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Abstract
In this manuscript, we consider the problem of relating functional connectivity mea-

surements viewed as statistical distributions to outcomes. We demonstrate the utility

of using the distribution of connectivity on a study of resting-state functional mag-

netic resonance imaging association with an intervention. The method uses the esti-

mated density of connectivity between nodes of interest as a functional covariate.

Moreover, we demonstrate the utility of the procedure in an instance where connec-

tivity is naturally considered an outcome by reversing the predictor/response rela-

tionship using case/control methodology. The method utilizes the density quantile,

the density evaluated at empirical quantiles, instead of the empirical density directly.

This improved the performance of the method by highlighting tail behavior, though

we emphasize that by being flexible and non-parametric, the technique can detect

effects related to the central portion of the density. To demonstrate the method in an

application, we consider 47 primary progressive aphasia patients with various levels

of language abilities. These patients were randomly assigned to two treatment arms,

transcranial direct-current stimulation and language therapy versus sham (lan-guage

therapy only), in a clinical trial. We use the method to analyze the effect of direct

stimulation on functional connectivity. As such, we estimate the density of cor-relations

among the regions of interest and study the difference in the density post-

intervention between treatment arms. We discover that it is the tail of the density,

rather than the mean or lower order moments of the distribution, that demonstrates

a significant impact in the classification. The new approach has several benefits.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
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Among them, it drastically reduces the number of multiple comparisons compared

with edge-wise analysis. In addition, it allows for the investigation of the impact of

functional connectivity on the outcomes where the connectivity is not geometrically

localized.

K  E Y  W O  R D  S

density regression, functional connectivity, random graph

1 | I N T R O D U C T I O N binary edges, and propose a specific functional linear model for the

relationship between outcomes and the connectivity density.

The study of resting-state brain connectivity via functional magnetic

resonance imaging (fMRI) involves the investigation of correlations

between cortical seeds, regions, or voxels (henceforth referred to as

foci). Friston, in particular, defined functional connectivity as the cor-

We demonstrate the benefits of using the distribution of resting

state correlations as covariates using functional data analysis tools.

We suggest the use of the quantile density, the density of connec-

tions evaluated at evenly spaced quantiles of the connections, as this

relations,     over     time,     between     spatially     distinct     brain     regions improves performance. Regardless of these choices, utilizing connec-

(Friston, 2011). Nearly all inter-subject investigations of connectivity

have focused on localized correlations. That is, they consider correla-

tions between foci treated consistently across subjects. Mathemati-

cally, this can be described as saying that the methods are not

invariant to subject-specific relabeling of the foci. In fact, for most

methods, such as pairwise regressions on correlations across subjects

or decomposition methods, shuffling foci labels within subjects is a

form of null distribution. Furthermore, this lack of invariance applies

regardless of the degree of granularity of the analysis, from regions to

tivity density regression has several benefits. A primary one is the

relaxation of the consistent localization assumption across subjects. In

the Appendix A, we demonstrate mathematically how connection

densities achieve this invariance. Localization analyses make the,

often unchallenged, assumption that pairs of foci represent the same

correlated functional specialization across exchangeable subjects. This

assumption is grounded in the neurological theory of functional spe-

cialization dating back to the foundational works of Broca and Weir-

nicke (Broca, 1861; Wernicke, 1874). However, it is clear that in

seeds to voxels (Bastos & Schoffelen, 2016; Damoiseaux & specific applications and biological settings, the neural geography of

Greicius, 2009; Friston, 2011). The methods and choice of granularity

all center the focus on geographic consistency of correlations across

groups of similar subjects. Individual topography (Kong et al., 2019)

and functional connectivity alignment (Haxby et al., 2020) are another

set of methods that allow for spatially inconsistent relationships

beyond subject-specific structure. However, their effort of finding

subject-specific parcellation/transformation is still for the purpose of

localization. Other exceptions include many variations of graph

theory-based methods, where graphical features may not be localized

across subjects in the sense of summarizing multiple connections

(Shen et al., 2017) or being invariant to subject-specific foci labels

(Koutra et al., 2013; Vogelstein et al., 2012).

To illustrate the idea of label invariance, consider a scenario

where one reduces the connectivity measures to subject-specific

binary graphs (by thresholding). If the effect of the graphs on the out-

comes is invariant to the nodes (foci) corresponding to the edges, then

clearly it is sufficient to know the number of edges that are present

for each subject's graph, since given that information one can create

the set of equivalent graphs under node invariance. This is equivalent

to saying the relationship between the outcome and connectivity

graph, is solely dependent on the estimated probability distribution

for the edges under an assumed independent and identically distrib-

uted edge distribution, since that distribution only depends on the

total number of edges. (This is the Erdos-Rényi random graph model.)

Our approach formally builds on this idea. But we further consider a

random weighted graph model rather than thresholding to obtain

functional specialization can vary. As an extreme example, subjects

with brain damage in their youth often have the neuroplasticity that

remaps a function to atypical areas (Finger & Almli, 1985).

Hyperalignment (Haxby et al., 2020) also allows for a high degree

of subject-specific functional specialization. However, unlike connec-

tivity density regression, localization remains the goal in hyperalign-

ment, and therefore, a multiparameter alignment transformation must

be estimated per subject. Connectivity density analysis can be seen as

a complementary, technique that does not require the estimation of

subject-specific alignment. Further, focusing on connectivity densities

drastically simplifies the problem and reduces multiplicity concerns.

Of course, these benefits come at the cost of not considering poten-

tially relevant localization information, and so the technique cannot

be more sensitive to the detection of localized effects with a reduced

search space and correct a priori localization hypotheses. It would be

accurate to say that focusing on connectivity densities in analysis lies

at one end of the spectrum of model localization assumptions,

whereas pair at a time models lie at the other extreme and hyperalign-

ment lying somewhere in the middle.

There are existing studies that utilize the distribution of resting

state correlations. For example, Petersen and Muüller (2016) consider

the distribution of correlations between a seed voxel and all other

voxels within regions of interest (ROI), to summarize the ROI state.

