Session 22: Provenance and Uncertainty SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

Check for
Updates

HypPeR: Hypothetical Reasoning With What-If and How-To
Queries Using a Probabilistic Causal Approach

Sainyam Galhotra* Amir Gilad"
University of Chicago Duke University
sainyam@uchicago.edu agilad@cs.duke.edu

ABSTRACT

What-if (provisioning for an update to a database) and how-to (how
to modify the database to achieve a goal) analyses provide insights
to users who wish to examine hypothetical scenarios without mak-
ing actual changes to a database and thereby help plan strategies in
theirfi elds. Typically, such analyses are done by testing the effect
of an update in the existing database on a specific view created by
a query of interest. In real-world scenarios, however, an update to a
particular part of the database may affect tuples and attributes in a
completely different part due to implicit semantic dependencies. To
allow for hypothetical reasoning while accommodating such depen-
dencies, we develop HypER, a framework that supports what-if and
how-to queries accounting for probabilistic dependencies among
attributes captured by a probabilistic causal model. We extend the
SQL syntax to include the necessary operators for expressing these
hypothetical queries, define their semantics, devise efficient algo-
rithms and optimizations to compute their results using concepts
from causality and probabilistic databases, and evaluate the effec-
tiveness of our approach experimentally.

CCS CONCEPTS

+ Theory of computation — Incomplete, inconsistent, and
uncertain databases; « Computing methodologies — Causal
reasoning and diagnostics.

KEYWORDS

hypothetical reasoning, causal inference, what-if, how-to

ACM Reference Format:

Sainyam Galhotra, Amir Gilad, Sudeepa Roy, and Babak Salimi. 2022. HyPER:
Hypothetical Reasoning With What-If and How-To Queries Using a Proba-
bilistic Causal Approach. In Proceedings of the 2022 International Conference
on Management of Data (SIGMOD °22), June 12-17, 2022, Philadelphia, PA,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3514221.
3526149

“Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on thefi rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9249-5/22/06...$15.00
https://doi.org/10.1145/3514221.3526149

1598

Sudeepa Roy Babak Salimi
Duke University University of California,
sudeepa@cs.duke.edu San Diego
bsalimi@ucsd.edu

1 INTRODUCTION

Hypothetical reasoning is a crucial element in decision-making and
risk assessment in business [24, 47, 53], healthcare [39, 40], real
estate [19], etc. Such analysis is split by previous work into two
categories: what-if analysis and how-to analysis. What-if analysis
[9, 29, 31] is usually meant for testing assumptions and projections
on a particular outcome by allowing users to pose queries about
hypothetical updates in the database and examining their effect
on a query result. Users detail a specific hypothetical scenario
whose effect they wish to examine on their view of choice and the
system computes the view as if the update has been performed in
the database. On the other hand, how-to analysis [33, 35] has the
reverse goal; users specify a target effect that they want to achieve
and the system computes the appropriate hypothetical updates that
have to be performed in the database to fulfill the goal.

ExampLELl. Consider a simplified version of the Amazon prod-
uct database [28] shown in Figure 1 describing product details and
product reviews. Each tuple has a unique tuple identifier next to it
for clarity. Now, consider an analyst who wants to examine the effect
of laptop prices on their Amazon ratings. She may ask “what would
be the effect of increasing the price of Asus laptops by 10% on their
average ratings?”. This what-if query asks about the effect of the hy-
pothetical update on the database (increasing the Price) on a specific
view (average Rating). She may also be interested in “what fraction
of Asus laptops would have rating more than 4.0 if their price drops
by $100?” or “What would be the average sentiment in the reviews for
cameras if their color was changed to red?". A different analyst may
also be interested in maximizing the average rating of laptops reviews
by changing their price. She may ask “how to maximize the average
rating of laptops and cameras by updating the price of laptops so
that it will not drop below 500 and increase above 800, and will be at
most 100 away from it original value?” or “How to increase average
sentiment in the reviews for cameras by changing their color?" Both
queries are forms of hypothetical reasoning that can assist analysts
and decision-makers in gaining insights about their products and
their marketing strategies.

Multiple works in the database community have studied hypo-
thetical reasoning. A substantial part of these [7, 16-18, 33, 35] has
focused on provenance updates and view manipulation as a main
component for answering such queries. Therein, hypothetical up-
dates are captured by changing values in the provenance and, thus,
updating the view generated by the query of interest. However,
in many real-world situations, due to complex probabilistic causal
dependencies between attributes of tuples that are relationally con-
nected, updating an attribute of a tuple has collateral effects on
other attributes of the same tuple, as well as attributes of other

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3514221.3526149&domain=pdf&date_stamp=2022-06-11

Session 22: Provenance and Uncertainty

PID Category Price Brand Color | Quality
P1 1 Laptop 999 Vaio Silver 0.7
P2 2 Laptop 529 Asus Black 0.65
P3 3 Laptop 599 HP Silver 0.5
Pa 4 DSLR Camera 549 Canon Black 0.75
Ps 5 Sci Fi eBooks 15.99 | Fantasy Press Blue 0.4
(a) Product
PID | ReviewID | Sentiment | Rating
n 1 1 -0.95 2
r2 2 0.7 4
r3 2 3 -0.2 1
ry 3 3 0.23 3
rs 3 5 0.95 5
re 4 5 0.7 4
(b) Review

Figure 1: Amazon product database

Figure 2: A graph showing the dependencies between the at-
tributes in the database in Figure 1. Blue nodes are attributes
of the same tuple and the red node is an attribute of a dif-
ferent tuple. A dashed edge denotes a dependency between
attributes of different tuples

tuples. Such dependencies cannot be expressed and captured by
provenance. We illustrate with an example.

ExXAMPLE2. Reconsider Example 1. The provenance of the average
rating of Asus laptops will not change if the price of the laptops is
augmented. Similarly, for the how-to query, the provenance of the
average rating of laptops and cameras will not be affected by the
change in price. Thus, previous work in databases fails to account
for the collateral effect that increasing the price of a laptop may
have on the user’s ratings. Note that due to our lack of knowledge
about the underlying process that leads to the user’s ratings, we may
only reason about the probabilistic effect of increasing the price on
user’s ratings. Figure 2 gives an intuitive description of potential
dependencies between the attributes of the database in Figure 1. For
example, changing the Price of a laptop may affect its Rating (denoted
as the edge from the blue Price node to the blue Rating node in Figure
2). Furthermore, increasing the Price of Asus laptops may affect the
Rating of Vaio laptops and vice versa (denoted as the edge from the red
Price node to the blue Rating node in Figure 2). In general, a directed
edge stands for an effect of the outbound node on the inbound node,
e.g., Price affects Rating. Accounting for such dependencies is crucial
for sound hypothetical reasoning.

In this paper, we propose a novel probabilistic framework for hypo-
thetical reasoning in relational databases that accounts for collateral
effects of hypothetical updates on the entire data. Our system, HYPER
(Hypothetical Reasoning), allows users to ask complex relational
what-if and how-to queries using a SQL-like declarative language.
The underlying inference mechanism, then, internally accounts for
the probabilistic causal effect of hypothetical updates and computes
probabilistic answers to such hypothetical queries. Our framework
brings together techniques from probabilistic databases [6, 15], and
recent advancements in inference from relational data [46, 52, 54],
to provide a principled approach for computing complex what-if

1599

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

and how-to queries from relational databases. Specifically, HYPER

relies on causal reasoning to capture background knowledge on

probabilistic causal dependencies between attributes and interprets
hypothetical updates as real-world actions that potentially affect
the other attributes.

Our framework supports a rich class of what-if queries that
involve joins and aggregations to support complex real-world what-
if scenarios in relational domains. HYPER captures what-if queries
through a novel model that can accommodate complex probabilistic
dependencies, and computes their results efficiently by employing
optimizations from probabilistic databases and causal inference. In
addition, HYPER supports complex how-to queries and frames them
as an optimization problem on the search space of consistent what-
if queries, and searches for a hypothetical update that optimizes the
desired query result. HYPER employs an efficient routine to solve
this optimization problem, by expressing it as an Integer Program
(IP) that can be efficiently handled using the existing IP solvers.

Our main contributions can be summarized as follows:

e We propose a formal probabilistic model for hypothetical what-
if and how-to queries in relational domains that combines no-
tions from probabilistic databases and causality. Our model
assigns a probability to each possible world [15] that can be
obtained after a hypothetical update according to the under-
lying probabilistic causal dependencies. We further define a
probabilistic possible world semantics for complex what-if and
how-to queries that support joins and aggregations.

We develop a declarative language that extends the standard

SQL syntax with new operators that capture hypothetical rea-

soning in relational domains and allow users to succinctly for-

mulate complex probabilistic what-if and how-to queries.

Evaluating hypothetical queries in a naive manner can be in-

efficient due to the need to iterate over all possible worlds, or

explore the space of all possible hypothetical updates. To ad-
dress these, we develop a suite of optimizations that allows

HypER to efficiently evaluate hypothetical queries:

— We use the model of block-independent databases [41], i.e.,
the database can be partitioned into blocks of tuples, where
the tuples in different blocks are independent, meaning there
are no causal dependencies between the tuples across differ-
ent blocks (without background knowledge, we assume tuple
independence). We then show that what-if queries can be
evaluated independently within each block and the results
can be combined to get the result over the entire database.

— We further show that under some assumptions complex what-
if queries in relational domains can be evaluated using the
existing techniques in causal inference and machine leaning.

— We frame how-to queries as an optimization problem and
develop an efficient mechanism to solve this optimization
problem, by expressing it as an Integer Program (IP) that can
be efficiently handled using the existing IP solvers.

We perform an extensive experimental evaluation of HyPER
on both real and synthetic data. On real datasets, we show that
the query output by HyPER matches the conclusions from prior
studies in fair and explainable AI [23]. On synthetic datasets,
we show that HYPER’s query output is accurate as compared to
other baselines. Running time analysis shows that both what-if
and how-to components of HYPER are highly efficient.

Session 22: Provenance and Uncertainty

2 PROBABILISTIC UPDATES IN HYPER

In this section we describe our notations and then define the proba-
bilistic hypothetical update model in HYPER (Section 2.1) that serve
as the basis for probabilistic what-if and how-to queries in the fol-
lowing sections. Then in Section 2.2, we review necessary concepts
from probabilistic causal models [38] that capture the propagation
of the effect of an update through other attributes due to underlying
dependencies between them and succinctly defines the probability
distribution after updates.

