|p dx+ ε

)
.

Let M(t) :=
´

D θ2t |W |p dx, we integrate the above in t ∈ [t1, t2] to get

M(t2) ≤ M(t1)e
−Cp(t2−t1)/ε + Cp

[
sup

t1≤t≤t2
‖F (·, t)‖pLp(D) + ε

]
.

The lemma follows because of the uniform boundedness of θt from the above and below.

Proposition 4.4. Given T > 0 and let ‖z̄ε(t)‖C0,1([
√
ε,T ]) be uniformly bounded in 0 < ε - 1.

For each η > 0, there exists ν = ν(η) > 0 such that if

lim sup
ε→0

sup
[
√
ε,T ]

‖ρε(·, t) − θz̄ε(t)(·)‖L2(D) < ν, (4.7)

then
lim sup

ε→0
sup

[2
√
ε,T−

√
ε]
‖Hε(·, t)− λ(·, z̄ε(t))‖C2(Ī) < η. (4.8)
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Proof. By Proposition B.3 in Appendix B, the principal bundle depends smoothly on the weight
function and z ∈ I, i.e. the mapping

{
H1 : Cβ/2,β(R× D̄)× Ī → Cβ/2(R)

(c(x, t), z) 0→ H1(τ)

is smooth. Recall also the fact, when c(x, t) = m(x)− θẑ(x)

H1(τ) = H1(τ ;m− θẑ, z) ≡ λ(z, ẑ) and is constant in τ ∈ R.

Therefore, for each η > 0 there exists ν ′ > 0 such that if

‖c(x, τ) − (m(x) − θẑ(x))‖Cβ,β/2(D̄×R) < ν ′ for some ẑ ∈ Ī , (4.9)

then the corresponding principal bundle H1(τ ; c, z) satisfies

‖H1(0; c, ·) − λ(·, ẑ)‖C2(Ī) ≤ sup
τ∈R

‖H1(τ ; c, ·) − λ(·, ẑ)‖C2(Ī) < η. (4.10)

Now, fix β′ ∈ (β, 1), and choose by interpolation the constant ν > 0 such that if
{

‖c(x, τ) − [m(x)− θẑ(x)]‖Cβ′,β′/2(D̄×R) ≤ Ĉβ′ + ‖θẑ(x)−m(x)‖Cβ′ (D̄)

supτ∈R ‖c(x, τ) − [m(x)− θẑ(x)]‖L2(D) < 2ν,
(4.11)

then (4.9) and thus (4.10) holds. (Note that ν > 0 depends on the uniform bound Ĉβ′ in
Corollary 2.3 but is independent of ε, ẑ.)

We claim that if (4.7) holds for the constant ν we just specified, then (4.8) holds. Suppose
not, then there exist sequences ε = εj → 0 and tj ∈ [2

√
εj, T −√

εj ] such that z̄εj (tj) → ẑ and






lim
εj→0

sup
[
√
εj ,T ]

‖ρεj(·, t) − θz̄εj (t)(·)‖L2(D) ≤ ν,

lim
εj→0

‖Hεj(·, tj)− λ(·, z̄εj (tj))‖C2(Ī) = lim
εj→0

‖Hεj(·, tj)− λ(·, ẑ)‖C2(Ī) ≥ η.
(4.12)

Let (ϕε(x, z, t),Hε(z, t)) be the function given by Proposition 3.1, and define

Φj(x, z, τ) := e−ϕεj (x,z,tj+εjτ), and Hj(z, τ) := Hεj(z, tj + εjτ).

Passing to a subsequence if necessary, we deduce that

Φj(x, z, τ) → Φ̂(x, z, τ) in Cloc(D̄ × Ī × R), and Hj(z, τ) → Ĥ(z, τ) in Cloc(Ī × R),

where the limit (Φ̂(x, z, τ), Ĥ(τ)) is a pair of the normalized Floquet principal bundle, i.e.

(Φ̂(x, z, τ), Ĥ(z, τ)) = (Φ1(x, τ ; ĉ, z),H1(x, τ ; ĉ, z)),

for some
ĉ(x, τ) = lim

εj→0
(ρεj (x, tj + εjτ)−m(x)).

By the first statement of (4.12), we deduce that the weight ĉ satisfies (4.11), and hence the
limit Ĥ of Hεj (in the Cloc(R) topology) satisfies (4.10). Moreover, recalling (3.2), we have

sup
j

‖Hj(·, 0)‖C3(Ī)=sup
j

‖Hεj(·, tj)‖C3(Ī) ≤ C,

we deduce that Hj(·, 0) → Ĥ(·, 0) in C2(Ī). Hence

lim
εj→0

‖Hεj(·, tj)− λ(·, ẑ)‖C2(Ī) = ‖Ĥ(·, 0) − λ(·, ẑ)‖C2(Ī) < η,

where the last inequality holds since Ĥ satisfies (4.10). This contradicts the second statement
of (4.12).
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Corollary 4.5. For each η0 > 0, there exists δ1 > 0 independent of ẑ and t̂ such that V1(z)
satisfies the condition (4.3) of Proposition 4.2, and if

sup
t̂−3

√
ε≤t≤t̂−2

√
ε

‖uε(x, z, t) − V1(z)‖C(D̄×Ī) → 0 as ε → 0, (4.13)

then
lim inf
ε→0

inf
I×[t̂,t̂+δ1]

∂2
zzHε(z, t) ≥ δ1 > 0. (4.14)

Proof. Apply Proposition 4.2, then (4.13) implies

lim sup
ε→0

sup
[t̂−2

√
ε,t̂+2δ1]

‖
ˆ

I
(z − ẑ)∂2

xnε(x, z, t) dz‖L2(D) < C|δ1|1/3

for each δ1 > 0 small. Applying Lemma 4.3, we again obtain C ′ independent of ε and δ1 such
that for each δ1 > 0 small,

lim sup
ε→0

sup
t̂−

√
ε≤t≤t̂+2δ1

‖ρε(·, t)− θẑ(·)‖L2(D) < C ′|δ1|1/3.

