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In fluid dynamics applications that involve flow adjacent to a porous medium, there exists some ambiguity in how to
model the interface. Despite different developments, there is no agreed upon boundary condition that should be applied
at the interface. We present a new analytical solution for laminar boundary layers over permeable beds driven by oscil-
latory free stream motion where flow in the permeable region follows Darcy’s law. We study the fluid boundary layer
for two different boundary conditions at the interface between the fluid and a permeable bed that was first introduced
in the context of steady flows: a mixed boundary condition proposed in G. S. Beavers and D. D. Joseph, J. Fluid Mech.
30, 197–207 (1967) and the velocity continuity condition proposed in M. Le Bars and M. G. Worster, J. Fluid Mech.
550, 149–173 (2006). Our analytical solution based on the velocity continuity condition agrees very well with nu-
merical results using the mixed boundary condition, suggesting that the simpler velocity boundary condition is able to
accurately capture the flow physics near the interface. Further, we compare our solution against experimental data in an
oscillatory boundary layer generated by water waves propagating over a permeable bed, and find good agreement. Our
results show the existence of a transition zone below the interface, where the boundary layer flow still dominates. The
depth of this transition zone scales with the grain diameter of the porous medium and is proportional to an empirical
parameter that we fit to the available data.

I. INTRODUCTION

Oscillatory flows are present in a wide variety of problems
across different areas of science and engineering. The well-
known and classical solution to the boundary layer formed
by oscillatory flow above a fixed flat plate was first presented
by Stokes 1 . The continued relevance of the classic solution
rests on the fact that more complex situations can often be
formulated as a modified version of the classical solution; re-
cent examples include flow driven by oscillating boundaries2,
oscillatory pressure-driven flows3, flow oscillations in a ro-
tating system4, boundary layer transition5, and renewed ef-
forts of quantifying sediment transport in oscillatory bound-
ary layers6–10. In all these applications, while there is gen-
eral agreement on boundary layer solutions for impermeable
boundaries, the nature of solutions with permeable bound-
aries differ substantially due to the ambiguities in modeling
the boundary conditions at the interface between the free-fluid
and the permeable region11–20.

Previous developments on the physics of boundary layers
over permeable beds relate to steady flows21–39, where the
main challenge is setting appropriate boundary conditions at
the interface connecting the free fluid and the porous media
flow. One of the most studied boundary conditions to model
the physics at the interface is the classical study of Beavers
and Joseph 21 , which states that at the interface, there exist
discontinuities between the velocity gradients occurring in the
fluid and inside the porous region, which are related via prop-
erties of the porous material such as the permeability and a slip
coefficient, which depends on the "structure of the permeable
material." Le Bars and Worster 30 provided a significant ad-
vance on the Beavers and Joseph 21 boundary condition. They
showed how the same boundary condition could be adapted to
state a continuity between the free fluid velocity and porous
media flow (Darcy’s velocity) where the matching condition

is applied at a certain depth below the interface. This region is
then interpreted as a transition zone within the porous region
where the free fluid velocity penetrates. This is consistent with
physical intuition; since Darcy’s flow is an averaged quan-
tity inside the porous region, there should be a minimum dis-
tance below the interface before Darcy’s law is valid. There-
fore, the matching conditions between the fluid velocity and
Darcy’s velocity must occur at a distance greater than or equal
to the averaging length. This insight provides two advantages:
(1) it simplifies the interfacial boundary condition for analyti-
cal and numerical treatments and (2) it clarifies why previous
studies have found the Beavers and Joseph slip coefficient to
also be a function of the flow instead of being solely a func-
tion of the porous material. Numerical simulations in Le Bars
and Worster 30 show that their boundary condition reproduces
closely flow obtained from the original condition proposed by
Beavers and Joseph 21 . Additionally, only slight differences
are found compared to the Darcy-Brinkman formulation40.

From subsequent studies, it is now established that there
does indeed exist a transition layer inside the porous region
into which the free fluid flow penetrates and after which
the velocity matches its porous media flow value. Several
works27,30,32,33 state that the characteristic length for this tran-
sition zone is represented by the squared root of the perme-
ability, but data from experiments and numerical simulations
suggest that the grain diameter may be a better characteris-
tic length for this depth26,29,31,34. Both numerical simulations
and experiments agree, however, that the thickness of the tran-
sition layer remains almost invariant for different flow condi-
tions (e.g., Reynolds numbers, flow channel height).