Notations. Let D be a standard multi-relational database; we use
D for both schema and instance (as a set of tuples) where it is clear
from the context. For each relation R in D, Attr(R) denotes the
set of attributes of R and A = UgepAttr(R) denotes the set of
attributes in D. For attributes A appearing in multiple relations, we
use R. A for disambiguation. For an attribute A € A, Dom(A) denotes
the domain of A; A;[t] € Dom(A;) denotes the value of the attribute
A; of the tuple t. We assume that each relation R has a (primary)
key, that can be a single or a combination of multiple attributes. For
easy reference, we annotate each tuple with a unique identifier as
demonstrated by the identifiers p;, r;j in Figure 1. We assume each
relation can be modeled as a set of tuples (set semantics) and, for a
relation R, we use the notation ¢ € R to denote a tuple in R.

For the purpose of hypothetical updates, a subset of attributes
that can change values directly or indirectly in tuples is referred
to as mutable attributes, the other attributes are immutable
attributes. The attribute that is updated in hypothetical updates is
called the update attribute, and thefi nal effect is measured on an
output attribute as specified by the user. The update and output
attributes are always mutable, and the key attributes are always
immutable.

ExaMpLE3. In Figure 1a, the database has two relations Product
and Review with keys {PID} and {PID,ReviewID} respectively. For
example, supposeDom(Price) = [0,500K]. In tuple p1, Category|[p1] =
Laptop and Price[p1] = 999 etc. The mutable attributes are Price,
Quality, Color, Rating, and Sentiment, whereasBrand and
Category are immutable. The update attribute is Price in relation
Product, and the output attribute is Rating in relation Review.

We assume the update and output attributes do not appear in
multiple relations, but as Example 3 illustrates, they can appear in
two different tuples.

2.1 Probabilistic Hypothetical Updates

HypeR interprets hypothetical updates in terms of real-world inter-
ventions that potentially influence the value of other attributes in
the data due to probabilistic dependencies between the attributes
and tuples. To capture such probabilistic influence, we use the no-
tion of possible worlds from the literature of probabilistic databases
[15] as the set of all possible instances on the same schema with the
same number of tuples in each relation that may contain different
values in their mutable attributes from the appropriate domains.

DEFINITION 1 (PosSIBLE WORLDS). Let R in D be a relation, where
in Attr(R), Ay, - -+, Am are immutable attributes (including keys)
and By, - - -, By are mutable attributes. For a tuple t € R, a possible
world of tuple ¢ is the set (assuming values are associated with

1600

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

corresponding attribute names for disambiguation)
PWD(t) = {A1[¢t], - ,Aml[t],01,- -+ ,vp : v; €Dom(B;),i=1to¢}.

The possible worlds of relation R is PWD(R) = X;cgPWD(t).
The possible worlds of a database D isPWD(D) = XgRepPWD(R).

Next we define the notion of hypothetical updates.

DEFINITION 2 (HYPOTHETICAL UPDATES). A hypothetical up-
date U = ug g 1,5 on a database D is a 4-tuple that includes a relation
R in D containing the mutable update attribute B € Attr(R), a sub-
set of tuples S C R where the update will be applied, and a function
f : Dom(B) — Dom(B) specifying the update for attribute B[t] for
tuples t € S to f(B[t]).

In other words, the hypothetical update ug g f,5 forces all tuples
in set S in relation R to take the value f(B[t]) instead of B[¢]. In
the what-if query in Example 1, intuitively, R = Product, S defines
the set of Asus laptops, Bis Price, and f increases the price by 10%
(see Section 3.1 for details). This update, in turn, may change values
of other mutable attributes in R or even mutable attributes in other
relations R’ in D through causal dependencies as discussed next
in Section 2.2, eventually (possibly) changing the output attribute.
These changes are likely not deterministic (e.g., changing price
of a laptop does not change its reviews or their sentiments in a
fixed way), therefore, we model the state of the database after a
hypothetical update as a probability distribution called the post-
update distribution.

DEFINITION 3 (POST-UPDATE DISTRIBUTION). Given a database
D and an update U = ugp s s (Definition 2), the post-update
distribution is a probability distribution over possible worlds, i.e.,
Prp y : PWD(D) — [0, 1] such that ZIePWD(D) PI’D,U(I) =1

While the previous definition defines the post-update distribu-
tion in a generic form, there will be restrictions imposed by the
hypothetical update as well as by its effect on the distribution of
other attributes (e.g., for all possible worlds with non-zero proba-
bility, the value of attribute B for tuples ¢ € S must be f(B[t])). We
define this post-update distribution with the help of a probabilistic
relational causal model in Section 2.2.

2.2 Causal Model for Probabilistic Updates

In this paper, we use causal modeling to capture probabilistic causal
dependencies between attributes in relational domains, and to ac-
count for the collateral effect of hypothetical updates on other
attributes. Specifically, HYPER rests on relational causal models,
recently introduced in [46], which are briefly reviewed next.

Probabilistic Relational Causal Models (PRCM). A probabilis-
tic relational causal model (PRCM) associated with a relational
instance D is a tuple (e, V, Pre, ¢), where € is a set of unobserved
exogenous (noise) variables distributed according to Pre, V is a set
of endogenous ground" variables associated with observed attribute
values of each tuple A[t], for all A € Attr(R),t € Rand R € D,
and ¢ is a set of structural equations. The structural equations cap-
ture the causal dependencies among the attributes and are of the
The endogenous variables are called ground variables since in a PRCM the attribute
A[t] associated with each tuple ¢ form the variables, generating multiple variables

corresponding to the same attribute, in contrast to the standard probabilistic causal
model [38] where each attribute or feature A forms a unique variable.

Session 22: Provenance and Uncertainty

Color[p1]

p2] \

1
1
1
Price[p2] |1
1
1
' | Color[p,]
1
1
1
y” \ Y
Sentiment[r;] Rating[r]) (Sentiment[rg] Rating[r3]

Figure 3: Part of the ground causal graph for the tuples in
Figure 1. A[p;] (A[r;]) represents the attribute A of tuple p;
(r;)- Blue nodes are related to p1, red nodes are related to py,
and dashed edges represent cross-tuple dependencies. Cross-
tuple edges between Quality and Rating are dropped.

form ¢, [;] : Dom(Pay (A;[t]))X Dom(Pae(A;[t]))— Dom(A;[t]),
where Pac(A;[t])C € and Paq (A;[t]) € V —{ A;[t]} respec-
tively denote the exogenous and endogenous parents of A;[f]. A
PRCM is associated with a ground causal graph G, whose nodes are
the endogenous variables V and whose edges are all pairs (X,Y)
(directed edges) such that X € V and Y € Pa«(A;[t]). In this
paper we assume the underling causal model is acyclic. Due to
uncertainty over the unobserved noise variables, the structural
equations can be seen a set of probabilistic dependencies? of the
form Pr(A[¢] | Pa (A[t])) between the attributes. From now on,
we will use A[t] interchangeability to refer to both an attribute
value and the ground variable associated with it.

ExaMPLE4. Reconsider the database in Figure 1 and the causal
diagram in Figure 2. Part of its ground version w.r.t. the database is de-
picted in Figure 3, where the blue nodes are related to the tuple p1 and
the red nodes are related to the tuple py. Cross-attribute dependencies
within the same tuple are illustrated as solid edges and cross-tuple
dependencies between the tuples are shown as dashed edges.

To be able to estimate the conditional probability distributions
Pr(A[t] | Pay (A[t])), for t € R, from the relational instance D,
we make the following assumptions that are common in causal
inference from relational data [46, 52]. First, since Pa (A[t]),
the set of parents of A[t] may have variable cardinality for each
t € R, we assume there exists a distribution preserving summary
function ¢ that projects Pay (A[t]) into afi xed size vector such
that Pr(A[t] | Pay (A[t])) = Pr(A[t] | ¢ (Pa (A[t]))), for each
t € R. Second, we assume the conditional probability distributions
Pr(A[t] | ¥(Paq/(A[t]))) are the same for all ¢ € D, i.e., the con-
ditional probability distributions Pr(A;[t] | ¥ (Paq/(A;[t]))) are
independent of a particular ¢ € R and can be readily estimated from

ZNote that it is not necessary to have relational connections through database con-
straints like foreign key dependencies or functional dependencies for causal depen-
dencies and vice versa.

1601

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

D, hence we denote them by unified notation Prp (A; | ¥ (Pa(A;))).
For more discussion on these assumptions, please see [46].

ExampLES. Continuing Example 1, suppose we want to update
attribute Price and examine its effect on Rating. Since each product has
one price but several review ratings in Figure 1, we will summarize the
Rating attribute into the Product table by, e.g., averaging the Rating
for each product and price. Thus, for pz, we will have Price = 529
and Rating = Average(4,2) = 3 (the average over tuples ry and r3).

Post-update distribution by PRCM. We describe how the post-
update distribution (Definition 3) is defined using a PRCM in HYPER.
Given a relation R in D, an update attribute B € Attr(R), a hypo-
thetical update U = ug g f,5 (Definition 2) can be interpreted as an
intervention that modifies the underlying PRCM and replaces the
structural equation associated with the variables B[¢] for allt € S
with the constant f(B[t]). Updating B[t] propagates through all
relations, tuples and attributes according to the underlying PRCM.
The post-update state of a tuple t’ € R’ in a relation R’ in D is
the solutions to each ground variable A[¢'], for A € Attr(R’), in
the modified set of structural equations. Now, the uncertainty over
unobserved noise variables € induces uncertainty over post-update
states of all tuples ¢’ captured by their post-update distribution on
the possible worlds (Definition 1): Prp 7(7) for € PWD(t’), and
in turn, the post-update distribution of the entire database Prp /(1)
for I € PWD(D). As we will show in Section 3.3, to answer what-if
and how-to queries in HYPER, it suffices to estimate the post-update
conditional distributions of the form Prp y(Y =y | B=b,C =¢),
where Y, B,C € Attr(R), that measures the probabilistic influence
of the update U on subset of tuples for which B=5band C =c. It
is known that if C satisfies a graphical criterion called backdoor-
criterion (see Section 3.3) w.r.t. B and Y in the causal model G, then
the following holds:

Prpy(Y=y|B=bC=¢)=Prp(Y=y [B=f(h).C=c) (1)

Where, the RHS of (1) can be estimated from D using standard
techniques in causal inference and Machine Learning. Equation (1)
also extends to multi-relation databases (see [22]).