By choosing δ1 small, Proposition 4.4 says that

sup
[t̂,t̂+δ1]

‖∂2
z1z1λ(·, ẑ)− ∂2

z1z1Hε(·, t)‖C(U ) ≤
1

2
inf
I×I

λz1z1 ,

since by (H1) the last term is a fixed positive constant. Hence, by reducing δ1 > 0 if necessary,
(4.14) holds.

5 Proof of Theorem 1.4

Define
T ∗ := sup{T > 0 : lim inf

ε→0
inf

I×[2
√
ε,T ]

∂2
zzHε(z, t) > 0}.

Our purpose is to prove that T ∗ = ∞, which comes with the desired convergence results.
Applying Proposition 3.2, the two quantities z̄ε(t) and Vε(z, t) are well-defined in the time

interval [2
√
ε, T ∗], for all sufficiently small ε. We will also define for convenience

Vε(z, t) = V0(z), and z̄ε(t) = z̄0 for z ∈ I, t ∈ [0, 2
√
ε].

Step 1. In this step, we show that T ∗ ≥ δ1, where δ1 is as given in Corollary 4.5.
By constructing super- and sub-solutions of the form

V0(z)−
1

2
ε| log ε| ± C

{
(t+ ε) +

1

ε

(
[z − (b−

√
ε)]3+ + [a+

√
ε− z]3+

)}
,

it follows by comparison using (4.2) that

sup
0≤t≤3

√
ε
‖uε(x, z, t)− V0(z)‖C(D̄×Ī) → 0. (5.1)

Based on (5.1), one can apply Corollary 4.5 to yield T ∗ ≥ δ1.

Step 2. In this step, we show that as ε → 0,

sup
D×I×[0,T ∗]

|uε(x, z, t) − Vε(z, t)| → 0. (5.2)
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(Note that the convergence in the time interval [0, 3
√
ε] has been done in Step 1.)

Next, we show

sup
D×I×[2

√
ε,T ∗]

∣∣∣∣uε(x, z, t) − Vε(z, t) −
ˆ t

2
√
ε
Hε(z̄ε(s), s) ds

∣∣∣∣→ 0. (5.3)

To this end, define

U(z, t) = Vε(z, t) +

ˆ t

2
√
ε
Hε(z̄ε(s), s) ds + µε +

C

ε

{
[(a+

√
ε)− z]3+ + [z − (b−

√
ε)]3+

}

and, with µε = ‖uε(x, z, 2
√
ε)− V0(z)‖C(D×I) = o(1),

U(z, t) = Vε(z, t) +

ˆ t

2
√
ε
Hε(z̄ε(s), s) ds − µε −

C

ε

{
[(a+

√
ε)− z]3+ − [z − (b−

√
ε)]3+

}

and (5.3) follows by comparison using (4.2).
We now claim that

sup
2
√
ε≤t≤T ∗

∣∣∣∣

ˆ t

2
√
ε
Hε(z̄ε(s), s) ds

∣∣∣∣ = o(1). (5.4)

Indeed,
ˆ

D
ρε(x, t) dx =

¨

D×I
exp

(
−uε(x, z, t)

ε

)
dzdx

=
1√
ε

¨

D×I
exp

(

−Vε(z, t)

ε
+

´ t
2
√
εHε(z̄ε(s), s)ds + o(1)

ε

)

dzdx.

Since Vε(z, t) = −c(t)(z − z̄ε(t))2 +O(|z − z̄ε(t)|3), we have

0 < lim inf
ε→0

1√
ε

¨

D×I
exp

(
−Vε(z, t)

ε

)
dzdx ≤ lim sup

ε→0

1√
ε

¨

D×I
exp

(
−Vε(z, t)

ε

)
dzdx < +∞

and (5.4) follows from this, and 1
C ≤

´

D ρε(x, t) dx ≤ C (from Proposition 2.1).
Combining (5.1), (5.3) and (5.4), we deduce (5.2).

Step 3. In this step, we show that

sup√
ε≤t≤T ∗

∥∥ρε(·, t) − θz̄ε(t)
∥∥
C(D̄)

→ 0 as ε → 0. (5.5)

First, we deduce from (5.2) and Proposition 4.2 that

sup
[ε,T ∗]

∥∥∥∥

ˆ

I
(z − z̄ε(t))∂

2
xnε(·, z, t) dz

∥∥∥∥
C(D̄)

→ 0.

Then by taking t1 = ε and t2 ∈ [
√
ε, T ∗] in Lemma 4.3, we deduce

sup√
ε≤t≤T ∗

∥∥ρε(·, t)− θz̄ε(t)
∥∥
L2(D)

→ 0. (5.6)

The estimate (5.5) follows by interpolating (5.6) with the uniform estimate

sup√
ε≤t≤T ∗

∥∥ρε(·, t)− θz̄ε(t)
∥∥
Cβ(D̄)

≤ C,

which follows from Corollary 2.3(b) and that ‖z̄ε(·)‖C0,1 ≤ C (by Proposition 3.2).
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Step 4. By (5.5) and Proposition 4.4, we have

sup
I×[2

√
ε,T ∗−

√
ε]
|Hε(z, t)− λ(z, z̄ε(t))| → 0. (5.7)

Since (Vε(z, t), z̄ε(t)) is the unique viscosity solution of (3.4), we may apply the stability theorem
for viscosity solution, to deduce that, as ε → 0, (Vε(z, t), z̄ε(t)) must converge to the unique
viscosity solution (V (z, t), z̄(t)) of (1.10), i.e.

sup
I×[2

√
ε,T ∗]

|Vε(z, t)− V (z, t)| → 0 and sup
[2
√
ε,T ∗]

|z̄ε(t))− z̄(t)| → 0. (5.8)

Step 5. We claim that T ∗ = +∞. Suppose not, then T ∗ < +∞. But then the above argument
would allow us to extend the approximate trajectory by a fixed time-step δ1 > 0. This would
yield a contradiction which proves that T ∗ = +∞.