Building on these developments of steady viscous flow over
a permeable bed, we present a set of analytical solutions for
the laminar boundary layer velocities induced by linear os-
cillatory flows over a permeable bed. Previous theories on
this matter, such as Liu, Davis, and Downing 13 and McClain,
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Huang, and Pietrafesa 14 , have not explicitly considered the
transition zone found in steady flow. We explicitly include a
transition zone in our solutions via an empirical parameter and
we find that it scales with the grain diameter. For validation,
we include comparisons of our theory with numerical solu-
tions of the boundary layer equations and experimental data
from Liu, Davis, and Downing 13 , both of which show excel-
lent agreement with the analytical solutions. We also include
an error analysis to understand the sensitivity of the solution to
the empirical parameter and its agreement with experimental
data. Our theory, which is much simpler than previous theo-
ries, performs much better against data, albeit with an empiri-
cal parameter.

From the analytical results, we also see that the slip veloc-
ity at the interface and the boundary layer velocity profiles are
sensitive to the permeability of the porous material, while the
thickness of the transition zone remains almost unaffected for
seabeds with similar characteristics. Our novel method can be
seen as an extension to the classical boundary layer formula-
tions for an impermeable boundary condition1,41,42 to model
the oscillatory boundary layer flows over the permeable bed.

The remainder of this paper is structured as follows. Sec-
tion II presents an overview of the oscillatory boundary layer
theory, descriptions of different interfacial boundary condi-
tions, and our new analytical solutions. Comparisons with
numerical solutions and laboratory data are shown in Section
III, where we also include sensitivity and error analysis. Fi-
nally, in Section IV we discuss the implications of our work
and make concluding remarks.

II. OSCILLATORY BOUNDARY LAYER THEORY

Starting from the classical boundary layer equations41, we
recall the usual assumptions in oscillatory systems that the
streamwise length scale is larger than the cross-stream length
scale and velocity variations are much stronger in the cross-
stream direction than in the streamwise direction. This leads
to the neglect of the non-linear advective acceleration in the
streamwise momentum equation, which is much smaller than
the unsteady acceleration. In dimensionless form, the momen-
tum equations are

∂u

∂ t
=

∂ (Ueit)

∂ t
+

∂ 2
u

∂h2 (1a)

0 =
∂ p

∂h
(1b)

where Eq. (1a) and Eq. (1b) correspond to the streamwise and
cross-stream momentum balances, respectively, and

x = kx
0 ; h = z

0/
p

n/w ; t = wt
0 ;

p = p
0/rU

2
0 ; (u,w,U) = (u0,w0,U 0)/U0 (2)

where x
0 and z

0 are the dimensional streamwise and cross-
stream coordinates with corresponding dimensional velocities
u
0 and w

0, respectively. Further, p
0 is the dynamic fluid pres-

sure, r is the fluid density and n corresponds to the kine-

matic viscosity of the fluid. The oscillatory free-stream ve-
locity in dimensional form is U

0eiwt , which has a character-
istic magnitude U0 and where U

0 is complex and can vary
in x

0-direction. The cross-stream coordinate z
0 is scaled by

the boundary layer thickness
p

n/w , and h is therefore the
stretched cross-stream coordinate inside the boundary layer.
In Eq. (1a), we have used the fact that the free-stream acceler-
ation balances the horizontal pressure gradient
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The dimensionless continuity equation is

∂u

∂x
+

r
w

nk2
∂w

∂h
= 0. (3)

where
p

w/nk2 is the Womersley number.
We model the flow inside the porous region as described by

Darcy’s law43, given in dimensionless form by

us(x,h , t) =�s U0

(w/k)

∂ p

∂x
(4)

with

s =
Kw
g

(5)

where K is the hydraulic conductivity of the permeable ma-
terial and g is the gravitational acceleration. s is the dimen-
sionless hydraulic conductivity.

In what follows, we consider different boundary conditions
to model the effects of the porous boundary on the oscillatory
boundary layer flow as described by Eqs. (1)-(4).