Background knowledge on causal DAG. While in this pa-
per we assume the underlying causal model is available, HyPER
is designed to work with any level of background knowledge. If
the causal DAG is not available, HYPER assumes a canonical causal
model in which all attributes affect both the output and the updated
attribute. In other words, HYPER assumes (1) holds for C = Attr(R),
i.e., all attributes are considered in the backdoor set in Equation 1,
ensuring that the ground truth backdoor set is a subset of Attr(R).
We also examine this case experimentally in Section 5.

3 PROBABILISTIC WHAT-IF QUERIES

In this section we describe the syntax of probabilistic what-if queries
supported by HYPER (Section 3.1), describe their semantics as ex-
pected value from the post-update distribution on possible worlds
(Section 3.2), and present efficient algorithms and optimizations to
compute the answers to what-if queries (Section 3.3).

3.1 Syntax of Probabilistic What-If Queries

A what-if query has two parts (see Figure 4):
o The required UsE operator in thefi rst part defines a single table
as the relevant view with relevant attributes including the up-
date and the output attribute to be used in the second part. The

Session 22: Provenance and Uncertainty

UsE RelevantView As
(SELecT T1.PID,T 1.Category,T 1.Price,T 1.Brand,
Avc(Sentiment)As Senti, AvG(T2.Rating) As Rtng
FroM Product As T1, Review As T2
WHERE T1.PID = T2.PID
GroupBy T1.PID,T1.Category,T 1.Price,T 1.Brand)
WHEN Brand =" Asus’
UprpATE(Price) = 1.1 X PRe(Price)
OuTtpuT AVG(POST (Rtng))
ForPRE (Category) = ‘Laptop’ ANDPRE (Brand) = ‘Asus’
AND Post(Senti) > 0.5

Figure 4: What-if query asking “If the prices of all Asus prod-
ucts is increased by by 10%, what would the effect on average
ratings of Asus laptops having average sentiments in the
reviews > 0.5 after the update?”

UsE operator can simply mention the table name if no transfor-
mation is needed, and both update and output attributes belong
to this table (e.g., ‘USE Review’). Otherwise, a standard SQL
query within the USE operator can define this relevant view as
discussed below.

e The second part includes the new operators for hypothetical
what-if queries supported by HYPER: the required UPDATE and
OuTPUT operators for specifying the update and outcome at-
tribute from the relevant view, and optional WHEN and For
operators.

The second part takes as input the relevant view, denoted V¢!
(named as RelevantView in Figure 4), as defined by the required
UsE operator in thefi rst part containing all relevant attributes,
and therefore does not mention any table name for disambiguation
in its operators. Recall that a hypothetical update in HyPER is of the
form U = up g f,s5, where the updated attribute B € Attr(R) in D,
and is changed for all tuples ¢ € S in R according to the function f
(Definition 2). In the what-if query, the relevant view V¢! defined
by thefi rst part combines the update and outcome attributes (Price
and Rating in Figure 4) along with other attributes used in the
second part. In particular, the SQL query defining V" ¢l includes
the update attribute B in the SELECT clause along with the key of
R (here PID), and other attributes from R and (in aggregated form)
from other relations in D that are used in the second part of the
query. A group-by is performed on the attributes coming from
relation R Note that thefi rst part always outputs a view having the
same number of tuples as in R, which is ensured as the SELECT and
Group By clauses include the key of R.

The required UPDATE operator mentions the update attribute
B along with the function f. HYPER allows hypothetical update
functions f of the form Update(B) =< const >, Update(B) =<
const > X PRrE(B), and Update(B) =< const > + PRE(B), where
< const > is a constant specified by the user (here 1.1 models a 10%
price increase). PRE (A) and PosT(A) respectively denote the value
of an attribute A before the hypothetical update (i.e., as given in the
database instance D) and after the update according to the PRCM
(see Sections 2.2 and 3.2); except in the operator as ‘UpDATE(B)’
which defines updating the value of B, PRE is assumed by default
if PRE or PosT is not explicitly mentioned in the query. UPDATE is
always performed w.r.t. the PRE value of an attribute, rather than

1602

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

the PosT value which is the result of the update. The optional SQL
query in the UsE operator defining the relevant view can only have
PrE values of attributes, so PRE is omitted in the query. Note that
for immutable attributes A, PRE(A) = PosT(A).

The optional WHEN operator specifies the set S in Definition
2; any valid SQL predicate can be used here that is defined for each
tuple in the relevant view V" el , and allows selection of a subset of
tuples from rel e.g., A=< const >, A€ (SELECT ---ASA---)
etc. If the WHEN operator is not specified, we assume S = R and the
hypothetical update is applied to all tuples in R. Since the update
is applied to the original attribute values, it can only use PRE(A)
value for an attribute A, and therefore PRE is omitted.

The required OUuTPUT operator mentions the output attribute
Y (here, Rtng) on which we want to measure the effect of the
hypothetical update. If Y belongs to another table R’ # R, the
SQL query in the UsE operator describes how R and R’ are com-
bined in the join condition, and a SQL aggregate operator aggr;
(SUM, AVG,COUNT) is used to aggregate Y (here AvG(T2.Rating))
to have a unique value for each tuple in R identified by its key in
the relevant view. Note that the effect of an update is output as a
single value, so another SQL aggregate operator aggr is used in the
OuTpuT operator (here again Avag). If the user wants to measure
effects on different subsets of tuples, it can be achieved by the use of
the optional For operator described below. The OuTPUT operator
can only use PosT(A) values of attributes after the update.

The output specified in the OUTPUT operator is computed only
considering the tuples in the relevant view V rel that satisfy the
conditions in the optional For operator (details in Section 3.2). If
no For operator is provided, all tuples in V" ¢l are used to compute
the output. For can contain both PRe(A) and PosT(A) values of
attributes, and PRE can be optionally provided for clarity. Further,
like WHEN, any valid SQL predicate can be used that is defined on
individual tuples in relevant view V"¢,

ExampLE6. Consider the what-if query statement shown in Figure
4. It checks the effect of hypothetically updating the price by 10%
(UppATE) onBrand = ’Asus’ (WHEN). The effect is measured on their
average of average ratings (OUTPUT) — thefi rst average on ratings of
the same type of Asus products, and the second average is on different
types of Asus products, but only for Category = ‘Laptop’ (i.e., does
not include phones for instance), and where the post-update average
sentiment is still above 0.5. Since Rating and Sentiment come from
the Review table whereas the update attribute Price belongs to the
Product table, they are aggregated in the SQL query in the USE
operator for each Product tuple.

HyPER supports multiple updates in a what-if query with at-
tributes By, B, - - -, e.g., UPDATE(Price) = 500 ANDU PpATE(Color)
Red, provided there are no paths from any B;[t] to any B;[t'] for
any two tuples t,¢” - a fact that we will use in Section 4 for how-to
queries; we discuss other extensions in Section 7. Here, we discuss
single-attribute updates for simplicity.

3.2 Semantics of Probabilistic What-If Queries

Here we define the semantics of what-if queries described in Sec-
tion 3.1 as the expected value of the output attribute over possible
worlds consistent with a what-if queries.

Session 22: Provenance and Uncertainty

The operators in the what-if queries are evaluated in this order:
Use — WHEN— UPDATE — For — OUTPUT.

(1) The UsE operator outputs the relevant view V"¢ that con-
tains all relevant attributes for the what-if query by a standard
group-by SQL query.

(2) The WHEN operator takes V¢! as input, and defines the
set S in the update U = ug g f,5. Suppose this operator uses an

SQL predicate pwgen defined on a subset of attributes of V" el
Then the output of the WHEN operator is the view V"¢, = {t €
rel twaen(t) = true}. Note that in both Use and WHEN
operators, the pre-update values (Pre values are assumed by default)
from the given database D are used.

(3) Then the ‘UppaTE B = f(PRE(B))’ operation is applied to
the tuples t € (V’EIW on attribute B. As described in Section 2.2,
this update is equivalent to modifying the structural equation ¢p|;]
in the PRCM by replacing them with a constant value f(PrE(B)).
Due to uncertainty induced by the noise variables, at this point, we
get a set of possible worlds PWD(D) (Definition 1) along with a
post-update distribution Prp ¢y on PWD(D) induced by the update
U. Clearly, some possible worlds I have Prp 7(I) = 0, e.g., if for a
tuple ¢ in relation R of I such that ¢ corresponds to a tuple in V¢!,
with the same key, B[t] # f(PRe(B[t])).

(4 and 5) For the For and OUTPUT operators,fi rst,fi x a possible
world I € PWD(D) obtained from the previous step. Let V;"¢! be
the output of the SQL query in the UsE operator on I. Suppose the
predicate in the FOR operator is i For, Which may include PRE(A)
and PosT(A’) values for different attributes A,A’. For every tuple
t (in any relation in D) and attribute A, consider two values of
A[t]: PRe(A[t]) of t in D and PosT(A[t]) of t in I (some values
remain the same in PRE and Posr, e.g., if A is immutable or if there
is no effect of updating B for S tuples on A). Using these values, we
evaluate the predicate y por, and using tuples from R that satisfy
this predicate, we compute the aggregate aggro (AvG(Rating) in
Figure 4) mentioned in the OUTPUT operator using their values in I
(i.e., PosT values).

This aggregate aggrg is computed on attribute values Y([¢] for
t € V", where Y itself can be an aggregated attribute Y =
aggryse(Y’) if it is coming from a different relation than the one
containing the update attribute as defined by the SQL query in the
UsE operator (in Figure 4, Y = Rtng, Rtng = AvG(Review.Rating),
and both aggrp and aggruysg, are Ave). Hence, when a possible world
isfi xed, the what-if query answer is computed as follows:

DEFINITION 4 (WHAT-IF QUERY RESULT ON A POSSIBLE WORLD).
Given a what-if query Q and a database D, the answer to Q on a
given possible world I € PWD(D) is the aggregate aggrg over Yr[t]
values using the notations above:

Valynatit (Q. D) = aggr({Yr[t] : pron(t) = true,t € V")) (2)
where Y1 [t] denotes the value of attribute Y for tuple t in the possi-
ble world I. Here t is tuple in the relevant view Vyrel and therefore
corresponds to a unique tuple in relation R.