Step 6. To conclude, it remains to show (1.12) - (1.14). Indeed, (1.14) follows from ρε(x, t) →
θz̄ε(t)(x) (by (5.5)) and z̄ε(t) → z̄(t) (by (5.8)). Next, (1.13) follows from

sup
D×I×[0,T ∗]

|uε(x, z, t) − Vε(z, t)| → 0

(by (5.2)) and Vε(z, t) → V (z, t) (by (5.8)). Finally, Proposition 1.3 says for each t, z 0→ V (z, t)
has a unique minimum point at z̄(t), so that

nε(x, z, t) = exp

(
−Vε(z, t) + o(1)

ε

)
≈ δ0(z − z̄(t))ρε(x, t), (5.9)

where the function ρε(x, t) =
´

I nε(x, z, t) dz appeared since the above needs to be consistent
upon integration over z ∈ I. Combining (1.14) and (5.9), we deduce (1.12).

6 Discussions and Generalizations

In Subsection 6.1, we discuss a special feature of the effective Hamiltonian λ that arises from
evolution of random dispersal, as modeled by Laplacian in the spatial variable, which is the fact
that z1 0→ λ(z1, z2) has the same monotonicity of α, regardless of choice of α and z2. Subsection
6.2 gives a concrete example of α(z) where (H1) can be verified. Subsection 6.3 discusses the
generalization to multi-dimensional traits, as motivated by the evolution of conditional dispersal,
where the optimal trait is not necessarily the slowest dispersal rate anymore.

6.1 Monotonicity of the effective Hamiltonian

The effective Hamiltonian can be written as

λ(z1, z2) = Λ(α(z1),α(z2)), (6.1)

where Λ(α1,α2) is the smallest eigenvalue of
{

α1∆Φ+ (m(x)−Θα2(x))Φ + ΛΦ = 0 for x ∈ D,
∂νΦ = 0 for x ∈ ∂D,

(6.2)

where Θα(x) is the unique positive solution to

α∆Θ+ (m(x)−Θ)Θ = 0 in D, and ∂νΘ = 0 on ∂D. (6.3)

Then it is well-known that Λ is smooth in R+ ×R+, and that ∂α1Λ(α1,α2) > 0 [1, 16, 32]. We
may conclude the following immediately.

sgn(λz1(z1, z2)) = α′(z1) for all z1, z2.

Next, we observe that when α(z) satisfies (H1), it is necessarily U-shaped and has a unique
minimum point, which is where the dominant trait eventually converges.
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Lemma 6.1. Suppose α(z) is chosen such that (H1) holds, then there exists zmin ∈ Int I such
that

α′(z) < 0 in [a, zmin), α′(zmin) = 0 and α′(z)> 0 in (zmin, b]; (6.4)

and that z1 0→ λ(z1, z2) has the same minimum point zmin for each z2 ∈ [a, b],

∂z1λ(z, z2) < 0 in [a, zmin), ∂z1λ(zmin, z2) = 0 and ∂z1λ(z, z2)> 0 in (zmin, b]. (6.5)

Proof. Differentiating (6.1) with respect to z1, evaluating at (z1, z2) = (a, a), and using (H1),
we have

0 > ∂z1λ(a, a) = ∂α1Λ(α(a),α(a))α
′(a).

Using also that ∂α1Λ > 0, we conclude that α′(a) < 0 and similarly α′(b) > 0. Thus α has at
least one interior minimum point. Moreover, for each fixed z2, the mapping

z1 0→ λ(z1, z2) = Λ(α(z1),α(z2))

is convex in z1, it has the desired monotonicity property in z1. This proves the second statement.
Still because ∂α1Λ > 0, we deduce that α also has the desired monotonicity as well.

6.2 An explicit example of α(z)

We can construct explicitly some U-shaped dispersion α(z), so that the associated λ(z1, z2)
satisfies the convexity assumption (H1). For any given interval I0 = [α0,α0+L0] with α0, L0 >
0, define

α(z) = α0 +
1

k0

ˆ z

0
tan z′ dz′ for z ∈ [−zM , zM ],

where k0 := sup
(α1,α2)∈I0×I0

|∂2
α1

Λ|
∂α1Λ

and zM ∈ (0,π/2) is the unique number such that
´ zM
0 tan z dz =

k0L0. With this choice of α, the associated λ(z1, z2) = Λ(α(z1),α(z2)) satisfies

±∂z1λ(±zM , z2) = ±∂α1Λ(α(±zM ),α(z2))α
′(±zM ) > 0,

and, thanks to the definition of k0, we compute

∂2
z1λ(z1, z2) ≥ (∂α1Λ)α

′′(z1)− |∂2
α1
Λ|(α′(z1))

2

=
∂α1Λ

k0

[
(tan z1)

′ − 1

k0

|∂2
α1
Λ|

∂α1Λ
|tan z1|2

]

≥ ∂α1Λ

k0

[
(tan z1)

′ − |tan z1|2
]
≥ 1

k0
inf

I0×I0
∂α1Λ > 0.

