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Abstract
Reacting astrophysical flows can be challenging to model, because of the difficulty in accurately coupling 
hydrodynamics and reactions. This can be particularly acute during explosive burning or at high temperatures 
where nuclear statistical equilibrium is established. We develop a new approach, based on the ideas of spectral 
deferred corrections (SDC) coupling of explicit hydrodynamics and stiff reaction sources as an alternative to 
operator splitting, that is simpler than the more comprehensive SDC approach we demonstrated previously. We 
apply the new method to a double-detonation problem with a moderately sized astrophysical nuclear reaction 
network and explore the time step size and reaction network tolerances, to show that the simplified-SDC approach 
provides improved coupling with decreased computational expense compared to traditional Strang operator 
splitting. This is all done in the framework of the Castro hydrodynamics code, and all algorithm implementations 
are freely available.
Unified Astronomy Thesaurus concepts: Nucleosynthesis (1131); Computational methods (1965); Hydrodynamical 
simulations (767)

1. Introduction
Modeling astrophysical reacting flows can be challenging 

because of the disparity between the nuclear and hydrody­
namics timescales. Reaction networks tend to be stiff, requiring 
implicit integration techniques to stably integrate the system 
(Byrne & Hindmarsh 1987). In contrast, compressible hydro­
dynamics flows are limited by the (often much longer) sound­
crossing time over a computational cell, and can be solved 
using explicit time integration. Traditional methods of coupling 
hydrodynamics and reactions used in astrophysics use operator 
splitting—each physical process acts on the output of the 
previous process in alternating fashion. This makes it easy to 
use different time-integration methods for the different physics, 
and to build a simulation code in a modular way. However, 
competition between the different physical processes can cause 
the coupling to break down, since the reactions do not directly 
incorporate the effects of the hydrodynamics and vice versa. 
These splitting errors can lead to loss of accuracy and further 
time step limitations.

A particularly difficult phase of evolution to model is the 
nuclear statistical equilibrium that sets in for temperatures in 
excess of few x 1 (y K. Physically, the forward and reverse 
rates of reaction should balance, leading to an equilibrium. 
With operator splitting, an NSE region will have a large 
positive flow through the network in a zone in one step, 
followed by a large negative flow over the next time step, as the 
code struggles to produce an equilibrium. These large changes 
in abundances (and large alternately positive and negative 
energy generation rates) can be a challenge for the integration 
method—it may take more steps than allowed by the ODE 
integrator, require a time step below floating point accuracy, or

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author!s) and the title 
of the work, journal citation and DOI.

fail to meet the tolerances. The easiest way to improve the 
coupling is to cut the time step (see, e.g„ Couch et al. 2015; 
Rivas et al. 2022), but this can make simulations prohibitively 
expensive. Sometimes the burning is simply halted on a zone- 
by-zone basis when NSE conditions are reached (e.g., as in 
Zingale et al. 2001). The present work focuses on networks 
alone, but in a follow-on paper we will explore hybrid burning 
models consisting of networks and tables for nuclear statistical 
equilibrium.

The Castro hydrodynamics code (Almgren et al. 2010, 2020) 
is used for all of our numerical experiments. Castro is a 
compressible (magneto-, radiation-) hydrodynamics code built on 
the AMReX adaptive mesh refinement (AMR) framework 
(Zhang et al. 2019). Castro has been designed to be 
performance-portable and runs on massively parallel CPU, 
multicore, and GPU architectures (Katz et al. 2020). For 
hydrodynamics, the comer transport upwind (CTU; Colella 1990) 
method with the piecewise parabolic method (PPM; Colella & 
Woodward 1984; Miller & Colella 2002) is used. Castro 
includes self-gravity, rotation, arbitrary equations of state, and 
reaction networks, and has been used for modeling X-ray bursts 
and different models of thermonuclear, core-collapse, and pair- 
instability supemovae. Recently, in Zingale et al. (2019), we 
developed second- and fourth-order accurate in space and time 
method-of-lines approaches for coupling hydrodynamics and 
nuclear reaction networks based on spectral deferred corrections 
(SDC), and demonstrated these methods using a variety of test 
problems.

The time-integration approach presented here is considerably 
simpler than the SDC method of Zingale et al. (2019), but 
allows us to reuse the piece wise-linear or piecewise-parabolic 
CTU hydrodynamics construction (Saltzman 1994; Miller & 
Colella 2002) used in the the original Castro paper, as well as 
a largely similar ODE integration scheme, making this method 
easier to add to existing simulation codes. Furthermore, it also 
extends to adaptive mesh refinement with subcycling in a
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straightforward manner, avoiding the complications described 
in McCorquodale & Colella (2011) needed to fill ghost cells 
when using method-of-lines integration. However, it is 
restricted to second-order accuracy in time overall. We term 
this algorithm the “simplihed-SDC method.” In this paper, we 
describe the overall method and demonstrate it on a test 
problem and astrophysical simulation using Castro. All of the 
code to reproduce the results in this paper is freely available in 
the Castro GitHub repository.4

but is instead constructed with the hydrodynamical fluxes that 
are computed in the CTU method. Aside from the “p dV term 
in the internal energy equation, this system is in conservative 
form with source terms.

We define the advective terms with gravitational sources, 
A(U), as

A(U) = + G(U) (6)

2. Numerical Methodology
We solve the Euler equations for compressible, reacting 

flow. For ease of exposition, we describe the one-dimensional 
case; multidimensional extensions are a straightforward 
modification to include in the CTU hydrodynamics scheme. 
Our conserved variables are

for the general case, with the (pe) component again having the 
extra “p dV' term:

Ape —

Ac
+ Gpe. (7)

To close the system, we need an equation of state of the form:

( P \

U = pu
PE

(1)

where p is the mass density, u is velocity, E is specific total 
energy, p is the pressure, and we carry nuclear species mass 
fractions, Xk. The specific total energy relates to the specific 
internal energy, e, as E = e + u2/2, and we also separately 
evolve e as part of a dual-energy formulation (see Bryan et al. 
1995; Katz et al. 2016). The mass fractions are constrained to 
sum to 1, EA= 1. Defining the hydrodynamical fluxes.

F(%)

' pu ' 
pX&H 
pu:p

(pE T p)u
(2)

we can write the system in conservative form for all state 
variables aside from (pe) as

aw
dt

0F(U)
&(%), (3)

where for the special case of (pe), we have an additional “p dV 
term:

9(pe)
a%

(4)

We split the source term into gravitational and reactive parts, 
S(U) = G(U) + R(U), with

G(W)

( 0 ) • o

0
z# , R(U) = 0
mg pS

l 0 )

(5)

From reactions, is the creation rate for species k and S is the 
energy generation rate per unit mass. We note that the internal 
energy pdu/dx (“pdV”) work is not treated as a source term.