Then thefi nal value of the what-if query is the expected query
result on all possible worlds of D:

DEFINITION 5 (WHAT-IF QUERY RESULT). Given a what-if query
Q and a database D, the result of Q(D) is the expected value of

1603

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

valyhatif(Q, D,I) over all possible worlds I € PWD(D), using the
post-update probability distribution Prp y:
valyhatif (Q.D) = Erepwp (D) [Valuhatif (Q, D,I)]

valyhatif (Q, D,I) - Prp,u(I)
1ePWD(D)

©)

3.3 Computation of What-If Queries

The semantics presented in Section 3.2 does not directly lead to
an efficient algorithm to compute the answer to what-if queries
by Definition 5, since (1) the number of possible worlds can be
exponential in the size of the database D, and (2) computation of
post-update distribution Prp gy is non-trivial. In this section, we
present our algorithm for computing what-if query answers that use
two key ideas to address these challenges: (a) Instead of computing
the what-if query over the entire database, we decompose it into
smaller problems and compute modified queries on subsets of tuples
that are ‘independent’ of each other (as fewer tuples make the
computation more efficient). Then we combine the results to get
the result of the original query over the entire database. (b) To
compute the distribution Prp iy needed for estimating the query
result, we use techniques from the observational causal inference
and the graphical causal model literature [38] when the post-update
distribution is determined by a PRCM.

Decomposing the computation. The decomposition, and subse-
quently the composition of answers, is achieved by the use of block-
independent databases and decomposable aggregate functions sup-
ported by HypeR (SUM, COUNT, AVERAGE) described below.

Block-independent database decomposition. We adapt the no-
tion of block-independent database model that has been used in
probabilistic databases [14, 41] and hypothetical reasoning [30]. First,
we need the notion of independence in our context. We say that
two tuples t,t” € D are independent if there are no paths in the
ground causal graph G (ref. Section 2.2) between A[t] and A”[t’]
for any two attributes A,A”.

Given a database D and a PRCM with a ground causal graph G,
B ={D1,...,Dy} is called a block-independent decomposition
of D if (i) {D1,..., D} forms a partition of D, i.e., each D; C D,
nglDi =D,and D; N Dj = @ for i # j, and (ii) for each t € D;
and t’ € Dj where i # j, t and t’ are independent. Note that these
tuples ¢ and ¢’ can come from the same or different relations of D.

We compute block-independent decomposition of database D
given a causal graph G as follows. The block decomposition process
performs a topological ordering of the nodes in the causal graph
and then performing a DFS or BFS on it, and is therefore linear
in the size of the causal DAG. The causal DAG has at most n X k
nodes where n is the number of tuples in D and k = |[Attr(D)|. In
particular, the decomposition does not depend on the structure or
complexity of the query. Block-independent decomposition pro-
vides an optimization in our algorithms; in the worst case, all tuples
may be included in a single block.

ExampLE7. Consider the causal graph of the PRCM (Figure 3)
defined on the database presented in Figure 1. The procedurefirst
performs a topological sort of the nodes. For example, in Figure 2, the
node Brand[p1] isfi rst, and then the node Quality[p1] etc. Then,
the algorithm performs a BFS to detect the connected components

Session 22: Provenance and Uncertainty

of the graph which are all tuples belonging to the same category,
along with their reviews. The block-independent decomposition of
the database D in Figure 1 is then B8 = {Dj, D, D3} where Dq
{P1, P2, p3, 71,12, 13, 14,75}, D2 = {p4, 16}, and D3 = {ps} correspond-
ing to laptops, camera, and books along with their reviews.

Decomposable functions. The aggregate functions supported
by HYPER are decomposable as defined below, which allows us
to combine results from each block after a block-independent de-
composition to compute the answer to a what-if query. Since the
immutable attributes include keys that are unchanged in all possible
worlds I € PWD(D) of D (Definition 1), given a block-independent
decomposition B of D, we will use the corresponding decomposi-
tion By of I where the same tuples identified by their keys go to
the same blocks in 8 and 8. The aggregate functions fp p, fQ’ D
below map a set of tuples to a real number whereas g maps a set of
real numbers to another real number.

DEFINITION 6 (DECOMPOSABLE AGGREGATE FUNCTION). Given a
database D, a block-independent decomposition B = {Dx, ..., D¢} of
D, a what-if query Q, and any possible world I € PWD(D) of D, an
aggregate function fo p is decomposable if there exist aggregate
functions fQ,,D and g such that:

e fop() = g({fQ”D(Di) | VD; € B;}) where By is the block
partition of I corresponding to B,

o ag({x1,...,x}) =g({axiy,...,ax;}),Ya = 0, and

o g{xt- D) +9({y - yh) = gUxi +y1,.. . +yrd)

When the aggregate function aggr given in Equation (2):
valuhatif(Q,D.I) = aggr({Yi[t] : pron(t) = truet € Vrel})is
decomposable, we show that the computation can be performed on
the blocks By and then aggregated to compute valynatif(Q, D,I).
We note that every supported aggregate function in this paper (Sum,
Avg, CounT) is decomposable. We demonstrate this for Avc below.

ExXAMPLES. Reconsider the what-if query in Figure 4. Suppose
the database can be partitioned into blocks by Category as demon-
strated in Example 7. In this case, aggr = AvG and Y = Rtng =
AvG(T2.Rating), and for any I € PWD(D), valynatif(Q,D,I) =
AvG({Rtngr[t] | t € rel, Category(t] = Laptop, Brand[t] =
Asus, PosT(Senti[t]) > 0.5}) We use the standard formula for de-
composing average: AvG(D) = ﬁ Zle Sum(D;). For each block
Di € By f} (D) = ﬁ Sum({Rtngr[t] | t € V"¢ n D,
Category(t] = Laptop, Brand[t] = Asus, PosT(Senti[t]) > 0.5})
Here, g = Sum, and Sum satisfies the properties in Definition 6.

In the proof of the following proposition, we leverage the ability
to marginalize the distribution Prp 7 over the possible worlds of
the database D (Definition 3) given a what-if query Q to get a distri-
bution and a set of possible worlds for any block D; € B, which we
denote by PWD(D;) € PWD(D). PWD(D;) are all instances where
all tuples ¢’ ¢ D; remain unchanged and all mutable attributes of
t € B; get all possible values from their respective domains. We
further denote PWD(D;) as the set of possible worlds of D; that
only includes the tuples in D;; i.e., PWD(D;) is the projection of
PWD(D;) on D;. All proofs are deferred to the full version [22] due
to space constraints.

1604

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

PROPOSITION 1 (DECOMPOSED COMPUTATION). Given a database
D, its block-independent decomposition B = {Dy,..., D¢}, and a
what-if query Q whose result on a possible world I € PWD(D) is
valyhatif(Q, D.1) = aggr({¥r[t] : pror(t) = truet € (Vrel})
(Definition 4), if aggr is a decomposable function, i.e., if there exist
functions g andfé’D according to Definition 6, then

valunatif (Q.D) = g({valuhatif(Q".D;) | VD; € B})

where Q' is the same query as Q with fé p replacing aggr and

(O]

®)

valyhatif (Q', Di) = Ey,cPwb(Dy) [valunatir(Q, D I)]

Computing results with causal inference. We show the connection
between the what-if query results and techniques in observational
causal inference. This connection will allow us to compute the
results for each block as given in Equation (5). Specifically, we
show how the computation in each block is done by the post-update
probabilities, which we further reduce to pre-update probabilities.

PROPOSITION 2 (CONNECTION TO CAUSAL INFERENCE FOR COUNT).
Given a database D with its block independent decomposition Bp,
a block D; € Bp, a ground causal graph G, a what-if query Q’
where Agg = COUNT, and the FOR operator is denoted by i or =
Vi sor, b M gor, posr)» AN 1 For,Pre and i For,posr are defined with
the PRE and PosT operators, respectively, the following holds.

VaLunati (D) = 3, | 3 (Prigu (25, posr (1) = truelph e, (1) = true))
teD; \ k

In this equation, PrDi’U(IJI}OR,POST(t) = true|y’;0R!PRE(t) = true)

denotes the sum of probabilities of all possible worlds of D; such that

the tuple t that satisfied ,ul}OR pap(t) = true before the update U also

satisfies ”I%ox,Posr(t) after the update.

The proof of the proposition relies on the fact that a For clause
can be represented as a CNF of PRE and PosT conditions (as shown
in [22]). Proposition 2 assumes Agg = COUNT, however, a similar
result for Agg = SuM/AvG can be found in the full version [22].

Estimating the probability values. The expression in Proposi-
tion 2 relies on the post-update distribution to evaluate conditional
probability of certain attribute values. For example, we need a way
to estimate Prp y(A; = a; | Aj = aj, iwuen) When aggr = COUNT.
Our goal is tofi nd a way to estimate these probability values from
the input database D, assuming we have a PRCM.

To do so, we leverage the notion of backdoor criterion from
causal inference [38]. A set of attributes C satisfies the backdoor
criterion w.r.t. A; and B if no attribute C € C is a descendant of A; or
B and all paths from B to A; which contain an incoming edge into A;
are blocked by C. For example, in Figure 3, Brand[p;], Quality[p1],
and Category[p;] satisfy the backdoor criterion with respect to
Sentiment[p;] and Rating[p;]. Using this criterion, we show (in the
full version) that the element Prp ;j(A; = a; | B=b,C =c,Aj =
aj, fiwuen) in the query result expression in Proposition 2 can be
estimated from Prp using the following calculations.

Prp u(Ai = a; | Aj = aj, pwuex) =

Z Prp,u(Ai = a; | C=c,Aj = aj, pwuen) Prp (C = ¢|A; = aj, pwuen)
cebom(C)
Thefi rst probability term can be simplified as:
Prpu(Ai = a; | C = c,Aj = aj, pwuen) = Zpevon(B) PID,U(Ai = a;
B=0b,C = cAj = aj,ywHEN) -Prp(B=0b|C = cAj= aj,,uwHEN)‘

Session 22: Provenance and Uncertainty

Usk (...)
WHEN Brand = ‘Asus’ AND Category = ‘Laptop’

/* same as Figure 4 x/

HowToUppATE Price, Color
LivrT 500 < Post(Price) < 800 AND
L1(Pre(Price), Post(Price))< 400
ToMaximize AvG(Post(Rtng))
For (Pre(Category) =" Laptop’ Or
Pre(Category) =" DSLR Camera’) AND Brand =’ Asus’

Figure 5: How-to query asking “how to maximize the average
rating of Asus laptops and cameras over the determined view
by changing the price and/or color of Asus laptops so that it
will not drop below 500 and increase above 800, and will be
at most 400 away from it original value?”