6.3 Evolution of conditional dispersal

A limitation in our present study comes from the use of convexity to obtain various regularity
results, in particular for the solutions of the constrained Hamilton-Jacobi equation. Here we
present an example which motivates to look for more general methods. We have in mind
the following model considering evolution of conditional dispersal, see [19] and the references
therein.

ε∂tnε = α(z)∆xu− β(z)∇ · [nε∇m(x)] + nε(x)(m(x)− ρε(x, t)) + ε2∂2
znε (6.6)

for x ∈ D, z ∈ I and t > 0, with appropriate boundary conditions. Here α is the rate of
unconditional dispersal, whereas β is the rate of the directed movement up the gradient of the
prescribed function m(x). One or both α,β can be dependent on the trait variable z.
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The effective Hamiltonian is again given by the invasion exponent λ(z1, z2) and can be
similarly defined. Assuming m(x) = x, α(z) = z and β = q for some small constant q, it can be
shown that (6.6) possesses at least one positive equilibrium solution ũε, which tends to a Dirac
measure supported at two distinct points on the trait interval. In particular, the corresponding
effective Hamiltonian is nonconvex. We conjecture that the time dependent problem supports
moving Dirac-concentrations supported at two points (z̄1(t), z̄2(t)), which then converges to
their equilibrium position.
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A A priori Estimates

Proposition A.1. There exists C̃1 > 1, depending on V0(z),m(x),α,α,D but independent of ε,
such that

1

C̃1

≤ ρε(x, t) ≤ C̃1 for x ∈ D, t ≥ 0.

Proof. We prove the proposition in six steps.
Step 1. There exists C such that supt≥0 ‖ρε(·, t)‖L1(D) ≤ C.

Integrate (1.6) over (x, z) ∈ D × I, and use the Cauchy-Schwarz inequality, we obtain

ε
d

dt

ˆ

D
ρε(x, t) dx =

ˆ

D
ρε(x, t)(m(x)− ρε(x, t)) dx ≤

ˆ

D
ρε dx

(
m∗ − 1

|D|

ˆ

D
ρε dx

)
(A.1)

where m∗ = supD m. Hence we deduce from the differential inequality that
ˆ

D
ρε(x, t) dx ≤ max

{
ˆ

D
ρε(x, 0) dx,m

∗|D|
}

for all t ≥ 0. (A.2)

It remains to estimate the initial total population
´

D ρε(x, 0) dx by (H2):

ˆ

D
ρε(x, 0) dx =

ˆ

D

ˆ

I
exp(−uε(x, z, 0)

ε
) dzdx

≤ C√
ε

ˆ

I
exp

(
−V0(z)

ε

)
dz ≤ C√

ε

ˆ

I
exp

(
−K1|z − z̄0|2

ε

)
dz ≤ C.

Thus Step 1 is a direct consequence of (A.2).
Step 2. There exists C such that sup

t≥ε
‖ρε(·, t)‖C(D̄) ≤ C.

It suffices to show the following assertion:

Claim A.2. There exists C1 such that for any t1 ≥ ε,

sup
x∈D

ρε(x, t1) ≤ C1 sup
t∈[t1−ε,t1]

ˆ

D
ρε(x, t) dx.

To prove the claim, we first extend nε(x, z, t) in the z variable by reflection across z = b,
and then periodically in z to D × R× [0,∞).

Consider, for each (z1, t1) ∈ I × [ε,∞), the rescaled function

Nε(x, y, τ ; z1, t1) := nε(x, z1 + εy, t1 + ετ), (A.3)
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then Nε satisfies, with z = z1 + εy,

{
∂tNε − α(z)∆xNε − ∂2

yNε = Nε(m− ρε) ≤ mNε in D × R× [−1,∞),
∂νNε(x, y, τ) = 0 on ∂D × R× [−1,∞).

(A.4)

Since Nε is a subsolution of a linear, parabolic equation with L∞ bounded coefficients5, we can
apply the local maximum principle [27, Theorem 7.36] (see also [11, Section 6.2]), to obtain a
constant C1 independent of ε > 0, z1 ∈ I and t1 ≥ ε such that

‖Nε(x, y, τ)‖L∞(D×(−4/5,4/5)×(−4/5,0)) ≤ C1‖Nε(x, y, τ)‖L1(D×(−1,1)×(−1,0)). (A.5)

(Note that the spatial domain on both sides of the inequality can be taken to be the same, as
a consequence of the Neumann boundary condition across ∂D.) Next, we write

ρε(x, t1) =

ˆ

I
nε(x, z1, t1) dz1 =

ˆ

I
Nε(x, 0, 0; z1, t1) dz1.

Taking supremum in x ∈ D, it follows that

‖ρε(·, t1)‖L∞(D) ≤
ˆ

I
‖Nε(·, 0, 0; z1, t1)‖L∞(D)dz1

≤
ˆ

I
‖Nε(x, y, τ ; z1, t1)‖L∞(D×(−1/2,1/2)×(−1/2,0)) dz1

≤ C

ˆ

I
‖Nε(x, y, τ ; z1, t1)‖L1(D×(−1,1)×(−1,0)) dz1

≤ C

ˆ 0

−1

ˆ

D

ˆ

(a−ε,b+ε)
nε(x, z, t1 + ετ) dzdxdτ

≤ C

ˆ 0

−1

ˆ

D

ˆ

I
nε(x, z, t1 + ετ) dzdxdτ

≤ C sup
t∈[t1−ε,t1]

ˆ

D
ρε(x, t) dx,

where we used the periodicity of nε in the second to last inequalities. This proves Claim A.2.
Finally, we take supremum over t1 ≥ ε on both sides of the conclusion of Claim A.2, we

deduce

sup
t≥ε

‖ρε(·, t1)‖L∞(D) ≤ C1 sup
t1≥ε

[

sup
t∈[t1−ε,t1]

ˆ

D
ρε(x, t) dx

]

≤ sup
t≥0

ˆ

D
ρε(·, t) dx ≤ C.