Interfacial boundary conditions

Working in a two-dimensional Poiseuille flow scenario,
Beavers and Joseph 21 (BJ) postulated that there is a trans-
ference of the tangent velocity from the fluid to the permeable
bed at the interface (h = 0), which can be treated as a disconti-
nuity between the velocities in these two domains. Physically,
at the interface, there is an equilibrium between the velocity
gradients above the permeable bed and inside the permeable
bed. This boundary condition is written as

∂u

∂h
=

kp
s
(u�us) on h = 0. (6)

The parameter k , corresponds to the slip coefficient, and was
introduced as an empirical parameter that depends on the
structure of the porous material. With k determined experi-
mentally, BJ’s boundary condition yielded good comparison
with their experimental data, and the form of their bound-
ary condition was provided further theoretical support by
Saffman 22 .

Le Bars and Worster 30 (LW) presented an analysis that
compared the two-layer system (Stokes flow in the free fluid
domain and Darcy’s flow in the porous medium) with a single
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layer system (Darcy-Brinkman formulation where the poros-
ity smoothly transitions from its porous media value deep
within the porous layer to zero in the free fluid). They found
that the Stokes flow penetrates to a small depth into the porous
medium, which constitutes a transition zone and whose mag-
nitude scales with the pore size. Thus, LW suggest that the
BJ boundary condition can be simplified by re-writing it as a
continuity between the fluid velocity and Darcy’s velocity at a
distance d within the porous boundary

us = u at h =�d (7)

where d is the transition zone depth in dimensionless form.
LW further show that this transition depth takes the following
form (in our notation)

d = m

r
s
n

(8)

where n is the porosity and m is an O(1) constant. The equiv-
alence between the LW boundary condition (Eq. (7)) and the
BJ boundary condition (Eq. (6)) also showed that k =

p
n,

which was consistent with the original postulate that k was a
property of the porous material.

As s ! 0, both the BJ and LW boundary conditions tend
towards the expected no-slip condition for an impermeable
boundary.

Following others who have used the Carman-Kozeny for-
mulation to interpret the thickness of the transition zone in
terms of grain diameters, we substitute the Carman-Kozeny
expression44 into Eq. (8) to get

d
r

n
w

⇡ mDs

np
180(1�n)

(9)

where d
p

n/w on the left side is the dimensional transition
zone depth and Ds is the grain diameter of the porous bound-
ary. This shows that the value of the transition depth, which
could scale either with the square root of the permeability or
with the grain diameter, will be determined by the value of the
empirical constant m.

Analytical solutions for LW boundary condition

To consider the LW boundary conditions in the oscillatory
flow problem, first we introduce a shifted vertical coordinate
that includes the depth of the transition zone in the domain as

h̄ = h +d . (10)

Then, it is possible to state that u = us at h̄ = 0, and the LW
boundary conditions can be written as

u ! U as h̄ ! • (11a)
u = isUeit on h̄ = 0. (11b)

To find a solution to the governing equation Eq. (1a) subject
to boundary conditions Eqs. (11), we assume the solution has
a separable form

u = R[ f (h̄)ei(t+f)] (12)

where R correspond to the real part and f is a phase shift.
Substituting Eq. (12) into the governing equation leads to a
second order ordinary differential equation with constant co-
efficients

f
00(h̄)� i f (h̄) =�iUe�if (13)

that can be solved with a pair of complex roots and a particu-
lar solution f (h̄)p =Ue�if . We obtain the following general
solution for f (h̄)

f (h̄) = Aeh̄ (1+i)p
2 +Be�h̄ (1+i)p

2 +Ue�if . (14)

where A and B are constants to be determined from the bound-
ary conditions in Eqs. (11). A = 0 if the solution is to remain
finite and satisfy the boundary condition as h̄ ! •. B and f
are found from the boundary condition at h̄ = 0 to be

B =�U

p
1+s2

f =�arctan(s).

This final solution is

u =Ueit


1�

p
1+s2e�h̄ (1+i)p

2 e�i arctan(s)

�
. (15)

The bed shear stress can be computed via

tb =
∂u

∂h

����
h=0

which is given by

tb =

r
1+s2

2
e�i arctan(s)(1+ i)e�d (1+i)p

2 Ueit . (16)

The vertical velocity in the boundary layer can be computed
from continuity. Rearranging Eq. (3) gives

w�ws =�
r

nk2

w

Z h

�d

∂u

∂x
dh

where we have used the LW boundary condition to ensure
continuity of the fluid and Darcy velocities at the transition
depth: w = ws at h = �d . Here, ws = 0 since ∂ p/∂h = 0,
and the solution for the vertical velocity is

w=�dU

dx

r
nk2

w
eit

⇢
h̄+

r
1+s2

2
e�i arctan(s)(1�i)


e�h̄ (1+i)p

2 �1
��

.