Also, Scheinost et al. (2012) further considered such distributions

across all pairs of voxels. This work derived a degree function from

the connection density as a summary of the connectivity of each
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Sex

PPA variant

Age

Year post onset

Language severity

Total severity

Combined (n =  47)

22F, 25M

15L, 23N, 9S

67.3 (6.8)

4.2 (2.8)

1.7 (0.8)

6.3 (4.5)

tDCS (n =  25)

11F, 14M

9L, 12N, 4S

65.8 (8.1)

4.3 (3.2)

1.7 (0.9)

5.7 (3.9)

Sham (n =  22) T A B L E 1 Patient demographics

11F, 11M

6L, 11N, 5S

69.1 (5.0)

4.0 (2.3)

1.8 (0.8)

7.0 (5.2)

Note: For age, years post-onset, severity, values shown are mean (SD). The p-values are from the Welch
two sample t-tests for continuous outcomes and Fisher's exact test for categorical outcomes. Language
severity is based on the language subset from the FTD-CDR scale. Total severity refers to the sum of
boxes, including language and behavior as added in Knopman et al. (2008).

voxel. As a result, these studies continue to focus on localized effects,

where the use of the connectivity density is mainly to achieve a more

informative localized summary of brain connectivity.

This study is motivated by a resting-state fMRI study of primary

progressive aphasia (PPA) patients, where it is feasible to want to

relax the geometric localization assumption. In the study, the patients

were randomly assigned into two treatment groups, (a) transcranial

direct-current stimulation (tDCS; Nitsche et al., 2008) and language

therapy versus (b) a sham tDCS and language therapy only. In the

tDCS group, the nominal stimulation target was the left inferior fron-

tal gyrus (IFG). Since the actual area of stimulation may vary, even if

only slightly, it is relevant to consider models that are less dependent

on localization. In addition, the stimulation electrode patches were

size of 5  5 =  25 cm2. Thus, the stimulation areas may have

extended beyond the left IFG in a way that may induce additional var-

iation across subjects that would also motivate considering techniques

that are robust to violations of localization assumptions. Here, we pro-

pose a novel approach to represent the effect of stimulation on func-

tional connectivity. By ignoring spatial heterogeneity, we directly

study the change on the distribution of correlation between the ROIs.

The manuscript is organized as follows. In Section 2, the experi-

mental design and approach are introduced. Results both for simu-

lated and real data are shown in Section 3. Section 4 contains a

summary and discussion.

Institutional review board and all subjects provided informed consent

to participate in the study.

Each subject was diagnosed with one of the PPA variant types:

logopenic, nonfluent, or semantic. Randomization was conducted

within each variant type with an equal probability assigned to either

the tDCS or sham group. As shown in Table 1, the two groups are bal-

anced in both demographic and clinical characteristics. The language

component of severity was evaluated based on the revised fronto-

temporal dementia clinical dementia rating (FTD-CDR) used to rate

severity in PPA (Knopman et al., 2008). To calculate severity, three

raters independently scored each item based on the interaction with

the participant and family, language, cognitive testing, and question-

naires, followed by a discussion to produce a consensus score. In the

tDCS group, the Soterix Transcranial Direct Current Stimulation 1  1

Clinical Trials device (Model 1500) was used to deliver tDCS (for tDCS

setup details, see Tsapkini et al., 2018). The anode was placed over

the left frontal lobe and the cathode was placed over the right cheek.

The size of the nonmetallic, conductive rubber electrodes (fitted with

saline-soaked sponges to limit skin-electrode reactions) is 5 cm

5 cm, which covers the whole left IFG. In each tDCS session, the

density of the delivered current was 2 mA and the delivery lasted for

20 min. Simultaneous with the tDCS delivery, language therapy was

initiated and continued for an additional 20–25 min beyond the cessa-

tion of tDCS. The sham group had 30 s of current ramping up to 2 mA

and then backing down to 0 mA simultaneous with the start of lan-

guage therapy. These procedures have successfully blinded partici-

2      |      MAT ERIA L A N D M E T H O D S                                       pants to the stimulation condition (Gandiga et al., 2006), as well as the

speech-language therapist. The protocol required 15 consecutive

2.1      |      Experimental design                                                           weekday sessions for each participant. Efforts were made to adhere

to the schedule, though some participants had to leave a few days

The data analyzed in this study were part of a larger randomized,

double-blinded, sham-controlled, crossover study on aphasia treat-

ment using tDCS. All of the analyzed subjects had at least 2 years of

progressive language deficit and no history of any other neurological

condition that may have affected their language ability. Subjects had

atrophy predominantly in the left hemisphere. Subjects were diag-

nosed via neuropsychological testing, language testing, MRI, and clini-

cal assessment according to consensus criteria (Gorno-Tempini

et al., 2011). The study was approved by the Johns Hopkins Hospital

earlier because of other commitments (median number of sessions:

sham ¼ 11, tDCS ¼ 13). In the language therapy, we combined the

spell-study-spell procedure with an oral and written naming paradigm

and developed individualized trained and untrained word sets (Ficek

et al., 2018), where trained and untrained sets (10–30 words depend-

ing on individual severity) were matched in length and frequency.

Each participant was shown a picture on a computer, asked to orally

name it, and to write the name. If the participant could not name the

picture (orally or in writing), they were asked to provide three
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characteristics of the item to evaluate and reinforce semantic knowl-

edge. If they still could not describe the word orally, they were offered

the correct word and asked to repeat for three times. Likewise, if the

participant could not write the word, or wrote it incorrectly, the thera-

pist would offer the correct spelling in a spell–study–spell procedure.

That is, the therapist wrote the correct word, reviewed each letter's

sound, and then asked the participant to copy the word three times.

173

Using MRICloud, a cloud-platform for automated image parcella-

tion approach (atlas-based analysis), the MPRAGE scan was parcel-

lated into 283 structures (Mori et al., 2016). In detail, each

participant's high-resolution MPRAGE was segmented by using a

multi-atlas fusion label algorithm (MALF) and large deformation dif-

feomorphic metric mapping, LDDMM (Ceritoglu et al., 2013; Miller

et al., 2005; Tang et al., 2013). This highly accurate diffeomorphic

Letter accuracy was determined based on a scoring system algorithm, associated with multiple atlases, minimizes the mapping

(Goodman & Caramazza, 1985) that considered letter deletions, addi-

tions, substitutions, and movements. Rather than whole-word accu-

racy, letter accuracy was considered as a more precise evaluation as it

captures the effects of different types of errors. Each letter was evalu-

ated with 1 point, 0.5 points for correct identification, and 0.5 points

for correct position. Scores for trained and untrained words were

transformed to percentage points for each participant.

