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Abstract

In this manuscript, we consider the problem of relating functional connectivity mea-
surements viewed as statistical distributions to outcomes. We demonstrate the utility
of using the distribution of connectivity on a study of resting-state functional mag-
netic resonance imaging association with an intervention. The method uses the esti-
mated density of connectivity between nodes of interest as a functional covariate.
Moreover, we demonstrate the utility of the procedure in an instance where connec-
tivity is naturally considered an outcome by reversing the predictor/response rela-
tionship using case/control methodology. The method utilizes the density quantile,
the density evaluated at empirical quantiles, instead of the empirical density directly.
This improved the performance of the method by highlighting tail behavior, though
we emphasize that by being flexible and non-parametric, the technique can detect
effects related to the central portion of the density. To demonstrate the method in an
application, we consider 47 primary progressive aphasia patients with various levels
of language abilities. These patients were randomly assigned to two treatment arms,
transcranial direct-current stimulation and language therapy versus sham (lan-guage
therapy only), in a clinical trial. We use the method to analyze the effect of direct
stimulation on functional connectivity. As such, we estimate the density of cor-relations
among the regions of interest and study the difference in the density post-
intervention between treatment arms. We discover that it is the tail of the density,
rather than the mean or lower order moments of the distribution, that demonstrates

a significant impact in the classification. The new approach has several benefits.
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Among them, it drastically reduces the number of multiple comparisons compared
with edge-wise analysis. In addition, it allows for the investigation of the impact of
functional connectivity on the outcomes where the connectivity is not geometrically
localized.
KEYWORDS
density regression, functional connectivity, random graph

1 | INTRODUCTION

The study of resting-state brain connectivity via functional magnetic
resonance imaging (fMRI) involves the investigation of correlations
between cortical seeds, regions, or voxels (henceforth referred to as
foci). Friston, in particular, defined functional connectivity as the cor-
relations, over time, between spatially distinct brain regions
(Friston, 2011). Nearly all inter-subject investigations of connectivity
have focused on localized correlations. That is, they consider correla-
tions between foci treated consistently across subjects. Mathemati-
cally, this can be described as saying that the methods are not
invariant to subject-specific relabeling of the foci. In fact, for most
methods, such as pairwise regressions on correlations across subjects
or decomposition methods, shuffling foci labels within subjects is a
form of null distribution. Furthermore, this lack of invariance applies
regardless of the degree of granularity of the analysis, from regions to
seeds to voxels (Bastos & Schoffelen, 2016; Damoiseaux &
Greicius, 2009; Friston, 2011). The methods and choice of granularity
all center the focus on geographic consistency of correlations across
groups of similar subjects. Individual topography (Kong et al.,, 2019)
and functional connectivity alignment (Haxby et al., 2020) are another
set of methods that allow for spatially inconsistent relationships
beyond subject-specific structure. However, their effort of finding
subject-specific parcellation/transformation is still for the purpose of
localization. Other exceptions include many variations of graph
theory-based methods, where graphical features may not be localized
across subjects in the sense of summarizing multiple connections
(Shen et al., 2017) or being invariant to subject-specific foci labels
(Koutra et al., 2013; Vogelstein et al., 2012).

To illustrate the idea of label invariance, consider a scenario
where one reduces the connectivity measures to subject-specific
binary graphs (by thresholding). If the effect of the graphs on the out-
comes is invariant to the nodes (foci) corresponding to the edges, then
clearly it is sufficient to know the number of edges that are present
for each subject's graph, since given that information one can create
the set of equivalent graphs under node invariance. This is equivalent
to saying the relationship between the outcome and connectivity
graph, is solely dependent on the estimated probability distribution
for the edges under an assumed independent and identically distrib-
uted edge distribution, since that distribution only depends on the
total number of edges. (This is the Erdps-Rényi random graph model.)
Our approach formally builds on this idea. But we further consider a

random weighted graph model rather than thresholding to obtain

binary edges, and propose a specific functional linear model for the
relationship between outcomes and the connectivity density.

We demonstrate the benefits of using the distribution of resting
state correlations as covariates using functional data analysis tools.
We suggest the use of the quantile density, the density of connec-
tions evaluated at evenly spaced quantiles of the connections, as this
improves performance. Regardless of these choices, utilizing connec-
tivity density regression has several benefits. A primary one is the
relaxation of the consistent localization assumption across subjects. In
the Appendix A, we demonstrate mathematically how connection
densities achieve this invariance. Localization analyses make the,
often unchallenged, assumption that pairs of foci represent the same
correlated functional specialization across exchangeable subjects. This
assumption is grounded in the neurological theory of functional spe-
cialization dating back to the foundational works of Broca and Weir-
nicke (Broca, 1861; Wernicke, 1874). However, it is clear that in
specific applications and biological settings, the neural geography of
functional specialization can vary. As an extreme example, subjects
with brain damage in their youth often have the neuroplasticity that
remaps a function to atypical areas (Finger & Almli, 1985).

Hyperalignment (Haxby et al., 2020) also allows for a high degree
of subject-specific functional specialization. However, unlike connec-
tivity density regression, localization remains the goal in hyperalign-
ment, and therefore, a multiparameter alignment transformation must
be estimated per subject. Connectivity density analysis can be seen as
a complementary, technique that does not require the estimation of
subject-specific alignment. Further, focusing on connectivity densities
drastically simplifies the problem and reduces multiplicity concerns.
Of course, these benefits come at the cost of not considering poten-
tially relevant localization information, and so the technique cannot
be more sensitive to the detection of localized effects with a reduced
search space and correct a priori localization hypotheses. It would be
accurate to say that focusing on connectivity densities in analysis lies
at one end of the spectrum of model localization assumptions,
whereas pair at a time models lie at the other extreme and hyperalign-
ment lying somewhere in the middle.

There are existing studies that utilize the distribution of resting
state correlations. For example, Petersen and Mulller (2016) consider
the distribution of correlations between a seed voxel and all other
voxels within regions of interest (ROI), to summarize the ROI state.
Also, Scheinost et al. (2012) further considered such distributions
across all pairs of voxels. This work derived a degree function from

the connection density as a summary of the connectivity of each



2 | WILEY

TANG kT aL.