(17)
The set of solutions for the horizontal velocity, vertical ve-

locity, and bed shear stress (Eq. (15)–(17)) are extensions of
the well-known the Stokes boundary layer with a permeable
bed. Indeed, as the hydraulic conductivity vanishes s ! 0,
we recover the classical solutions1,41,45.

III. NUMERICAL SOLUTIONS AND LABORATORY
EXPERIMENTS

In this section, we demonstrate the validity of our analytical
solutions by comparing them against numerical solutions and
data from laboratory experiments.
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A. Numerical solutions

We solve the governing equation for the horizontal velocity
in the boundary layer (Eq. (1a)) numerically using finite dif-
ferences and the Crank-Nicolson semi-implicit scheme. We
use the BJ boundary condition at h = 0 and initialize the sim-
ulations with u(h̄ ,0) = 0 . The vertical coordinate h is dis-
cretized over a range from 0 to 10 and time is discretized such
that Dt/(Dh)2 = 0.5. We simulate the solution for three os-
cillation cycles from t =�4p to 2p and find that the solution
reaches its period steady state value within the first two cy-
cles allowing comparisons against the analytical solution to
be made in the time span 0 < t < 2p .

The numerical implementation of the Crank-Nicolson
scheme to discretize the governing equation (Eq. (1a)) in time
(n) and space ( j) is presented below. The discretized equation
is

u
n+1
j

�u
n

j

Dt
=

1
2


u

n+1
j�1 �2u

n+1
j

+u
n+1
j+1

Dh2

�
+

1
2


u

n

j�1 �2u
n+1
j

+u
n

j+1

Dh2

�

+
C

n+1
j

�C
n

j

Dt
(18)

where C =Ueit and b = Dt/Dh2 corresponds to CFL number.
Re-arranging terms leads to the following form

� 1
2

bu
n+1
j�1 +(1+b )un+1

j
� 1

2
bu

n+1
j+1 �C

n+1
j

=

1
2

bu
n

j�1 +(1�b )un

j
+

1
2

bu
n

j+1 �C
n

j
. (19)

To include the BJ boundary condition (Eq. (6)) in the
Eq. (19), which mathematically corresponds to a Robin-type
boundary condition, we consider a second order discretization
to avoid loss of accuracy. To do this, we make use of a ghost
point at the border of the numerical domain. The implemen-
tation of LW boundary condition follows a trivial procedure,
as it corresponds to a Dirichlet-type boundary condition. The
discretization of the BJ boundary condition at time step n is as
follows

u
n

j�1 �u
n

j+1

2Dh
= l (un

j+1 �u
n

s j
) (20)

with l = k/
p

s . Re-arranging the above equation, we get the
following expression

u
n

j�1 = u
n

j+1 �2Dh [l (un

j+1 �u
n

s j
)]. (21)

For sake of simplicity, we have skipped the expressions for
time step n+ 1 as it is analogous to the aforementioned dis-
cretization. Including the boundary terms in Eq. (19), the
Crank-Nicolson scheme takes the following form

(1+b )un+1
j

�bu
n+1
j+1 =

(1�b )un

j
+bu

n

j+1�bDhl (un+1
j+1+u

n

j+1)+bDhl (un+1
s j

+u
n

s j
)

+(Cn+1
j

�C
n

j
). (22)

This is a matrix equation with a tridiagonal matrix, which is
easily solved (e.g., using the Thomas algorithm).

To validate our numerical solutions, we checked that the nu-
merical procedure accurately reproduces the classical Stokes
boundary layer velocities for a solid impermeable boundary.

In Fig. (1) we show the boundary layer velocity profiles
for a permeable bed at different phases of an oscillation cy-
cle. The analytical velocity profiles obtained with the LW
boundary conditions (solid magenta) show very good agree-
ment with the numerical solutions with the BJ boundary con-
dition (black dashed line).

To compare the numerical solution with the analytical so-
lution close to the interface h = 0, we show the time series
of slip velocities and bed shear stresses in Fig. (2). From this
figure, we again observe an agreement between the analyti-
cal and numerical solutions considering LW and BJ boundary
conditions, respectively, but also observe small differences.
These differences can be attributed to the precise value of the
constant m that effectively sets the thickness of the transition
zone until the flow is well described by Darcy’s law.