A total of 50 right-handed, native English-speaking patients had a

inaccuracies due to atrophy or local shape deformations. All analyses

were performed in native space. To control for relative regional atro-

phy, volumes for each ROI were normalized by the total intracerebral

volume (total brain tissue without myelencephalon and cerebrospinal

fluid). The resting-state fMRI was also processed in MRICloud and

analyzed in a seed-by-seed manner. Image processing is described in

Faria et al. (2012) including routines imported from the SPM connec-

tivity toolbox for coregistration, motion, and slice timing correction,

pre-intervention scan (scan1) and 48 had a post-intervention scan physiological nuisance correction using CompCor (Behzadi

(scan2). One patient was deleted from the analysis because of missing et al., 2007), and motion and intensity TR outlier rejection using ART

values in the connectivity matrix. Among the remaining 47 post- (https://www.nitrc.org/projects/artifact_detect/). The       MRICloud

intervention scanned patients, 25 had transcranial direct-current stim-

ulation +  language therapy and the remaining 22 patients had the

sham treatment plus language therapy. Several baseline covariates

were recorded including gender, disease onset (years), age at the start

of therapy, and language severity. These patients were diagnosed with

three variant types, including: logopenic, nonfluent, and semantic.

Diagnoses were based on which function(s) were compromised.

Patients with the Logopenic variant PPA (lvPPA) present with word-

finding difficulties and disproportionately impaired sentence repeti-

tion. Patients with nonfluent variant PPA (nfvPPA) present with diffi-

culty producing grammatical sentences and/or exhibit motor speech

impairment (apraxia of speech). Finally, patients with semantic variant

PPA (svPPA) present with fluent speech, but impaired word compre-

pipeline followed established steps for rsfMRI processing as follows.

After exclusion of outlier TRs per the ART routine (parameters: 2 SDs

for motion and 4 SDs for intensity, more severe than the default of 9),

the movement matrix combined with the physiological nuisance

matrix was used in the deconvolution regression for the remaining

TRs. Outlier rejection and regression of motion parameters minimize

potential motion effects. The parcels resulting from the high-

resolution T1 segmentation were brought to the resting state dynam-

ics by co-registration. Time-courses of 78 cortical and deep gray mat-

ter ROIs were extracted and the correlations among them were

calculated.

hension. See Table 1 for a summary of demographic and clinical infor- 2.3 | Density regression
mation on the participants.

We propose to quantify the effect of possibly non-localized stimula-

tion on functional connectivity through a density regression. Let

2.2 | Data preprocessing Ciðu, vÞ be a connectivity measure, such as the correlation of the

BOLD time series, between foci u and v for u ¼ 1…p and v ¼ u…p and

MRI scans were obtained at the Kennedy Krieger Institute at Johns

Hopkins University, using a 3 T Philips Achieva MRI scanner equipped

with a 32-channel head coil. Resting-state fMRI (rsfMRI) data were

acquired for 9 min (210 time-point acquisitions) post-intervention. We

used a 2D EPI sequence with SENSE partial-parallel imaging accel-

eration to obtain an in-plane resolution of 3.3  3.3 mm2 (64  64 vox-els;

TR/TE =  2500/30 ms; flip angle =  75; SENSE acceleration factor =

2; SPIR for fat suppression, 3-mm slice thickness). The data were co-

registered with structural scans into the same anatomical space.

Structural scans, acquired axially with a scan time of 6 min (150

slices), used a T1-weighted MPRAGE sequence with 3D inversion

recovery, magnetization-prepared rapid gradient, isotropic with a reso-

then let Ci be the collection of connectivity measurements, typically

represented by a symmetric matrix, but in our case simply an ordered

vector. We study the distributional summary of the collections of Ci

exactly as if they were drawn independently from a distribution. Let fi

be the estimate of the associated density fi of connections for subject i.

Our proposal is to analyze fi with functional regression methods. A

motivation for studying fi can be obtained by the weaker assumption

of exchangeability of the labels. Such exchangeability translates in this

context to the relevant information for predicting the outcome being in

the proportion of stronger and weaker connections, regardless of

where they occur.

The process of proceeding from fMRI scans to the connectivity

lution       of      1        1        1 mm3          (FOV       =        224        224 mm2;           density is outlined in Figure 1. We estimated the connectivity matrix

TR/TE =  8.1/3.7 ms; flip angle =  8; SENSE acceleration factor =  2).                via temporal correlations of BOLD signals between ROIs after

https://www.nitrc.org/projects/artifact_detect/
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F I G U R E 1 From MRI scan to connectivity density.

parcellation, which were then passed to a density estimation algo-

rithm. Specifically, we used the vectorized elements in the upper tri-

angular portion of the connectivity matrix to estimate the density

using smoothing splines (Gu & Qiu, 1993). This performs maximum

likelihood estimation on the spline coefficients for estimating the log-

arithm of the density function under a smoothness penalty. We chose

this approach as it directly returns the splines, which are both mathe-

matically and practically convenient, especially for performing a func-

tional regression. In addition, it sets a boundary on the support for the

estimated density, which is beneficial here, as correlation coefficients

using quantile-based transformations. The function g is a coefficient

function representing the effect of the tDCS used in this experiment,

which can potentially change for different simulation settings. The

parameter β �q is the coefficient vector of the covariates, both to be

estimated.

Various choices of T and the shape of g have different interpreta-

tions on the resulting model. For example, setting TðfÞ ¼ f, the identity

function, the linear predictor is     TðfiÞg ¼E½gðZiÞ, where E½ is the

expectation of a random variable and Zi is a random variable drawn

from fi. With a sufficiently flexible choice of g, Model (1) covers a

are bounded between 1 and 1. Kernel density estimators broad range of possible model fits. However, many of them may not

(Silverman, 1986) were also implemented as a comparison.

Our proposal is to use fi to characterize Ci and subsequently

study the relationship between fi and variables of interest. In the

tDCS study, the variable of interest is treatment status. Since the     fi

are (infinite dimensional) functional data, we employ functional data

analysis tools (McLean et al., 2014; Ramsay, 2004; Ramsay &

Silverman, 2007). Logically, one would model that treatment status pre-

dicts connectivity. However, treating complex data as covariates is typi-

cally more convenient than treating them as the outcomes. For example,

the ability to incorporate other covariates is simply adding terms in a

regression model. Unlike models for complex multivariate structured out-

comes, an outcome reversed functional approach can be easily implemen-

ted with existing software tools available in any statistical package. As

such, the method extends easily to longitudinal models, whereas longitudi-

nal models for complex structured outcomes are not fully developed. Put-

ting connectivity densities as covariates also makes the method directly

extendable to predicting subject-specific behavior scores. Therefore, we

adopt the ideas in case–control inverse regression (Prentice & Pyke, 1979;

Rothman et al., 2008), and predict whether a subject is in the treatment

arm using the connectivity density and the baseline covariates as predic-

tors. Let Ai denote the treatment assignment with Ai ¼ 1 for tDCS and

Ai ¼ 0 for sham, and Xi  �q denote the q-dimensional covariate vec-tor

with the first element one for the intercept. The linear model con-

sidered is the following:

focus on non-central components of the density, where effects would

likely occur because of the stimulation procedure. For example, if g is a

polynomial, the model considers the moments of the density (mean,

variance, skewness, etc.) as predictors. However, it offers no benefit

over the direct usage of the moment estimates of the connectivities.