Combined (n = 47) tDCS (n= 25)
Sex 22F, 25M 11F, 14M
PPA variant 15L, 23N, 9S 9L, 12N, 4S
Age 67.3 (6.8) 65.8 (8.1)
Year post onset 4.2 (2.8) 4.3 (3.2)
Language severity 1.7 (0.8) 1.7 (0.9)
Total severity 6.3 (4.5) 5.7 (3.9)

Sham (n = 22) TABLE 1 Patient demographics

11F, 11M
6L, 11N, 55
69.1(5.0)
4.0(2.3)
1.8(0.8)
7.0 (5.2)

Note: For age, years post-onset, severity, values shown are mean (SD). The p-values are from the Welch

two sample t-tests for continuous outcomes and Fisher's exact test for categorical outcomes. Language
severity is based on the language subset from the FTD-CDR scale. Total severity refers to the sum of

boxes, including language and behavior as added in Knopman et al. (2008).

voxel. As a result, these studies continue to focus on localized effects,
where the use of the connectivity density is mainly to achieve a more
informative localized summary of brain connectivity.

This study is motivated by a resting-state fMRI study of primary
progressive aphasia (PPA) patients, where it is feasible to want to
relax the geometric localization assumption. In the study, the patients
were randomly assigned into two treatment groups, (a) transcranial
direct-current stimulation (tDCS; Nitsche et al., 2008) and language
therapy versus (b) a sham tDCS and language therapy only. In the
tDCS group, the nominal stimulation target was the left inferior fron-
tal gyrus (IFG). Since the actual area of stimulation may vary, even if
only slightly, it is relevant to consider models that are less dependent
on localization. In addition, the stimulation electrode patches were
size of 5 5 = 25 cm’ Thus, the stimulation areas may have
extended beyond the left IFG in a way that may induce additional var-
iation across subjects that would also motivate considering techniques
that are robust to violations of localization assumptions. Here, we pro-
pose a novel approach to represent the effect of stimulation on func-
tional connectivity. By ignoring spatial heterogeneity, we directly
study the change on the distribution of correlation between the ROIs.

The manuscript is organized as follows. In Section 2, the experi-
mental design and approach are introduced. Results both for simu-
lated and real data are shown in Section 3. Section 4 contains a

summary and discussion.

2 | MATERIALAND METHODS

2.1 | Experimental design

The data analyzed in this study were part of a larger randomized,
double-blinded, sham-controlled, crossover study on aphasia treat-
ment using tDCS. All of the analyzed subjects had at least 2 years of
progressive language deficit and no history of any other neurological
condition that may have affected their language ability. Subjects had
atrophy predominantly in the left hemisphere. Subjects were diag-
nosed via neuropsychological testing, language testing, MRI, and clini-
cal assessment according to consensus criteria (Gorno-Tempini

et al,, 2011). The study was approved by the Johns Hopkins Hospital

Institutional review board and all subjects provided informed consent
to participate in the study.

Each subject was diagnosed with one of the PPA variant types:
logopenic, nonfluent, or semantic. Randomization was conducted
within each variant type with an equal probability assigned to either
the tDCS or sham group. As shown in Table 1, the two groups are bal-
anced in both demographic and clinical characteristics. The language
component of severity was evaluated based on the revised fronto-
temporal dementia clinical dementia rating (FTD-CDR) used to rate
severity in PPA (Knopman et al., 2008). To calculate severity, three
raters independently scored each item based on the interaction with
the participant and family, language, cognitive testing, and question-
naires, followed by a discussion to produce a consensus score. In the
tDCS group, the Soterix Transcranial Direct Current Stimulation 1 1
Clinical Trials device (Model 1500) was used to deliver tDCS (for tDCS
setup details, see Tsapkini et al., 2018). The anode was placed over
the left frontal lobe and the cathode was placed over the right cheek.
The size of the nonmetallic, conductive rubber electrodes (fitted with
saline-soaked sponges to limit skin-electrode reactions) is 5 cm
5 cm, which covers the whole left IFG. In each tDCS session, the
density of the delivered current was 2 mA and the delivery lasted for
20 min. Simultaneous with the tDCS delivery, language therapy was
initiated and continued for an additional 20—25 min beyond the cessa-
tion of tDCS. The sham group had 30 s of current ramping up to 2 mA
and then backing down to O mA simultaneous with the start of lan-
guage therapy. These procedures have successfully blinded partici-
pants to the stimulation condition (Gandiga et al., 2006), as well as the
speech-language therapist. The protocol required 15 consecutive
weekday sessions for each participant. Efforts were made to adhere
to the schedule, though some participants had to leave a few days
earlier because of other commitments (median number of sessions:
sham% 11, tDCS% 13). In the language therapy, we combined the
spell-study-spell procedure with an oral and written naming paradigm
and developed individualized trained and untrained word sets (Ficek
et al.,, 2018), where trained and untrained sets (10—30 words depend-
ing on individual severity) were matched in length and frequency.
Each participant was shown a picture on a computer, asked to orally
name it, and to write the name. If the participant could not name the

picture (orally or in writing), they were asked to provide three
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characteristics of the item to evaluate and reinforce semantic knowl-
edge. If they still could not describe the word orally, they were offered
the correct word and asked to repeat for three times. Likewise, if the
participant could not write the word, or wrote it incorrectly, the thera-
pist would offer the correct spelling in a spell-study—spell procedure.
That is, the therapist wrote the correct word, reviewed each letter's
sound, and then asked the participant to copy the word three times.
Letter accuracy was determined based on a scoring system
(Goodman & Caramazza, 1985) that considered letter deletions, addi-
tions, substitutions, and movements. Rather than whole-word accu-
racy, letter accuracy was considered as a more precise evaluation as it
captures the effects of different types of errors. Each letter was evalu-
ated with 1 point, 0.5 points for correct identification, and 0.5 points
for correct position. Scores for trained and untrained words were
transformed to percentage points for each participant.

A total of 50 right-handed, native English-speaking patients had a
pre-intervention scan (scanl) and 48 had a post-intervention scan
(scan2). One patient was deleted from the analysis because of missing
values in the connectivity matrix. Among the remaining 47 post-
intervention scanned patients, 25 had transcranial direct-current stim-
ulation + language therapy and the remaining 22 patients had the
sham treatment plus language therapy. Several baseline covariates
were recorded including gender, disease onset (years), age at the start
of therapy, and language severity. These patients were diagnosed with
three variant types, including: logopenic, nonfluent, and semantic.
Diagnoses were based on which function(s) were compromised.
Patients with the Logopenic variant PPA (IvPPA) present with word-
finding difficulties and disproportionately impaired sentence repeti-
tion. Patients with nonfluent variant PPA (nfvPPA) present with diffi-
culty producing grammatical sentences and/or exhibit motor speech
impairment (apraxia of speech). Finally, patients with semantic variant
PPA (svPPA) present with fluent speech, but impaired word compre-
hension. See Table 1 for a summary of demographic and clinical infor-

mation on the participants.