In Fig. (3) we show how flow at the interface varies with
the dimensionless permeability s . The maximum value of the
slip velocity is shown in panel (a), the maximum bed shear
stress value in panel (b), with their respective phase lags in
panels (c) and (d). As permeability increases, the slip velocity
magnitude increases and the bed shear stress magnitude de-
creases since the flow encounters lower resistance. The phase
lags are less sensitive to the permeability compared with the
magnitudes.

B. Comparisons with laboratory data

We compare our analytical solutions against experimental
data reported in Liu, Davis, and Downing 13 . In the experi-
ments, surface gravity waves propagate over a permeable bed
generating an oscillatory boundary layer The experimental
cases are listed in Table I, which gives values for the water
depth h, wave amplitude a, wave period T , the dimension-
less hydraulic conductivity s measured using a constant-head
permeator, the porosity n, and the dimensionless wave steep-
ness ka and dimensionless wavelength kh calculated using the
wavenumber k from the dispersion relation. From linear wave
theory, the dimensionless free-stream velocity that drives the
boundary layer is given by

U =
ka

sinhkh
e�i(x�t).

This wave-induced flow can be considered to be uniform in-
side the boundary layer and the flow in the permeable bed (be-
low the transition zone) can be considered to be well modelled
by Darcy’s law. Thus, the experimental conditions are ideally
suited to test our analytical solutions, which can be found by
substituting U = e�ix into Eq. (15)–(17). The horizontal ve-
locity solution is given by

u=U0

⇢
cos(x�t)�

p
1+s2 cos

✓
x�t+

h+dp
2
+arctan(s)

◆
e�

h+dp
2

�

(23)
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FIG. 1: Velocity profiles for a permeable bed condition for s = 0.1 and U0 = 1, and m = 1. Top: Free-stream velocity. Bottom:
LW boundary condition (analytical solution: solid magenta line), BJ boundary condition (numerical solution: black dashed

line).

FIG. 2: Slip velocity and shear stress at the interface (h = 0) for s = 0.1 and U0 = 1. a) Free-stream velocity; b) slip velocity;
c) Wall shear stress. LW boundary condition analytical solution (solid magenta line), BJ boundary conditionnumerical solution

(black dashed line).

where

U0 =
ka

sinhkh
.

As before, the above expression reduces to the expected im-
permeable bed solution42 as s ! 0.

Fig. 4 shows the comparison between the analytical solu-
tion and experimental data. Here, the parameter m plays an
important role because it determines the depth of the transi-
tion zone below the interface and essentially controls the mag-
nitude of the slip velocity. Rather than tuning the value of m

for each experimental case, we show the comparisons by tak-
ing a single value of m for the experiments where the porous
medium presents the same characteristics in permeability and
porosity (groups 2, 3, and 4). The agreement between the data
and our theory is remarkable, especially given that a more de-
tailed matched asymptotic solution in Liu, Davis, and Down-
ing 13 was much less successful.

In order to extend the analysis, we quantify the error consid-
ering the averaged Root Mean Squared Error (RMSE) across
the experimental cases of groups 2, 3, and 4 shown in Fig. (4).
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FIG. 3: Top: Variation of the maximum slip velocity (a) and bed shear stress (b) as functions of s , with U0 = 1. Bottom:
Variation of the phase associated to the maximum slip velocity (c) and bed shear stress (d) for different values of s . Grey line:
No-slip boundary condition (analytical solution). Magenta line: LW boundary condition (analytical solution with m = 1). Black

dashed line: BJ boundary condition (numerical solution).

TABLE I: Experimental data from Liu, Davis, and Downing 13 .