4 https: //github.com/amrex-astro/Castro/

P =P(P, f). (8)

Sometimes, it is preferable to work with the primitive variables:

( P \
Xk

(pf)V /

Here, the system appears as

q, + A'-1'1 (q)qx = S (q),

(9)

(10)

with the matrix /lr’' giving the coefficients of the spatial 
derivatives of the primitive variables:

A"' (*)

'u 0 p 0 0s
0 u 0 0 0
00 u 1/p 0 
0 0 Tip u 0

^0 0 ph 0 Up

(11)

where h is the specihc enthalpy and Tj is an adiabatic index, 
I] = f/logp/f/logpls, at constant entropy. The CTU+PPM 
algorithm uses the characteristic wave structure of A to collect 
the information that makes it to an interface over a time step in 
order to compute the fluxes through the interface. Note that the 
primitive state has two thermodynamic quantities, p and (pe), to 
more efficiently handle the general equation of state in the 
Riemann solver, as described in Almgren et al. (2010), but 
alternate formulations are possible (Colella & Glaz 1985). The 
source term vector, S(q), can again be decomposed into 
gravitational sources (now in terms of the primitive variables) 
and reaction terms.

S(q) = G(q) + R(q),

with

G(?)

(0) f 0 )

0
g > R(q) = 0
0 TipaS

loj
< /

(12)

(13)
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Figure 1. Flowchart of the operator split (Strang) time integration. We first react for At/2, then advect for At, and finally react for At/2. Each process uses the state 
left behind from the previous process.

where

„ s ,14,
pc,,ap/ap|r

and cp is the specific heat at constant pressure, cp = dh/dT\p. A 
derivation of this source for the pressure equation can be found 
in Almgren et al. (2008). We note that this source is 
algebraically identical to that shown in Equation (25) of 
Almgren et al. (2010).

The CTU+PPM method for hydrodynamics is second-order 
accurate in space and time. We want to couple the reactive 
sources to the hydrodynamics to be second-order in time as 
well. As discussed above, nuclear reaction sources are stiff, and 
need to be integrated using implicit methods for stability. 
Operator splitting (e.g., Strang) is traditionally employed here, 
and is used as a benchmark for comparison in this paper. We 
discuss this traditional approach next, before moving on to our 
new time-coupling method.

2.1. Strang Splitting

In the Strang splitting (Strang 1968) flavor of operator 
splitting, we first integrate the system with reactions terms only 
(no advection) over At/2, then integrate the advection terms 
only (no reactions) over At, and finally integrate the reaction 
terms only over At/2. The staggering of the reactive update 
means the hydro implicitly sees a time-centered reactive 
source, making the update second-order accurate in time. This 
flow is illustrated in Figure 1.

In the absence of advective terms, our reaction system
It = R (U), or

^ = 0 (15)
dt

d(p%t) (16)
n

dW Q (17)
dt

dtpE) = & 
dt

(18)

Notice that, in the Strang formulation, density is held constant 
when reacting. We can write the energy equation as

clt dt dt
where K is the kinetic energy, K p\it\2/2. Since the density 
and velocity are unchanged by reactions (when Strang 
splitting), our energy equation becomes

d(pe)
dt

df A
= -+7 = pS- (20)

The reaction rates are typically expressed as Cok(p, T, X) when 
we evolve this system, which requires us to get the temperature 
from the equation of state each time we need to evaluate the 
reactive terms.

We also typically integrate mass fractions, instead of partial 
densities:

(21)

We integrate Equations (20) and (21) using an implicit ODE 
solver described below.

We explored this and other approaches (including not 
evolving an energy/temperature equation during the reaction 
step) in Zingale et al. (2021). In that work, we showed that the 
above formulation achieved second-order convergence, and in 
particular, that integrating an energy/temperature equation is 
needed to get second-order accuracy (see also Muller 1986 for 
a discussion on stability). We note, however, that some 
astrophysical simulation codes only evolve the species 
equations. For very strong reactions, when using Strang 
splitting the state can drift significantly off of the smooth 
solution to the coupled reactive hydrodynamics equations, as 
shown graphically in Zingale et al. (2019) (using an earlier 
version of the present algorithm).

2.2. Time Step Limiters and Retry Mechanism

Since this method is based off of the CTU hydrodynamics 
scheme, it benefits from the larger time step that method can 
take (when done with full comer coupling, the advective CEL 
condition is unity) as compared to a method-of-lines approach; 
see Colella (1990). In addition to the standard CEL time step 
limiter for explicit hydrodynamics, time step limiters based on 
the energy generation or abundance changes over a time step.
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un f = A(Un+1/m) + R(M)

un <§ = A(ZT+1/2’(1)) + R(W) Hn+1,(2)

tn tn+l

Figure 2. Flowchart of the simplihed-SDC approach. An iteratively lagged advection term is used to update the system to the new time, with each iteration improving 
the coupling.

such as those introduced in Fryxell et al. (1989), are often used. 
An energy limiter takes the form of either

or

At < fe min

Af < fe min ■
\fSi(t)dt |

(22)

(23)

where i is the zone index and fe is a parameter used to control 
the allowed change (e.g., fe = 0.5 will limit the step such that 
reactions can only increase the internal energy by 50%). The 
two formulations differ in that Equation (22) uses the 
instantaneous evaluation of the energy generation rate at the 
start of the time step, while Equation (23) uses the integral of 
the energy generation rate over the entire step (or last Strang 
half). Usually, these limiters are used in a reactive manner—the 
next step will see a smaller time step based on what happened 
during the current step, but the current step is still accepted 
even if it violated these conditions. Our goal is to avoid the 
need for these limiters, by improving the coupling of 
hydrodynamics and reactions.

Castro has the ability to reject a time step, if it detects a 
failure, and retry with smaller time steps (subcycling to make 
up the original required time step). Among the conditions that 
can trigger this are density falling below zero during advection, 
the ODE integration failing to converge in the implicit solve 
(due to too many steps or the internal time step falling below a 
minimum), or violation of one of the time step limiters during 
the step. This means that the time step constraints are proactive 
instead of reactive. The retry mechanism in Castro works with 
both the Strang and simplihed-SDC integration scheme. 
Retrying the step is much more stringent than simply adjusting 
the next step, so we put a cap on the number of retries allowed, 
aborting if we exceed the cap.