This completes Step 2.
Step 3. There exists C > 1 such that C−1 ≤ ρε(x, t) ≤ C for x ∈ D and t ∈ [0, ε].

Based on (H2) we construct the following lower solution of (4.1):

U(z, t) := V0(z) −
1

2
ε| log ε|− C2(t+ ε)− C

ε

{
[z − (b−

√
ε)]3+ + [a+

√
ε− z]3+

}
,

where C is chosen large such that U z(b, t) ≤ 0 ≤ U z(a, t), and then C2 is chosen6 large enough
so that

U(z, 0) ≤ uε(x, z, 0) for x ∈ D, z ∈ I,

5Note that the term −ρε is dropped.
6Since the differential inequality (4.1), after dropping the −ρε term, is independent of −ρε, the constant C2

can be chosen independent of sup0≤t≤ε ‖ρε(·, t)‖C(D̄).
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and the appropriate differential inequality (4.1) is satisfied inD×I×(0,∞). Hence for 0 ≤ t ≤ ε,

uε(x, z, t) ≥ U(z, t) ≥ 1

2
V0(z)−

1

2
ε| log ε|+O(ε),

where the last inequality follows from the fact that V0(z) ≥ 0 and is bounded below by a positive
constant near z = a, b, so that

1

2
V0(z)−

C

ε

{
[z − (b−

√
ε)]3+ + [a+

√
ε− z]3+

}
≥ 0.

Integrating in z, we find

ρε(x, t) ≤
C√
ε

ˆ

I
exp

(
−V0(z) +O(ε)

ε

)
dz ≤ C for x ∈ D, t ∈ [0, ε].

This proves the upper bound of Step 3. The lower bound can then be similarly proved, by using
the upper bound and considering the upper solution7

U(z, t) := V0(z)−
1

2
ε| log ε|+ C3(t+ ε)

Notice that, here, the term in curly bracket appearing in the definition of U is not needed, as
V0(z) has positive outer derivatives at z ∈ ∂I. This completes the proof of Step 3.
Step 4. There exists C0 such that supt≥0 ‖ρε(·, t)‖C(D̄) ≤ C0.

Step 4 is an immediate consequence of Steps 2 and 3.
Step 5. There exists C such that inft≥0

´

D ρε(x, t) dx ≥ 1/C.
We may assume that

inf
0≤t≤ε

ˆ

D
ρε(x, t) dx > e−C0

infD m

2C1

where C0 is given in Step 4, and C1 is given in Claim A.2. Indeed, by Step 3, such an inequality
holds if we increase C0 when necessary. Next, we assume to the contrary that there exist t1 > ε
such that

ˆ

D
ρε(x, t1) dx = e−C0

infD m

2C1
and

d

dt

ˆ

D
ρε dx

∣∣
t=t1

≤ 0. (A.6)

By Step 4 and (A.1), the function A(t) :=
´

D ρε(x, t) dx satisfies the differential inequality

ε d
dtA(t) ≥ −C0A(t), so that for t ∈ [t1 − ε, t1],

A(t) ≤ eC0(t1−t)/εA(t1) ≤ eC0e−C0
infD m

2C1
=

infD m

2C1
.

By Claim A.2, we deduce that

‖ρε(·, t1)‖L∞(D) ≤ C1 sup
t∈[t1−ε,t1]

A(t) ≤ C1
infD m

2C1
=

infD m

2
.

Hence, by (A.1),

ε
d

dt

ˆ

D
ρε dx

∣∣
t=t1

=

ˆ

D
(m− ρε)ρε dx

∣∣
t=t1

≥ infD m

2
A(t1) > 0,

which is a contradiction to (A.6). This proves Step 5.
Step 6. There exists C such that ρε(x, t) ≥ 1/C for x ∈ D and t ≥ 0.

7Here the constant C3 depends on the quantity sup0≤t≤ε ‖ρε(·, t)‖C(D̄), which has just been proved to be
uniformly bounded.
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For 0 ≤ t ≤ ε, the lower bound is proved in Step 3. For t ≥ ε, one first notice that
Nε(τ, x, y; t1, z1) satisfies a parabolic equation with L∞ bounded coefficients, and thus satisfies
a weak Harnack inequality [27, Theorem 7.37] (see also [11, Section 6.5]). One then prove that
ρε(x, t) also satisfies such a weak Harnack inequality, so that for each t1 ≥ ε,

ρε(x, t1) ≥ C

 t1−ε/2

t1−ε

ˆ

D
ρε(x, t) dxdt,

where the last term is bounded from below, as proved in Step 5. This proves Step 6. Finally,
the proposition follows from combining Steps 4 and 6.

B Differentiability of the Principal Bundle

The notion of a normalized principal Floquet bundle (see [36]) is a generalization to evolution
problems of the notion of principal eigenfunction of an elliptic, or periodic-parabolic operator.
Its smooth dependence on parameters is recently established in [9].