2.2 | Data preprocessing

MRI scans were obtained at the Kennedy Krieger Institute at Johns
Hopkins University, using a 3 T Philips Achieva MRI scanner equipped
with a 32-channel head coil. Resting-state fMRI (rsfMRI) data were
acquired for 9 min (210 time-point acquisitions) post-intervention. We
used a 2D EPI sequence with SENSE partial-parallel imaging accel-
eration to obtain an in-plane resolution of 3.3 3.3 mm? (64 64 vox-els;
TR/TE = 2500/30 ms; flip angle = 75; SENSE acceleration factor =
2; SPIR for fat suppression, 3-mm slice thickness). The data were co-
registered with structural scans into the same anatomical space.
Structural scans, acquired axially with a scan time of 6 min (150
slices), used a T1-weighted MPRAGE sequence with 3D inversion

recovery, magnetization-prepared rapid gradient, isotropic with a reso-

luton of 1 1 1mm® (FOV = 224 224 mm%

TR/TE = 8.1/3.7 ms; flip angle = 8; SENSE acceleration factor = 2).

Using MRICloud, a cloud-platform for automated image parcella-
tion approach (atlas-based analysis), the MPRAGE scan was parcel-
lated into 283 structures (Mori et al, 2016). In detail, each
participant's high-resolution MPRAGE was segmented by using a
multi-atlas fusion label algorithm (MALF) and large deformation dif-
feomorphic metric mapping, LDDMM (Ceritoglu et al.,, 2013; Miller
et al., 2005; Tang et al.,, 2013). This highly accurate diffeomorphic
algorithm, associated with multiple atlases, minimizes the mapping
inaccuracies due to atrophy or local shape deformations. All analyses
were performed in native space. To control for relative regional atro-
phy, volumes for each ROI were normalized by the total intracerebral
volume (total brain tissue without myelencephalon and cerebrospinal
fluid). The resting-state fMRI was also processed in MRICloud and
analyzed in a seed-by-seed manner. Image processing is described in
Faria et al. (2012) including routines imported from the SPM connec-
tivity toolbox for coregistration, motion, and slice timing correction,
(Behzadi
et al., 2007), and motion and intensity TR outlier rejection using ART
MRICloud

physiological nuisance correction using CompCor
(https://www.nitrc.org/projects/artifact_detect/). The

pipeline followed established steps for rsfMRI processing as follows.
After exclusion of outlier TRs per the ART routine (parameters: 2 SDs
for motion and 4 SDs for intensity, more severe than the default of 9),
the movement matrix combined with the physiological nuisance
matrix was used in the deconvolution regression for the remaining
TRs. Outlier rejection and regression of motion parameters minimize
potential motion effects. The parcels resulting from the high-
resolution T1 segmentation were brought to the resting state dynam-
ics by co-registration. Time-courses of 78 cortical and deep gray mat-
ter ROIs were extracted and the correlations among them were

calculated.

2.3 | Density regression
We propose to quantify the effect of possibly non-localized stimula-
tion on functional connectivity through a density regression. Let
Cidu, vP be a connectivity measure, such as the correlation of the
BOLD time series, between foci u and v for u% 1...p and v%u...p and
then let C; be the collection of connectivity measurements, typically
represented by a symmetric matrix, but in our case simply an ordered
vector. We study the distributional summary of the collections of C;
exactly as if they were drawn independently from a distribution. Leth;
be the estimate of the associated density f; of connections for subjecti.
Our proposal is to analyze f; with functional regression methods. A
motivation for studying f; can be obtained by the weaker assumption
of exchangeability of the labels. Such exchangeability translates in this
context to the relevant information for predicting the outcome beingin
the proportion of stronger and weaker connections, regardless of
where they occur.

The process of proceeding from fMRI scans to the connectivity
density is outlined in Figure 1. We estimated the connectivity matrix

via temporal correlations of BOLD signals between ROls after
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fMRI scans

Parcellation

BOLD signals

BOLD BOLD

FIGURE 1  From MRI scan to connectivity density.

parcellation, which were then passed to a density estimation algo-
rithm. Specifically, we used the vectorized elements in the upper tri-
angular portion of the connectivity matrix to estimate the density
using smoothing splines (Gu & Qiu, 1993). This performs maximum
likelihood estimation on the spline coefficients for estimating the log-
arithm of the density function under a smoothness penalty. We chose
this approach as it directly returns the splines, which are both mathe-
matically and practically convenient, especially for performing a func-
tional regression. In addition, it sets a boundary on the support for the
estimated density, which is beneficial here, as correlation coefficients
are bounded between 1 and 1. Kernel density estimators
(Silverman, 1986) were also implemented as a comparison.

Our proposal is to use P to characterize C; and subsequently
study the relationship between B and variables of interest. Innthg
tDCS study, the variable of interest is treatment status. Since the {?
are (infinite dimensional) functional data, we employ functional data
analysis tools (MclLean et al, 2014; Ramsay, 2004; Ramsay &
Silverman, 2007). Logically, one would model that treatment status pre-
dicts connectivity. However, treating complex data as covariates is typi-
cally more convenient than treating them as the outcomes. For example,
the ability to incorporate other covariates is simply adding terms in a
regression model. Unlike models for complex multivariate structured out-
comes, an outcome reversed functional approach can be easily implemen-
ted with existing software tools available in any statistical package. As
such, the method extends easily to longitudinal models, whereas longitudi-
nal models for complex structured outcomes are not fully developed. Put-
ting connectivity densities as covariates also makes the method directly
extendable to predicting subject-specific behavior scores. Therefore, we
adopt the ideas in case—control inverse regression (Prentice & Pyke, 1979;
Rothman et al.,, 2008), and predict whether a subject is in the treatment
arm using the connectivity density and the baseline covariates as predic-
tors. Let A; denote the treatment assignment with A; % 1 for tDCS and
A % 0 for sham, and X; @ denote the g-dimensional covariate vec-tor
with the first element one for the intercept. The linear model con-
sidered is the following:

]
logitfPA % 1jXi, fipg%XTBb T b g, a1p

where T is a given operator from B2 to B? aiming to capture a spe-
cific characteristic of the density functions. T can also be used to con-

trol the impact of possible outliers of connectivity measures, such as

Functional Connectivity

Density estimates

using quantile-based transformations. The function g is a coefficient
function representing the effect of the tDCS used in this experiment,
which can potentially change for different simulation settings. The
parameter BE® is the coefficient vector of the covariates, both to be
estimated.