Thus, polynomial bases will not be discussed further, though they do

demonstrate an interesting special case of the approach.

As for the choice of T, using TðfÞ ¼ logðfÞ is similar to the use of

the identity function. It loses the expected value interpretation, while

instead, performs regression on the space of densities with Aitchison

geometry (Egozcue et al., 2006). Thus, it may better detect the influ-

ence of the tail behavior on the outcome.

Another choice is the quantile mapping, TqðfÞ ¼ F1, where F is

the cumulative distribution function associated with the density f.

With a sufficient number of foci, this approach is approximately

equivalent to using the empirical quantiles of the connectivity data as

the regressors. Our proposed approach is quite similar to this. How-

ever, we further propose to weight the quantiles via density quantile.

Specifically, we set TldqðfÞ ¼ log �f �F1 ¼ log      dF1=dt where �

is the function composition operator. The latter equality is easy to

derive by taking derivatives via the chain rule to the identity function,

F�F1. Note that the density quantile f �F1 can be regarded as a

quantile synchronized version of the density function, and therefore is

more sensitive to the changing tails. The logarithm transforms maps

ð
logitfPðAi ¼ 1jXi , f iÞg ¼ Xi β þ  T fi     g,

density quantile to a Hilbert space, which is practically useful for linear

ð1Þ           models. This idea has been explored before as a potentially preferable

method for utilizing quantiles as regressors. Specifically, it is equiva-

lent to the Hilbert space mapping, suggested by Petersen and Muüller

where T is a given operator from �2 to �2 aiming to capture a spe-

cific characteristic of the density functions. T can also be used to con-

trol the impact of possible outliers of connectivity measures, such as

(2016). Figure 2 shows original densities, log transformed densities

and log density quantiles of 10 random sampled subjects in our tDCS

study.
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An illustration of connectivity densities, its log transformation and its log density quantiles. Plots shown for 10 random sampled
subjects in our tDCS study and functions are standardized across all subjects to have similar y scales along x-axis.

2.4 | Reversing the predictor/response
relationship

It is typical in regression models to consider the hypothetically function-

ally antecedent variable as a predictor, independent or exogenous vari-

able, rather than an outcome, dependent or endogenous variable. A

counterexample is in outcome-dependent sampling, such as in retrospec-

tive studies. We utilize the same strategy of reversing the typical predic-

tor/response relationship, as is more convenient for modeling with high

dimensional and complex quantities (such as brain connectivity) as the

predictor. In the tDCS study, we model treatment assignment as the out-

come using a logit model with the connectivity density and other covari-

ates as the independent variables. This avoids the need to construct

probability distributions on the connectivity densities themselves.

Ogden, 2007, for a review). This reduces the dimension of the func-

tional regressor using a set of data-derived bases. In this approach,

one calculates the PCA decomposition of the functions,      T fi ,

using the Karhunen/Loève transformation (Ghanem & Spanos, 2003),

where the covariance function is smoothed (Di et al., 2009). We

selected the leading principal components which explained over 99%

of the variation as the basis functions. Notice that the version of fPCA

utilized here does not honor possible density implied constraints of T

fi     . Generalized cross-validation (GCV) was used to choose the

smoothing parameters (for detailed discussion, see section 4.5.4 of

Wood, 2004). Confidence bands were derived using a Bayes approach

(McLean et al., 2014; Nychka, 1988; Wahba, 1983).

To elaborate, using Bayes' rule and PðAi ¼ 1Þ ¼ PðAi ¼ 0Þ ¼ 0:5 2.6 | Comparison
(due to the randomization), for any function g and transformation T,

we have:

OddsAi ¼ 1jXi , ⟨TðfiÞ, g⟩¼
P⟨TðfiÞ, g⟩jAi ¼ 1, Xi , i i

i

where ⟨ , ⟩ is any inner product of two functions. In our application, we

consider logit models on PðAi ¼ 1jXi , TðfiÞÞ, which depend on fi only

though the form ⟨TðfiÞ, g⟩. Also, thanks to the randomized design, we can

be aggressive in excluding potential confounders as covariates. This is

especially helpful given the modest sample size. As the above

relationship shows, our treatment assignment outcome model,

PðAijXi, TðfiÞÞ, is consistent with any connectivity outcome model, P

⟨TðfiÞ, g⟩jAi, Xi  , where the likelihood ratio comparing treated to

controls is approximately log linear with our linear separable density

model given in Equation (1).

To illustrate the benefit of conducting a delocalized analysis, a simula-

tion study based on the fMRI data collected in the tDCS study was

conducted. We demonstrate an extreme example where non-localized

brain stimulation decreases statistical power, or even makes it impos-

sible to identify ROI pairs with a significant effect when implementing a

localization method. However, using connectivity densities retains the

relevant information. Our goal in this simulation was to create a

caricature of non-localized effects, to demonstrate the statistical

direction that the procedure highlights.

As a correlation coefficient, connectivity can be written as cosðθÞ

where θ is the angle between two signals. In the simulation, consider a

brain connectivity map with 20 regions, R1…R20. For every map, let θij

be the angle between signals in location i and j; we simplified the data

generating distribution by assuming that the angles, θij , are i.i.d.

following a von-Mises distribution, Mðμ, kÞ, where the density is fðθjμ,

kÞ ¼ ekcosðxμÞ=2πI0ðkÞ, with I0 as the modified Bessel function of

order 0. The parameters, μ, k were estimated from pre-intervention

2.5 | Estimation of the coefficient function patients by maximum likelihood. This was done to have a realistic null

distribution on densities.

To estimate the coefficient function, g in Model (1), we performed a                   A non-localized “stimulation” was simulated by perturbing region

functional     principal     components     analysis     (fPCA,     see     Reiss     &           Ri with equal probability across i. After stimulation, we simplified the
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effect via a degree rotation, ϕ, for the signal at Ri. Correspondingly, all θij

change the same amount and the final post-stimulation connectiv-ity

was a convex combination of this stimulated matrix and the pre-

stimulation matrix, where the weight was used to control the signal

level and therefore controls the degree of difficulty in detecting the

effect. Denote Cij the pre-stimulation correlation between region i

and j, that Cij ¼  cos θij . A stimulation on region i0 yield a symmetric

post-stimulation connectivity Csti as

TANG E T  AL.

findings for all methods. Results are shown in Table A1. Localization

methods, including the dimension reduction method, do not find any

significant region pairs in the non-localized simulations. In contrast, in

this setting, the density method detected the stimulation impact on

the connectivity densities. Among all the transformations, the log

density-quantile transformation was significantly better than others.