2.3. Spectral Deferred Corrections

The basic idea of SDC (Dutt et al. 2000) is to divide each 
time step into substeps defined by high-order quadrature points 
(e.g., Gauss-Lobatto) and iteratively correct the solution at 
each temporal node in order to reduce the integration error. 
Each correction equation can be formulated using low-order

integration techniques, such as forward- or backward-Euler, 
with additional terms on each right-hand side arising from 
integrating the residual over the substep from the previous 
iteration using high-order temporal integration. Each iteration 
over all substeps increases the overall order of accuracy of the 
method by one, up to the underlying order of accuracy of the 
quadrature over the entire time step. Over the years, a number 
of SDC approaches targeting tighter multiphysics coupling 
have been developed, such as Bourlioux et al. (2003) and 
Nonaka et al. (2012). In these approaches, different physical 
processes can be treated with different approaches (such as 
forward-Euler for advection and backward-Euler for reactions), 
and furthermore, different physical processes can be sub­
stepped between temporal nodes.

The approach that we implemented in Zingale et al. (2019) is 
based off the multi-implicit method-of-lines approach in 
Bourlioux et al. (2003). In contrast to those works, the focus 
of this paper is not higher-order integration, but tighter 
coupling between advection and reactions in a second-order 
framework. Thus, our simplihed-SDC approach is based on the 
method described in Nonaka et al. (2012) and a similar (but 
unpublished) implementation in the MAESTROeX simulation 
code (Fan et al. 2019). The key point in this approach is that we 
are reusing the same numerical kernels for advection and 
reactions that are used in a Strang splitting approach, but we are 
able to include, rather than exclude, the effects of the other 
physical processes in each correction equation solve.

We begin with the general form of a multi-implicit SDC 
correction equation with two physical processes. Using (fe) to 
denote the iterate, we have

Uk\t) = U” + f [A(U{k)) + R(U{k))
J ta

- A(U{k-1}) - R(U{k-l))]dt
+ f {A{U(k-l)) + R{U(k-l))]dt. (24)

Jtn

In the spirit of Nonaka et al. (2012), we treat each advection 
term as piecewise constant over the time step, and equal to a 
time-centered advection term evaluated with the Godunov 
integrator. We note that this is a departure from the approach in 
Bourlioux et al. (2003), which uses a method-of-lines approach 
where the advection terms are computed at each node, rather 
than the midpoint between nodes, using spatial extrapolation

4
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only. Using A(U" ]^2) to denote the advection term, we have

U(k\t) = U” + f [A(Un+l^’(k)) + /W**)

- A(W,,+1/2'<^1)) -
+ f [A{U”+l^k-l)) + R{]U{k-l))}dt. (25)

J tn

Also following Nonaka et al. (2012), we differentiate this 
equation in time:

= [A(U,,+1/2M) + R(U{k)) 
dt

- A(U,,+1/22k-1}) - R(U{k-1})]
+ [A(Ut,+1/22k-1}) + #(%<*-!>)]. (26)

We combine terms, and arrive at a system of ODEs at each cell:

------- = [A{U"+1/2M) + R(U{k))]. (27)
dt

We integrate this system from tn to tn+l using a modihed 
version of the VODE (Brown et al. 1989) integrator, as 
described in Section 2.5. Thus, we are effectively using two 
temporal nodes (tn and tn+l) and the overall integration is 
second-order accurate. In order to properly couple reactions 
into the computation of the advection terms, we use an 
iteratively lagged reaction source term, denoted Iq (this is 
basically an approximation of R(g)). The overall flow of the 
simplihed-SDC algorithm is shown in Figure 2.

2.4. Time Advancement Scheme

The basic time update algorithm proceeds as follows. We 
begin with the state at t”. denoted U". and proceed as follows:

1. Iterate—Iterate from k = 1.... A ,n:LX. For second-order
accuracy, k m,LX = 2 is sufficient; further SDC iterations 
will continue to decrease the splitting error, but they will 
not increase the formal order of accuracy of the method. 
In addition to denoting the time level with a superscript 
(e.g„ n or n +1), we use a second superscript in 
parentheses to keep track of the iteration. A single 
iteration, k. starts with U" and results in the new time- 
level state for that iteration, U" 1 Ak).
(a) Step 1: Create the advective update term,

[A(U)f+l/Uk)
i. Convert U —» q. This is an algebraic transforma­

tion that utilizes the equation of state.
ii. Predict q to the interfaces at t" 1 1/2 using the 

CTU PPM method—this involves taking the cell- 
centered primitive state and tracking all of the 
information that can reach the interface over a 
time step, following the procedure from Colella 
(1990) and Miller & Colella (2002). The source 
terms, Sq, used in the prediction are

S(*) = G(*)+Z;+i/-<*-i>. (28)

2j»+i/2,(A.--i) a numerical approximation for the 
effect of reactions from the previous iterate, 
which is computed at the end of each iterate as 
described below. The use of this term contrasts 
with Strang splitting, where no reactive source

The Astrophysical Journal, 936:6 (17pp), 2022 September 1

Table 1
Convergence (Li Norm) for the Reacting Convergence Problem Using Strang

Splitting

Field C64-»128 Rate Cl28-»256 Rate &256-»512

P 2.794 x 10^ 2.044 6.777 x 10" 2.554 1.154 x 1017
6.796 x 10-* 2.448 1.245 x 1026 2.889 1.681 x 102*

pv 6.796 x 10-* 2.448 1.245 x 1026 2.889 1.681 x 102*
pE 2.451 x 1035 2.351 4.803 x 10* 2.742 7.179 x 10**
pe 2.261 x 10** 2.320 4.526 x 10* 2.821 6.403 x 10**
T 2.237 x 1021 1.691 6.927 x 102" 2.482 1.240 x 1020
pXf*He) 2.878 x 10^ 2.020 7.096 x 10" 2.529 1.229 x 1017

1.698 x 10" 1.950 4.393 x 10^ 2.232 9.353 x 10^
1.687 x 10* 1.660 5.338 x 10" 1.957 1.375 x 10"
2.794 x 10* 2.044 6.777 x 107 2.554 1.154 x 107

Table 2
Convergence (Li Norm) for the Reacting Convergence Problem Using SDC 

Integration (Two Iterations)

Field C64-»128 Rate Cl28-»256 Rate &256-»512

P 2.784 x 1018 2.048 6.734 x 10" 2.558 1.143 x 1017
6.779 x 1026 2.447 1.243 x 1026 2.895 1.671 x 1025

pv 6.779 x 1026 2.447 1.243 x 1026 2.895 1.671 x 1025
pE 2.450 x 1035 2.353 4.795 x 10* 2.737 7.193 x 10**
pe 2.256 x 1035 2.320 4.518 x 10* 2.817 6.414 x 10**
T 2.232 x 1021 1.695 6.893 x 102" 2.484 1.233 x 1020
pXfTle) 2.866 x 1018 2.024 7.049 x 1017 2.534 1.217 x 1017