Various choices of T and the shape of g have different interpreta-
tions on the resulting model. For example, setting Tofp % f, the identity
Tofibg %4 EY:gdZb, where E4 is the

expectation of a random variable and Z; is a random variable drawn

function, the linear predictor is

from fi. With a sufficiently flexible choice of g, Model (1) covers a
broad range of possible model fits. However, many of them may not
focus on non-central components of the density, where effects would
likely occur because of the stimulation procedure. For example, if g is a
polynomial, the model considers the moments of the density (mean,
variance, skewness, etc.) as predictors. However, it offers no benefit
over the direct usage of the moment estimates of the connectivities.
Thus, polynomial bases will not be discussed further, though they do
demonstrate an interesting special case of the approach.

As for the choice of T, using Tdfb % logdfb is similar to the use of
the identity function. It loses the expected value interpretation, while
instead, performs regression on the space of densities with Aitchison
geometry (Egozcue et al.,, 2006). Thus, it may better detect the influ-
ence of the tail behavior on the outcome.

Another choice is the quantile mapping, T,8fP%F*, where F is
the cumulative distribution function associated with the density f.
With a sufficient number of foci, this approach is approximately
equivalent to using the empirical quantiles of the connectivity data as
the regressors. Our proposed approach is quite similar to this. How-
ever, we further propose to weight the quantil%s via densljty quantile.
Specifically, we set T4,3fP% log AfBF! % log dFt=dt where
is the function composition operator. The latter equality is easy to
derive by taking derivatives via the chain rule to the identity function,
FBF®. Note that the density quantile fBF! can be regarded as a
quantile synchronized version of the density function, and therefore is
more sensitive to the changing tails. The logarithm transforms maps
density quantile to a Hilbert space, which is practically useful for linear
models. This idea has been explored before as a potentially preferable
method for utilizing quantiles as regressors. Specifically, it is equiva-
lent to the Hilbert space mapping, suggested by Petersen and Muiiller
(2016). Figure 2 shows original densities, log transformed densities
and log density quantiles of 10 random sampled subjects in our tDCS

study.
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FIGURE 2 Anillustration of connectivity densities, its log transformation and its log density quantiles. Plots shown for 10 random sampled

subjects in our tDCS study and functions are standardized across all subjects to have similar y scales along x-axis.

2.4 | Reversing the predictor/response
relationship

It is typical in regression models to consider the hypothetically function-
ally antecedent variable as a predictor, independent or exogenous vari-
able, rather than an outcome, dependent or endogenous variable. A
counterexample is in outcome-dependent sampling, such as in retrospec-
tive studies. We utilize the same strategy of reversing the typical predic-
tor/response relationship, as is more convenient for modeling with high
dimensional and complex quantities (such as brain connectivity) as the
predictor. In the tDCS study, we model treatment assignment as the out-
come using a logit model with the connectivity density and other covari-
ates as the independent variables. This avoids the need to construct
probability distributions on the connectivity densities themselves.

To elaborate, using Bayes' rule and POA % 1b% P3A; % 0b% 0:5
(due to the randomization), for any function g and transformation T,

we have:

P(TOfP, )iAi% 1, Xi
OddsA % 1jX;, (Tofp, gy’ ONP BUAAL X
P (T& b, g)jAi%0, X

where (, ) is any inner product of two functions. In our application, we
consider logit models on PJA % 1jX;, Tofipp, which depend on fionly
though the form (Tdf;b, g). Also, thanks to the randomized design, we can
be aggressive in excluding potential confounders as covariates. This is
especially helpful given the modest sample size. As the above
relationship shows, our treatment assignment outcome model,
P3AjX;, Tofipb, is consistent with any connectivity outcome model, P
(Tofib, g)jAi, Xi , where the likelihood ratio comparing treated to
controls is approximately log linear with our linear separable density

model given in Equation (1).

2.5 | Estimation of the coefficient function

To estimate the coefficient function, g in Model (1), we performed a

functional principal components analysis (fPCA, see Reiss &

Ogden, 2007, for a review). This reduces the dimension of the func-
tional regressor using a set of data-derived bases. In this aerrooach,

TR ,

using the Karhunen/Loéve transformation (Ghanem & Spanos, 2003),

one calculates the PCA decomposition of the functions,

where the covariance function is smoothed (Di et al., 2009). We
selected the leading principal components which explained over 99%
of the variation as the basis functions. Notice that the version of fPCA
utilized here does not honor possible density implied constraints of T
fi b Generalized cross-validation (GCV) was used to choose the
smoothing parameters (for detailed discussion, see section 4.5.4 of
Wood, 2004). Confidence bands were derived using a Bayes approach
(McLean et al., 2014; Nychka, 1988; Wahba, 1983).

2.6 | Comparison

To illustrate the benefit of conducting a delocalized analysis, a simula-
tion study based on the fMRI data collected in the tDCS study was
conducted. We demonstrate an extreme example where non-localized
brain stimulation decreases statistical power, or even makes it impos-
sible to identify ROI pairs with a significant effect when implementing a
localization method. However, using connectivity densities retains the
relevant information. Our goal in this simulation was to create a
caricature of non-localized effects, to demonstrate the statistical
direction that the procedure highlights.

As a correlation coefficient, connectivity can be written as cosd6p
where 8 is the angle between two signals. In the simulation, consider a
brain connectivity map with 20 regions, R1...Rz. For every map, let 6;
be the angle between signals in location i and j; we simplified the data
generating distribution by assuming that the angles, 6;, are i.i.d.
following a von-Mises distribution, Mdy, kb, where the density is f60jy,
kb % ekcosdxub=211|,3kb, with lo as the modified Bessel function of
order 0. The parameters, y, k were estimated from pre-intervention
patients by maximum likelihood. This was done to have a realistic null
distribution on densities.

A non-localized “stimulation” was simulated by perturbing region

Ri with equal probability across i. After stimulation, we simplified the
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effect via a degree rotation, ¢, for the signal at R;. Correspondingly, all 8;
change the same amount and the final post-stimulation connectiv-ity
was a convex combination of this stimulated matrix and the pre-
stimulation matrix, where the weight was used to control the signal
level and therefore controls the degree of difficulty in detecting the
effect. Denote Cj the pre-stimulation correlation between region i
and j, that Cj% cos 6; . A stimulation on region ip yield a symmetric

post-stimulation connectivity Csijﬂ as

Cij i#ig, j>i
wCjjpdlwbcos 6;b @

ﬁti1
G % i%io, |>i

Notice that, although uniform stimulation on all regions of R; is
unpractical in many situations, this simulation is a boundary case to
understand the effect of lacking localization. Mover, it is still consis-
tent with other kinds of non-localized effects that are random mixture
of localized effects. In Appendix A, we also describe and examine
another intuitive simulation setting, and we observed similar results.