This shows that the query output relies on Prp y(A; = a; | B =
b,C =c,Aj = aj, pwuzn), Which can be estimated from Prp using
equation (1). Using these probability calculations, we estimate the
query output from the input data distribution Prp. The equations
require that we iterate over the values in the domain of B and C,
which can be inefficient as the domain set size increases exponen-
tially with the number of attributes in the set. However, the majority
of the values in Dom(C) would have zero-support in the database
D, implying Prp(C = c|A;j = aj, pwuen) = 0 for C = c. Therefore,
we build an index of values in Dom(C) to efficiently identify the
set of values that would generate a positive probability-value. This
optimization ensures that the runtime is linear in the database size.

4 PROBABILISTIC HOW-TO QUERIES

How-to queries support reverse data management (e.g., [34]), and
suggest how a given mutable attribute can be updated to optimize
the output attributes subject to various constraints. In this section
we describe the syntax of probabilistic how-to queries supported
by HyYPER (Section 4.1), describe their semantics (Section 4.2), and
present algorithms to compute their answers (Section 4.3). How-to
queries are computed by solving an optimization problem over
several relevant what-if queries.

4.1 Syntax of Probabilistic How-To Queries

The syntax of how-to queries in HYPER is similar to that of what-if
queries (see Figures 4 and 5, and Section 3.1). How-to queries have
two parts. Thefi rst part uses the required UsE operator and is iden-
tical to the USE operator in the what-if queries in its functionality
— it defines the relevant view V"¢ that contains the key of the
relation containing the update attribute, and includes all attributes
used in the second part of the query; attributes coming from other
relations are aggregated.

The optional WHEN and FoRr operators have the same func-
tions as in what-if queries. The WHEN operator specifies the set S on
which an update U = up g r, s can be applied, whereas the For oper-
ator defines the subset on which the effect is estimated. Like what-if
queries, WHEN only includes pre-update values PRE(A), whereas
For can include both pre- and post-update values PRE(A), POsT(A).

The required HowToUPDATE operator corresponds to the
UPDATE operator of what-if queries, and uses PRE(A), but instead

1605

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

of specifying an attribute (or a set of attributes) to update, it speci-
fies the set of mutable attributes that can be updated. In Figure 5,
‘HowToUpPDATE Price, Color’ states that any combination of these
three attributes can be updated, and some attributes can be left un-
changed as well. To ensure that the updates on these attributes are
valid, our algorithms assume that, for any pair of the attributes men-
tioned in this clause Aj, Ay, there are no paths in the ground causal
graph of the PRCM between A1 [¢] and A [t'] for any #,¢” € D.
Possible outputs of the how-to queries are of these forms
for each attribute A specified in the HowToUPDATE operator: (i)
UpPDATE(B) =< const >, (ii) UPDATE(B) =< const > X PRE(B), (iii)
UpPDATE(B) =< const > + Pre(B), and UpDATE(B) = no change,
where < const > is a constant found by our algorithms from the
search space. One example output of this HowToUpdate query is

{Price: 1.1x, Color: no change}

stating the price should be increased by 10%, the color should be
changed to red, and the category should not be changed.

The optional Limit operator states the constraints for optimiza-
tion, i.e., it defines the conditions that restrict the post-update values
of update attributes specified in the HowToUPDATEUPDATE opera-
tor for tuples in V" el that satisfy the WHEN operator. In particular,
if an attribute A is numeric, its updates can be bounded by numeric
limits, e.g., I < PosT(A) < h, PosT(A) < PRe(A)+ < const >,
PosT(A) < PRE(A)X < const >, etc., and if A is categorical or
numeric, the user can specify the permissible values as a set, e.g.,
PosT(A) IN (v1,v2,v3). Furthermore, this operator allows users to
specify the maximal or minimal L1 distance between the original
attribute values (PRE(A)) and the updated ones (PosT(A)) for at-
tributes A in the HowToUpdate operator for the tuples satisfying
the condition in the WHEN operator: L1(PosT(A), PRE(A)) takes a
vector of values V,, and V,, [i] is an update value of the i’th attribute
mentioned in the LimIT operator, and returns the normalized L1
distance between the original value vector and the vector of up-
date values |V, — Vorigl- The L1 operator helps model the cost of
an update (with suitable weights) as some updates can be more
expensive than the others.

Finally, the how-to query needs to include a required TOMAXIMIZE
or TOMINIMIZE operator, which specifies an aggregated value
of an attribute from the relevant view V"¢ that is to be maxi-
mized or minimized using the updates on the attributes specified
in the HowToUPDATE operator. Only post-update values PosT(A)
of attributes are allowed in ToMAx1mIZE and TOMINIMIZE.

ExaMpLEY. Consider the query in Figure 5. It asks for the max-
imum value of the average value of Rtng (HowToUpdate) by up-
dating the tuples with Brand ‘Asus’, Category ‘Laptop’
(WHEN). The attributes allowed to be updated are Price, Color
(HowToUpdate). The update to the Price attribute is restricted to
[500, 800], where distance between the original values and the up-
dated values in this attribute has to be < 400. The average of Rtng is
computed over the view defined by the For operator.

4.2 Semantics of Probabilistic How-To Queries

We next define the results of how-to queries in terms of what-if
queries. Intuitively, every how-to query optimizes over a set of what-
if queries, where each what-if query contains a possible update
allowed in the how-to query. Assuming, without losing generality,

Session 22: Provenance and Uncertainty

that the how-to query contains a TOMAXIMIZE operator, the result of
the how-to query is then the what-if query that yields the maximum
result of the output attribute in the TOMAXIMIZE operator of the
how-to query, subject to the constraints on post-update values of
attributes specified in the Limit operator.

DEFINITION 7 (CANDIDATE WHAT-IF QUERY). Given a how-to
query Qg that includes (i) a TOMAXIMIZE operator of Agg(Post(Y)),
(ii) a HowToUPDATE operator with update attributes By, . .., B¢, and

PosT(B;)) < 0;, Vi € [1,c] (if there are no constraints on the range
for B;, Ri = Dom(B;) and if no L1 constraint is specified, 0; = o), a
candidate what-if query is a what-if query Qv such that:
o The Use, WHEN, and FoRr operators in Qyy are identical to
the ones in QyT,
e Qg contains UPDATEBj, = by, ..., Bj, = by, where{j, ..
c{L,...,¢c},bi e R, andLl(PRE(Bji),POST(Bji)) < 0j;.

.)’

(iii) a LimIT operator that specifies permissible ranges R; and L1(PRE(B;

ik}

e The OuTPUT operator in Qv specifies the attribute Agg(Post(Y))

from the TOMAXIMIZE operator in QHT.
This query is denoted as Qwy((Bj,, b1), - .., (Bi., bc)). The set of all
candidate what-if queries for a how-to query QT is denoted by
Qwhatif(QHT)-
ExampLEL0. A candidate what-if query Qwr((Price, 500)) for

the how-to query depicted in Figure 5 is given below (USE operator is
the same as that in Figure 4):

Use (...)
WHEN Brand = ‘Asus’ AND Category = ‘Laptop’
UPDATE Price = 500
Output AvG(PosT(Rating))
For (Pre(Category) =" Laptop’ Or
Pre(Category) = DSLR Camera’) AND Brand =" Asus’

In particular, the update on the Price attribute is in [500, 800] and
satisfies the L1 distance since the original price of the Asus laptop is
529, and the rest of the query is identical to the query in Figure 5.

We now define the result of a how-to query that optimizes over
the result of all candidate what-if queries.

DEeFINITION 8 (HOW-TO QUERY RESULT). Given a database D and
a how-to query QT with a TOMAXIMIZE operator, the result of Qg
is defined as argmawajegwha”f(QHT)valwhatif(QWI,D), where
valyhatir (Qwr, D) denotes the result of the what-if query Qwr on
D as defined in Definition 5; ToMinimize is defined similarly.

We take the argmax of Q, payif (QnT) since a how-to query asks
about the manner in which the database needs to be updated and
not about the result. This corresponds to the output we defined
and demonstrated in Section 4.1. Definition 8 requires taking the
maximum over a large set of candidate what-if queries, which can
even be infinite if the domain is continuous. In the next section, we
provide optimizations to make their computation feasible.

4.3 Computation of How-to queries

The naive approach to compute the result of a how-to query by
Definition 8 is inefficient as it evaluates a large number of can-
didate what-if queries. Instead, we model the problem of com-
puting the result of how-to queries as an Integer Program (IP).

1606

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

Denote by U = {Bj,---, B} the set of update attributes in the
HowToUPDATE operator. For each attribute B; € U, we enumer-
ate all permissible updates (denoted by Sp;) and define an indi-
cator variable p, for every b; which denotes the potential up-
dated value of attribute B;. For example, Spyjce can consist of
the following updates: {1.1 x Pre(Price), 1.2 x Pre(Price),...,
2.5 x Pre(Price), 100 + Pre(Price), 200 + Pre(Price),...,

500 + Pre(Price), 250 ,300,..., 600}.

The elements of set S4 are defined such that all these updates
satisfy the constraints mentioned in Limit operator. If the set of
potential updates is continuous, we bucketize them so that we can
treat their values as discrete. Given a set Sg; and variables &, for all
b; € Sp;, we add a constraint for each attribute that 3, €S Op, <1
to ensure that at most one of the updates is performed. If &, is zero
for all values in Sp,, then B; is not updated. Given this formulation,
the corresponding what-if query is estimated as a linear expression
by using Proposition 2 and training a regression function over the
dataset D. Let this linear function be ¢ : Dom(U) — O, where O is
the range of the output of candidate what-if queries. The following
IP models the solution to the how-to query using the variables &,

argmax ¢ (D, Z Sp, b1, s Z Spebe) (6)

b1eSp, bceSp,
subject to Z Op; <1, Vi=1toc (7)
bieSp;
5bi e {0,1}, Vb; GSBi,VizltOC (8)

In addition to these constraints, additional constraints are added
to the IP based on the constraints in the Limit operator. Since all
constraints and the objective function are linear equations, we lever-
age standard IP solvers to calculate the output of the HowToUpdate
query®. Note that the number of constraints in the IP grows linearly
with the number of attributes in U and the number of variables
grows linearly in the number of possible updates for each attribute.