1.695 x 1017 1.959 4.357 x 10^* 2.236 9.250 x 10^*
p%(^Q) 1.681 x 1014 1.662 5.313 x 10" 1.963 1.363 x 10"
p%(*"Fe) 2.784 x 108 2.048 6.734 x 107 2.558 1.143 x 107

terms are included in the hydrodynamics update. 
If k 1, we instead use the value from the last 
iteration of the previous time step,

In the unsplit CTU method (Colella 1990), 
the interface states used for the final Riemann 
problem through the zone interface consist of a 
normal predictor and a transverse flux correction. 
We can add the source terms either to the normal 
predictor (for example, doing characteristic tra­
cing as described in Colella & Woodward 1984) 
or after all of the transverse flux corrections are 
made. Both are second-order accurate. For the 
gravitational sources, we do those in the normal 
predictor, consistent with the formulation in 
Colella & Woodward (1984). However, for the 
reactive sources, we found that it is most reliable 
to add them at the end of the interface state 
construction, after the transverse flux corrections. 
This is because we want to ensure that the sum 
over species of Iq is zero, and characteristic 
tracing or the various flux corrections in general 
do not preserve this. We enforce that the species 
interface states remain in [0, 1] after adding the 
reactive source.

iii. Solve the Riemann problem at each interface to 
get a unique conserved state on each inter- 
face,

iv. Construct the advective update terms, 
[A(Z^)]',+1/2’<<:>, first without the gravitational

5
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------ density
temperature

r [cm]

10 1

10-3
co
u
t 10-5 

to
E

IQ"?

10"9

are computed by first updating to the new state 
with advection and the old-time source term 
applied for the full At as

U** = U” + At[A(U)Y,+1/2'ik) + AtG(U''). (31)
We then evaluate the source terms with U” and 
correct the advective term so that we have a time- 
centered source. The final advective update term 
is then5

[A(U)]-+1/2'{k) = [A(W!+1/2'{k}

+ ^L[G(U”) + G(W*)]. (32)

Formally, perNonaka et al. (2012), an alternative strategy

[A(m

sources.

\n+l/2,(k) _ z —1/2

Ax
(29)

for the general case, and

, ,„+l/2.m _ (f%+™),+l/3 -

^ ^ Ax
/ » + l/2,(fc) , »+l/2,(fc)\/ „ + l/2,(fc) „»+l/2,(fc)\

"z + 1/2 -T- F;-1/2 Mz'+l/2 “ ui-l/2

Ax

(30)

------ helium-4
carbon-12 

------ nitrogen-14

106 107 108 109
r [cm]

Figure 3. Initial model for the double-detonation test problem.

for (pe).
Now the gravitational source terms, G(U),

5 For a source like gravity, this update can be done first for p and then the new 
momentum source can be defined using p, and likewise for energy.
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time - 0.10000 s 1 (cm) 1 (cm) 1 (cm)

Figure 4. Temperature, mean molecular weight, and energy generation rate for the Strang CFL = 0.2 run with normal tolerances (strang_subch2_cf 10.2) 
at 0.1 s.

would be to skip Equation (31) and instead perform only 
Equation (32) but with G(Un+l’(k~l)) replacing 
In the future, we will explore the efficacy of both 
approaches.

(b) Step 2: Integrate Using VODE
We update the state by integrating Equation (27) 

over the full time step. Since we are approximating 
A(U) as piecewise constant in time, we can use an 
ODE integrator to integrate this, just as we do with the 
reaction system in Strang splitting. The difference 
here is that we are integrating the conserved variables 
and the state sees the effect of advection and gravity as 
we integrate the reactions. So, rather than use 
dU/dt = R(U) as in the Strang case, the ODE form 
we use is

— = [A(U)],i+1/2M + R{U). (33)
dt

The details of the VODE (Brown et al. 1989) 
integrator we use are described in Section 2.5.

Looking at the form of Equation (5), we see that 
only the species and energies have nonzero terms in 
R. The total and internal energies both provide the 
same information, and integrating both overconstrains 
the system, so we just integrate the internal energy. 
We define the subset of variables that are directly 
integrated as

U' = (pXk\ (34)

and we integrate

z/7 J!

— = [A(U,)f+1/2M + R(U'). (35)
dt

This integration begins with U' n and results in
IJI.ri + lAk)'

We will need the density at times during the 
integration, which we construct as

p(f) = p" + (f - f"). (36)

As we are integrating this system, we need to get the 
temperature, T, for the rate evaluations. We obtain 
this directly from internal energy, composition, and 
density using the equation of state.

Our integrator also needs the Jacobian of the 
system, in terms of U'. This is different than the form 
of the Jacobian usually used in reaction networks (we 
depend on e instead of T). We describe the form of 
the Jacobian in Appendix A.

At the end of the integration, we can do the 
conservative update of momentum and energy. 
Momentum is straightforward, since there are no 
reactive sources:

(pHy+Dt) = (p,,)" + (37)

For total energy, we first need to isolate the reactive 
source for energy:

(38)
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Figure 5. Energy generation rate for the Strang CEL = 0.2 run with normal tolerances (strang_subch2_cf 10.2) shown at four consecutive time steps around 
t = 0.1 s, zoomed-in at the inward-propagating detonation.

Then the update is

= (pE)" + + AfCpiSr+i/-'*'. (39)

(c) Step 3: Compute the Reactive Source Terms,
■£ti + l/2,(k)

We now seek the Xs that capture the effect of 
just the reaction sources on the state variables for the 
next iteration. For the conserved quantities, these 
would simply be

1Jn + l,(k) _ 1 In
xi, + \/2Ak) = ------- -------------- [A{U)]" + 1/2M. (40)

However, for our primitive variables, which are used 
in the interface state prediction, we need to construct 
the required source terms more carefully. We want

jn + iP-Ak) = g----  --- <L_ _ [A(g)]” + 1/2-(*), (41)

but we need the advective update for q, which we 
have not constructed. We note that X'q ]/2Ak) is an 
approximation to the integral of Equation (13) over 
the time step. Additionally, we cannot simply use the 
equation of state on x^+1/2,(<:), because this is a time 
derivative and does not represent a well-defined state

in itself. Instead, we derive xnq+l^2,(k) via a multistep 
process. We first find the conservative state as if it 
were updated only with advection:

U* = U” + At[A(U)]'1+1/2M, (42)
and then construct the corresponding primitive vari­
able state via an algebraic transform, U* — q*. This 
allows us to define the advective update for q as

[A(q)T+1/22k) = q* ~t9 - (43)

Defining the primitive state corresponding to the fully 
updated conserved state via an algebraic transform,
j^ii+i,ik) qti+i,{k)' we can construct yy
combining Equations (41) and (43):

jn+ip-Ak) = qn+l’ik) - q* (44)

This completes the update of a single iteration.