For every run of the simulation, we sampled 50 pre-stimulation
maps from the pre-intervention scans and fit the parameters p,k for
each. We subsequently simulated 50 connectivity maps from samples
of fitted von-Mises distributions, and applied the stimulation above
for a random half of these maps. We chose ¢ % i, and the weight w in
the convex combination was chosen to be 75%. Other values, ranging
from 90% to 50%, were also tried and similar patterns were observed.
Weights under 50% made the signal detection too easy and methods
are indistinguishable. Significance results for edgewise testing, princi-
pal component regression, and density regression were compared,
with different density regression transformations for 1000 simula-
tions. For completeness, we also considered instances with no stimu-
lation effect and when the stimulation was localized at a specific
region.

The edgewise regression approach considers the following model:
logitfPAA; % 1jX;, fibg%X] Bb Cids, thag, a2p

where s >t. The second approach was a regression model with dimen-

sion reduced predictors:
logitfPOA; % 1jX;, fibgk XT BpSia, o3p

where, S; are the leading principal components of the vectorized con-

nectivity matrix, C;. We refer to this model as the PC model.

3 | RESULTS

3.1 | Simulation

Figures 3a and 4a show example connectivity matrices and the differ-
ence after stimulation from an example simulation. The virtual stimu-
lation was applied at region 10 in the right panel plot, while the left

panel is the pre-stimulation map. We report the rate of positive

findings for all methods. Results are shown in Table Al. Localization
methods, including the dimension reduction method, do not find any
significant region pairs in the non-localized simulations. In contrast, in
this setting, the density method detected the stimulation impact on
the connectivity densities. Among all the transformations, the log
density-quantile transformation was significantly better than others.
We would like to reiterate that the simulation is contrived to highlight
an extreme setting. Connectivity density methods will not necessarily
increase the sensitivity of the analysis. If the true effect is localized, it
cannot be better than well-specified localized method.

3.2 |
methods

Analysis of the tDCS data using localized

For the tDCS data, we tested the significance of the edgewise regres-
sion [Model (2)], a principal components regression [Model (3)] and a
LASSO post-inference model (Dezeure et al., 2015) using connectivity
of all ROI pairs. No foci-pair or principal components was identified as
significant in either regression model, at Type | error rate levels of
0.05 or even 0.1. Of note, previous localization work on related data
(Ficek et al., 2018), yielded significant findings. However, the total
number of regions were restricted, thus dramatically reducing multi-
plicity concerns. In this analysis, 78 regions were used, resulting in a
more stringent correction factor based on 78 choose 2, or 3003 com-
parisons. In addition, a more restrictive inclusion criteria in Ficek et al.

(2018) led to a different study population.

3.3 | Analysis of tDCS data using density
regression

In this section, we present the analysis results of the tDCS study using
the density regression Model (1) with different transformations (T).
The fitted coefficient function, g, and its 95% confidence interval are
presented in Figure 4. Functional linear regression was performed
using the refund R-package with default parameter of smoothed
covariance fPCA, which chooses the number of components that
explains over 99% of the data variation.

Regressing on the density after applying the log-density quantile
transform yielded the highest number of significant signals, which
reaches its maximum around the 85th percentile. This potentially indi-
cates that stimulation has a consistent tail effect, which is more likely to
be aligned by quantile, rather than absolute value. Since the esti-
mated coefficient function is significantly non-zero only in the posi-
tive tail this suggests that the tDCS group had higher connection
densities in the tail than the sham group. That is, connectivity among
the most connected regions was higher in the tDCS group.

A likelihood ratio test was performed to compare logistic regres-
sion with only baseline variables and our model including both the
baseline variables and the log density quantile term. The resulting p-
value was .0052, indicating a statistically significant gain of informa-

tion from connectivity density at the 0.05 benchmark type | error rate.
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FIGURE 3  Partfigure (a) shows the simulated pre-stimulation connectivity matrix of a subject and part figure (b) is the simulated post-pre

difference in the connectivity matrix of the same subject.

The conclusion remains true if one applies a Bonferroni p-value cor-
rection. Specifically, three transformations were compared and there-
fore the corrected p-value is .017. Notice that this is already a
conservative value. The result agrees with a non-parametric permuta-
tion test where we do the same regression but connectivity densities
of subjects are randomly shuffled. Using AUC as test statistic, we
observe that the AUC of log density quantile model is also significant
larger than that of null distribution, which is the AUCs with shuffled
connectivity densities. The p-value is :015:0009 estimated from
20,000 runs. A further reanalysis of subgroups shows that the effect is
driven primarily by the nonfluent subtype which comprises 23 over
total 47 subjects. There is not enough data to investigate the possibil-
ity of different effects of other subtypes, the least of which only has 9
subjects. We also performed a sensitivity analysis examining the
impact of hyperparameters in the density estimation. We changed the
smoothing parameter in spline smoothing and bandwidth in kernel
density estimation method, both in the range of %60=2, 280, where 8gis
the corresponding default value. For smoothing splines this value was
selected by the approximated cross-validation method suggested in Gu
and Wang (2003) and for KDE this value is suggested by Silver-man
(1986). We observed that the log density quantile transformed model
constantly gives significant information gain with p-value <.05 in all
settings, comparing with the demographic-only baseline model.
Therefore, the method is not sensitive to reasonable deviations in
hyperparameter selection.

We also studied the effect of the estimated function on behavior
change. We found that the variable ET t B is significant (p < .05) for
predicting the change of language ability, measured by untrained
items, after transcranial direct-current stimulation. Here B is the coef-
ficient function estimated above for T % T4q and, recall, Jﬂ are the con-

nectivity densities for post-intervention scans. The result shows a

necessary condition for connectivity density mediating the effect of
stimulation on language ability, which can motivate a future formal

mediation analysis.