We would like to reiterate that the simulation is contrived to highlight

an extreme setting. Connectivity density methods will not necessarily

increase the sensitivity of the analysis. If the true effect is localized, it

sti Cij i ≠ i 0 ,  j > i cannot be better than well-specified localized method.
ij                wCij þ ð1wÞcos θij þ ϕ       i ¼ i0, j > i

Notice that, although uniform stimulation on all regions of Ri     is

unpractical in many situations, this simulation is a boundary case to

understand the effect of lacking localization. Mover, it is still consis-

tent with other kinds of non-localized effects that are random mixture

of localized effects. In Appendix A, we also describe and examine

another intuitive simulation setting, and we observed similar results.

For every run of the simulation, we sampled 50 pre-stimulation

maps from the pre-intervention scans and fit the parameters μ,k for

each. We subsequently simulated 50 connectivity maps from samples

of fitted von-Mises distributions, and applied the stimulation above

for a random half of these maps. We chose ϕ ¼ π , and the weight w in

the convex combination was chosen to be 75%. Other values, ranging

from 90% to 50%, were also tried and similar patterns were observed.

Weights under 50% made the signal detection too easy and methods

are indistinguishable. Significance results for edgewise testing, princi-

pal component regression, and density regression were compared,

with different density regression transformations for 1000 simula-

tions. For completeness, we also considered instances with no stimu-

lation effect and when the stimulation was localized at a specific

region.

The edgewise regression approach considers the following model:

3.2 | Analysis of the tDCS data using localized
methods

For the tDCS data, we tested the significance of the edgewise regres-

sion [Model (2)], a principal components regression [Model (3)] and a

LASSO post-inference model (Dezeure et al., 2015) using connectivity

of all ROI pairs. No foci-pair or principal components was identified as

significant in either regression model, at Type I error rate levels of

0.05 or even 0.1. Of note, previous localization work on related data

(Ficek et al., 2018), yielded significant findings. However, the total

number of regions were restricted, thus dramatically reducing multi-

plicity concerns. In this analysis, 78 regions were used, resulting in a

more stringent correction factor based on 78 choose 2, or 3003 com-

parisons. In addition, a more restrictive inclusion criteria in Ficek et al.

(2018) led to a different study population.

3.3 | Analysis of tDCS data using density
regression

In this section, we present the analysis results of the tDCS study using

the density regression Model (1) with different transformations (T).
logitfPðAi ¼ 1jXi , f iÞg ¼ Xi β þ Ci ðs, tÞαst,                       ð2Þ           The fitted coefficient function, g, and its 95% confidence interval are

presented in Figure 4. Functional linear regression was performed

where s > t. The second approach was a regression model with dimen-

sion reduced predictors:

using the refund R-package with default parameter of smoothed

covariance fPCA, which chooses the number of components that

explains over 99% of the data variation.

logitfPðAi ¼ 1jXi , f iÞg ¼ Xi β þ Siα,                             ð3Þ                   Regressing on the density after applying the log-density quantile

transform yielded the highest number of significant signals, which

where, Si are the leading principal components of the vectorized con-

nectivity matrix, Ci . We refer to this model as the PC model.

reaches its maximum around the 85th percentile. This potentially indi-

cates that stimulation has a consistent tail effect, which is more likely to

be aligned by quantile, rather than absolute value. Since the esti-

mated coefficient function is significantly non-zero only in the posi-

3      |      RESU L T S                                                                                 tive tail this suggests that the tDCS group had higher connection

densities in the tail than the sham group. That is, connectivity among

3.1 | Simulation the most connected regions was higher in the tDCS group.
A likelihood ratio test was performed to compare logistic regres-

Figures 3a and 4a show example connectivity matrices and the differ-

ence after stimulation from an example simulation. The virtual stimu-

lation was applied at region 10 in the right panel plot, while the left

panel is the pre-stimulation map. We report the rate of positive

sion with only baseline variables and our model including both the

baseline variables and the log density quantile term. The resulting p-

value was .0052, indicating a statistically significant gain of informa-

tion from connectivity density at the 0.05 benchmark type I error rate.
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Part figure (a) shows the simulated pre-stimulation connectivity matrix of a subject and part figure (b) is the simulated post-pre
difference in the connectivity matrix of the same subject.

The conclusion remains true if one applies a Bonferroni p-value cor-

rection. Specifically, three transformations were compared and there-

fore the corrected p-value is .017. Notice that this is already a

conservative value. The result agrees with a non-parametric permuta-

tion test where we do the same regression but connectivity densities

necessary condition for connectivity density mediating the effect of

stimulation on language ability, which can motivate a future formal

mediation analysis.

of subjects are randomly shuffled. Using AUC as test statistic, we 3.4 | Induced connectivity
observe that the AUC of log density quantile model is also significant

larger than that of null distribution, which is the AUCs with shuffled

connectivity densities. The p-value is :015 :0009 estimated from

20,000 runs. A further reanalysis of subgroups shows that the effect is

driven primarily by the nonfluent subtype which comprises 23 over

total 47 subjects. There is not enough data to investigate the possibil-

ity of different effects of other subtypes, the least of which only has 9

subjects. We also performed a sensitivity analysis examining the

impact of hyperparameters in the density estimation. We changed the

smoothing parameter in spline smoothing and bandwidth in kernel

density estimation method, both in the range of ½θ0=2, 2θ0, where θ0 is

the corresponding default value. For smoothing splines this value was

selected by the approximated cross-validation method suggested in Gu

and Wang (2003) and for KDE this value is suggested by Silver-man

(1986). We observed that the log density quantile transformed model

constantly gives significant information gain with p-value <.05 in all

settings, comparing with the demographic-only baseline model.

Therefore, the method is not sensitive to reasonable deviations in

hyperparameter selection.

We also studied the effect of the estimated function on behavior

change. We found that the variable T fi     β is significant (p < .05) for

predicting the change of language ability, measured by untrained

items, after transcranial direct-current stimulation. Here β is the coef-

ficient function estimated above for T ¼ Tldq and, recall, fi are the con-

nectivity densities for post-intervention scans. The result shows a

Consider the best model using the log density quantile transform, Tldq.

We have

logitfPðAi ¼ 1jXi , f i Þg ¼ XΤ β þ
ð1 

logfi �F1ðqÞgðqÞdq: 0

Notice that for the connectivity matrix, Ci , we have FifCig Uð0, 1Þ, a

uniform distribution on ½0, 1 via the probability integral transform.