2.5. Stiff ODE Integrator

We use a modified version of the VODE (Brown et al. 1989) 
integrator, designed for stiff ODEs. Our version has been
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Figure 6. Temperature, mean molecular weight, and energy generation rate for the simplihed-SDC CFL = 0.2 run with normal tolerances (sdc_subch2_cf 10.2) 
at 0.1 s.

ported to modern C++ and designed to run on GPUs. We have 
also added checks to the time step rejection logic that help 
prevent VODE from wandering too far off the solution.6 We 
have found empirically that these checks improve the 
performance of VODE.

VODE allows us to specify both relative and absolute 
tolerances for the species and energy during the integration. 
They are combined into a weight that VODE uses to assess 
convergence of the step,

Wj = Cell.% I + Obs, (45)

for integration variable y,. We will denote the species 
tolerances as erel spec and eabs spec, and the energy tolerances as
frel.ener and +|)s.eneT-

For Strang splitting, we require that an individual mass 
fraction not change too much over a step:

+ t+abs,spec and || > ?+abs,spec- (46)

Here, in is the current VODE solution and in + 1 is the 
potential new-time solution. The parameter / is the factor a 
mass fraction is allowed to change per VODE step. We use 
/= 4 for the results here. The parameter 77 allows us to only use 
this condition for species with mass fractions above a 
threshold. We use 77= 1 by default, but 77 =/sometimes helps 
prevent VODE from worrying about species that dip below the

6 This modified version of VODE is available in our Microphysics repo:
https://github.com/AMReX-Astro/Microphysics.

threshold during integration, since VODE uses a norm over all 
of the integrated variables to compute the total error. If these 
conditions are violated, then VODE will reject the time step 
and retry with a smaller step. We also require that the mass 
fractions are contained in [0, 1] to a tolerance of 10 2. For 
SDC, we enforce these same constraints, but for Equation (46), 
we only use the change from m to 771 + 1, due to reactions, by 
subtracting off the advective contribution over that substep. 
Finally, we enforce that

p"'+i > 0 (47)

W'+i > 0. (48)

Some of the rates in Cyburt et al. (2010) increase by 
hundreds of orders of magnitude at low temperature, 
presumably because the interpolant fit was done at higher 
temperatures. Since VODE can take exploratory right-hand 
side evaluations outside of the nominal time range, it can 
encounter these poorly behaved rates, and this can cause the 
integration to fail (by generating infs). To prevent this 
behavior, we set a lower temperature limit for the reaction rates, 
below which we zero them out. For the simulations in 
Section 3.2, we choose a cutoff of 5 x 107K.

For both Strang splitting and simplihed-SDC, we use a 
numerical Jacobian that VODE computes internally (following 
the algorithm in Radhakrishnan & Hindmarsh 1993). For 
completeness, we derive the analytic form of the Jacobian in 
Appendix A for the simplihed-SDC method. VODE employs 
Jacobian-caching, so the Jacobian does not need to be re­
evaluated each time it is used.

9
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Figure 7. Comparison of Strang runs showing the nuclear energy generation rate behind the inward-propagating shock.

3. Tests
3.1. Reacting Convergence Test Problem

Zingale et al. (2019) introduced a test problem for measuring 
convergence of a reacting hydrodynamic algorithm. This is based 
on the acoustic pulse problem from McCorquodale & Colella 
(2011), and was also used in Zingale et al. (2021). A periodic 
domain with a uniform entropy is initialized with a pressure profile 
with a small perturbation. This drives a low-amplitude acoustic 
wave radially outward from the center. A simple reaction network 
with the triple-alpha and 12C(n, 7)lsO rates releases energy. By 
running at different spatial resolutions with a fixed CFL number, 
so that the time step scales with resolution, we can compute the 
convergence rate in space and time. In order to demonstrate 
second-order convergence, the problem must be smooth (so the 
slope limiters do not kick in severely), which means that the 
energy release cannot be so vigorous as to drive shocks.

Tables 1 and 2 show the Strang splitting and simplified-SDC 
convergence, respectively. We ran each integration method on 
a domain with 642, 1282, 2562, and 5122 zones. An error is 
defined between successive resolutions by coarsening the 
higher-resolution run and taking the LI norm of the zone-by- 
zone difference of the two simulations—for example, , 2x 
is the error between the 642 and 1282 simulations. The

convergence rate from e64_128 to e128_256 is computed as 
log2 e"64->i28/fi28->256 and is given in the column between those 
errors, and likewise for the higher-resolution case. A rate of 2.0 
indicates second-order convergence. We see that both methods 
exhibit convergence at roughly second-order and agree well. 
This demonstrates that both methods are working as designed.

3.2. Sub-Chandra Double Detonation

We next model a double-detonation Type la supernova. In 
this model, a detonation begins in the accreted helium layer on 
a sub-Chandrasekhar mass white dwarf, and that detonation can 
either drive a compression wave into the core, igniting a second 
detonation in the carbon/oxygen core, or burn through the 
interface at the base of the accreted layer, producing an inward- 
propagating carbon detonation (see, e.g„ Fink et al. 2007). Our 
goal here is not to explore the feasibility of the model or 
understand whether a detonation propagating through the He-C 
interface is physical, but rather to look at the coupling of the 
hydrodynamics and reactions. We want to drive vigorous 
burning and directly compare Strang splitting and simplified- 
SDC time integration on this problem. For that reason, we 
explore only a single model and start off with a rather large 
temperature perturbation in the He layer.

10
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Figure 8. Comparison of Strang runs, showing the mean molecular weight behind the inward-propagating shock.

We use a network with 28 nuclei and 107 rates that captures 
He burning with links for (n , p)(p, 7) reactions and the rates 
involving 14N to bypass 12C(n , 7)lsO as described in Shen & 
Bildsten (2009). The rates are taken from the ReacLib library 
(Cyburt et al. 2010) and the network is written by pynu castro 
(Willcox & Zingale 2018) directly in the C++ format that our 
code requires. The details of the network are given in 
Appendix B. This moderate-sized network has many reaction 
pathways (forward and reverse), making it a good test for the 
coupling between hydro and reactions.