3.4 | Induced connectivity
Consider the best model using the log density quantile transform, Tqyq.
We have

61
logitfPGA % 1jXi, fipg%X'Bb logfi BF*fqPgdabda: o

Notice that for the connectivity matrix, C;, we have F;fCig Ud0, 1b, a
uniform distribution on %0, 1 via the probability integral transform.
Let Q;3s, thb % FifCids, tbg. Then, it follows that:

0,
IogfiFlagb gdqbdq % BgdQ;plogfF*aQ;p 0

2 XgfQ;ds, tbglogfiF1fQ;ds, tbg:

t>s i

Therefore, for this subject, one can assign
gfQds, tpglogfi F1fQds, tbg as the effect size for region pair 3s, tb.
Averaging this effect across all patients yields an important metric for
every region pair in the model. We call this stimulation-induced con-
nectivity, since it describes how influential the correlation of each
region pair is in predicting stimulation status. The induced connectiv-
ity matrix is shown in Figure 5, together with a summary of effect

agreement across subjects, where for each patient, region pairs are
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Model results on the tDCS experiment. The black solid line is the fitted coefficient function, g, with the black dashed line

referencing the associated 95% confidence interval. Densities were estimated from smoothing splines implemented in the fda R-package with
19 degrees of freedom for the spline basis. A kernel density estimator (KDE, d) is also computed and compared with smoothing spline (panel c)
method. Contrasting c and d show that the density estimation technique did not impact results.

selected with top 5% absolute effect size and the frequency of each
region pair being selected is calculated.

This technique, of course, returns to a discussion of localized
effects. However, by investigating this measure one can ascertain the
degree of localization consistency across subjects—an impossibility

with pure localization analysis.

4 | DISCUSSION

In this manuscript, a new framework for analyzing functional connec-
tivity was explored. Functional data analysis of log quantile connectiv-
ity densities investigates possible nonlocalized effects associated with
subject-level variables. It is clear that our method can be directly
applied to other kinds of numerical measurements. For example, par-
tial correlations or entropy-based measures. However, it continues to
be only useful suitable if connection exchangeability represents a use-
ful model. A sizable by-product of this style of analysis is the drastic
reduction of multiplicity considerations. This is of great importance in
connectivity analysis, where the number of comparisons grows at a

rate of the square of the number of foci being considered. In the data

application, we find associations between stimulation and connectiv-
ity density. In contrast, edgewise methods fail to find any results,
because of multiplicity issues. This is partially due to a wide search of all
possible region pairs from the parcellation. Of course, one could also
reduce multiplicity concerns by restricting attention to regions
associated with a priori hypotheses of interest, as was done in Ficek et
al. (2018). In contrast, investigating connection densities is an omni-

bus approach that benefits from a reduction in the number of tests
over exploratory edge-wise approaches, a robustness to non-localized
effects and a robustness to the inclusion of unnecessary foci. These
benefits come at the expense of the loss of power and interpretability
over analyses considering only a small set of tightly specified edge-
wise hypotheses. Our method can also be extended to seed-based
connectivity and voxel-by-voxel connectivity without any modifica-
tion. However, the assumption of complete node invariance discards a
potential sizable amount of relevant localization information. There-
fore, we believe that the method would be primarily useful as an easy
and simple early-stage omnibus test, or after light localization efforts,
such as considering connectivity densities between voxels within sets
of ROI. To further emphasize the ease and simplicity of the method,

we stress that density regression can be coded from scratch in only a
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Part figure (a) shows the induced connectivity described in Section 3.4. IFG regions (the tDCS target) are noted in the red box.

Part figure (b) shows some region pairs with the most consistent contribution, measured by the frequency of having top 5% absolute effect size

across all patients.

few lines of code in any modern scripting environment with PCA and
GLM functions.

Density regression, as a prediction model, can be view as a gener-
alization of connectome-based predictive modeling (Shen et al., 2017).
Connectome-based predictive modeling (CPM) uses individual con-
nectivity matrices to predict behavioral measures. The method first
selects location-pairs that are most significantly correlated with the
outcome, then summarizes the matrix by adding up connectivity mea-
sures in selected pairs, and this sum is used as a predictor in a regres-
sion model. In CPM, there is no localized effect and CPM can be
viewed as a regression on connectivity density using only a constant
basis. Here we generalize it by utilizing more distributional
information.

An interesting direction to pursue with connectivity density
methods is to consider potential robustness to spatial registration
(Oliveira & Tavares, 2014). The connectivity density can relatively
easily be shown to be invariant to relabeling and affine transforma-
tions (see Theorem 1 in the Appendix A). In contrast, localization
methods heavily rely on both accurate registration and biological
functional localization across subjects. Therefore, it is interesting to
posit that density regression could be used after only mild affine reg-
istration efforts prior to the more time-consuming non-linear
registration.

However, to reiterate, ignoring potentially useful localization
information can reduce power and sensitivity. Surely, the optimal
strategy removes subject-specific artifacts and reduces the search
space with—correct—strong a priori hypotheses and then tests only
those edges. However, in the absence of this ideal case, one is often

confronted with a massive unstructured search problem with

localization analyses. In contrast, density regression is more akin to an
omnibus F-test, looking over a large range of edges, dramatically miti-
gating multiple comparison issues in the favor of testing one overview
hypothesis, rather than a large collection of highly specific ones.
Therefore, we suggest the method as an early-stage tool in a neuroim-
aging data analyst's toolbox.

We used functional data analysis to relate connection densities to
outcomes. Functional data analysis tools (Ramsay & Silverman, 2007)
have grown to be quite flexible. Thus, density regression approaches
can be relatively easily generalized to handle different settings, such
as any typical statistical outcome model and longitudinal data. Also,
density estimates may naturally make adjustments for missing data, in
the form of missing foci, since the density can remain the same in
some contexts. This has potential broad implications for the study of
stroke and other diseases with abnormal brain pathology. Localization
methods are not available if the ROI is damaged or missing. In con-
trast, density-based methods are easy to apply. In addition, we used
PCA on the log quantile densities as the basis for functional regres-
sion. The result is that the method can be applied using standard soft-
ware without modification. Other bases and penalization strategies
may improve the approach. In fact, the utility and application of func-
tional regression in neuroimaging has been greatly improved via
recent research efforts (e.g., see Goldsmith, Crainiceanu, et al., 2011,
Goldsmith, Wand, & Crainiceanu, 2011, Goldsmith et al.,, 2012; Reiss
etal, 2017).

Utilizing functional regression also has the benefit of producing
more interpretable models as compared with machine learning
approaches. However, this is achieved at a likely cost of prediction

performance. It is possible that ML approaches could navigate the
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trade-offs  between localization and exchangeability non-
parametrically and possibly achieve better prediction performance.
Thus, we view density regression as a parsimonious modeling choice
rather than a method to optimize prediction performance.