Let Qiðs, tÞ ¼ FifCiðs, tÞg. Then, it follows that:

ð1 

logfi
 
F1ðqÞ gðqÞdq ¼�gðQiÞlogfi

 
F1ðQiÞ 

 
0

NðN1Þ 
t > s 

gfQiðs, tÞglogfiF1fQiðs, tÞg:

Therefore, for this subject, one can assign

gfQiðs, tÞglogfi F1fQiðs, tÞg as the effect size for region pair ðs, tÞ.

Averaging this effect across all patients yields an important metric for

every region pair in the model. We call this stimulation-induced con-

nectivity, since it describes how influential the correlation of each

region pair is in predicting stimulation status. The induced connectiv-

ity matrix is shown in Figure 5, together with a summary of effect

agreement across subjects, where for each patient, region pairs are
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Model results on the tDCS experiment. The black solid line is the fitted coefficient function, g, with the black dashed line
referencing the associated 95% confidence interval. Densities were estimated from smoothing splines implemented in the fda R-package with
19 degrees of freedom for the spline basis. A kernel density estimator (KDE, d) is also computed and compared with smoothing spline (panel c)
method. Contrasting c and d show that the density estimation technique did not impact results.

selected with top 5% absolute effect size and the frequency of each

region pair being selected is calculated.

This technique, of course, returns to a discussion of localized

effects. However, by investigating this measure one can ascertain the

degree of localization consistency across subjects—an impossibility

with pure localization analysis.

application, we find associations between stimulation and connectiv-

ity density. In contrast, edgewise methods fail to find any results,

because of multiplicity issues. This is partially due to a wide search of all

possible region pairs from the parcellation. Of course, one could also

reduce multiplicity concerns by restricting attention to regions

associated with a priori hypotheses of interest, as was done in Ficek et

al. (2018). In contrast, investigating connection densities is an omni-

bus approach that benefits from a reduction in the number of tests

4      |      D I S C U S S I O N                                                                        over exploratory edge-wise approaches, a robustness to non-localized

effects and a robustness to the inclusion of unnecessary foci. These

In this manuscript, a new framework for analyzing functional connec-

tivity was explored. Functional data analysis of log quantile connectiv-

ity densities investigates possible nonlocalized effects associated with

subject-level variables. It is clear that our method can be directly

applied to other kinds of numerical measurements. For example, par-

tial correlations or entropy-based measures. However, it continues to

be only useful suitable if connection exchangeability represents a use-

ful model. A sizable by-product of this style of analysis is the drastic

reduction of multiplicity considerations. This is of great importance in

connectivity analysis, where the number of comparisons grows at a

rate of the square of the number of foci being considered. In the data

benefits come at the expense of the loss of power and interpretability

over analyses considering only a small set of tightly specified edge-

wise hypotheses. Our method can also be extended to seed-based

connectivity and voxel-by-voxel connectivity without any modifica-

tion. However, the assumption of complete node invariance discards a

potential sizable amount of relevant localization information. There-

fore, we believe that the method would be primarily useful as an easy

and simple early-stage omnibus test, or after light localization efforts,

such as considering connectivity densities between voxels within sets

of ROI. To further emphasize the ease and simplicity of the method,

we stress that density regression can be coded from scratch in only a
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Part figure (a) shows the induced connectivity described in Section 3.4. IFG regions (the tDCS target) are noted in the red box.
Part figure (b) shows some region pairs with the most consistent contribution, measured by the frequency of having top 5% absolute effect size
across all patients.

few lines of code in any modern scripting environment with PCA and

GLM functions.

Density regression, as a prediction model, can be view as a gener-

alization of connectome-based predictive modeling (Shen et al., 2017).

Connectome-based predictive modeling (CPM) uses individual con-

nectivity matrices to predict behavioral measures. The method first

selects location-pairs that are most significantly correlated with the

outcome, then summarizes the matrix by adding up connectivity mea-

sures in selected pairs, and this sum is used as a predictor in a regres-

sion model. In CPM, there is no localized effect and CPM can be

viewed as a regression on connectivity density using only a constant

localization analyses. In contrast, density regression is more akin to an

omnibus F-test, looking over a large range of edges, dramatically miti-

gating multiple comparison issues in the favor of testing one overview

hypothesis, rather than a large collection of highly specific ones.

Therefore, we suggest the method as an early-stage tool in a neuroim-

aging data analyst's toolbox.

We used functional data analysis to relate connection densities to

outcomes. Functional data analysis tools (Ramsay & Silverman, 2007)

have grown to be quite flexible. Thus, density regression approaches

can be relatively easily generalized to handle different settings, such

as any typical statistical outcome model and longitudinal data. Also,

basis. Here we generalize it by     utilizing more distributional density estimates may naturally make adjustments for missing data, in

information.

An interesting direction to pursue with connectivity density

methods is to consider potential robustness to spatial registration

(Oliveira & Tavares, 2014). The connectivity density can relatively

easily be shown to be invariant to relabeling and affine transforma-

tions (see Theorem 1 in the Appendix A). In contrast, localization

methods heavily rely on both accurate registration and biological

functional localization across subjects. Therefore, it is interesting to

posit that density regression could be used after only mild affine reg-

istration efforts prior to the more time-consuming non-linear

registration.

However, to reiterate, ignoring potentially useful localization

information can reduce power and sensitivity. Surely, the optimal

strategy removes subject-specific artifacts and reduces the search

space with—correct—strong a priori hypotheses and then tests only

those edges. However, in the absence of this ideal case, one is often

confronted with a massive unstructured search problem with

the form of missing foci, since the density can remain the same in

some contexts. This has potential broad implications for the study of

stroke and other diseases with abnormal brain pathology. Localization

methods are not available if the ROI is damaged or missing. In con-

trast, density-based methods are easy to apply. In addition, we used

PCA on the log quantile densities as the basis for functional regres-

sion. The result is that the method can be applied using standard soft-

ware without modification. Other bases and penalization strategies

may improve the approach. In fact, the utility and application of func-

tional regression in neuroimaging has been greatly improved via

recent research efforts (e.g., see Goldsmith, Crainiceanu, et al., 2011,

Goldsmith, Wand, & Crainiceanu, 2011, Goldsmith et al., 2012; Reiss

et al., 2017).

Utilizing functional regression also has the benefit of producing

more interpretable models as compared with machine learning

approaches. However, this is achieved at a likely cost of prediction

performance. It is possible that ML approaches could navigate the
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trade-offs between localization and exchangeability non- Our simulations and data results focus on settings that highlight

parametrically and possibly achieve better prediction performance.

Thus, we view density regression as a parsimonious modeling choice

rather than a method to optimize prediction performance.