The initial model is generated following the procedure 
described in Zingale et al. (2013). We use a 1.1M0 carbon 
white dwarf with a 0.05 Af0 He layer. We choose a pure 12C 
white dwarf to make the reactions more vigorous, consistent 
with our focus on the coupling of hydrodynamics and 
reactions. We seed the He layer with 1% (by mass) of 14N. 
The white dwarf is isothermal and the temperature ramps up at 
the base of the He layer and is then isentropic until the surface. 
Figure 3 shows the structure of the initial model. We use 2D 
axisymmetric coordinates with a domain size of 1.024 x 
109 cm by 2.048 x 109 cm, a base grid of 256 x 512 zones, and 
a single level of refinement (jumping by 2x), giving a hne-grid 
resolution of 20 km. Gravity is modeled as a monopole. Our 
choice of initial perturbation has the detonation propagate

inward into the carbon white dwarf. We run the simulation for 
0.1 s—this is enough time for the carbon detonation to be well- 
developed.

An initial perturbation is placed on the symmetry axis, of the 
form

T = r0[l + X(4He)/(l + tanh(2 - n))], (49)

where

n = [x2 + (v - r0)2]1/2/A (50)

and

U) = +ert T ^ base- (51)

Here, rbase is the radius at which the helium layer begins and 
/-pen is the distance above the base to put the perturbation. We 
choose /'pe,i 100 km. The temperature is perturbed above the 
initial model value, denoted as 70 here. The amplitude of the 
perturbation is /= 12, and the scale of the perturbation is 
A = 200 km.

We do a suite of runs with both Strang splitting and the 
simplifred-SDC integration, using CFL numbers of 0.1, 0.2, 
and 0.4, and reaction network tolerances of eabsspec = 
'rid.spec 10 and riibs.cnci ricLenei 10 . We also run the

11
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Figure 9. Comparison of simplified-SDC runs, showing the nuclear energy generation rate behind the inward-propagating shock.

CFL = 0.2 case with a tighter tolerance, using eabs-spec = 1(L8. 
For the step rejection part of VODE, we use /=4 and 77 = 4. 
The runs are labeled with the prefix sdc_ or strang_ to 
denote the integrator, and also include the CFL number in the 
name. Finally, the runs with the tighter tolerances have the 
suffix _toll. e-8. We note that both the Strang and the SDC 
runs encounter VODE integration failures occasionally and 
utilize the Castro step retry functionality.

Figure 4 shows the temperature, mean molecular weight, and 
nuclear energy generation rate for the Strang splitting 
CFL = 0.2 simulation (strang_subch2_cfl0.2). At this 
point in the evolution, the helium detonation has wrapped more 
than halfway across the surface and the ingoing carbon 
detonation is approaching the center of the star. We see that 
the mean molecular weight appears mottled behind the inward- 
propagating detonation in the white dwarf. Comparing this to 
the energy generation rate, we see that region is characterized 
by large energy releases of alternating signs checkerboarding 
throughout the region. This is characteristic of the nucleosynth­
esis struggling to come into equilibrium at high temperatures, 
where the reverse rates can be important. To highlight this. 
Figure 5 shows the nuclear energy generation rate in a highly 
zoomed-in region around the detonation over four consecutive 
coarse time steps. We see that, on the detonation front itself, the

sign of the energy generation rate changes from one step to the 
next in many zones.

We next look at the simplified-SDC version of this same 
case, sdc_subch2_cf 10.2. Figure 6 shows the temper­
ature, mean molecular weight, and energy generation rate. 
Compared to Figure 4, we see that the composition and energy 
generation rates are smooth, without any of the checkerboard­
ing that plagued the Strang simulation. This suggests that the 
simplified-SDC algorithm more accurately attains the correct 
equilibrium in these conditions. More strikingly, we see that the 
inward-propagating carbon detonation has not progressed as far 
into the white dwarf at this time. The two integration methods 
are giving very different results here.

We next look at how the structure seen in Figures 4 and 6 
varies with CFL number and network tolerance. We focus just 
on the region behind the inward-propagating shock. Figures 7 
and 8 show the nuclear energy generation rate and mean 
molecular weight for all of the Strang runs. We see that 
changing the CFL number does little to affect the state behind 
the shock—it continues to take on the mottled appearance 
characteristic of not reaching a proper equilibrium. For the case 
with tight tolerances, we see that the state is greatly improved 
with a smoother gradient. Furthermore, the inward-propagating 
carbon detonation reaches the same position as in the 
SDC runs.

12
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showing the mean molecular weight behind the inward-propagating shock.

Table 3
Species Masses

Simulation M4He M2$Sl M56Ni

Strang runs

strang_subch2_cf!0.1 1.059 x 1032 3.804 x 10" 1.092 x 1032
strang_subch2_cf!0.2 9.114 x 1031 4.174 x 1031 1.078 x 1032
strang_subch2_cf!0.2_toll.e-8 7.222 x 1031 8.623 x 10" 4.041 x 10"
strang_subch2_cf!0.4 7.819 x 10" 4.208 x 10" 1.045 x 1032

SDC runs

sdc_subch2_cf10.1 7.319 x 10" 9.147 x 10" 3.765 x 10"
sdc_subch2_cf10.2 7.208 x 10" 9.151 x 1031 3.783 x 10"
sdc_subch2_cf10.2_toll.e-8 7.376 x 10" 9.220 x 10" 3.513 x 10"
sdc_subch2_cf10.4 7.203 x 10" 8.843 x 10" 3.754 x 10"

The SDC comparisons are shown in Figures 9 and 10. We To quantify this effect, we next look at the total mass of
see that the state behind the shock looks smoother and more 
consistent regardless of the CFL number or integrator 
tolerances. This demonstrates that the simplihed-SDC integra­
tion algorithm is more robust than Strang integration for this 
problem.

some key species. This is often a desired diagnostic for 
supernova calculations, since 56Ni powers the lightcurve. 
Table 3 shows the total mass of 4He, 28Si, and 56Ni for each 
of the simulations. For the Strang runs, there are large 
variations between the different simulations, while the SDC
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Figure 11. Number of right-hand side evaluations for strang_subch2_cf 10.2, showing the LI norm/average (solid), L2 norm (dashed), and L-inf/maximum 
(dotted) for both halves of the Strang integration.
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Figure 12. Number of right-hand side evaluations for sdc_subch2_cf 10.2, showing the LI norm/average (solid), L2 norm (dashed), and L-inf/maximum 
(dotted) for two iterations of the simplihed-SDC integration.

simulations all agree to within a few percent. Furthermore, the 
Strang run with the tighter tolerances is in good agreement with 
the masses found by the SDC runs. This supports the ideas 
described above that all of the SDC runs agree while only the 
Strang run with the tighter tolerances is reliable.