Extension to preferential multi-objective optimization. Hy-
PER can be adapted to the settings where an user aims to optimize
multiple objectives that are lexicographically ordered based on pref-
erence. Consider an ordered set of preferences py, ..., p; where
each preference p; is less important than p; for j < i. In this case,
we propose to solve IP iteratively as follows. First, we can solve
the optimization problem for thefi rst preference p; as described
above, ignoring other preferences. In the second iteration, the iden-
tified objective value of thefi rst objective is added as a constraint
to maximize the second preference py. In this way, all previously
solved objectives are added as constraints while optimizing for a
preference p;. The solution to the last IP that optimizes for p; where
all other preferences are added as constraints is returned as the
final solution to the preferential multi-objective optimization.

ExampLE1l. Consider the database in Figure 1 and a how-to query
that aims to maximize the average ratings as afi rst priority and the
average sentiment as a second priority. In thefi rst IP, we will solve
for the clause ToMAaximize AvG(PosT(Rtng)), where Rtng are the
ratings. Suppose the maximum average rating we get is c. We then
solve the IP for the clause ToMAximize AvG(PosT(Sentiment)) and
add the constraint that (Avc(PosT(Rtng))) will equal c.

3 As an alternate formulation, our framework allows optimizing the cost (L1 distance

between the original attribute and the updated value) while adding a constraint on
the aggregated attribute. We discuss more details in the full version [22].

Session 22: Provenance and Uncertainty

5 EXPERIMENTS

We evaluate the effectiveness of HypER and its variants on various
datasets and answer the following questions:

(1) Do the results provided by HyPER make sense in real-world
scenarios?

(2) How does HYPER compare to other baselines for hypothetical
reasoning when the ground truth is available?

(3) How does the runtime of HYPER depend on query complexity
and dataset properties like number of tuples, the causal graph
structure, discretization of continuous attributes, and the
number of attributes in different operators of the query?

(4) How does combining a sampling approach with HYPER in-
fluences runtime performance and the quality of the results?

Our experimental study includes 5 datasets and 3 baselines that are
either inspired by previous approaches or simulate the absence of
a causal model. We provide a qualitative and quantitative evalua-
tion of HYPER, showing that it gives logical results in real-world
scenarios and achieves interactive performance in most cases.

Implementation and setup. We implemented the algorithms in
Python. HYpPER was run on a MacOS laptop with 16GB RAM and
2.3 GHz Dual-Core Intel Core i5 processor. We used random forest
regressor [51] to estimate conditional probabilities.

5.1 Datasets and Baselines
We describe the datasets and baselines used in this section.

Datasets. The following datasets and causal models were used.

The Adult income dataset [32] comprises demographic infor-
mation of individuals along with their education, occupation,
hours of work, annual income, etc. It is composed of a single
table. We used the causal graph from prior studies [11].
German dataset [20] contains details of bank account hold-
ers including demographic andfi nancial information along
with their credit risk. It composed of a single table and the
causal graph was used from [11].

Amazon dataset [28] is a relational database consisting of
two types of tables, as described in Figure 1, and the causal
graph is presented in Figure 2. We identified product brand
from their description, used Spacy [2] for sentiment analysis
of reviews and estimated quality score from expert blogs [1].
German-Syn is a synthetically generated dataset using the
same causal graph as German dataset [20]. It consists of a sin-
gle table. We consider two different versions for our analysis,
one with 20K records and the other with 1 million records.
Student-Syn dataset contains two different tables (a) Stu-
dent information consisting of their age, gender, country
of origin and their attendance. (b) Student participation at-
tributes like discussion points, assignment scores, announce-
ments read, and overall grade. Each student was considered
to enroll in 5 different courses and their overall grade is an
average over respective courses. This data was generated
keeping in mind the effect of attendance on class discussions,
announcements and grade. The causal model has student age,
gender and country of origin as the root nodes, which affect
their attendance and other performance related attributes.

1607

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

0.85 400 y_y_y v ™ ™
Hyper
0.80
—<~ Hyper-sampled
o 300
20.75 2
- o
3 @
o
20,70 2200
e <
30.65 g
o gmo
0.60 —¥— HypeR
HypeR-sampled
0.55 0 yp! p
1K 50K 100K 200K 0.00 025 050 0.75 1.00
Sample Size Sample Size (in millions)
(a) Solution quality (b) Running time

Figure 6: Effect of varying sample size on HyPER-sampled
output and running time for German-Syn (1M) dataset

Variations. In the experiments, HYPER is run assuming that back-
ground knowledge about the causal graph is known a priori. Addi-
tionally, we consider the following variations.

o HyPER-NB: when no causal model is available, all attributes
are assumed to affect the updated attribute and the output.

e HypPER-sampled: is an optimized version of HYpPER that
considers a randomly chosen subset of 100k records for the
calculation of conditional probabilities of Proposition 2. The
choice of sample size is discussed in Section 5.2

Baselines. We consider two different baselines of HYpER to evalu-
ate hypothetical queries:

o Indep baseline inspired by previous work using provenance
[16]: it ignores the causal graph and assumes that there is
no dependency between different attributes and tuples.

o Opt-HowTo baseline for how-to analysis where we compute
the optimal solution by enumerating all possible updates,
evaluating what-if query output for each update and choos-
ing the one that returns the optimal result.

5.2 HypER and HypeR-sampled

We evaluate the effectiveness of HYPER with its variant HYPER-
sampled to understand the tradeoff between quality and running
time. Figure 6 compares the effect of changing the sample size on
the quality of the output (Figure 6a) and running time (Figure 6b)
by HypER-sampled. Figure 6a shows that the standard deviation in
query output of HyPER-sampled reduces with an increase in sample
size and is within 1% of the mean whenever more than 100k sam-
ples are considered. In terms of running time, we observe a linear
increase in time taken to calculate the output. Due to low variance
of HypER-sampled for 100k samples and reasonable running time,
we consider 100k as the sample-size for subsequent analysis.

5.3 What-If Real World Use Cases

In this experiment, we evaluate the output of HYpER on different
hypothetical queries on various real-world datasets. Due to the ab-
sence of ground-truth, we discuss the coherence of our observations
with intuitions from existing literature.

German. We considered a hypothetical update offi xing attributes
‘Status’, ‘Credit history’, and ‘housing’ to their respective minimum
and maximum values to evaluate the effect of these attributes on
individual credit. Figure 7a demonstrates the query template, where
X, x,X2, xp are varied to evaluate the effect of different updates.
Whenever status or credit history are updated to the maximum

Session 22: Provenance and Uncertainty

Use D UppATE(B) = b OutpuTCOUNT (Credit = Good) FORPRE (A) =a

(a) What-if query (German dataset): What fraction of individuals
will have good credit if B is updated to b?

Use D UprpATE(B) = b

For Post(Income) > 50k ANDPRE (A) = a

OuTPUTCOUNT (%)

(b) What-if query (Adult dataset): How many individuals with at-
tribute A = a will have income > 50K if B is updated to b?
Figure 7: What-if queries for real world use cases

Table 1: Average Runtime in seconds for a CounT what-if query.
The time in (..) is by HYPER(-NB)-sampled, which has identical
runtime as HYPER(-NB) on all other datasets with < 100k tuples.

Dataset Att. [#] Rows[#] HypPeR HypeER-NB Indep
Adult [32] 15 32k 455 105s 3s
German [20] 21 1k 1.2s 12.5s 0.4s
Amazon [28] 5,3 3k, 55k 1.7s 10.5s 0.8s
Student-syn 3,6 10k,50k 4.5 12.3s 1.2s
German-Syn (20k) 6 20k 7.2s 22.45s 1.4s
German-Syn (1M) 6 1M 390s (44.5s) 1173s (132s) 73s
Query Output Query Output

0.0 0.5 1.0 15 0.0 0.5 1.0

Status %} Marital i’

Credit History ﬁ] Occupation il
Housing EI Education h
Investment | S 8y 1 Minimum Cassf ity e |
(a) German (b) Adult

Figure 8: What-if query output for German and Adult datasets
on updating each attribute to their min and max values; a
larger gap denotes higher attribute importance.

value, more than 81% of the individuals have good credit. Similarly,
updating these attributes to the minimum value reduces the credit
rating of more than 30% individuals. On the other hand, updating
other attributes like ‘housing’ and ‘investment’ affects the credit
score of less than 20% individuals. Figure 8a presents the effect of
updating these attributes to their minimum and maximum value.
Larger gap in the query output for Status and credit history shows
that these attributes have a higher impact on credit score. We also
tested the effect of updating pairs of attributes and observed that
updating ‘credit history’ and ‘status’ at the same time can
affect the credit score of more than 70% individuals. These
observations are consistent with our intuitions that credit history
and account status have the maximum impact of individual credit.

Adult. This dataset has been widely studied in the fairness literature
to understand the impact of individual’s gender on their income.
It has a peculiar inconsistency where married individuals report
total household income demonstrating a strong causal impact of
marital status on their income [45, 50, 56]. We ran a hypothetical
what-if query to analyze the fraction of high-income individuals
when everyone is married (Figure 7b). We observed that 38% of the
individuals have more than 50K salary. Similarly, if all individ-
uals were unmarried or divorced, less than 9% individuals

1608

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

have salary more than 50K. This wide gap in the fraction of
high-income individuals for two different updates of marital status
demonstrate its importance to predict household income. Figure 8b
shows the effect of updating the attributes with the minimum or
the maximum value in their domain. These observations match
the observations of existing literature [23], where marital status,
occupation and education have the highest influence on income.

Amazon. We evaluated the effect of changing price of products of
different brands on their rating. When all products have price more
than the 80‘" percentile, around 32% of the products have average
rating of more than 4. On further reducing the laptop prices
to 60! and 40" percentiles, more than 60% of the products
get an average rating of more than 4. This shows that reducing
laptop price increases average product ratings. Among different
brands, we observed that Apple laptops have the maximum increase
in rating on reducing laptop prices, followed by Dell, Toshiba, Acer
and Asus. These observations are consistent with previous studies
on laptop brands [3], which mention Apple as the top-quality brand
in terms of quality, customer support, design, and innovation.

5.4 Solution Quality Comparison

In this experiment, we analyzed the quality of the solution gener-
ated by HyPER with respect to the ground truth and baselines over
synthetic datasets. The ground truth values are calculated using
the structural equations of the causal DAG for the synthetic data.