Statistically, we assumed independence between subjects and

relied on the randomization to invert the predictor/response relation-

ship using logit models. This borrows techniques from case-referent

sampling from epidemiology dating back to the seminal work of Corn-

field (see Breslow, 1996; Greenhouse, 1982, for overviews). A benefit

of doing this is that it is generally easier to have the more complex

variable as the predictor rather than a response. To elaborate, to have a

density as an outcome, predictions from the model must be func-

tions that are both positive and integrate to one. Most existing func-

tional approaches, especially point-wise ones, would satisfy neither

criteria nor modeling distributional outcomes is an active area of sta-

tistical research. The probability space containing the outcome is nec-

essarily a probability distribution on distributions, such as a Dirichlet

process. While this is not a problem per se, it makes inference more

technically challenging. In contrast, by conditioning on the density, as

we have done, its distribution does not need to be modeled and the

fitting and inference require little more than well-known generalized

linear model techniques. In Appendix 3 we further the discussion in

comparison with function on scalar regression. It is seen that, with

almost no effort, one obtains the use of easier models (GLMs) and

appropriate inferences by reversing the relationship and the resulting

estimates are similar to those of function on scalar regression. How-

ever, because the constraints are not accounted for in the function on

scalar model, inferences remain in question.

Nonetheless, we reiterate that the use of connectivity density as

a regressor remains useful, even if one prefers not to flip the predic-

tor/response relationship. For example, in our tDCS example, con-

necting the connectivity density to behavioral outcomes would be

the benefits of an omnibus density regression approach. In the simula-

tions, we investigated a non-localized caricature of typical effects.

Similarly, in our data analysis, we performed no filtering of regions

prior to analysis (thus magnifying multiple comparison concerns). It

was shown in the simulation, that functional density regression

approaches can find real non-localized effects, whereas, as expected,

edgewise methods do not find any. It should be emphasized that the

performance of the density regression approach is invariant to the dis-

tribution of effects across subjects, whereas edgewise approaches

become viable as the degree of localization increases.

In addition, the flexibility of the approach finds effects in the real

data, even though there are a great deal of irrelevant connections

(i.e., unnecessarily included region pairs) being studied. Edgewise and

other regression approaches are highly sensitive to unnecessary null

connections being included in the analysis. A benefit of the data being

considered is the likely existence of an effect related to the stimula-

tion. However, we emphasize that a single omnibus approach does

not represent a full analysis of the data. We recommend this approach

as a global analysis to be performed prior to edgewise or other locali-

zation methods. This mirrors the classic ANOVA (analysis of variance)

approach of performing an overall F  test before investigating pairs of

explanatory factor levels. It would be most useful in exploratory

model building where foci selection is not restrictive. In cases of

tightly coupled statistical hypotheses involving relatively few regions

or foci, density regression would not be needed or particularly helpful.

This methodology raises many avenues for future research. For

example, one the idea of non-localized effects in dynamic connectivity

(Hutchison et al., 2013) via stochastic processes of connectivity densi-

ties (by time). In addition, there are multiple alternatives for densities

estimated from correlation of each region pair for contralateral

regions. Here, it should be acknowledged that there is strong homoto-

relevant,     where     the     natural     predictor     would     be     functional pic correlations from symmetric regions. One should then deal with

connectivity.

Independence between subjects was used for inference. We also

used density estimates for connection densities, techniques that

implicitly require sampling assumptions for theoretical convergence.

However, we contend that connectivity densities are intrinsically of

interest, and therefore no appeals to super-population inference and

sampling assumptions are needed for estimation. This is analogous to

spatial group ICA, where productive estimates are obtained via inde-

pendence assumptions on voxels over space, without a true sampling

or super-population model for inference (Calhoun et al., 2001). An

interesting future direction of research would investigate dependen-

cies between foci correlations.

Our recommended approach uses log quantile densities as the

functional predictor, rather than the density, distribution function, or

quantile function directly (Petersen & Muüller, 2016). This approach

has convenient theoretical properties, but also the practical benefit of

focusing attention on tail behavior, where effects are most likely to be

seen. Utilizing the quantile density also creates robustness to irrele-

vant foci pairs being included in the analysis.

multivariate densities estimated from pairs of correlations. This same

logic could be applied to geographically close regions and for

instances with longitudinal scans. The connectivity density of spectral

information (de Haan et al., 2012), like leading principal component

scores, should also be studied to potentially extract relevant brain

graph properties.

Finally, there is the role that connectivity-density methods could

play in fMRI analysis of subjects with missing brain tissue, such as

studies of stroke or surgical interventions. Connectivity density

methods may be resilient to the missing data impact of differential

brain structure in a way that localization methods are not. In fact, it is

interesting to conjecture what localization methods even mean in

these settings where a subset of subjects are missing areas of localiza-

tion. In contrast, density methods may provide a more robust and

well-defined methodology. It is worthy of note that components of

graph methodology (Bullmore & Sporns, 2009; Sporns, 2010) often

considers summary metrics that do not require or assume localization.

Density regression can be considered a subset of weighted graph

metric analysis.
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the Fisher-z transformed correlation for specific region pairs. It then

gives post-stimulation connectivity matrix Csti differs with C only on

A.1     |     Invariance properties

Here we discuss some invariance properties of the connectivity den- tanh1Csti ¼  tanh1Cik jk þ εk ðA1Þ

sity. Consider C a connectivity measure where Cðx, yÞ is measuring

the connectivity between location x D and y D. The connectivity

density can be defined as the density of random variables CðU, VÞ,

where ðU, VÞ follows a sampling distribution on D D .  Denote fsample as

the density of that sampling distribution. It is easy to see that the

connectivity density, f, defined in Section 2.3 also follows such a defi-

nition while using the uniform distribution as fsample. We prove that f

is invariant to re-labeling in discrete cases (e.g., connectivity between

for     fðik , jkÞ j k ¼ 1, 2Kg     some     specific     region     pairs     and     εi i.n.d.

follows N  μk, σk . Notice that this formulation corresponds with the

underlying effect pattern in some common edgewise analysis of

change in connectivity, for example Ficek et al. (2018).

In the simulation for localized analysis, the locations ðik, jkÞ are

uniformly randomly selected from all 190 region pairs and then fixed

for all samples. Naturally a stimulation with non-localized effect would

ROIs)      and      to      affine      transformation      in      continuous      cases also follow Equation (A1). But every time it is performed, fðik , jkÞg

(e.g., interpolation of connectivity between voxels). Denote suppðCÞ

be the support of connectivity measure C. After any invertible trans-

formation, �, the connectivity measure C� will be naturally defined as

C�ðx, yÞ ¼ C �1ðxÞ, �1ðyÞ . Then we have the following Theorem

1.