Finally, we can ask how many right-hand side evaluations 
each integration method required, as a measure of computa­
tional cost; when an integration uses many RHS evaluations, it 
often implies difficulty around equilibrium. We stored this in 
the ploffiles every 0.001 s, and on the finest level, for zones that

14
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were burning, we compute the LI, L2, and L-inf norms of the 
number of right-hand side calls (here, the LI norm is the same 
as the average and the L-inf is the same as the maximum). This 
includes the calls that were made to evaluate the numerical 
Jacobian. Figure 11 shows the results for the strang_- 
subch2_cf 10.2 run. We see a steady increase in the cost of 
the reactions as time progresses. Note that the L-inf norm curve 
is much higher than the other curves, but this is dominated by 
only a few zones right at the detonation. The other norms give a 
better sense of the total work in reactions. Figure 12 shows the 
corresponding plot for the simplihed-SDC case (sdc_ 
subch2_cf 10.2). While the L-inf norm is of the same 
magnitude, it fluctuates much more. However, both the LI and 
L2 norms are smaller, indicating that the integration does not 
need to work as hard with the simplihed-SDC integration as 
compared to Strang.

4. Summary

We presented a simplified SDC scheme for coupling 
hydrodynamics and reactions. We demonstrated that, for a 
moderate-sized reaction network, the simplihed-SDC method 
compares well against Strang for the double-detonation 
problem—it hnds a better solution at looser reaction tolerances, 
returns consistent results across a range of CFL numbers, and is 
more computationally efficient. The benehts of this new 
integration scheme are likely problem- and network-dependent, 
and we will explore it on other science problems in future 
papers.

We have not focused on performance- or load-balancing the 
reactions in the tests that we ran, but for the simulations shown 
here, the simplihed-SDC method runs as fast (or faster) than the 
Strang splitting method for the same tolerances and CFL 
number. We would expect similar behavior for any simulations 
that are dominated by the cost of reactions. If the results above 
are robust across different problems and networks, then this 
suggests that we can run the SDC simulation with larger CFL 
number and/or less strict reaction tolerances, which would 
translate into a large performance boost.

This new time-integration method is freely available in 
Castro, and we will continue to explore it on other problems. 
Although these simulations were run on CPUs, the entire 
simplihed-SDC algorithm also runs on GPUs. We are 
interested in applying this method to study massive star 
evolution, where the vigorous shell burning leading up to core 
collapse would be an ideal application for the simplihed-SDC 
method. In a follow-on paper, we will show how to couple this 
new integration method to a table for evaluating an NSE 
distribution in the iron core of a massive star.

Future work is to extend this methodology to MHD. This is 
very straightforward because the simplihed-SDC method 
operates solely on the thermodynamic state. We will also 
explore how to couple radiation hydrodynamics, where we 
need to do an implicit update for the radiation energy.

Castro is freely available at https://github.com/AMReX- 
Astro/Castro. All of the code and problem setups used here are 
available in the git repo. The double-detonation problem is in 
Castro/Exec/science/subchandra. The reaction net­
work used here is available at https://github.com/AMReX- 
Astro/Microphysics as the subch2 network. The work at 
Stony Brook was supported by DOE/Office of Nuclear Physics 
grant DE-FG02-87ER40317. We thank Alice Harpole for her

contributions to the AMReX Astrophysics suite. This material 
is based upon work supported by the U.S. Department of 
Energy, Office of Science, Office of Advanced Scientific 
Computing Research and Office of Nuclear Physics, Scientific 
Discovery through the Advanced Computing (SciDAC) 
program under Award Number DE-SCOO17955. This research 
was supported by the Exascale Computing Project (17-SC-20- 
SC), a collaborative effort of the U.S. Department of Energy 
Office of Science and the National Nuclear Security Admin­
istration. M.R. was supported via an NSE REU grant to Stony 
Brook, NSE 1852143. This research used resources of the 
National Energy Research Scientific Computing Center 
(NERSC), a U.S. Department of Energy Office of Science 
User Facility located at Lawrence Berkeley National Labora­
tory, operated under Contract No. DE-AC02-05CH11231 using 
NERSC award NP-ERCAP0020354.

Software: AMReX (Zhang et al. 2019), Castro (Almgren 
et al. 2010), GNU Compiler Collection (https://gcc.gnu.org/), 
Linux (https://www.kernel.org), matplotlib (Hunter 2007, 
http://matplotlib.org/), NetworkX (Hagberg et al. 2008), 
NumPy (Oliphant 2007; van der Walt et al. 2011), python 
(https://www.python.org/), pynucastro (Willcox & Zingale 
2018), pytest (Krekel et al. 2004), SymPy (Meurer et al. 2017), 
yt (Turk et al. 2011).

Appendix A 
Jacobian

To solve the reaction system implicitly, the ODE solver 
needs the Jacobian, 8R/dU', where U' = (pXk, pej is the 
subset of the conserved variables we are integrating. We follow 
the method of Zingale et al. (2019) and factor this into two 
pieces.

dR dw 
dw dU'

(Al)

where the state w is chosen to match the set of variables used to 
evaluate the reaction rates. Writing this out for two species, Xa 
and Xp, we have

U' =
pe

(A2)

For interfacing with the reaction network, we use

W = Xl3 .
\T)

(A3)

Note: even though we are using There instead of e, we still do 
the overall ODE integration in terms of (pe), consistent with the 
Strang method described in Zingale et al. (2021).

The Jacobian transformation dll'/dw is

dU!
dw

' p 0 o'
0 p 0 (A4)

where we use the following notation for compactness:

=
%

(A5)
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and the specific heat at constant volume is

Zingale et al.

Cv —
dT

(A6)

We get the inverse (computed via SymPy) as

dw
~dU'

\_

P

0

exa
pCy

The reaction vector is

mu') =

0

p
eX,3
PCy

ma
pS

1
PCy

(A7)

(A8)

We take all the quantities to be functions of p, e, and Xk, but 
since p does not change from the reactions (the reactive source 
of the continuity equation is zero), it is held constant in these 
derivatives. The Jacobian is computed as dR/dw:

OR
dw

dujyy dujyy
ax„ ar

au# a^
p—
ar

as
p-x—

a^
p—ax» ax.p dr

(A9)

The final Jacobian is found by multiplying these two:

dR
~dU'

a^c a^c a^c a^a 1 aw,/
ax„ Cy dT ax,j Cy dT Cy dT
ad# aw/j aw/j ad# 1 ad#
ax„ Cy dT ax,j Cy dT Cy dT

a^ a^ a^ a^ 1 a^
ax« Cy dT ax,j Cy dT Cy ar,

(A10)

We note that the form of these entries is the same as one would 
arrive at if one started with the rates expressed as ujk{p, T(p, Xj, 
e), Xj) and recognized that constant e implies that

dT
%

(All)

Finally, we note that one implication of this formulation is 
that the Jacobian is no longer sparse. Future work will explore 
alternate formulations and approximate Jacobians.