B.1 The normalized principal bundle

Let D ⊂ RN be a smooth bounded domain. Given α > 0 and c ∈ Cβ,β/2(D̄ × R), we say that
the positive function φ1(x, t) is the corresponding principal Floquet bundle if it satisfies






∂tφ1 − z∆φ1 − c(x, t)φ1 = H1(t)φ1 for x ∈ D, t ∈ R,

∂νφ(x, t) = 0 for x ∈ ∂D, t ∈ R,

φ1(x, t) > 0 for x ∈ D̄, t ∈ R.

The existence and uniqueness is proved in [29], which is based on the abstract result of [36].
To formulate the smooth dependence on parameters, we need the notion of a normalized

principal Floquet bundle.

Definition B.1. Given z > 0 and c ∈ Cβ,β/2(D̄ × R), we say that the pair (Φ1(x, t),H1(t)) is
the corresponding normalized principal Floquet bundle if it satisfies






∂tΦ1 − z∆Φ1 − c(x, t)Φ1 = H1(t)Φ1 for x ∈ D, t ∈ R,

∂νΦ1(x, t) = 0 for x ∈ ∂D, t ∈ R,
´

Ω Φ1(x, t) dx ≡ 1 for t ∈ R,

Φ1(x, t) > 0 for x ∈ D̄, t ∈ R.

(B.1)

Theorem B.2. For each z > 0 and c ∈ Cβ,β/2(D̄ × R), there exists a unique pair

(Φ1(x, t),H1(t)) ∈ C2+β,1+β/2(D̄ × R)× Cβ/2(R)

satisfying (B.1) in classical sense.

Proof. The existence and uniqueness of (Φ1,H1(t)) follows from the existence of the principal
Floquet bundle φ(x, t), by noting that H1(t) arises from the normalization

´

ΩΦ1(x, t) dx ≡ 1;
See [9, Theorem A.1] for detail.

We need the smooth dependence of the normalized principal Floquet bundle, which is re-
cently established proved in [9].
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Proposition B.3. The normalized principal Floquet bundle, as a mapping

(z, c) 0→ (Φ1,H1)
R+ × Cβ,β/2(Ω× R) → C2+β,1+β/2(Ω × R)× Cβ/2(R)

is smooth. In particular, there exists a constant C = C(M) which is independent of z ∈
[

1
M ,M

]

and ‖c‖Cβ,β/2(D̄×R) ≤ M such that

‖∂xΦ1‖∞ + max
i=0,1,2,3

‖∂i
zΦ1‖∞ ≤ C,

where ‖ · ‖ is the L∞ norm over (x, z, t) ∈ D ×
[

1
M ,M

]
× R, and

1

C
≤ Φ1(x, t) ≤ C in D × R.

Proof. The smooth dependence is proved in [9, Proposition A.4]. It remains to prove the positive
upper and lower bounds on Φ1. For this purpose, we recall the uniform Harnack inequality [22,
Theorem 2.5], which says that there exists some positive constant C = C(M) such that

sup
D

Φ1(·, t) ≤ C inf
D

Φ(·, t) for z ∈
[
1

M
,M

]
, t ∈ R.

Thanks to the normalization
´

ΩΦ1 dx ≡ 1, we obtain

1

C|Ω| ≤
1

C
sup
D

Φ1(·, t) ≤ Φ1(x, t) ≤ C inf
D

Φ1(·, t) ≤
C

|Ω| .

This completes the proof.

C Uniqueness for the Constrained Hamilton Jacobi Equation

We now establish the uniqueness of solutions to a constrained Hamilton-Jacobi equation in an
open, bounded one-dimensional interval I under some monotonicity assumption. We begin with
a proposition that does not assume convexity of the Hamiltonian and initial data on the trait
variable x.

Proposition C.1. For i = 1, 2, let (Vi, z̄i) ∈ W 1,∞(I ′ × [0, T ]) ×BV ([0, T ]) be a solution to
{

∂tV + |∂zV |2 +R(z, z̄(t), t) = 0 for z ∈ I ′, t ∈ [0, T ],
∂zV (z, t) = 0 for z ∈ ∂I ′, t ∈ [0, T ]

(C.1)

in the viscosity sense, and which verifies the initial data and the constraint
{

V (z, 0) = V0(z) for z ∈ I ′,
infz∈I′ V (z, t) = 0 for t ∈ [0, T ]

(C.2)

in the classical sense. Suppose that R is C2 in all variables, and

z̄i(t) ∈ Int I ′ for i = 1, 2, t ∈ [0, T ], (C.3)

R(z1, z2, t) = 0 if and only if (z1, z2, t) ∈ Γ (C.4)

and
∂z1R(z, z, t) > 0 in Γ or ∂z1R(z, z, t) < 0 in Γ, (C.5)

where Γ := {(z1, z2, t) ∈ I ′ × I ′ × [0, T ] : z1 = z2}. Then

(V1(z, t), z̄1(t)) = (V2(z, t), z̄2(t)) for z ∈ I ′ and t ∈ [0, T ].

We postpone the proof of this proposition and conclude the proofs of Propositions 1.3
and 3.2.
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C.1 Proofs of Propositions 1.3 and 3.2

Proof of Proposition 1.3. Since assertions (ii) and (iii), and the existence part of assertion (i)
are proved in [28, 31], we prove the uniqueness part of assertion (i) in the following.

Let (Vi(z, t), z̄i(t)) be two solutions such that the common initial data V0(z) is convex,
smooth, and attains a unique minimum at some z̄0 ∈ Int I.
Step 1. Due to the differential equation (1.11), and the fact that λ(z, z) ≡ 0, exactly one of
the following cases holds:

(i) z̄1(t) ≡ z̄2(t) ≡ z̄0, (ii)

(
d

dt
z̄1(t)

)(
d

dt
z̄2(t)

)
> 0 for all t ∈ [0, T ].