Theorem 1. Let     UC, VC       follow the uniform distribu-

tion on suppðCÞ. Then, the density of C UC, VC       has the

same distribution with C�     UC� , VC�       , where � is any

permutation map if suppðCÞ is a finite discrete set and � is

any affine transformation if suppðCÞ is a closure of

some open set in �3. Therefore, connectivity densities

are invariant to these transformations.

Proof. By change of variable calculus of random variables,

we know that under a sampling distribution fsample, CðU, VÞ has the

becomes another independent sample from the 190 regions. In the

experiment, we choose K ¼ 10,μk ¼ 0:5,σk ¼ 0:5 for all k. We also

observed similar patterns for a variety of parameters settings. We ran

the experiment for 10,000 independent simulations. For every run we

sampled 100 no-stimulation connectivity maps with another 100 each

for localized stimulation, non-localized stimulation and no stimulation.

We studied how different methods work in these situations as

described in Section 2.6. The results for the simulation can be found in

Table A1. We observe a similar pattern as Table A2 that connectiv-ity

density based methods can detect non-localized effect while edge-wise

analysis and principal component analysis cannot. It also shows that

the optimal transformation might be different for different pat-terns

of the effect, as the log transformation is the best in this situa-tion

while the log-density-quantile transformation is the best in

Table A2.

sample distribution with C�ðU0, V0Þ if ðU0, V0Þ fsample

where fsampleðx, yÞ ¼ j�j2fsample �1ðxÞ, �1ðyÞ . A.3     |     Connectivity density as outcome

In our uniform cases, the Jacobian j�j and sampling distribution

fUC ,VC ,fUC� ,VC�       will alwaysbe a constant. Therefore, the condition
above always holds and C UC, VC       must follow a sample distribution

with C�     UC� , VC�       .

Since the uniform distribution is the only distribution invariant to

all affine transformations / permutations, we know that the connec-

tivity density defined in Section 2.3 is also the only possible distribu-

tional summary that has such an invariance property for arbitrary

connectivity measures.

In this section we detail why we reversing the predictor/response

relationship is a compelling idea and thus compare the results with a

typical function-on-scalar regression with connectivity densities as

outcomes.

Excepting the convenience, as discussed in Section 4, the main

reason for reversing the predictor/response is that typical function-

on-scalar regression methods can not satisfy the integral constraints

on the outcome, which are densities or isomorphic transformation of

densities. Therefore, the specified distribution is not correct, creating

concern regarding inferences.

Consider the following typical linear functional model with out-

A.2     |     Additional simulations come function y and features x.

Here we describe another intuitive simulation setting and show that a

similar pattern is observed. Specifically, it shows that our methods can yðtÞ ¼ f0ðtÞþx fðtÞþεðtÞ ðA2Þ

detect non-localized effects, while edgewise method or dimension

reduction methods, like PCA, cannot, although the best transforma-

tion of densities might change for different signal distributions.

Again we consider connectivity matrix of 20 regions R1,,R20. A

no-stimulation connectivity matrix, C, is sampled uniformly from

50 pre-intervention scans in our data and its 20 rows and columns are

also uniformly sampled from an original 78 78 connectivity matrix.

Now consider a localized stimulation as additive Gaussian signals to

where y is a density functions, log density function, or the log-den-

sity-quantile transformations. Recall, density functions must be both

positive and integrate to 1. Log densities require integral of their

exponential to be 1 and Log density quantiles require their corre-

sponding quantiles be supported within [1, 1], because they are

quantiles of correlations. It is easy to see that within the linear func-

tional framework 5, all these constraints cannot be translated into
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Non-localized

Localized

No-stimulation

Bonferroni FDR

0.060 0.065

0.938 0.953

0.048 0.051

PC T0 Tl Tldq

0.089 0.618 1 0.870

0.994 0.620 1 0.862

0.082 0.060 0.056 0.053

T A B L E A 1 The table shows the ratio
of significant positive findings over
10,000 runs

Note: T0, Tl, and Tldq are density regressions with the identity, logarithm, and log density-quantile
transformations described in Section 2.3. Bonferroni, FDR (Benjamini & Hochberg, 1995) refer to
edgewise regression with those associated multiplicity correction procedures. PC refers to principal
component regression with the top 20 components.

T A B L E A 2 Significant positive findings over 1000 runs. T0,Tl,Tldq are density regressions with the identity, logarithm, and log density-
quantile transformation described in Section 2.3. Bonferroni, FDR (Benjamini & Hochberg, 1995) refer to edgewise regression with different
multiplicity correction procedures. PC refers to the principal component regression with the top 10 components, the number chosen by
minimizing the sum of type I error (significance ratio in non-localized situation) and type II error (none significance ratio in localized situation).

Non-localized

Localized

No-stimulation

Bonferroni FDR PC T0 Tl Tldq

0.073 0.078 0.118 0.638 0.117 0.717

0.638 0.669 0.754 0.629 0.112 0.714

0.061 0.065 0.113 0.075 0.058 0.059

F I G U R E A 1 Estimated difference function of the transformed neural densities between treatment and control groups, holding all other
variables the same. Similar patterns could be found compared with Figure 4a–d but their confidence bands are biased because no constraints on
the outcome function are satisfied.

F I G U R E A 2 A sample outcome function from the fitted model. It
breaks the positive constraints on both tails and its integral is 0:99 < 1.
Also the confidence band from the model does not make sense
because all densities are non-negative.

individual constraints on estimation of f0,f. Therefore, the model is

specifying an easily demonstrably false distribution, resulting in possi-

bly incorrect inferences even if estimation remains viable. Other

methods exist to correct this problem, for example Szabo et al. (2016);

Chen et al. (2021), but this is an active area of research and is thus

challenging to implement for most practitioners.

In Figure A1, we show the estimation results of model 5 on our

data as a reference. These are the slope functions of the treatment

assignment variable, the estimated differences before and after tDCS

stimulation. We used the regression methods described in Reiss et al.

(2010) to solve the problem 5 and the penalty parameters selected by

generalized cross validation. There is, as expected a high degree of simi-

larity between the corresponding curves and those in Figure 4a–d. But,

as we explained above, the distributional assumptions are questionable

in this context and the confidence bands remain in question, and there-

fore we do not report such results in the main article. We also note the

distinction in convenience, whereby we obtain similar estimates using

only a GLM, perhaps the most standard statistical model.
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Figure A2 shows one sample outcome function from the fitted

model. We have checked that it breaks the positive constraints on

both tails and its integral is 0:99 < 1. Also it is clear that the confidence

185

band from the model does not make sense because all densities

should be non-negative. Therefore the inference results from the

model 5 are wrong.