Appendix B 
Reaction Network

We build a reaction network that approximates an o-chain, 
including all 4He, and all of the n nuclei from 12C to 56Ni. We 
want to capture both the (cv, 7) and (cv, p)(p, 7) links, so we include 
the intermediate nuclei from the (cv. p) rate instead of approximat­
ing these links assuming proton equilibriation. Following Shen & 
Bildsten (2009), we include the sequence 14N(cr, 7)18F(q:, p)21Ne, 
which produce the protons that can allow for i2C(p, 7)13N(q:. 
p)lsO to compete with 12C(a, 7)leO. We add 22Na to link the 21Ne 
produced back to the cv-chain. We grab all of the ReacLib (Cyburt 
et al. 2010) reaction rates linking these nuclei using pynucastro 
(Willcox & Zingale 2018). We are missing one rate each for 
12C + 12C, 12C + lsO, and lsO + lsO. These are the sequences 
%(^C, M)23Mg(M, 7)24Mg, ^Q(%, M)22Si(M, 7)28Si, and
160(160, «)31S(«, 7)32S, involving neutron production followed 
by a capture back to one of our cv-chain nuclei. These are the only 
rates we approximate here, assuming that the subsequent neutron 
capture is instantaneous.

Our final set of 28 nuclei is comprised of 1H, 4He, 12C, 13N, 
34N, 22^^ ^Na, 24Mg, ^Al, 28SL
32S, 33C1, 3^Ar, 3% ^Ca, 43Sc, ^i, 42V, 48Cr, 33Mn, 32Fe, 
55Co, and 56Ni. The 107 rates linking them are given in 
Table 4, with the forward rates having a positive Q value and 
the reverse having a negative Q value. We do not recompute 
the reverse rates via detailed balance or correct them with high- 
temperature partition functions—this will be considered in a 
future science-focused paper. We add screening to the rates 
using the prescription from Graboske et al. (1973), Alastuey & 
Jancovici (1978), and Itoh et al. (1979). The C++ code for the 
network is output by pynucastro directly for Castro. A 
graphical overview of the network showing the links between 
the nuclei is shown in Figure 13.

3 6 9 12 15 18 21 24 27
Z

-70 -60 -50 -40 -30 -20 -10 0
loglO(rate)

Figure 13. Reaction network for the double-detonation problem.
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Table 4
Reaction Rates Included in Our Network

Forward Reaction Reverse Reaction

4He + 4He + 4He -> 12C 12C -> 4He + 4He + 4He
12C + :H -> 13n 13N -> :H + 12C
12C + 4He -■* 16o lsO -> 4He + 12C
12C + 12C -»4He + 20Ne 2QNe + 4He -> 12C + 12C
12C + 12C -» :H + 23Na 23Na + :H -> 12C + 12C
12C + 12C -,24Mg
13N + 4He --> :H + 16o lsO + :H -> 4He + 13N
14N + 4He - 18p 18F -> 4He + 14N
lsO + 4He - 2QNe -> 4He + lsO
16o + 12C -» 4He + 24Mg 24Mg + 4He -> 12C + lsO
16o + 12c -» :H + 27A1 27Al + :H -> 12C + lsO
16o + 12c -,28Si
16o + 16o -■> 4He + 28Si 28Si + 4He -> lsO + lsO
16o + 16o -■> :H + 31P 31P + :H -> lsO + lsO
16o + 16o -
1SF + 4He -» :H + 21Ne 21Ne + :H -> 4He + 18F
1SF + 4He -,-Na -Na -> 4He + 18F
20Ne + 4He -,24Mg 24Mg -> 4He + 20Ne
20Ne + 12C --> 4He + 28Si 28Si + 4He -> 12C + 2QNe
20Ne + 12C --> :H + 31P 31P + :H -> 12C + 2QNe
21Ne + :H --,-Na 22Na -> :H + 21Ne
23Na + :H --> 4He + 20Ne 20Ne + 4He -> :H + 23Na
23Na + :H - 24Mg -> :H + 23Na
23Na + 4He -> 27Al 27Al -> 4He + 23Na
24Mg + 4He -,28Si 28Si -> 4He + 24Mg
27Al + :H -, 4He + 24Mg 24Mg + 4He -> :H + 27Al
27Al + :H -,28Si 28Si -> :H + 27Al
27Al + 4He --> 31P 31P -> 4He + 27Al
28Si + 4He --,32S 32S -> 4He + 28Si
31P + :H -> 4He + 28Si 28Si + 4He -> :H + 31P
31P + :H -> 32S 32S -> :H + 31P
31P + 4He - 35C1 -> 4He + 31P
32 S + 4He - 36Ar -> 4He + 32S
35C1 + :H -> 4He + 32S 32S + 4He -> :H + 35C1
35C1 + :H - 36Ar -> :H + 35C1
35C1 + 4He - 39K -> 4He + 35C1
36Ar + 4He --.'"'Ca 40Ca -> 4He + 36Ar
39K + :H -> 4He + 36Ar 36Ar + 4He -> :H + 39K
39K + :H -> 40Ca 40Ca -> :H + 39K
39K + 4He -^43Sc 43Sc -> 4He + 39K
40Ca + 4He -—> 44Ti 44Ti -> 4He + 40Ca
43Sc + :H -, 4He + 40Ca 40Ca + 4He -> :H + 43Sc
43Sc + :H -,44Ti ^Ti -> :H + 43Sc
43Sc + 4He --,47V 47V -> 4He + 43Sc
44Ti + 4He--,-^Cr 48Cr -> 4He + ^Ti
47V + :H -> 4He + 44Ti ^Ti + 4He -> :H + 47V
47V + :H -> 48Cr 48Cr -> :H + 47V
47V + 4He --> 51Mn 51Mn -> 4He + 47V
48Cr + 4He --> :H + 51Mn 51Mn + :H -> 4He + 48Cr
48Cr + 4He --> 52Fe 52Fe -> 4He + 48Cr
51Mn + :H --> 52Fe 52Fe -> :H + 51Mn
51Mn + 4He -,^Co 55Co -> 4He + 51Mn
52Fe + 4He --> :H + 55Co 55Co + :H -> 4He + 52Fe
52Fe + 4He --,^Ni 56Ni -> 4He + 52Fe
55Co + :H --,^Ni 56Ni -> :H + 55Co
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