What-if. For the German-Syn (1M) dataset, Figure 10a presents
the output of a query that updates different attributes related to
individual income and evaluates the probability of achieving good
credit. For all attributes, HyPER-sampled, and HyPER-NB estimate
the query output accurately with an error margin of less than 5%.
In contrast, Indep baseline ignores the causal structure and relies
on correlation between attributes to evaluate the output. Since, the
individuals with high status are highly correlated with good credit,
Indep incorrectly outputs that updating Status would automatically
improve credit for most of the individuals.

For the Student-Syn dataset, Figure 10b presents the average
grade of individuals on updating different attributes that are an in-
dicator of their academic performance. In all cases, HyPER-sampled
and HYPER-NB output is accurate while Indep is confused by corre-
lation between attributes and outputs noisy results. In addition to
these hypothetical updates, we considered complex what-if queries
that analyzed the effect of assignment and discussion attributes on
individuals that read announcements and have high attendance. In
these individuals, we observed that improving assignment score
has the maximum effect on the overall grade of individuals.

How-to. For the German-Syn (20k) dataset, we considered a how-
to query that aims to maximize the fraction of individuals receiv-
ing good credit. We provided Status, Savings, Housing and Credit
amount as the set of attributes in the HowToUpdate operator. Hy-
PER-sampled returned that updating two attributes i) account status,
and ii) housing attributes is sufficient to achieve good credit. This
showed that updating a single attribute would not maximize the
fraction of individuals with good credit. We evaluated the ground
truth (Opt-HowTo) by enumerating all possible update queries and
used the structural equations of the causal graph to evaluate the

Session 22: Provenance and Uncertainty

=3 Hyper-sampled
. Opt-discrete

3 Hyper-sampled
= Opt-discrete

i

8 10
Number of buckets

=
Q
ES

=
=)

.
2

Solution Quality
=
3

o
0
Running Time (seconds)

=
2

0.0

2 4 6 8
Number of buckets

10

(a) Solution quality (b) Running time
Figure 9: How-to Query output for German-Syn (20k) with
varying number of buckets.

post-update value of the objective function for each update. We
identified that HYPER’s output matches the ground truth update.

For the Student-Syn dataset, we evaluated a how-to query to
maximize average grades of individuals with a budget of updating
atmost one attribute. HyPER-sampled returned that improving indi-
vidual attendance provide the maximum benefit in average grades.
This output is consistent with ground truth calculated by evaluating
the effect of all possible updates (Opt-HowTo).

Effect of discretization. HYpER bucketizes all continuous at-
tributes before solving the integer program. In this experiment, we
evaluate the effect of number of buckets on the solution quality and
running time on a modified version of German-Syn (20k) dataset
that contains continuous attributes. We partitioned the dataset into
equiwidth buckets and compared the solution returned by HypeR-
sampled and the optimal solution calculated after discretization
(Opt-discrete) with the ground truth (OptHowTo). Figure 9a com-
pares the quality of HypER-sampled and Opt-discrete as a ratio of
the optimal value. We observe that the solution quality improves
with the increase in the number of buckets and the returned so-
lution is within 10% of the optimal value whenever we consider
more than 4 buckets. The time taken by Opt-discrete increases ex-
ponentially with the number of buckets, while the time taken by
HypER-sampled does not increase considerably as the number of
variables in the integer program depends linearly on the number of
buckets. This shows that running HypER-sampled over a bucketized
dataset leads to competitive quality in reasonable amount of time.

5.5 Runtime Analysis and Comparison

In this section, we evaluate the effect of different facets of the
input on the runtime of HypER. HYPER comprises two steps: (a)
creating the aggregate view on which the query should be computed
(done using a join-aggregate query), and (b) training regression
functions to calculate conditional probability in the calculation
of query output. This training is performed over a subset of the
attributes of the view computed in the previous step. Training a
regression function is more time-consuming than computing the
aggregate view in step (1). Therefore, HYPER is as scalable as prior
techniques for regression (we use a random forest regressor from
the sklearn package). Hence the parameters we consider include (1)
database size, (2) backdoor set size (see Section 3.3), and (3) query
complexity. Since the effect of (1), (2) on the runtime of what-if
query evaluation is directly translated to an effect on the runtime
of how-to query evaluation, for how-to queries, we focus on the

1609

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

Query Output
0.5 1.0

Query Output
50

0.0

Assignment
Status

Attendance

Savings

Announcement

Housing
Hand Raised

=1 Ground Truth
0 Hyper-sampled
" Hyper-NB

[Ground Truth
=3 Hyp pled
N Hyper-NB
= Indep

!]
Credit
Amount
== indep

(a) German-Syn (1M) (b) Students-Syn
Figure 10: What-If Query output.

Discussion

effect of the number of attributes in the HowToUPDATE operator
which will change the optimization function ¢ (see Section 4.3).

What-if: database size. Table 1 presents the average running
time to evaluate the response to a what-if query. To evaluate the
effect of database size on running time, we varied the number of
tuples in German-Syn dataset from 10K to 1M. Figure 11 compares
the average time taken by HyPER, HyPER-sampled with Indep for
five different What-If queries and Opt-HowTo for How-to queries.
We observed a linear increase in running time with respect to the
dataset size for all techniques except HyPER-sampled. The increase
in running time is due to the time taken to train a regressor which
is used to estimate conditional probabilities for query output calcu-
lation To answer a hypothetical query, aggregate view calculation
requires less than 1% of the total time. The majority of the time is
spent on calculating the query output using the trained regressor.
Therefore, the time taken by HypER-sampled does not increase
considerably when the dataset size is increased beyond 100K.

What-if: backdoor set size. This experiment changed the back-
ground knowledge to increase the backdoor set from 2 attributes to
6 attributes. The running time to calculate expected fraction of high
credit individuals on updating account status increased from 7.2
seconds when backdoor set contains age and sex to 22.45 seconds
when the backdoor set contains all attributes.

What-if: query complexity. In this experiment, we synthetically
add multiple attributes in the Student-syn dataset and the different
operators of the query to estimate their on running time.

On adding multiple attributes in the UsE operator, the time taken
to compute the relevant view increases minutely. For Student-Syn,
UsE operator was evaluated in less than 0.5 seconds when 5 different
attributes are added from other datasets. The increase in these
attributes do not affect the running time of subsequent steps unless
the attributes in For operator increase.

We now compare the effect of adding attributes in the For op-
erator of a Count query. Adding conditions involving Pre value
of attributes increases the number of attributes used to train the
regressor, which increases the running time (Figure 12a). Running
time increased from 4.2 seconds when FoR operator is empty to
12.1 seconds and 17.7 seconds when it contains 5 and 10 attributes,
respectively. In contrast, Indep is more efficient as it does not use ad-
ditional attributes to compute query output. However, if the added
attribute is in the backdoor set, then the output is evaluated faster.
To understand the effect of adding such attributes, we considered a
query where the backdoor set contained 10 attributes. To evaluate

Session 22: Provenance and Uncertainty

400
—¥— HypeR 4000/ —¥— HypeR
HypeR-sampled HypeR-sampled

@ —&— Ind i —B— Opt-HowTo
%300 ndep 23000 p
[=4 i=
o o
S S
#200 &
£ £2000
2 2
=100 r././././‘/. 1000

o o ey

0.00 025 050 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Dataset Size (in millions) Dataset Size (in millions)
(a) What-if query (b) How-to query
Figure 11: Running Time comparison on varying dataset size
for German-Syn dataset averaged overfi ve different queries.

17.5 —%— HypeR-sampled
15.0 —® Indep

—¥— HypeR-sampled
—#— Opt-HowTo

5000

4000

% Z

2125 2

S S

210.0 3000

£ £

9 75 22000

£ o £

=S F 1000

25

=== —a 0 v
00 25 50 75 100 6 8 10

Attributes Attributes
(a) What-if (For operator) (b) How-to (HowToUpdate)

Figure 12: Running Time comparison on varying number of
attributes in different operators for Student-Syn dataset.

the output, HYPER required 49.7 seconds and the time reduced to
7.4 seconds when 5 conditions on these attributes are added.

How-to: query complexity. Figure 12b presents the effect of the
number of attributes in HowToUpdate operator on the time taken
to process the query. Increasing attributes leads to a linear increase
in the number of variables in the integer program (IP). Therefore,
the time taken by HypER-sampled increases from 7 seconds for 5
attributes to 20 seconds for 10 attributes. In contrast, Opt-HowTo
considers all possible combinations of attribute values in the domain
of attributes in the HowToUpdate operator. It takes around 4 minutes
for 5 attributes and more than 90 minutes for 10 attributes, justifying
the usefulness of the IP based formulation.

6 RELATED WORK

We review relevant literature in hypothetical reasoning in databases,
probabilistic databases, and causality. The main distinction of this
paper from previous work is a framework that allows for hypothetical
reasoning over relational databases using a post-update distribution
over possible worlds that is able to capture both direct and indirect
probabilistic dependencies between attributes and tuples using a prob-
abilistic relational causal model.

Previous work has focused on What-if and How-to analysis
mainly in terms of provenance and view updates. Due to its prac-
ticality, and real applications like evaluating business strategies,
there have been several works that developed support for hypothet-
ical what-if reasoning in SQL, OLAP, and map-reduce environments
[9, 29, 31, 37, 55]. What-if reasoning through provenance updates
have been studied in [7, 16-18] to efficiently measure the direct
effect of updating values in the database on a view created by the
query. Nguyen et. al. [36] study the problem of efficiently perform-
ing what-if analysis with conflicting goals using data grids. Other

1610

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

works have considered models for hypothetical reasoning in tem-
poral databases [8, 27], where Arenas et. al. [8] focused on a logical
model in which each transaction updates the database and the goal
is to answer a query about the generated sequence of states, without
performing the update on the whole database, and GreyCat [27] fo-
cused on time-evolving graphs. Christiansen et. al. [12] propose an
approach that considers a single possible world and then modifies
the query evaluation procedure within a logic-based framework.
Another part of hypothetical reasoning is how-to queries which
have been explored mostly in terms of provenance updates [33-35]
that compute their results with hypothetical updates modeled as
a Mixed Integer Program. MCDB [30] allows users to create an
uncertain database that has randomly generated values in the at-
tributes or tuples (that may be correlated with other attributes or
tuples). These are generated using variable generation functions
that can be arbitrarily complex. It then evaluates queries over this
database using Monte Carlo simulations. Eisenreich et. al. [21] pro-
pose a data analysis system allowing users to input attribute-level
uncertainty and correlations using histograms and then perform
operations on the data such as aggregating orfi ltering uncertain
values. We note that uncertainty in databases has been studied in
previous work on probabilistic databases [4, 6, 14, 15, 48], where
each tuple or value has a probability or confidence level attached
to it, and in stochastic package queries [10] that allow for optimiza-
tion queries on stochastic attributes. We adapt and use the concept
of block-independent database model from probabilistic databases
[14, 41] in this paper. The framework suggested in this paper uses a
probabilistic relational causal model [46] to model updates as inter-
ventions and generate the post-update distribution that describes
the dependencies between the attributes and tuples. There is a vast
literature on observational causal inference on stored data in Al and
Statistics (e.g., [5, 13, 25, 26, 38, 42-44, 49]), and we use standard
techniques from this literature to compute query output.