Group Exp. Ds ⇥10�3(m) a (cm) h (cm) T (s) s n ka kh

2 A2 0.5 0.517 19.9 1.254 0.0012 0.3830 0.0203 0.7801
3 A3 1.5 0.512 19.9 1.254 0.0090 0.3824 0.0201 0.7801
4 A4 3.0 0.515 19.9 1.254 0.0373 0.3840 0.0202 0.7801
2 B2 0.5 0.537 24.0 1.114 0.0013 0.3830 0.0227 1.0141
3 B3 1.5 0.513 24.0 1.114 0.0102 0.3824 0.0217 1.0141
4 B4 3.0 0.522 24.0 1.116 0.0419 0.3840 0.0220 1.0117
2 C2 0.5 1.181 24.7 1.035 0.0014 0.3830 0.0545 1.1396
3 C3 1.5 1.167 24.7 1.033 0.0109 0.3824 0.0540 1.1426
4 C4 3.0 1.140 24.7 1.035 0.0452 0.3840 0.0526 1.1396

From the analysis, we find the optimum value of m, for which
the error is minimum. From Figs. (5a, 5b and 5c) it is pos-
sible to visualize the performance of the matching condition
of our theory compared to the experiments for different values
of the parameter m. In general, the errors associated with the
selected values of m for each group are lower compared with
the literature.

From Eqs. (8) and (9), we see that the thickness of the tran-
sition zone is proportional to both

p
s or Ds. From the empir-

ical data, we found that a value of m = 14,7 and 4 gives good
agreement across different groups of oscillatory flow condi-
tions and permeable beds, and thus, the transition zone thick-
ness remains almost invariant for different oscillatory flow
conditions. In terms of the grain diameter it is

d
r

n
w

= [0.69,0.32,0.19]Ds, (24)

and in terms of the permeability it is

d = [22.62,11.32,6.45]
p

s . (25)

The above expressions show different orders of magnitude
when the different scales apply, which agrees with previous
data26,33,34. Since the scaling with grain diameter is closer to
a value of 1 than the scaling with the permeability, we inter-
pret our results as suggesting the grain diameter to be a more
suitable characteristic length for the transition zone. Differ-
ent from other studies, we reach this conclusion indirectly by
using the empirical parameter m in relation to the boundary
layer in the free fluid.
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FIG. 4: Dimensionless velocity profiles at x� t = 2p (under the wave crest) for the different cases listed in Table I, showing a
comparison between the LW analytical solution (solid magenta line) and experimental data13(blue crosses). Labels A2-C4 refer

to experimental cases in Table I.

(a) (b) (c)

FIG. 5: Average RMSE of velocity magnitudes for different values of m (red dots) compared to Liu et al. (1996) theoretical
solution (black dash-dotted line). Errors calculated on experimental data. (a) Group 2; (b) Group 3; (c) Group 4.

IV. CONCLUSIONS

We have found analytical solutions for oscillatory bound-
ary layers over a permeable bed and compared these with nu-
merical solutions and experimental data. The boundary con-
ditions at the interface between the fluid and permeable bed
represent the biggest source of uncertainty in such a scenario.
In numerical simulations, we apply the well-known Beavers
and Joseph 21 boundary condition in our numerical solutions,
which states that the velocity gradient above and below the
interface is related via a "slip coefficient" that depends on the
nature of the permeable bed. For our analytical solutions,
we apply the boundary condition discussed in Le Bars and

Worster 30 , which is closely related to the Beavers and Joseph
formulation, but with certain advantages. Our analytical solu-
tions show how the boundary layer structure depends on the
dimensionless hydraulic conductivity s = Kw/g, with the so-
lutions recovering the well-known impermeable bed Stokes
boundary layer in the limit s ! 0. Further, these solutions
agree well with numerical solutions in terms of the velocity
profiles, slip velocities, and wall shear stresses. The solu-
tions also agree well with experimental data of an oscillatory
boundary layer driven by surface waves propagating over a
bed of solid spheres. The analytical solutions contain an O(1)
empirical parameter, whose value is constrained with the use
of experimental data. We show that, physically, this parame-
ter controls the thickness of the transition zone below which
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the flow dynamics are dominated by Darcy’s law. Our results
broadly agree with previous literature on steady flows that the
transition zone thickness is on the order of 1 grain diameter.

The main difference between our approach and past efforts
lies in the nature of the interfacial boundary condition. While
previous efforts13,14 use various matching conditions between
the free fluid and porous media flow at the interface, our for-
mulation takes into account how the free-fluid flow penetrates
slightly into the permeable bed within a transition zone as
well-established from work on steady flows. This approach
appears to be more effective than introducing a boundary layer
based on Darcy’s law on the porous medium side of the inter-
face.

We anticipate that future work could extend the phys-
ical insights from our results to various applications in
coastal engineering and oceanography such as water wave
damping11,46–48, mass exchange, and sediment transport in
both laminar and turbulent conditions49–51, and wave-driven
canopy flows52–54.
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