Statistically, we assumed independence between subjects and
relied on the randomization to invert the predictor/response relation-
ship using logit models. This borrows techniques from case-referent
sampling from epidemiology dating back to the seminal work of Corn-
field (see Breslow, 1996; Greenhouse, 1982, for overviews). A benefit
of doing this is that it is generally easier to have the more complex
variable as the predictor rather than a response. To elaborate, to have a
density as an outcome, predictions from the model must be func-
tions that are both positive and integrate to one. Most existing func-
tional approaches, especially point-wise ones, would satisfy neither
criteria nor modeling distributional outcomes is an active area of sta-
tistical research. The probability space containing the outcome is nec-
essarily a probability distribution on distributions, such as a Dirichlet
process. While this is not a problem per se, it makes inference more
technically challenging. In contrast, by conditioning on the density, as
we have done, its distribution does not need to be modeled and the
fitting and inference require little more than well-known generalized
linear model techniques. In Appendix 3 we further the discussion in
comparison with function on scalar regression. It is seen that, with
almost no effort, one obtains the use of easier models (GLMs) and
appropriate inferences by reversing the relationship and the resulting
estimates are similar to those of function on scalar regression. How-
ever, because the constraints are not accounted for in the function on
scalar model, inferences remain in question.

Nonetheless, we reiterate that the use of connectivity density as
a regressor remains useful, even if one prefers not to flip the predic-
tor/response relationship. For example, in our tDCS example, con-
necting the connectivity density to behavioral outcomes would be
relevant, where the natural predictor would be functional
connectivity.

Independence between subjects was used for inference. We also
used density estimates for connection densities, techniques that
implicitly require sampling assumptions for theoretical convergence.
However, we contend that connectivity densities are intrinsically of
interest, and therefore no appeals to super-population inference and
sampling assumptions are needed for estimation. This is analogous to
spatial group ICA, where productive estimates are obtained via inde-
pendence assumptions on voxels over space, without a true sampling
or super-population model for inference (Calhoun et al., 2001). An
interesting future direction of research would investigate dependen-
cies between foci correlations.

Our recommended approach uses log quantile densities as the
functional predictor, rather than the density, distribution function, or
quantile function directly (Petersen & Mulller, 2016). This approach
has convenient theoretical properties, but also the practical benefit of
focusing attention on tail behavior, where effects are most likely to be
seen. Utilizing the quantile density also creates robustness to irrele-

vant foci pairs being included in the analysis.

Our simulations and data results focus on settings that highlight
the benefits of an omnibus density regression approach. In the simula-
tions, we investigated a non-localized caricature of typical effects.
Similarly, in our data analysis, we performed no filtering of regions
prior to analysis (thus magnifying multiple comparison concerns). It
was shown in the simulation, that functional density regression
approaches can find real non-localized effects, whereas, as expected,
edgewise methods do not find any. It should be emphasized that the
performance of the density regression approach is invariant to the dis-
tribution of effects across subjects, whereas edgewise approaches
become viable as the degree of localization increases.

In addition, the flexibility of the approach finds effects in the real
data, even though there are a great deal of irrelevant connections
(i.e., unnecessarily included region pairs) being studied. Edgewise and
other regression approaches are highly sensitive to unnecessary null
connections being included in the analysis. A benefit of the data being
considered is the likely existence of an effect related to the stimula-
tion. However, we emphasize that a single omnibus approach does
not represent a full analysis of the data. We recommend this approach
as a global analysis to be performed prior to edgewise or other locali-
zation methods. This mirrors the classic ANOVA (analysis of variance)
approach of performing an overall F test before investigating pairs of
explanatory factor levels. It would be most useful in exploratory
model building where foci selection is not restrictive. In cases of
tightly coupled statistical hypotheses involving relatively few regions
or foci, density regression would not be needed or particularly helpful.

This methodology raises many avenues for future research. For
example, one the idea of non-localized effects in dynamic connectivity
(Hutchison et al., 2013) via stochastic processes of connectivity densi-
ties (by time). In addition, there are multiple alternatives for densities
estimated from correlation of each region pair for contralateral
regions. Here, it should be acknowledged that there is strong homoto-
pic correlations from symmetric regions. One should then deal with
multivariate densities estimated from pairs of correlations. This same
logic could be applied to geographically close regions and for
instances with longitudinal scans. The connectivity density of spectral
information (de Haan et al., 2012), like leading principal component
scores, should also be studied to potentially extract relevant brain
graph properties.

Finally, there is the role that connectivity-density methods could
play in fMRI analysis of subjects with missing brain tissue, such as
studies of stroke or surgical interventions. Connectivity density
methods may be resilient to the missing data impact of differential
brain structure in a way that localization methods are not. In fact, it is
interesting to conjecture what localization methods even mean in
these settings where a subset of subjects are missing areas of localiza-
tion. In contrast, density methods may provide a more robust and
well-defined methodology. It is worthy of note that components of
graph methodology (Bullmore & Sporns, 2009; Sporns, 2010) often
considers summary metrics that do not require or assume localization.
Density regression can be considered a subset of weighted graph

metric analysis.
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APPENDIX A
A.1 | Invariance properties

Here we discuss some invariance properties of the connectivity den-
sity. Consider C a connectivity measure where C38x, yb is measuring
the connectivity between location xD and y D. The connectivity
density can be defined as the density of random variables C3U, Vb,
where 6U, Vb follows a sampling distribution on D D. Denote fsample as
the density of that sampling distribution. It is easy to see that the
connectivity density, f, defined in Section 2.3 also follows such a defi-
nition while using the uniform distribution as fsample. We prove that f
is invariant to re-labeling in discrete cases (e.g., connectivity between
ROIs) and to

(e.g., interpolation of connectivity between voxels). Denote suppdCp

affine  transformation in continuous cases
be the support of connectivity measure C. After any invertible trans-
formation, B, the connectivity measure Cp will be naturally defined as
Ca0x, yb % C @'dxb, @'dyb . Then we have the following Theorem
1.

uS, ve

Theorem 1. Let follow the uniform distribu-

tion on suppdCh. Then, the density of C US, V¢ has the

same distribution with Cg U%, V& | where @ is any
permutation map if suppdCPp is a finite discrete set and R is
any affine transformation if suppdCp is a closure of
some open set in @3. Therefore, connectivity densities

are invariant to these transformations.