In case (i), the conclusion follows from standard uniqueness of viscosity solution to Neumann
problem. We henceforth consider case (ii). In fact, by (1.11) we can assume without loss of
generality that

d

dt
z̄i(t) > 0 and ∂z1λ(z̄i(t), z̄i(t)) < 0 for t ∈ [0, T ] and i = 1, 2. (C.6)

Step 2. We choose I ′ to be slightly larger than [z̄0,maxi=1,2 z̄i(T )] = ∪2
i=1z̄i([0, T ]), then

(C.3) and (C.4) hold.
Step 3. (V1(z, t), z̄1(t)) and (V2(z, t), z̄2(t)) are viscosity solutions to the same constrained
Hamilton-Jacobi equation (with Neumann boundary conditions) on the restricted domain I ′ ×
[0, T ]: 





∂tV + |∂zV |2 − λ(z, z̄(t)) = 0 for z ∈ I ′, t ∈ [0, T ],
∂zV (z, t) = 0 for z ∈ ∂I ′, t ∈ [0, T ],
V (z, 0) = V0(z) for z ∈ I ′,
infz∈I′ V (z, t) = 0 for t ∈ [0, T ].

(C.7)

(The initial data and constraint are satisfied in the classical sense.) This step is valid since
z 0→ Vi(z, t) is convex, and the unique minimum point z̄i(t) ∈ Int I ′ for all t.
Step 4. We can now apply Propositon C.1 to conclude that z̄1(t) = z̄2(t) a.e. in [0, T ].
Then we can use the variational characterization to deduce that V1 ≡ V2 in the original domain
I × [0, T ] (not just in the smaller domain I ′ × [0, T ]).

Proof of Proposition 3.2. Fix ε > 0 and let R(z1, z2, t) := −Hε(z1, t) + Hε(z2, t). Once again,
the existence of a viscosity solution (Vε(z, t), z̄ε(t)) holds. Since V0(z) and −R(z, z̄, t) are convex
in z, it follows that Vε(z, t) is strictly convex in z for each t, and satisfies the differential equation

d

dt
z̄ε(t) =

1

∂zzVε(z̄ε(t), t)
∂z1R(z̄ε(t), z̄ε(t), t). (C.8)

To show uniqueness, it suffices to repeat the proof of Proposition 1.3. We omit the details.

C.2 Proof of Proposition C.1

Suppose two sets of solutions (Vi, z̄i), i = 1, 2, are given. First, extend the problem by reflection
to the domain [2 inf I ′−sup I ′, sup I ′]× [0, T ] and then extend it periodically so that it is defined
in R× [0, T ]. We use the variational characterization:

Vi(z, t) = inf
γ(t)=z

{
ˆ t

0

[
|γ̇(s)|2

4
−R(γ(s), z̄i(s), s)

]
ds+ V0(γ(0))

}
(C.9)

with the understanding that V0(z) is also being extended evenly and periodically so that it is
defined for all z ∈ R.
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Lemma C.2. Assume (C.3), (C.4) and the first alternative of (C.5). Let (V (z, t), z̄(t)) ∈
W 1,∞(R× [0, T ])×BV([0, T ]) be a solution of (C.1) and (C.2). Then, at possible discontinuity
points we have

z̄(t−) ≤ z̄(t+) and N (t) ⊂ [z̄(t−), z̄(t+)] (C.10)

where N (t) = {z ∈ Ī ′ : V (z, t) = 0}.

Proof. By (C.4) and the first alternative of (C.5), we have

sgn(R(z1, z2, t)) = sgn(z1 − z2). (C.11)

Fix (z, t) such that V (z, t) = 0, it suffices to show that z̄(t−) ≤ z ≤ z̄(t+). To show the first
inequality, choose a minizing curve γ(t) for (C.9) such that γ(t) = z and

0 = V (z, t) =

ˆ t

0

|γ̇(s)|2

4
−R(γ(s), z̄(s), s) ds + V0(γ(0)). (C.12)

In fact, for any h ∈ (0, t), the dynamic programming principle says that

0 ≤ V (γ(t− h), t− h) =

ˆ t−h

0

[
|γ̇(s)|2

4
−R(γ(s), z̄(s), s)

]
ds+ V0(γ(0)).

Subtracting, we have

0 ≤ −
ˆ t

t−h

[
|γ̇(s)|2

4
−R(γ(s), z̄(s), s)

]
ds ≤

ˆ t

t−h
R(γ(s), z̄(s), s) ds for all s ∈ (0, t).

Dividing by h and letting h ↘ 0, we deduce that

R(z, z̄(t−), t) = R(γ(t), z̄(t−), t) ≥ 0. (C.13)

By (C.11), we have z̄(t−) ≤ z.
Next, we fix as above z, t, γ(·), and define γ1 : [0, t+ 1] → R by

γ1(s) =

{
γ(s) for 0 ≤ s ≤ t,
z for s > t.

Then by (C.9), we have for 0 < h < 1,

0 ≤ V (t+ h, γ1(t+ h)) ≤
ˆ t+h

0

|γ̇1(s)|2

4
−R(γ1(s), z̄(s), s) ds + V0(γ(0)).

Subtracting (C.12) from the above, we have

0 ≤ −
ˆ t+h

t
R(z, z̄(s), s) ds. (C.14)

Divide by h, and let h → 0, then R(z, z̄(t+), s) ≤ 0. By (C.11), we have z̄(t+) ≥ z.