7 CONCLUSIONS

We have defined a probabilistic model for hypothetical reason-
ing in relational databases. While the post-update distribution can
stem from any probabilistic model, we focus here on causal models.
We develop HYPER: a novel framework that supports what-if and
how-to queries and performs hypothetical updates on the database,
measures their effect, and computes the query results. Our frame-
work includes new SQL-like operators to support these queries for
testing different hypothetical scenarios. We prove that the query
output can be computed using causal inference and we further
devise optimizations. We show that our approach provides query
results that are rational and account for implicit dependencies in the
database. In future work, we plan to add support for multi-attribute
updates consisting of dependent attributes and also account for
database constraints and other semantic constraints. Extensions to
cyclic dependencies of attributes in causal graphs is an intriguing
future work. We also plan to develop an interactive UI, where users
can pose and explore hypothetical queries.

ACKNOWLEDGMENTS

This work is partially supported by the NSF awards IIS-1552538,
11S-1703431, 11S-1814493, I1S-2008107, 11S-2112606, and I1S-2127309.

Session 22: Provenance and Uncertainty

REFERENCES

—

[2
(3]

[4

Pcmag (fhttps://www.pcmag.com/}).

Spacy https://spacy.io/.

Top laptop brands in the world https://www.globalbrandsmagazine.com/top-
laptop-brands-in-the-world/, 2021.

P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. U. Nabar, T. Sugihara,
and J. Widom. Trio: A system for data, uncertainty, and lineage. In PVLDB, pages
1151-1154, 2006.

[5] J. D. Angrist, G. W. Imbens, and D. B. Rubin. Identification of causal effects

[12]
[13]

[14]

[16

[17]

[18

[19]

[23

[24

[25

[26

[27]

™
&

[29

using instrumental variables.
91(434):444-455, 1996.

L. Antova, C. Koch, and D. Olteanu. Maybms: Managing incomplete information
with probabilistic world-set decompositions. In ICDE, pages 1479-1480, 2007.
B. S. Arab and B. Glavic. Answering historical what-if queries with provenance,
reenactment, and symbolic execution. In USENIX, 2017.

M. Arenas and L. E. Bertossi. Hypothetical temporal reasoning in databases. }.
Intell. Inf. Syst., 19(2):231-259, 2002.

A. Balmin, T. Papadimitriou, and Y. Papakonstantinou. Hypothetical queries in
an OLAP environment. In PVLDB, pages 220-231, 2000.

M. Brucato, N. Yadav, A. Abouzied, P. J. Haas, and A. Meliou. Stochastic package
queries in probabilistic databases. In SIGMOD, pages 269-283, 2020.

S. Chiappa. Path-specific counterfactual fairness. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 7801-7808, 2019.

H. Christiansen and T. Andreasen. A practical approach to hypothetical database
queries. In DYNAMICS, volume 1472, pages 340-355, 1998.

L. A. Cox Jr. Probability of causation and the attributable proportion risk. Risk
Analysis, 4(3):221-230, 1984.

N. N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: diamonds in the dirt.
Commun. ACM, 52(7):86—94, 2009.

N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases.
VLDB ¥, 16(4):523-544, 2007.

D. Deutch, Z. G. Ives, T. Milo, and V. Tannen. Caravan: Provisioning for what-if
analysis. In CIDR, 2013.

D. Deutch, Y. Moskovitch, and N. Rinetzky. Hypothetical reasoning via prove-
nance abstraction. In SIGMOD, pages 537-554, 2019.

D. Deutch, Y. Moskovitch, and V. Tannen. Provenance-based analysis of data-
centric processes. VLDB J., 24(4):583-607, 2015.

H. Donner, K. Eriksson, and M. Steep. Digital cities: Real estate development
driven by big data. Technical report, Working Paper. 2018. Available online:
https://gpc. stanford. edu ..., 2018.

D. Dua and C. Graff. UCI machine learning repository, 2017.

K. Eisenreich and P. Rosch. Handling uncertainty and correlation in decision
support. In Proceedings of the Fourth International VLDB workshop on Management
of Uncertain Data (MUD 2010), volume WP10-04, pages 145-159, 2010.

S. Galhotra, A. Gilad, S. Roy, and B. Salimi. Hyper: Hypothetical reasoning
with what-if and how-to queries using a probabilistic causal approach. CoRR,
abs/2203.14692, 2022.

S. Galhotra, R. Pradhan, and B. Salimi. Explaining black-box algorithms using
probabilistic contrastive counterfactuals. In SIGMOD, pages 577-590, 2021.

M. Golfarelli and S. Rizzi. What-if simulation modeling in business intelligence.
Int. . Data Warehous. Min., 5(4):24-43, 2009.

S. Greenland. Relation of probability of causation to relative risk and doubling
dose: a methodologic error that has become a social problem. American journal
of public health, 89(8):1166-1169, 1999.

S. Greenland and J. M. Robins. Epidemiology, justice, and the probability of
causation. Jurimetrics, 40:321, 1999.

T. Hartmann, F. Fouquet, A. Moawad, R. Rouvoy, and Y. L. Traon. Greycat:
Efficient what-if analytics for data in motion at scale. Inf. Syst., 83:101-117, 2019.
R. He and J. J. McAuley. Ups and downs: Modeling the visual evolution of fashion
trends with one-class collaborativefi Itering. In WWW, pages 507-517, 2016.

H. Herodotou and S. Babu. Profiling, what-if analysis, and cost-based optimization
of mapreduce programs. PVLDB, 4(11):1111-1122, 2011.

Journal of the American statistical Association,

1611

[38

(39]

[40]

(51

[52

[53

[54]

[56

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M. Jermaine, and P. J. Haas. MCDB: a
monte carlo approach to managing uncertain data. In SIGMOD, pages 687-700,
2008.

L. V. S. Lakshmanan, A. Russakovsky, and V. Sashikanth. What-if OLAP queries
with changing dimensions. In ICDE, pages 1334-1336, 2008.

M. Lichman. Uci machine learning repository, 2013.

A. Meliou, W. Gatterbauer, and D. Suciu. Bringing provenance to its full potential
using causal reasoning. In TaPP, 2011.

A. Meliou, W. Gatterbauer, and D. Suciu. Reverse data management. PVLDB,
4(12):1490-1493, 2011.

A. Meliou and D. Suciu. Tiresias: the database oracle for how-to queries. In
SIGMOD, pages 337-348, 2012.

Q. V. H. Nguyen, K. Zheng, M. Weidlich, B. Zheng, H. Yin, T. T. Nguyen, and
B. Stantic. What-if analysis with conflicting goals: Recommending data ranges

for exploration. In ICDE, pages 89-100, 2018.
S. Nieva, F. Saenz-Pérez, andJ Sanchez-Hernandez. HR- SQL: extending SQL with

hypothetical reasoning and improved recursion for current database systems.
Inf. Comput., 271:104485, 2020.

J. Pearl et al. Causal inference in statistics: An overview. Statistics surveys,
3:96-146, 2009.

B. Qureshi. Towards a digital ecosystem for predictive healthcare analytics. In
MEDES, pages 34-41, 2014.

S. Ramakrishnan, K. Nagarkar, M. DeGennaro, K. Srihari, A. K. Courtney, and
F. Emick. A study of the CT scan area of a healthcare provider. In Proceedings of
the conference on Winter simulation, pages 2025-2031, 2004.

C. Ré and D. Suciu. Materialized views in probabilistic databases for information
exchange and query optimization. In VLDB, pages 51-62, 2007.

D. W. Robertson. Common sense of cause in fact. Tex. L. Rev., 75:1765, 1996.

J. Robins and S. Greenland. The probability of causation under a stochastic model
for individual risk. Biometrics, pages 1125-1138, 1989.

D. B. Rubin. Causal inference using potential outcomes: Design, modeling,
decisions. Journal of the American Statistical Association, 100(469):322-331, 2005.
B. Salimi, J. Gehrke, and D. Suciu. Bias in OLAP queries: Detection, explanation,
and removal. In Proceedings of the 2018 International Conference on Management
of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages
1021-1035, 2018.

B. Salimi, H. Parikh, M. Kayali, L. Getoor, S. Roy, and D. Suciu. Causal relational
learning. In SIGMOD, pages 241-256, 2020.

S. K. Singh and J. B. Lee. How to use what-if analysis in sales and operations
planning. The Journal of Business Forecasting, 32(3):4, 2013.

D. Suciu. Probabilistic databases for all. In PODS, pages 19-31, 2020.

J. Tian and J. Pearl. Probabilities of causation: Bounds and identification. Annals
of Mathematics and Artificial Intelligence, 28(1-4):287-313, 2000.

F. Tramér, V. Atlidakis, R. Geambasu, D. Hsu, J.-P. Hubaux, M. Humbert, A. Juels,
and H. Lin. Fairtest: Discovering unwarranted associations in data-driven appli-
cations. In IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,
2017.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestRegressorhtml. Random forest regression — sklearn python
library.

T. J. VanderWeele and W. An. Social networks and causal inference. Handbook of
causal analysis for social research, pages 353-374, 2013.

Y. Zhang, H. Chen, H. Sheng, and Z. Wu. Applying hypothetical queries to
e-commerce systems to support reservation and personal preferences. In IDEAS,
pages 46-53, 2007.

E. Zheleva and D. Arbour. Causal inference from network data. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages
4096-4097, 2021.

G. Zhou and H. Chen. What-if analysis in MOLAP environments. In FSKD, pages
405-409, 2009.

L. Zliobaite, F. Kamiran, and T. Calders. Handling conditional discrimination. In
Proceedings of the 2011 IEEE 11th International Conference on Data Mining, page
992-1001, 2011.