Proof. By change of variable calculus of random variables,
we know that under a sampling distribution fsampie, COU, VP has the
distribution  with  GdU%, V% if 8%, VOpf, L .
where ', .8, yP % jBj*fsample BOXP, BOyb .

sample

sample

In our uniform cases, the Jacobian j@j and sampling distribution

fUcch,fUc'Vc will alwaysbe a constant. Therefore, the condition
above always holds and C U, v©

with Cz U®, V&

must follow a sample distribution

Since the uniform distribution is the only distribution invariant to
all affine transformations / permutations, we know that the connec-
tivity density defined in Section 2.3 is also the only possible distribu-
tional summary that has such an invariance property for arbitrary

connectivity measures.

A.2 | Additional simulations

Here we describe another intuitive simulation setting and show that a
similar pattern is observed. Specifically, it shows that our methods can
detect non-localized effects, while edgewise method or dimension
reduction methods, like PCA, cannot, although the best transforma-
tion of densities might change for different signal distributions.

Again we consider connectivity matrix of 20 regions Ry, Rz0. A
no-stimulation connectivity matrix, C, is sampled uniformly from
50 pre-intervention scans in our data and its 20 rows and columns are
also uniformly sampled from an original 78 78 connectivity matrix.

Now consider a localized stimulation as additive Gaussian signals to

the Fisher-z transformed correlation for specific region pairs. It then

gives post-stimulation connectivity matrix C*% differs with C only on

tanh*Ct % tanh'Cy,;, b ex dA1P

L33

for fdix, jypjk¥% 1, 2Kg some specific region pairs and gi.n.d.
follows N, o, . Notice that this formulation corresponds with the
underlying effect pattern in some common edgewise analysis of
change in connectivity, for example Ficek et al. (2018).

In the simulation for localized analysis, the locations i, jP are
uniformly randomly selected from all 190 region pairs and then fixed
for all samples. Naturally a stimulation with non-localized effect would
also follow Equation (Al). But every time it is performed, fdix, jPg
becomes another independent sample from the 190 regions. In the
experiment, we choose K % 10,y % 0:5,0¢ % 0:5 for all k. We also
observed similar patterns for a variety of parameters settings. We ran
the experiment for 10,000 independent simulations. For every run we
sampled 100 no-stimulation connectivity maps with another 100 each
for localized stimulation, non-localized stimulation and no stimulation.
We studied how different methods work in these situations as
described in Section 2.6. The results for the simulation can be foundin
Table Al. We observe a similar pattern as Table A2 that connectiv-ity
density based methods can detect non-localized effect while edge-wise
analysis and principal component analysis cannot. It also shows that
the optimal transformation might be different for different pat-terns
of the effect, as the log transformation is the best in this situa-tion
while the log-density-quantile transformation is the best in
Table A2.

A3 |

In this section we detail why we reversing the predictor/response

Connectivity density as outcome

relationship is a compelling idea and thus compare the results with a
typical function-on-scalar regression with connectivity densities as
outcomes.

Excepting the convenience, as discussed in Section 4, the main
reason for reversing the predictor/response is that typical function-
on-scalar regression methods can not satisfy the integral constraints
on the outcome, which are densities or isomorphic transformation of
densities. Therefore, the specified distribution is not correct, creating
concern regarding inferences.

Consider the following typical linear functional model with out-

come function y and features x.

y3th % fodtb px f3tb bedth 3A2b

where y is a density functions, log density function, or the log-den-
sity-quantile transformations. Recall, density functions must be both
positive and integrate to 1. Log densities require integral of their
exponential to be 1 and Log density quantiles require their corre-
sponding quantiles be supported within [1, 1], because they are
quantiles of correlations. It is easy to see that within the linear func-

tional framework 5, all these constraints cannot be translated into
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Bonferroni FDR PC To
Non-localized 0.060 0.065 0.089 0.618
Localized 0.938 0.953 0.994 0.620
No-stimulation 0.048 0.051 0.082 0.060

TABLE A1 The table shows the ratio
T Tidg L e
of significant positive findings over
1 0.870 10,000 runs
1 0.862
0.056 0.053

Note: Ty, T), and Ti4q are density regressions with the identity, logarithm, and log density-quantile

transformations described in Section 2.3. Bonferroni, FDR (Benjamini & Hochberg, 1995) refer to
edgewise regression with those associated multiplicity correction procedures. PC refers to principal

component regression with the top 20 components.

TABLE A2

Significant positive findings over 1000 runs. TO,TI, Tldqg are density regressions with the identity, logarithm, and log density-

quantile transformation described in Section 2.3. Bonferroni, FDR (Benjamini & Hochberg, 1995) refer to edgewise regression with different
multiplicity correction procedures. PC refers to the principal component regression with the top 10 components, the number chosen by
minimizing the sum of type | error (significance ratio in non-localized situation) and type Il error (none significance ratio in localized situation).

Bonferroni FDR
Non-localized 0.073 0.078
Localized 0.638 0.669
No-stimulation 0.061 0.065

PC To T Tigq

0.118 0.638 0.117 0.717
0.754 0.629 0.112 0.714
0.113 0.075 0.058 0.059
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FIGURE A1l Estimated difference function of the transformed neural densities between treatment and control groups, holding all other

variables the same. Similar patterns could be found compared with Figure 4a—d but their confidence bands are biased because no constraints on

the outcome function are satisfied.
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FIGURE A2 A sample outcome function from the fitted model. It

breaks the positive constraints on both tails and its integral is 0:99 < 1.
Also the confidence band from the model does not make sense
because all densities are non-negative.

individual constraints on estimation of fo,f. Therefore, the model is
specifying an easily demonstrably false distribution, resulting in possi-
bly incorrect inferences even if estimation remains viable. Other
methods exist to correct this problem, for example Szabo et al. (2016);
Chen et al. (2021), but this is an active area of research and is thus
challenging to implement for most practitioners.

In Figure Al, we show the estimation results of model 5 on our
data as a reference. These are the slope functions of the treatment
assignment variable, the estimated differences before and after tDCS
stimulation. We used the regression methods described in Reiss et al.
(2010) to solve the problem 5 and the penalty parameters selected by
generalized cross validation. There is, as expected a high degree of simi-
larity between the corresponding curves and those in Figure 4a—d. But,
as we explained above, the distributional assumptions are questionable
in this context and the confidence bands remain in question, and there-
fore we do not report such results in the main article. We also note the
distinction in convenience, whereby we obtain similar estimates using

only a GLM, perhaps the most standard statistical model.
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Figure A2 shows one sample outcome function from the fitted band from the model does not make sense because all densities
model. We have checked that it breaks the positive constraints on should be non-negative. Therefore the inference results from the

both tails and its integral is 0:99 < 1. Also it is clear that the confidence model 5 are wrong.