Remark C.3. From the above proof, for each t0 > 0 and z̄0 ∈ N (t0), it follows from (C.14) that
ˆ t0+h

t0

R(z̄0, z̄(s), s) ds ≤ 0 for all sufficiently small h > 0.

Lemma C.4. Assume (C.3), (C.4) and the first alternative of (C.5). Let (V (z, t), z̄(t)) ∈
W 1,∞(R × [0, T ]) × BV([0, T ]) be a solution of (C.1) and (C.2), then z̄ is non-decreasing.
Furthermore, we have

lim
t→0+

[supN (t)] = supN (0), (C.15)

and, still with N (t) = {z ∈ Ī ′ : V (z, t) = 0}, we have

z̄(t+) = supN (t). (C.16)
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Proof. Again, without loss of generality, we choose the right-continuous representative of z̄.
Now, assume to the contrary that z̄ is not non-decreasing. i.e. z̄(t1) > z̄(t2) for some t1 < t2.
Since z̄ is right-continuous, we have z̄(t1) > z̄(t2+), i.e. there exists t3 > t2 such that z̄(t1) > z̄(t)
for all t ∈ [t2, t3]. Let t0 = sup{t ∈ [t1, t3) : z̄(t) ≥ z̄(t1)}. Then t0 ≤ t2 < t3, and

z̄(t) < z̄(t1) ≤ z̄(t0−) for t ∈ (t0, t3). (C.17)

In particular, we deduce that z̄(t0+) ≤ z̄(t0−). By (C.10), it follows that z̄(t0+) = z̄(t0−), and
that N (t0) consists of a single element, which we denote by z̄0.

By the first alternative of (C.5), there exists a small δ1 > 0 such that

R(z̄0, z, t) > 0 for z ∈ (z̄0 − δ1, z̄0), t ∈ [t0 − δ1, t0]. (C.18)

Then choose h ∈ (0, δ1) small enough so that z̄(s) ∈ (z̄0 − δ1, z̄0) for all s ∈ (t0, t0 + h) (which
is guaranteed by z̄(t0+) = z̄(t0−) = z̄0 and (C.17)). We deduce from (C.18) that

ˆ t0+h

t0

R(z̄0, z̄(s), s) ds > 0,

where the last inequality follows from z̄(s) < z̄0 (by (C.17)). We obtain a contradiction to
Remark C.3.

Next, we observe that (C.15) follows directly from the upper-semicontinuity of N , i.e.

lim sup
t′→t+

N (t′) ⊂ N (t). (C.19)

It remains to show (C.16). It follows from (C.10) (proved in Lemma C.2) that z̄(t+) ≥
supN (t). Moreover, (C.10) and the monotonicity of z̄ imply that

z̄(t+) ≤ z̄(t′−) ≤ infN (t′) ≤ supN (t′) for each t′ > t.

Using (C.19), we may let t′ → t+ to deduce z̄(t+) ≤ supN (t). This proves (C.16).

Proof of Proposition C.1. For i = 1, 2, let (Vi(z, t), z̄i(t)) ∈ W 1,∞(R× [0, T ])×BV [0, T ] be two
solutions of (C.1) and (C.2). It suffices to show that z̄1(t) = z̄2(t) a.e. in [0, T ]. Without loss of
generality, one can reduce to the case that for each t > 0, z̄1 2= z̄2 in a set of positive measure
in (0, t). Furthermore, by considering z′ = −z if necessary, we can assume the first alternative
of (C.5) to hold.

To apply [8, Section 3, Remark 3], it remains to verify (U1)-(U3). Now, observe that the
Hamiltonian function in (C.1) is smooth and satisfies H(z̄, t, z, p) = |p|2 + R(z, z̄, t), so that
L(z̄, z, t, v) = |v|2/4 −R(z, z̄, t). This verifies (U1). The condition (U2) also holds, as Vi(z, t)
admits the variational characterization (C.9).

It suffices to check (U3). Define

zti = supNi(t), where Ni(t) = {z ∈ I : Vi(z, t) = 0},

and let γti ∈ AC[0, t] be the minimizing path corresponding to the value Vi(zti , t) = 0. We need
to verify the following three conditions:

(i) lim
t→0+

zti = z̄0 := sup{z ∈ I : V0(z) = 0},

(ii) inf
0<θ<1

∂z2R( lim
t→0+

[(1− θ)z̄1(t) + θz̄2(t)], z̄0, 0) < 0,

(iii) lim sup
t→0+

‖γ̇ti‖L∞(0,t) < +∞.
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To verify condition (i), we apply (C.15) and (C.16) to get

lim
t→0+

z̄1(t) = lim
t→0+

z̄2(t) = lim
t→0+

zti = z̄0. (C.20)

To verify condition (ii), observe that (C.4) and the first alternative of (C.5) imply that
∂z2R(z̄0, z̄0, 0) = −∂z1R(z̄0, z̄0, 0) < 0. Using (C.20), we can then compute

sup
0<θ<1

∂z2R( lim
t→0+

[(1− θ)z̄1(t) + θz̄2(t)], z̄0, 0) = ∂z2R(z̄0, z̄0, 0) < 0.

For condition (iii), we observe that the initial data g and the Lagrangian function |v|2
4 −

R(I, t, x) are periodic in x, so the minimizing paths γti (corresponding to (zti , t)) exists and is
uniformly bounded in L∞. One can derive the regularity of γ̇ti by repeating the arguments in
[8, Section2].

Having verified (U1)-(U3), one can then invoke [8, Section 3, Remark 3] to yield a contra-
diction. This proves that z̄1(t) ≡ z̄2(t) a.e. in [0, T ]. That V1(z, t) ≡ V2(z, t) follows from the
standard uniqueness results.
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